
SIMPLIFYING MODEL-BASED RL: LEARNING REPRESENTATIONS,
LATENT-SPACE MODELS, AND POLICIES WITH ONE OBJECTIVE

Raj Ghugare1,2 Homanga Bharadhwaj2 Benjamin Eysenbach2

Sergey Levine3 Ruslan Salakhutdinov2

1VNIT Nagpur 2Carnegie Mellon University 3UC Berkeley
raj19@students.vnit.ac.in, hbharadh@cs.cmu.edu, beysenba@cs.cmu.edu

ABSTRACT

While reinforcement learning (RL) methods that learn an internal model of the
environment have the potential to be more sample efficient than their model-free
counterparts, learning to model raw observations from high dimensional sensors
can be challenging. Prior work has addressed this challenge by learning low-
dimensional representation of observations through auxiliary objectives, such as
reconstruction or value prediction. However, the alignment between these auxiliary
objectives and the RL objective is often unclear. In this work, we propose a single
objective which jointly optimizes a latent-space model and policy to achieve high
returns while remaining self-consistent. This objective is a lower bound on expected
returns. Unlike prior bounds for model-based RL on policy exploration or model
guarantees, our bound is directly on the overall RL objective. We demonstrate that
the resulting algorithm matches or improves the sample-efficiency of the best prior
model-based and model-free RL methods. While such sample efficient methods
typically are computationally demanding, our method attains the performance of
SAC in about 50% less wall-clock time.

1 INTRODUCTION

While RL algorithms that learn an internal model of the world can learn more quickly than their
model-free counterparts (Hafner et al., 2018; Janner et al., 2019), figuring out exactly what these
models should predict has remained an open problem: the real world and even realistic simulators are
too complex to model accurately. Although model errors may be rare under the training distribution,
a learned RL agent will often seek out the states where an otherwise accurate model makes mis-
takes (Jafferjee et al., 2020). Simply training the model with maximum likelihood will not, in general,
produce a model that is good for model-based RL (MBRL). The discrepancy between the policy
objective and the model objective is called the objective mismatch problem (Lambert et al., 2020),
and remains an active area of research. The objective mismatch problem is especially important in
settings with high-dimensional observations, which are challenging to predict with high fidelity.
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Figure 1: (left) Most model-based RL methods learn
the representations, latent-space model, and policy using
three different objectives. (Right) Our method jointly
optimizes all three components using a single objective,
which is a lower bound on expected returns.

Prior model-based methods have coped with the
difficulty to model high-dimensional observa-
tions by learning the dynamics of a compact
representation of observations, rather than the
dynamics of the raw observations. Depending
on their learning objective, these representations
might still be hard to predict or might not contain
task relevant information. Besides, the accuracy
of prediction depends not just on the model’s
parameters, but also on the states visited by the
policy. Hence, another way of reducing predic-
tion errors is to optimize the policy to avoid transitions where the model is inaccurate, while achieving
high returns. In the end, we want to train the model, representations, and policy to be self-consistent:
the policy should only visit states where the model is accurate, the representation should encode
information that is task-relevant and predictable. Can we design a model-based RL algorithm that
automatically learns compact yet sufficient representations for model-based reasoning?
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In this paper, we present a simple yet principled answer to this question by devising a single objective
that jointly optimizes the three components of the model-based algorithm: the representation, the
model, and the policy. As shown in Fig. 1, this is in contrast to prior methods, which use three
separate objectives. We build upon prior work that views model-based RL as a latent-variable
problem: the objective is to maximize the returns (the likelihood), which is an expectation over
trajectories (the unobserved latent variable) (Botvinick & Toussaint, 2012; Attias, 2003; Eysenbach
et al., 2021a). This is different from prior work that maximizes the likelihood of observed data,
independent of the reward function (Hafner et al., 2019; Lee et al., 2020). This perspective suggests
that model-based RL algorithms should resemble inference algorithms, sampling trajectories (the
latent variable) and then maximizing returns (the likelihood) on those trajectories. However, sampling
trajectories is challenging when observations are high-dimensional. The key to our work is to infer
both the trajectories (observations, actions) and the representations of the observations. Crucially, we
show how to maximize the expected returns under this inferred distribution by sampling only the
representations, without the need to sample high-dimensional observations.

The main contribution of this paper is Aligned Latent Models (ALM), an MBRL algorithm that jointly
optimizes the observation representations, a model that predicts those representations, and a policy
that acts based on those representations. To the best of our knowledge, this objective is the first lower
bound for a model-based RL method with a latent-space model. Across a range of continuous control
tasks, we demonstrate that ALM achieves higher sample efficiency than prior model-based and
model-free RL methods, including on tasks that stymie prior MBRL methods. Because ALM does
not require ensembles (Chua et al., 2018; Janner et al., 2019) or decision-time planning (Deisenroth
& Rasmussen, 2011; Sikchi et al., 2020; Morgan et al., 2021), our open-source implementation
performs updates 10× and 6× faster than MBPO (Janner et al., 2019) and REDQ (Chen et al., 2021)
respectively, and achieves near-optimal returns in about 50% less time than SAC.

2 RELATED WORK

Prior model-based RL methods use models in many ways, using it to search for optimal action
sequences (Garcia et al., 1989; Springenberg et al., 2020; Hafner et al., 2018; Chua et al., 2018;
Hafner et al., 2019; Xie et al., 2020), to generate synthetic data (Sutton, 1991; Luo et al., 2018; Hafner
et al., 2019; Janner et al., 2019; Shen et al., 2020), to better estimate the value function (Deisenroth &
Rasmussen, 2011; Chua et al., 2018; Buckman et al., 2018; Feinberg et al., 2018), or some combination
thereof (Schrittwieser et al., 2020; Hamrick et al., 2020; Hansen et al., 2022). Similar to prior work
on stochastic value gradients (Heess et al., 2015; Hafner et al., 2019; Clavera et al., 2020; Amos et al.,
2020), our approach uses model rollouts to estimate the value function for a policy gradient.

Because learning a model of high-dimensional observations is challenging, many prior model-based
methods first learn a compact representation using a representation learning objective (e.g., image
reconstruction (Kaiser et al., 2019; Oh et al., 2015; Buesing et al., 2018; Ha & Schmidhuber,
2018; Hafner et al., 2018; 2019; 2020), value and action prediction (Oh et al., 2017; Schrittwieser
et al., 2020; Grimm et al., 2020), planning performance (Tamar et al., 2016; Racanière et al., 2017;
Okada et al., 2017), or self-supervised learning (Deng et al., 2021; Nguyen et al., 2021; Okada &
Taniguchi, 2020)). These methods then learn the dynamics of these representations (not of the raw
observations), and use the model for RL. The success of these methods depends on the representation:
the representations should be compact (i.e., easy to predict) while retaining task-relevant information.
However, prior work does not optimize for this criterion, but instead optimizes the representation
using some auxiliary objective.

The standard RL objective is to to maximize the expected returns, but models are typically learned
via a different objective (maximum likelihood) and representations are learned via a third objective
(e.g., image reconstruction). To solve this objective mismatch (Lambert et al., 2020; Joseph et al.,
2013; Grimm et al., 2020), prior work study decision aware loss functions which optimize the model
to minimize the difference between true and imagined next step values (Farahmand et al., 2017;
Farahmand, 2018; D'Oro et al., 2020; Abachi et al., 2020; Voelcker et al., 2022) or directly optimize
the model to produce high-return policies (Eysenbach et al., 2021a; Amos et al., 2018; Nikishin et al.,
2021). However, effectively addressing the objective mismatch problem for latent-space models
remains an open problem. Our method makes progress on this problem by proposing a single objective
to be used for jointly optimizing the model, policy, and representation. Because all components
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are optimized with the same objective, updates to the representations make the policy better (on
this objective), as do updates to the model. While prior theoretical work in latent space models
has proposed bounds on exploratory behavior of the policy (Misra et al., 2020), and on learning
compressed latent representations (Efroni et al., 2021), our analysis lifts some of the assumptions
(e.g., removing the Block-MDP assumption), and bounds the overall RL objective in a model-based
setting.

3 A UNIFIED OBJECTIVE FOR LATENT-SPACE MODEL-BASED RL

We first introduce notation, then provide a high-level outline of the objective, and then derive our
objective. Sec. 4 will discuss a practical algorithm based on this objective.

3.1 PRELIMINARIES

The agent interacts with a Markov decision process (MDP) defined by states st, actions at, an initial
state distribution p0(s), a dynamics function p(st+1 | st, at), a positive reward function r(st, at) ≥ 0
and a discount factor γ ∈ [0, 1). The RL objective is to learn a policy π(at | st) that maximizes the
discounted sum of expected rewards within an infinite-horizon episode:

max
π

Est+1∼p(·|st,at),at∼π(·|st)

[
(1− γ)

∞∑
t=0

γtr(st, at)

]
. (1)

The factor of (1− γ) does not change the optimal policy, but simplifies the analysis (Janner et al.,
2020; Zahavy et al., 2021). We consider policies that are factored into two parts: an observation
encoder eφ(zt | st) and a representation-conditioned policy πφ(at | zt). Our analysis considers
infinite-length trajectories τ , which include the actions at, observations st, and the corresponding
observation representations zt: τ , (s0, a0, z0, s1, a1, z1, · · · ). To simplify notation, we write the
discounted sum of rewards as R(τ) , (1− γ)

∑∞
t=0 γ

tr(st, at). Lastly, we define the Q-function of
a policy parameterized by φ, as Q(st, at) = Est+1,at,zt∼p(·|st,at),πφ(·|zt),eφ(·|st) [R(τ)].

3.2 METHOD OVERVIEW

Figure 2: Aligned Latent Models (ALM) performs
model-based RL by jointly optimizing the policy, the
latent-space model, and the representations produced
by the encoder using the same objective: maximize
predicted rewards while minimizing the errors in the
predicted representations. This objective corresponds
to RL with an augmented reward function r̃. ALM esti-
mates this objective without predicting high-dimensional
observations st+1.

Our method consists of three components,
shown in Fig. 2. The first component is an
encoder eφ(zt | st), which takes as input a
high-dimensional observation st and produces
a compact representation zt. This representa-
tion should be as compact as possible, while
retaining the bits for selecting good actions and
for predicting the Q-function. The second com-
ponent is a dynamics model of representations,
mφ(zt+1 | zt, at), which takes as input the rep-
resentation of the current observation and the ac-
tion and predicts the representation of the next
observation. The third component is a policy
πφ(at | zt), which takes representations as in-
puts and chooses an action. This policy will be
optimized to select actions to maximize rewards,
while also keeping the agent in states where the
dynamics model is accurate.

3.3 DERIVING THE OBJECTIVE

To derive our objective, we build on prior work (Toussaint, 2009; Kappen et al., 2012) and view the
RL objective as a latent-variable problem, where the return R(τ) is the likelihood and the trajectory τ
is the latent variable. Different from prior work, we include representations in this trajectory, in
addition to the raw states, a difference which allows our method to learn good representations for
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MBRL. We can write the RL objective (Eq. 1) in terms of trajectories as Ep(τ)[R(τ)] by defining the
distribution over trajectories p(τ) as

pφ(τ) , p0(s0)

∞∏
t=0

p(st+1 | st, at)πφ(at | zt)eφ(zt | st). (2)

Estimating and optimizing this objective directly is challenging because drawing samples from p(τ)
requires interacting with the environment, an expensive operation. What we would like to do instead
is estimate this same expectation via trajectories sampled from a different distribution, q(τ). We can
estimate a lower bound on the expected return objective using samples from this different objective,
by using the standard evidence lower bound (Jordan et al., 1999):

logEp(τ)[R(τ)] ≥ Eq(τ) [logR(τ) + log p(τ)− log q(τ)] . (3)

This lower bound resolves a first problem, allowing us to estimate (a bound on) the expected return by
drawing samples from the learned model, rather than from the true environment. However, learning a
distribution over trajectories is difficult due to challenges in modeling high-dimensional observations,
and potential compounding errors during sampling that can cause the policy to incorrectly predict
high returns. We resolve these issues by only sampling compact representations of observations,
instead of the observations themselves. By learning to predict the rewards and Q-values as a function
of these representations, we are able to estimate this lower bound without sampling high-dimensional
observations. Further, we carefully parameterize the learned distribution q(τ) to support an arbitrary
length of model rollouts (K), which allows us to estimate the lower bound accurately:

qKφ (τ) =p0(s0)eφ(z0 | s0)πφ(a0 | z0)

K∏
t=1

p(st | st−1, at−1)mφ(zt | zt−1, at−1)πφ(at | zt). (4)

While it may seem strange that the future representations sampled from qKφ (τ) are independent of
states, this is an important design choice. It allows us to estimate the lower bound for any policy,
using only samples from the latent-space model, without access to high dimensional states from the
environment’s dynamics function.

Combining the lower bound (Eq. 3) with this choice of parameterization, we obtain the following
objective for model-based RL:

LKφ ,EqK
φ

(τ)

[(
K−1∑
t=0

γtr̃(st, at, st+1)

)
+ γK logQ(sK , aK)

]
, (5)

where r̃(st, at, st+1) = (1− γ) log r(st, at)︸ ︷︷ ︸
(a)

+ log eφ(zt+1 | st+1)− logmφ(zt+1 | zt, at)︸ ︷︷ ︸
(b)

. (6)

This objective is an evidence lower bound on the RL objective (see Proof in Appendix A.2).
Theorem 3.1. The following bound holds for any representation eφ(zt | st), latent-space model
mφ(zt+1 | zt, at), policy πφ(at | zt) and K ∈ N

logEpφ(τ)

[
(1− γ)

∑
t

γtr(st, at)

]
≥ LKφ .

3.4 CONNECTIONS WITH PRIOR WORK

In this section, we provide intuition for our objective and relate it to objectives in prior work. We
start by looking at the augmented reward. The first term (a: extrinsic term) in this augmented reward
function is the log of true rewards, which is analogous to maximizing the true reward function
in the real environment, albeit on a different scale. The second term (b: intrinsic term), i.e., the
negative KL divergence between the latent-space model and the encoder, is reminiscent of the prior
methods (Goyal et al., 2019; Eysenbach et al., 2021b; Bharadhwaj et al., 2021; Rakelly et al., 2021)
that regularize the encoder against a prior, to limit the number of bits used from the observations.
Taken together, all the components are trained to make the model self-consistent with the policy and
representation.
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Algorithm 1 The ALM objective can be optimized with any RL algorithm. We present an implemen-
tation based on DDPG (Lillicrap et al., 2015).

1: Initialize the encoder eφ(zt | st), model mφ(zt+1 | zt, at), policy πφ(at | zt), classifier
Cθ(zt+1, at, zt), reward rθ(zt, at), Q-function Qθ(zt, at), replay buffer B

2: for n = 1, · · · , N do do
3: Select action an = πφ(an | eφ(sn)) +N using the current policy and exploration noise N .
4: Execute action an and observe reward rn and next state sn+1.
5: Store transition (sn, an, rn, sn+1) in B; sample length-K sequence (si, ai, si+1}t+K−1

i=t ∼ B
6: Compute lower bound using off-policy actions: LKeφ,mφ((si, ai, si+1}t+K−1

i=t ) . 7
7: Update encoder and model by gradient ascent on off-policy lower bound: LKeφ,mφ
8: Compute lower bound using on-policy model-based trajectories: LKπφ((si=t)) . 8
9: Update policy by gradient ascent on on-policy lower bound: LKπφ

10: Update classifier, Q-function and reward by gradient descent on: LCθ ,LQθ ,Lrθ . 9, 10, 11

The last part of our objective is the length of rollouts (K), that the model is used for. Our objective
is directly applicable to all prior model-based RL algorithms which use the model only for a fixed
number of rollouts rather than the entire horizon, like SVG style updates (Amos et al., 2020; Heess
et al., 2015) and trajectory optimization (Tedrake, 2022). Larger values of K correspond to looser
bounds (see Appendix A.6). Although this suggests that a model-free estimate is the tightest, a
Q-function learned using function approximation with TD-estimates (Thrun & Schwartz, 1993) is
biased and difficult to learn. A larger value of K decreases this bias by reducing the dependency on a
learned Q-function. While the lower bound in Theorem 3.1 is not tight, we can include a learnable
discount factor such that it becomes tight (see Appendix A.5). In our experiments 4, we find that the
objective in Theorem 3.1 is still a good estimate of true expected returns.

In Appendix A.4, we derive a closed loop form for the optimal latent-dynamics and show that they
are biased towards high-return trajectories: they reweight the true probabilities of trajectories with
their rewards. We also derive a lower bound for the model-based offline RL setting, obtaining a
similar objective with an additional behavior cloning term (Appendix A.7).

4 A PRACTICAL ALGORITHM

We now describe a practical method to jointly train the policy, model, and encoder using the
lower bound (LKφ ). We call the resulting algorithm Aligned Latent Models (ALM) because joint
optimization means that the objectives for the model, policy, and encoder are the same; they are
aligned. For training the encoder and model (latent-space learning phase), qKφ (τ) is unrolled using
actions from a replay buffer, whereas for training the policy (planning phase), qKφ (τ) is unrolled
using actions imagined from the latest policy. To estimate the lower bound using just representations,
our method also learns to predict the reward and Q-function from the learned representations zt using
real data only (see Appendix C for details). Algorithm 1 provides pseudocode.

Maximizing the lower bound with respect to the encoder and latent-space model. To train the
encoder and the latent-space model, we estimate the lower bound LKφ using K-length sequences of
transitions {si, ai, si+1}t+K−1

i=t sampled from the replay buffer:

LKeφ,mφ({si, ai, si+1}t+K−1
i=t ) = E eφ(zi=t|st)

mφ(zi>t|zt:i−1,ai−1)

[
γKQθ(zK , π(zK))

+

t+K−1∑
i=t

γi
(
rθ(zi, ai)− KL(mφ(zi+1 | zi, ai)‖eφtarg(zi+1 | si+1))

) ]
. (7)

To optimize this objective, we sample an initial representation from the encoder and roll out the
latent-space model using action sequences taken in the real environment (see Fig. 2)1n our code we
do not use the γ discounting for Equation7. We find that using a target encoder eφtarg(zt | st) to
calculate the KL consistency term leads to stable learning.

1I
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Maximizing the lower bound with respect to the policy. The latent-space model allows us to
evaluate the lower bound for the current policy by generating on-policy trajectories. Starting from a
sampled state st the latent-space model is recurrently unrolled using actions from the current policy
to generate a K-length trajectory of representations and actions (zt:t+K , at:t+K). Calculating the
intrinsic term in the augmented reward (log eφ(zt+1 | st+1)− logmφ(zt+1 | zt, at)) for on-policy
actions is challenging, as we do not have access to the next high dimensional state st+1. Following
prior work (Eysenbach et al., 2020; Eysenbach et al., 2021a), we learn a classifier to differentiate
between representations sampled from the encoder eφ(zt+1 | st+1) and the latent-space model
mφ(zt+1 | zt, a1) to estimate this term (see Appendix C for details).

We train the latent policy by recurrently backpropagating stochastic gradients (Heess et al., 2015;
Amos et al., 2020; Hafner et al., 2019) of the lower bound evaluated on this trajectory:

LKπφ(st) = EqK
φ

(zt:K ,at:K |st)

[
t+K−1∑
i=t

γt
(
rθ(zi, ai) + c · log Cθ(zi+1, ai, zi)

1− Cθ(zi+1, ai, zi)

)
+ γKQθ(zK , π(zK))

]
.

(8)

Estimating the augmented reward function. During policy training, estimating the intrinsic
reward, log eφ(zt+1 | st+1)− logmφ(zt+1 | zt, at), is challenging because we do not have access to
the next high dimensional state (st+1). Following prior work (Eysenbach et al., 2020; Eysenbach
et al., 2021a), we note that a learned classifier between representations sampled from the encoder
eφ(zt+1 | st+1) versus the latent-space model mφ(zt+1 | zt, a1) can also be used to estimate the
difference between log-likelihoods under them, which is exactly equal to the augmented reward
function:

log eφ(zt+1 | st+1)− logmφ(zt+1 | zt, at) ≈ log
Cθ(zt+1, at, zt)

1− Cθ(zt+1, at, zt)
.

Here, Cθ(zt+1, at, zt) ∈ [0, 1] is a learned classifier’s prediction of the probability that zt+1 is
sampled from the encoder conditioned on the next state after starting at (zt, at) pair. The classifier is
trained via the standard cross entropy loss:

LCθ (zt ∼ eφ(· | st), zt+1, ˆzt+1) = log(Cθ(zt+1, zt, at)) + log(1− Cθ( ˆzt+1, zt, at)). (9)

where zt+1 ∼ eφ(· | st+1) is the real next representation and ˆzt+1 ∼ mφ(· | zt, at) is the imagined
next representation, both from the same start (zt, at) pair.

Differences between theory and experiments. While our theory suggests a coefficient c = 1, we
use c = 0.1 in our experiments because it slightly improves the results. We do provide an ablation
which shows that ALM performs well across different values of c Figure 16. We also omit the log of
the true rewards in both Eq. 8 and 7. We show that this change is equivalent to the first one for all
practical purposes (see Appendix D.1.). Nevertheless, these changes mean that the objective we use
in practice is not guaranteed to be a lower bound.

5 EXPERIMENTS

Our experiments focus on whether jointly optimizing the model, representation, and policy yields
benefits relative to prior methods that use different objectives for different components. We use
SAC-SVG (Amos et al., 2020) as the main baseline, as it structurally resembles our method but
uses different objectives and architectures. While design choices like ensembling (MBPO, REDQ)
are orthogonal to our paper’s contribution, we nonetheless show that ALM achieves similar sample
efficiency MBPO and REDQ without requiring ensembling; as a consequence, it achieves good
performance in ∼ 6× less wall-clock time. Additional experiments analyze the Q-values, ablate
components of our method, and visualize the learned representations and model. All plots and
tables show the mean and standard deviation across five random seeds. Where possible, we used
hyperparameters from prior works; for example, our network dimensions were taken from Amos et al.
(2020). Additional implementation details and hyperparameters are in Appendix D and a summary of
successful and failed experiments are in Appendix E.
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Table 1: On the model-based benchmark from Wang et al. (2019), ALM outperforms model-based and model-
free methods on 4/5 tasks, often by a wide margin. We report mean and std. dev. across 5 random seeds.
T-Humanoid-v2 and T-Ant-v2 refer to the respective truncated environments.

T-Humanoid-v2 T-Ant-v2 HalfCheetah-v2 Walker2d-v2 Hopper-v2

ALM(3) 5306 ± 437 4887 ± 1027 10789 ± 366 3006 ± 1183 2546 ± 1074

SAC-SVG(2) (Amos et al., 2020) 501 ± 37 4473 ± 893 8752 ± 1785 448 ± 1139 2852 ± 361

SAC-SVG(3) 472 ± 85 3833 ± 1418 9220 ± 1431 878 ± 1533 2024 ± 1981

SVG(1) (Heess et al., 2015) 811.8 ± 241 185 ± 141 336 ± 387 252 ± 48 435 ± 163

SLBO (Luo et al., 2018) 1377 ± 150 200 ±40 1097 ± 166 207 ± 108 805 ± 142

TD3 (Fujimoto et al., 2018) 147 ± 0.7 870 ± 283 3016 ± 969 -516 ± 812 1817 ± 994

SAC (Haarnoja et al., 2018) 1470 ± 794 548 ± 146 3460 ± 1326 166 ± 1318 788 ± 977
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Figure 3: Good performance without ensembles. Our method (ALM) can (Top) match the sample complexity
of ensembling-based methods (MBPO, REDQ) while (Bottom) requiring less runtime. Compared to MBPO,
ALM takes ∼ 10× less time per environment step. See Appendix Fig. 9 for results on other environments.

Baselines. We provide a quick conceptual comparison to baselines in Table 5. In Sec. 5.1, we
will compare with the most similar prior methods, SAC-SVG (Amos et al., 2020) and SVG (Heess
et al., 2015). Like ALM, these methods use a learned model to perform SVG-style actor updates.
SAC-SVG also maintains a hidden representation, using a GRU, to make recurrent predictions in
the observation space. While SAC-SVG learns the model and representations using a reconstruction
objective, ALM trains these components with the same objective as the policy. The dynamics model
from SAC-SVG bears a resemblance to Dreamer-v2 (Hafner et al., 2020) and other prior work that
targets image-based tasks (our experiments target state-based tasks). SAC-SVG reports better results
than many prior model-based methods (POPLIN-P (Wang & Ba, 2019), SLBO (Luo et al., 2018),
ME-TRPO (Kurutach et al., 2018)).

In Sec. 5.2, we focus on prior methods that use ensembles. MBPO (Janner et al., 2019) is a model-
based method that uses an ensemble of dynamics models for both actor updates and critic updates.
REDQ (Chen et al., 2021) is a model-free method which achieves sample efficiency on-par with
model-based methods through the use of ensembles of Q-functions. We also compare TD3 (Fujimoto
et al., 2018) and SAC (Haarnoja et al., 2018); while typically not sample efficient, these methods can
achieve good performance asymptotically.

5.1 IS THE ALM OBJECTIVE USEFUL?

We start by comparing ALM with the baselines on the locomotion benchmark proposed by Wang
et al. (2019). In this benchmark, methods are evaluated based on the policy return after training for
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2e5 environment steps. The TruncatedAnt-v2 and TruncatedHumanoid-v2 tasks included in this
benchmark are easier than the standard Ant-v2 and Humanoid-v2 task, which prior model-based
methods struggle to solve (Janner et al., 2019; Chua et al., 2018; Amos et al., 2020; Shen et al.,
2020; Rajeswaran et al., 2020; Feinberg et al., 2018; Buckman et al., 2018). The results, shown in
Table 1, show that ALM achieves better performance than the prior methods on 4/5 tasks. The results
for SAC-SVG are taken from Amos et al. (2020) and the rest are from Wang et al. (2019). Because
SAC-SVG is structurally similar to ALM, the better results from ALM highlight the importance of
training the representations and the model using the same objective as the policy.

5.2 CAN ALM ACHIEVE GOOD PERFORMANCE WITHOUT ENSEMBLES?

Prior methods such as MBPO and REDQ use ensembles to achieve SOTA sample efficiency at
the cost of long training times. We hypothesize that the self-consistency property of ALM will
make the latent-dynamics simpler, allowing it to achieve good sample efficiency without the use
of ensembles. Our next experiment studies whether ALM can achieve the benefits of ensembles
without the computational costs. As shown in Figure 3, ALM matches the sample complexity of
REDQ and MBPO, but requires∼ 6× less wall-clock time to train. Note that MBPO fails to solve the
highest-dimensional tasks, Humanoid-v2 and Ant-v2 (R376 and R111). We optimized the ensemble
training in the official REDQ code to be parallelized, leading to an increase in training speeds by 3×,
which is still 2× slower than our method (which does not employ parallelization optimization).

5.3 WHY DOES ALM WORK?

To better understand why ALM achieves high sample complexity without ensembles, we analyzed
the Q-values, ran ablation experiments, and visualized the learned representations.

Figure 4: Analyzing Q-values. See text for details.

Analyzing the Q-values. One way of inter-
preting ALM is that it uses a model and an
augmented reward function to obtain better es-
timates of the Q-values, which are used to train
the policy. In contrast, REDQ uses a minimum
of a random subset of the Q-function ensem-
ble and SAC-AVG (baseline used in REDQ pa-
per (Chen et al., 2021)) uses an average value
of the Q-function ensemble to obtain a low vari-
ance estimate of these Q-values. While ensem-
bles can be an effective way to improve the estimates of neural networks (Garipov et al., 2018; Abdar
et al., 2021), we hypothesize that our latent-space model might be a more effective approach in the RL
setting because it incorporates the dynamics, while also coming at a much lower computational cost.

To test this hypothesis, we measure the bias of the Q-values, as well as the standard deviation of
that bias, following the protocol of Chen et al. (2021); Fujimoto et al. (2018). See Appendix D.2 for
details. The positive bias will tell us whether the Q-values overestimates the true returns, while the
standard deviation of this bias is more relevant for the purpose of selecting actions. We see from
Fig. 4 that the S.D. of the bias is lower for ALM than for REDQ and SAC-AVG, suggesting that the
actions maximizing the lower bound are similar to actions that maximize true returns.

Ablation experiments. In our first ablation experiment, we compare ALM to ablations that sepa-
rately remove the KL term and the value term from the encoder objective (Eq. 7), and remove the
classifier term from the policy objective (Eq. 8). As shown in Fig. 5a, the KL term, which is a purely
self supervised objective Grill et al. (2020), is crucial for achieving good performance. The classifier
term stabilizes learning (especially on Ant and Walker), while the value term has little effect. We
hypothesize that the value term may not be necessary because its effect, driving exploration, may
already be incorporated by Q-value overestimation (a common problem for RL algorithms Sutton &
Barto (2018); Fujimoto et al. (2018)).A second ablation experiment (Fig. 5b) shows the performance
of ALM for different number of unrolling steps (K) We perform a third ablation experiment of
ALM(3), which uses the TD3 actor loss for training the policy. This ablation investigates whether
the representations learned by ALM(3) are beneficial for model-free RL. Prior work (Gupta et al.,
2017; Eysenbach et al., 2021b; Zhang et al., 2020) has shown that representations learning can
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(a) Terms in the objective. (b) Sequence length. (c) Model free RL.

Figure 5: Ablation experiments (left) Comparison of ALM (3) with no value term for the encoder, no KL
term for the encoder and no classifier based rewards for the policy. Results reflect the importance of temporal
consistency terms, especially for training the encoder. (Center) Comparison of ALM(K) for different values of
K and baselines SAC. Using architectures that support larger values of K could promise further improvements
in performance. (Right) Representation learning objective of ALM(3) leads to higher sample efficiency for
model-free RL. To ensure the validity of these results, we implemented TD3 (TD3 (ours)), which uses the same
architecture, exploration and learning parameters as our method. Ablation results for other environments can be
found in Fig. 10a, 10b, 10c.

facilitate properties like exploration, generalization and transfer. In fig. 5c, we find that the end to end
representation learning of ALM(3) achieves high returns faster than standard model-free RL.

6 CONCLUSION

This paper introduced ALM, an objective for model-based RL that jointly optimizes representations,
latent-space models, and policies all using the same objective. This objective mends the objective
mismatch problem and results in a method where the representations, model, and policy all “cooperate”
to maximize a lower bound on the expected returns. Our experiments demonstrate the benefits of
such joint optimization: it achieves better performance than baselines that use separate objectives,
and it achieves the benefits of ensembles without their computational costs.

At a high level, our end-to-end method is reminiscent of the success deep supervised learning.
Supervised learning methods are dependent on their input features, and end-to-end approaches have
allowed researchers to avoid manual feature design. Similarly, the success of model-based methods
depends on what model is used and what state representations it predicts. Our approach shows how
those components can likewise be learned in an end-to-end fashion.

Limitations and future work. The main limitation of our practical method is complexity: while
simpler than prior model-based methods, it has more moving parts than model-free algorithms. One
potential future work that can directly stem from ALM is an on-policy version of ALM, where
Equation 8 can be calculated and simultaneously optimized with the encoder, model and policy,
without using a classifier. Nonetheless, we believe that our proposed objective and method are not
only practically useful, but may provide a template for designing even better model-based methods
with learned representations.
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In Appendix A, we include all the proofs. In Appendix B and C, we include additional learning details
and implementation details of our algorithm. In Appendix D we have mentioned implementation
details. In Appendix E, we have a summary of experiments that were tried and did not help. Lastly In
Appendix F, we compare various components used by ALM and the baselines.

A PROOFS

A.1 HELPER LEMMAS

Lemma A.1. Let PK(H) be a truncated geometric distribution.

PK(H) =


(1− γ)γH H ∈ [0,K − 1]

γK H = K

0 H > K

Given discount factor γ ∈ (0, 1) and a random variable xt, we have the following identity

EPK(H)

[
H∑
t=0

xt

]
=

K∑
H=0

PK(H)

H∑
t=0

xt

= (1− γ)

K−1∑
H=0

γt
H∑
t=0

xt + γK
K∑
t=0

xt

= x0((1− γ)(1 + γ + · · ·+ γK−1) + γK) + x1((1− γ)(γ + γ2 + · · ·+ γK−1) + γK) + · · ·+ xK(γK)

= x0((1− γ)
1− γK

1− γ
+ γK) + x1((1− γ)(

γ(1− γK−1)

1− γ
) + γK) + · · ·+ xK(γK)

=

K∑
t=0

γtxt.

Lemma A.2. Let PK(H) be a truncated geometric distribution and pφ(τ | H) be the distribution
over H + 1 length trajectories:

pφ(τ | H) = p0(s0)eφ(z0 | s0)πφ(a0 | z0)

H∏
t=1

p(st | st−1, at−1)πφ(at | zt)eφ(zt | st)

Then the RL objective can be re-written in the following way.

Epφ(τ)

[
(1− γ)

∑
t

γtr(st, at)

]

EpKφ (τ)

[
(1− γ)

K−1∑
t=0

γt−1r(st, at) + γKQ(sK , aK)

]
= EPK(H)

[
Epφ(τ |H=H) [1{H ≤ K − 1}r(sH , aH) + 1{H = K}Q(sH , aH)]

]
.

The Q function is defined as Q(sH , aH) = Epφ(τ) [(1− γ)
∑∞
t=0 γ

tr(st+H , at+H)]. This lemma
helps us to interpret the discounting in RL as sampling from a truncated geometric distribution over
future time steps.
Lemma A.3. Let p(x) be a distribution over Rn. The following optimization problem can be solved
using the methods of Lagrange multipliers to obtain an optimal solution analytically.

max
p(x)

Ep(x) [f(x)− log p(x)]

such that
∫
p(x)dx = 1
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Starting out by writing the Lagrangian for this problem, then differentiating it and then equating it to
0:

L(x, λ)
a
= Ep(x) [f(x)− log p(x)]− λ(

∫
p(x)dx− 1)

∇xL = f(x)− log p(x)− 1− λ
0 = f(x)− log p(x)− 1− λ

p ∗ (x)
b
= ef(x)−1−λ

We find the value of λ by substituting the value of p(x) from (b) in the equality constraint.∫
ef(x)−1−λdx = 1

e1+λ c
=

∫
ef(x)dx

Substituting (c) to remove the dual variable from (b), we obtain

p(x)
d
=

ef(x)∫
ef(x)dx

.

A.2 A LOWER BOUND FOR K-STEP LATENT-SPACE

In this section we present the proof of Theorem 3.1. We restate the theorem for clarity.

Theorem 3.1. The following bound holds for any representation eφ(zt | st), latent-space model
mφ(zt+1 | zt, at), policy πφ(at | zt) and K ∈ N

logEpφ(τ)

[
(1− γ)

∑
t

γtr(st, at)

]
≥ LKφ .

Note that scaling the rewards by a constant factor (1−γ) does not change the RL problem and finding
a policy to maximize the log of the expected returns is the same as finding a policy to maximize
expected returns, because log is monotonic.

We want to estimate the RL objective with trajectories sampled from a different distribution qφ(τ)
which leads to an algorithm that avoids sampling high-dimensional observations.

qφ(τ) = p0(s0)eφ(z0 | s0)

∞∏
t=0

p(st+1 | st, at)mφ(zt+1 | zt, at)πφ(at | zt)

When used as trajectory generative models, pφ(τ) predicts representations zt using current state
st. Whereas qφ(τ) predicts zt by unrolling the learned latent-model recurrently on zt−1 (and at−1).
Similar to variational inference, pφ(τ) can be interpreted as the posterior and qφ(τ) as the recurrent
prior. Since longer recurrent predictions of a learned model significantly diverge from the true ones,
we parameterize q to support an arbitrary length of model rollouts (K) during planning:

qKφ (τ) = p0(s0)eφ(z0 | s0)πφ(a0 | z0)

K∏
t=1

p(st | st−1, at−1)mφ(zt | zt−1, at−1)πφ(at | zt)

Proof. We derive a lower bound on the RL objective for K-step latent rollouts.
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logEpφ(τ)

[
(1− γ)

∑
t

γtr(st, at)

]
a
= logEpKφ (τ)

[
(1− γ)

K−1∑
t=0

γtr(st, at) + γKQ(sK , aK)

]

b
= logEPK(H)

Epφ(τ |H=H)

1{H ≤ K − 1}r(sH , aH) + 1{H = K}Q(sH , aH)︸ ︷︷ ︸
Ψ


c
= log

∫∫
PK(H)pφ(τ | H = H) (Ψ) dτdH

d
≥
∫
PK(H) log

∫
qφ(τ | H = H)

pφ(τ | H = H)

qφ(τ | H = H)
(Ψ) dτdH

e
≥
∫∫

PK(H)qφ(τ | H = H) log

(
pφ(τ | H = H)

qφ(τ | H = H)
(Ψ)

)
dτdH

f
=

∫∫
PK(H)qφ(τ | H =∞)

((
H∑
t=0

log eφ(zt+1 | st+1)− logmφ(zt+1 | zt, at)

)
+ log (Ψ)

)
dτdH

g
=

∫∫
qφ(τ)PK(H)

((
H∑
t=0

log eφ(zt+1 | st+1)− logmφ(zt+1 | zt, at)

)
+ log (Ψ)

)
dτdH

h
=

∫
qφ(τ)

K−1∑
t=0

γt (log eφ(zt+1 | st+1)− logmφ(zt+1 | zt, at)) + (1− γ)γt log r(st, at) + γK logQ(sK , aK)dτ

i
= EqKφ (τ)

[
K−1∑
t=0

γt (log eφ(zt+1 | st+1)− logmφ(zt+1 | zt, at)) + (1− γ)γt log r(st, at) + γK logQ(sK , aK)

]

In (a), we start with the K-step version of the RL objective. For (b), we use Lemma A.2.
For (d), we use Jensen’s inequality and multiply by qφ(τ |H=H)

qφ(τ |H=H) . For (e), we apply Jensen’s
inequality. For (f), since all the terms inside the summation only depends on the first H
steps of the trajectory, we change the integration from over H length to over infinite length
trajectories. For (g), we change the order of integration. For (h), we use Lemma A.1 and
the fact that EPK(H) [log(1{H ≤ K − 1}r(sH , aH) + 1{H = K}Q(sH , aH))] =

∑K−1
t=0 (1 −

γ)γt log r(st, at) + γK logQ(zK , aK).

A.3 A LOWER BOUND FOR LATENT-SPACE LAMBDA WEIGHTED SVG(K)

Using on-policy the data, the policy returns can be estimated using the k-step RL estimator (RLk)
which uses the sum of rewards for the first k steps and truncates it with the Q-function.

RLk = (1− γ)

k−1∑
t=0

γtr(st, at) + γkQ(sk, ak)

Like previous works (Schulman et al., 2015; Hafner et al., 2019), we write the RL objective as
λ-weighted average of k-step returns for different horizons (different values of k), to substantially
reduce the variance of the estimated returns at the cost of some bias.

Epφ(τ)

[
(1− γ)

∑
t

γtr(st, at)

]
= Epφ(τ)

[
(1− λ)

∞∑
k=1

λn−1RLk
]
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Our K-step lower bound LKφ involves rolling out the model on-policy for K time-steps. A larger value
of K reduces the dependency on a learned Q-function and hence reduces the estimation bias at the
cost of higher variance.

Lemma A.4. We show that a λ-weighted average of our lower bounds for different horizons (different
values of K) is a lower bound on the RL objective.

logEpφ(τ)

[
(1− γ)

∑
t

γtr(st, at)

]
a
= logEpφ(τ)

[
(1− λ)

∞∑
k=1

λk−1RLk
]

b
= log(1− λ)

∞∑
k=1

λk−1Epφ(τ)

[
RLk

]
c
= logEPGeom(k)

[
Epφ(τ)

[
RLk+1

]]
d
≥ EPGeom(k) log

[
Epφ(τ)

[
RLk+1

]]
e
= (1− λ)

∞∑
k=1

λk−1 log
[
Epφ(τ)

[
RLk

]]
f
≥ (1− λ)

∞∑
k=1

λk−1Lk(φ)

In (a) we use λ-weighted average estimation of the RL objective. In (b) we use linearity of expectation.
In (c), we note that for every k, the coefficient of RLk is actually the probability of k − 1 under the
geometric distribution. Hence, we rewrite it as an expectation over the geometric distribution. In (d),
we use Jensen’s inequality. In (e) we write out the probability values of the geometric distribution. In
(f), we use Theorem 3.1 for every value of k.

A.4 DERIVING THE OPTIMAL LATENT DYNAMICS AND THE OPTIMAL DISCOUNT
DISTRIBUTION

We define γφ,K(H) to be a learned discount distribution over the first K + 1 timesteps {0, 1, . . . ,K}.
We use this learned discount factor when using data from imaginary rollouts. We start by lower
bounding the RL objective and derive the optimal discount distribution γ∗φ,K(H) and the optimal
latent dynamics distribution q∗(τ | H) that maximizes this lower bound.

a
= logEPK(H)

Epφ(τ |H=H)

1{H ≤ K − 1}r(sH , aH) + 1{H = K}Q(sH , aH)︸ ︷︷ ︸
Ψ


b
= log

∫∫ (
γφ,K(H)qφ(τ | H)

γφ,K(H)qφ(τ | H)
PK(H)pφ(τ | H)ψ

)
dτdH

c
≥
∫
γφ,K(H)

∫
qφ(τ | H) log

PK(H)pφ(τ | H)ψ

γφ,K(H)qφ(τ | H)
dτdH

Given a horizon H ∈ {1, · · · ,K}, the optimal dynamics q∗(τ | H) can be calculated analytically:

q∗(τ | H)
d
=

pφ(τ | H)ψ∫
pφ(τ ′ | H)ψdτ ′
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We substitute this value of q∗ in equation (c):

e
=

∫
γφ,K(H)

∫
pφ(τ | H)ψ∫
pφ(τ ′ | H)ψdτ ′

log
PK(H)pφ(τ | H)ψ

∫
pφ(τ ′ | H)ψdτ ′

γφ,K(H)pφ(τ | H)ψ
dτdH

f
=

∫
γφ,K(H) log

(
PK(H)

γφ,K(H)

∫
pφ(τ ′ | H)ψdτ ′

)
dH

We now calculate the optimal discount distribution analytically γ∗φ,K(H):

γ∗φ,K(H)
g
=

PK(H)
∫
pφ(τ ′ | H)ψdτ ′∑K

H=0 PK(H)
∫
pφ(τ ′ | H)ψdτ ′

In (a), we rewrite the RL objective using Lemma A.2. In (b), we multiply by γφ,K(H)qφ(τ |H)
γφ,K(H)qφ(τ |H) . In

(c), we use Jensen’s inequality. In (d) and (g) we use the method of Lagrange multipliers to derive
optimal distributions. We use Lemma A.3 for this result. Below we write the optimal latent-space in
terms of rewards and Q-function.

Writing out the optimal latent-space distribution: The optimal latent-dynamics are non-
Markovian and do not match MDP dynamics, but are optimistic towards high-return trajectories.

q∗(τ | H) =


pφ(τ |H)r(sH ,aH)

Epφ [r(s′H ,a′H)]
H ∈ [1,K − 1]

pφ(τ |H)Q(sH ,aH)

Epφ [Q(s′H ,a
′
H)]

H = K

Writing out the optimal discount distribution:

γ∗φ,K(H) =


(1−γ)γHEpφ [r(sH ,aH)]

Epφ [Q(s′0,a
′
0)]

H ∈ [0,K − 1]

γKEpφ [Q(sH ,aH)]

Epφ [Q(s′0,a
′
0)]

H = K

0 H > K

A.5 TIGHTENING THE K-STEP LOWER BOUND USING THE OPTIMAL DISCOUNT DISTRIBUTION
AND THE OPTIMAL LATENT DYNAMICS

We start from equation (f) from Appendix A.4 the previous proof which is a lower bound on the RL
objective. To derive (f), we have already substituted the optimal latent-dynamics. We now substitute
the value of γ∗φ,K(H) and verify that the lower bound (f) leads to the original objective, suggesting
that the bound is tight.

f
=

∫
γφ,K(H) log

(
PK(H)

γφ,K(H)

∫
pφ(τ ′ | H)ψdτ ′

)
dH

h
=

∫
PK(H)

∫
pφ(τ ′ | H)ψdτ ′∑K

H=0 PK(H)
∫
pφ(τ ′ | H)ψdτ ′

log

(
��

��PK(H)
∑K
H=0 PK(H)

∫
pφ(τ ′ | H)ψdτ ′

���
�PK(H)((((

((((
∫
pφ(τ ′ | H)ψdτ ′ ��

���
���

∫
pφ(τ ′ | H)ψdτ ′)

)
dH

i
=

log(
∑K
H=0 PK(H)

∫
pφ(τ ′ | H)ψdτ ′)

((((
(((

((((
(((∑K

H=0 PK(H)
∫
pφ(τ ′ | H)ψdτ ′ (

((((
(((

((((
((∫

PK(H)

∫
pφ(τ ′ | H)ψdτ ′dH

k
= logEpφ(τ)

[
(1− γ)

∑
t

γtr(st, at)

]

In (h) we substitute the value of γ∗φ,K(H) and cancel out common terms. Since the integration in
(i) is over H, we bring out all the terms that do not depend on H. For (k), we use the result from
Lemma A.2.

Hence we have proved that the bound becomes tight when using the optimal discount and trajectory
distributions.

19



A.6 TIGHTNESS OF LOWER BOUND WITH LENGTH OF ROLLOUTS K

Proof. Proving LK ≥ LK+1 for all K ∈ N will do.

= LK

= EqKφ (τ)

K−1∑
t=0

γt (log eφ(zt+1 | st+1)− logmφ(zt+1 | zt, at) + (1− γ) log r(st, at))︸ ︷︷ ︸
r̃(st,at,st+1)

+γK logQ(sK , aK)


= EqKφ (τ)

[
K−1∑
t=0

γtr̃(st, at, st+1) + γK logEpφ(τ ′|s0=sK ,a0=aK) [(1− γ)R(τ ′)]

]

≥ EqKφ (τ)

[
K−1∑
t=0

γtr̃(st, at, st+1) + γKEqφ(τ ′|s0=sK ,a0=aK)

[
r̃(sK , aK , sK+1) + γK+1 logQ(sK+1, aK+1)

]]

= EqK+1
φ (τ)

[
K∑
t=0

γtr̃(st, at, st+1) + γK+1 logQ(sK+1, aK+1)

]
= LK+1

A.7 A LOWER BOUND FOR LATENT-SPACE SVG(K) IN OFFLINE RL

In the offline RL setting (Levine et al., 2020; Prudencio et al., 2022), we have access to a static dataset
of trajectories from the environment. These trajectories are collected from one or more unknown
policies. We derive a lower bound similar to Theorem 3.1. The main difference is that in Theorem 3.1,
once a policy was updated (φt → φt+1), we were able to collect new data using it, while in offline
RL we have to re-use the same static data. Similar to Theorem 3.1, we define the distribution over
trajectories p(τ):

pφ,b(τ) , p0(s0)

∞∏
t=0

p(st+1 | st, at)πb(at | st)eφ(zt | st),

such that the offline dataset consists of trajectories sampled from this true distribution. We do not
assume access to the data collection policies. Rather, πb(at | st) is the behavior cloning policy
obtained from the offline dataset. We want to estimate the RL objective with trajectories sampled
from a different distribution qφ(τ):

qφ(τ) = p0(s0)eφ(z0 | s0)

∞∏
t=0

p(st+1 | st, at)mφ(zt+1 | zt, at)πφ(at | zt),

which leads to an algorithm that avoids sampling high-dimensional observations.
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Similar to Theorem 3.1, we want to find an encoder eφ(zt | st), a policy πφ(at | st), and a model
mφ(zt+1 | zt, at) to maximize the RL objective:

max
φ

logEpφ,b(τ)

[
(1− γ)

∑
t

γtr(st, at)

]
a
= logEpKφ,b(τ)

[
(1− γ)

K−1∑
t=0

γtr(st, at) + γKQ(st, at)

]
c
= log

∫∫
PK(H)pφ,b(τ | H = H) (Ψ) dτdH

d
≥
∫
PK(H) log

∫
qφ(τ | H = H)

pφ,b(τ | H = H)

qφ(τ | H = H)
(Ψ) dτdH

e
≥
∫∫

PK(H)qφ(τ | H = H) log

(
pφ,b(τ | H = H)

qφ(τ | H = H)
(Ψ)

)
dτdH

f
=

∫∫
PK(H)qφ(τ | H =∞)

((
H∑
t=0

log(
eφ(zt+1 | st+1)πb(at+1 | st+1)

mφ(zt+1 | zt, at)πφ(at+1 | zt+1)
)

)
+ log (Ψ)

)
dτdH

g
=

∫∫
qφ(τ)PK(H)

((
H∑
t=0

log(
eφ(zt+1 | st+1)πb(at+1 | st+1)

mφ(zt+1 | zt, at)πφ(at+1 | zt+1)
)

)
+ log (Ψ)

)
dτdH

h
=

∫
qφ(τ)

K−1∑
t=0

γt
(

log(
eφ(zt+1 | st+1)πb(at+1 | st+1)

mφ(zt+1 | zt, at)πφ(at+1 | zt+1)
)

)
+ (1− γ)γt log r(st, at) + γK logQ(sK , aK)dτ

i
= EqKφ (τ)


K−1∑
t=0

γt log(
eφ(zt+1 | st+1)

mφ(zt+1 | zt, at)
)︸ ︷︷ ︸

KL consistency term

+γt log(
πb(at+1 | st+1)

πφ(at+1 | zt+1)
)︸ ︷︷ ︸

Behaviour cloning term

+(1− γ)γt log r(st, at) + γK logQ(sK , aK)


The only main difference is between this proof and the proof A.2 of Theorem3.1 is in step (f),
where canceling out the common terms of p(τ) and q(τ) leaves an additional behavior cloning term.
This derivation theoretically backs the additional behavior cloning term used in prior representation
learning methods (Abdolmaleki et al., 2018; Peters et al., 2010) for the offline RL setting.

B COMPARISON TO PRIOR WORK ON LOWER BOUND FOR RL (MNM)

Our approach of deriving an evidence lower bound on the RL objective is similar to prior work (Ey-
senbach et al., 2021a). In this section we briefly go over the connection between our method
and Eysenbach et al. (2021a). The lower bound presented in (Eysenbach et al., 2021a) is a special
case of the lower bound in 3.1. By taking the limit K →∞ and assuming an identity function for
the encoder, we exactly reach the lower bound presented in Eysenbach et al. (2021a). By using a
bottleneck policy (policy with an encoder), ALM(K) learns to represent the observations according to
their importance in the control problems rather than trying to reconstruct every observation feature
with high fidelity. This is supported by the fact that ALM solves Humanoid-v2 and Ant-v2, which
were not solvable by prior methods like MBPO and MnM. By using the model for K steps, we have
a parameter to explicitly control the planning / Q-learning bias. Hence, the policy faces a penalty
(intrinsic reward term) only for the first K steps rather than the entire horizon (Eysenbach et al.,
2021a), which could lead to lower returns on the training tasks (Eysenbach et al., 2021b).

C ADDITIONAL LEARNING DETAILS

Estimating the Q-function and reward function. Unlike most MBRL algorithms, the Q function
Qθ(zt, at) is learned using transitions st, at, rt, st+1 from the real environment only, using the
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Table 2: A default set of hyper-parameters used in our experiments.

Hyperparameters Value
Discount (γ) 0.99
Warmup steps 5000
Soft update rate (τ) 0.005
Weighted target parameter (λ) 0.95
Replay Buffer 106 for humanoid

105 otherwise
Batch size 512
Learning rate 1e-4
Max grad norm 100.0
Latent dimension 50
Coefficient of classifier rewards 0.1
Exploration stddev. clip 0.3
Exploration stddev. schedule linear(1.0 , 0.1, 100000)

standard TD loss:

LQθ (zt ∼ eφ(· | st), at, rt, zt+1 ∼ eφ(· | st+1)) = (Qθ(zt, at)− (rt + γQθtarg(zt+1, π(zt+1))))2.
(10)

The TD target is computed using a target Q-function (Fujimoto et al., 2018). We learn the reward
function rθ(zt, at) using data st, at, rt from the real environment only. For rθ(zt, at), by minimizing
the mean squared error between true and predicted rewards :

Lrθ (zt ∼ eφ(· | st), at, rt) = (rθ(zt, at)− rt)2. (11)

Unlike prior representation learning methods (Zhang et al., 2020), we do not use the reward or Q
function training signals to train the encoder. The encoder, model, and policy are optimized using the
principled joint objective only, as described in the next paragraph.

D IMPLEMENTATION DETAILS

We implement ALM using DDPG (Lillicrap et al., 2015) as the base algorithm. Following prior
svg methods (Amos et al., 2020), we parameterize the encoder, model, policy, reward, classifier
and Q-function as 2-layer neural networks, all with 512 hidden units except the model which has
1024 hidden units. The model and the encoder output a multivariate Gaussian distribution over the
latent-space with diagonal covariance. Like prior work (Hansen et al., 2022; Yarats et al., 2021),
we apply layer normalization (Ba et al., 2016) to the value function and rewards. Similar to prior
work (Schulman et al., 2015; Hafner et al., 2019), we reduce variance of the policy objective in
Equation 8, by computing an exponentially-weighted average of the objective for rollouts of length 1
to K. This average is also a lower bound (Appendix A.3). To train the policy, reward, classifier and
Q-function we use the representation sampled from the target encoder. For exploration, we use added
normal noise with a linear schedule for the std (Yarats et al., 2021). All hyperparameters are listed in
Table 2. The brief summary of all the neural networks, their loss functions and the inputs to their loss
functions are listed in Table 3.

Analyzing the learned representations. Because the ALM objective optimizes the encoder and
model to be self-consistent (see Sec. 3.4), we expect the ALM dynamics model to remain accurate for
longer rollouts than alternative methods. We test this hypothesis using an optimal trajectory from the
HalfCheetah-v2 task. Starting with the representation of the initial state, we autoregressively unroll
the learned model, comparing each prediction zt to the true representation (obtained by applying
the encoder to observation st). Fig. 6 (left) visualizes the first coordinate of the representation, and
shows that the model learned via ALM remains accurate for ∼ 20 steps. The ablation of ALM that
removes the KL term diverges after just two steps.
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Table 3: Neural networks used by ALM

Neural Network Loss Function Inputs to Loss

Encoder: eφ(s)→ z
Model: mφ(z, a)→ z′

joint lower bound (Eq. 5) {si, ai, si+1}t+K−1
i=t

Policy: πφ(z)→ a joint lower bound (Eq. 5) zt

Q-Function: Qθ(z, a) ∈ R TD-loss (Eq. 10) zt, at, rt, zt+1

Classifier: Cθ(z, a, z′) ∈ (0, 1) cross entropy loss (Eq. 9)
zt, at

zt+1 ∼ eφ(st+1)
ˆzt+1 ∼ mφ(zt, at)

Reward Function: rθ(z, a) ∈ R MSE (Eq. 11) zt, at, rt

ALM

TextALM without KL

Figure 6: Analyzing the learned representations: (Left-top) The ground truth representations are obtained
from the respective trained encoders on the same optimal trajectory. (Left-bottom) Without the KL term, the
representations learnt are degenerate, i.e. they correspond to the same value for different states. (Right) The
KL term in the ALM objective, trains the model to reduce the future K step prediction errors. The latent-space
model is accurately able to approximate the true representations upto ∼ 20 rollout steps.

D.1 OMISSION OF THE LOG OF REWARDS AND Q FUNCTION IS EQUIVALENT TO SCALING KL
IN EQUATION 8

While our main results omit the logarithmic transformation of the rewards and Q function, in this
section we describe that this omission is approximately equivalent to scaling the KL coefficient in
Eq. 8. Using these insights, we applied ALM, with the log of rewards, to a transformed MDP with a
shifted reward function. A large enough constant, a, was added to all original rewards(which doesn’t
change the optimal policy assuming that there are no terminal states)

rnew = r + a.

Taking a log of this new reward is equal to the reward of the original objective, scaled by the constant,
a

a(log(r + a)− log(a)) ≈ r.

The additive term can be ignored because it won’t contribute to the optimization. We plot both y = r
and y = a(log(r + a) − log(a)), to show that they are very similar for commonly used values of
rewards in Figure 7. The scaling constant a can be interpreted as the weight of the log of rewards,
relative to the KL term in the ALM objective. Hence changing this value is approximately equivalent
to scaling the KL coefficient. The results, shown in Fig 12, show that this version of ALM which
includes the logarithm transformation performs at par with the version of ALM without the logarithm.
This results shows that we can add back the logarithm to ALM without hurting performance. For
both Figure 7 and Figure 12, we used the value of a = 10000.
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Figure 7:

ALM objective using the transformed reward

a
= EqKφ (τ)

[
K−1∑
t=0

γt (log eφ(zt+1 | st+1)− logmφ(zt+1 | zt, at)) + (1− γ)γt log(rnew(st, at)) + γK logQnew(sK , aK)

]

b≡ EqKφ (τ)

[
[

K−1∑
t=0

γt (log eφ(zt+1 | st+1)− logmφ(zt+1 | zt, at)) + (1− γ)γt
(
r(st, at)

a
+ log(a)

)
+ γK

(
Q(sK , aK)

a
+ log(a)

)]

c
= EqKφ (τ)

[
[

K−1∑
t=0

γt (log eφ(zt+1 | st+1)− logmφ(zt+1 | zt, at)) + (1− γ)γt(
r(st, at)

a
) + γK(

Q(sK , aK)

a
)

]
d
= EqKφ (τ)

[
[

K−1∑
t=0

γta (log eφ(zt+1 | st+1)− logmφ(zt+1 | zt, at)) + (1− γ)γtr(st, at) + γKQ(sK , aK)

]

In (a), we write the ALM objective using the new reward function. In (b), we use the fact that
log(rnew(st, at)) ≈

(
r(st,at)

a + log(a)
)

, and logQnew(sK , aK) ≡
(
Q(sK ,aK)

a + log(a)
)

for a large
enough constant a. (See explanation above). In (c), we remove the extra constants which add up to 0.
In (d), we note that scaling the rewards and Q function by 1/a, is equivalent to scaling the KL term
by a, which is a large enough constant.

D.2 BIAS AND VARIANCE OF THE LOWER BOUND

We recreate the experimental setup of (Chen et al., 2021) to evaluate the average and the std value
of the bias between the Monte-Carlo returns and the estimated returns (lower bound LKφ (s, a)
for our experiments). Similar to (Chen et al., 2021), since the true returns change as training
progresses we analyze the mean and std value of normalized bias, which is defined as: (LKφ (s, a)−
Qπ(s, a))/|Es′,a′∼π(s′, a′)|. This helps us to evaluate bias relative to the scale of average Monte-
Carlo returns of the current policy. Results for Ant-v2 and Walker2d-v2 are presented in Fig. 8.
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Figure 8: In accordance to what our theory suggests, the joint objective is a biased estimate of the true
returns. The std values are uniform throughout training and consistently lower than REDQ, which
could be the reason behind the sample efficiency of ALM(3)

E FAILED EXPERIMENTS

Experiments that we tried and that did not help substantially:

• Value expansion: Training the critic using data generated from the model rollouts. The
added complexity did not add much benefit.

• Warm up steps: Training the policy using real data for a fixed time-steps at the start of
training.

• Horizon scheduling: Scheduling the sequence length from 1 to K at the start of training.
• Exponential discounting: Down-scaling the learning rate of future time-steps using a tempo-

ral discount factor, to avoid exploding or vanishing gradients.

Experiments that were tried and found to help:

• Target encoder: Using a target encoder for the KL term in Eq. 7 helped reduce variance in
episode returns.

• Elu activation: Switching from Relu to Elu activations for all networks for ALM resulted in
more stable and sample efficient performance across all tasks.

Figure 9: ALM generally matches the sample efficiency of MBPO and REDQ at a fraction of the computation
complexity.
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(a) Additional results for compar-
ing different components of the
joint objective on Humanoid-v2
and Walker-v2. The KL consis-
tency term is the most important
contributing factor.

(b) Additional results for compar-
ing different horizon lengths. All
horizon lengths generally perform
better than sac, but horizon length
3 performs best.

(c) Additional results for com-
paring ALM(3)’s representations
with pure model-free RL meth-
ods.

Figure 10: Additional ablation experiments.
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Figure 11: ALM is robust across different values of the coefficient for the KL term in Equation 8. In our
implementation, we deviate from the value 1, because it leads to relatively gradual increase in returns on some
environments. This is expected because higher coefficient to the KL term leads to higher compression Eysenbach
et al. (2021b). We add that prior work on variational inference Wenzel et al. (2020) also finds that scaling the KL
term can improve results.

Table 4: Where possible, we have tried to use the same hyperparameters and architectures as SAC-
SVG. We use the same training hyperparameters like update to data collection ratio, batch size
and rollout length when compared to sac-svg. Both methods use the same policy improvement
technique: stochastic value gradients. The two exceptions are decisions that simplify our method:
unlike SAC-SVG, we use a feedforward dynamics model instead of an RNN; unlike SAC-SVG,
we use a simple random noise instead of a more complex entropy schedule for exploration. To
test whether the soft actor critic’s entropy, used in SAC-SVG can be a confounding factor causing
SAC-SVG to perform worse than ALM, we compare a version of ALM which uses a soft actor critic
entropy bonus like the SAC-SVG.

Method T-Humanoid-v2 T-Ant-v2

ALM-ENT(3) 4747 ± 900 4921 ± 128

ALM(3) 5306 ± 437 4887 ± 1027

SAC-SVG(3) 501 ± 307 5306 ± 437

SAC-SVG(2) 472 ± 85 3833 ± 1418
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Figure 12: Using the logarithm does not actually hurt performance. Our theory suggests that we should
take the logarithm of the reward function and Q-function. Naïvely implemented, this logarithmic transformation
(pink) performs much worse than omitting the transformation (green). We also see that using a log of rewards for
only training the encoder and model does not affect the performance (blue). We hypothesize that the non linearity
of log(x) for reward values makes the Q-values similar for different actions. However, by transforming the reward
function (which does not change the optimization problem), we are able to include the theoretically-suggested
logarithm while retaining high performance (red). See Appendix D.1 for more details.
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Figure 13: Comparison with an MnM ablation. The main difference between ALM and a prior joint
optimization method (MnM), is that ALM learns the encoder function. Replacing that learned encoder with
an identify function yields a method that resembles MnM, and performs much worse. This result supports our
claim that RL methods that use latent-space models can significantly outperform state-space models.
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Figure 14: Asymptotic performance. Even after 1 million environment steps, ALM still outperforms the SAC
baseline.
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Figure 15: Importance of an aligned objective. Comparison with a version of ALM that learns policies using
the same objective, but learns representations and latent-space models to maximize likelihood. This further
verifies the claims made in Section 5.1 that using an aligned objective for joint optimization leads to superior
performance
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Figure 16: Robustness to classifier errors. ALM retains a high degree of performance even when the classifier
is restricted to be a linear function, showing how ALM can be robust to errors in the classifier.
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Figure 17: Robustness towards various levels of aleatoric uncertainty. We created a version of the
HalfCheetah-v2 task with varying levels of aleatoric noise.
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Figure 18: Effect of learning to predict the value function.
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Figure 19: Effect of learning the encoder as well as latent-space model to predict the value function.

1 0.5 0.2 0.1 0.15 0.05 0.0
Classifier coefficient

2600

2700

2800

2900

3000

Cu
m

ul
at

iv
e 

tra
in

in
g 

re
tu

rn
s

Humanoid-v2

1 0.5 0.2 0.1 0.15 0.05 0.0

1 0.5 0.2 0.1 0.15 0.05
Classifier coefficient

3700

3750

3800

3850

3900

3950

4000

4050

4100
TruncatedHumanoid-v2

1 0.5 0.2 0.1 0.15 0.05 0.0
Classifier coefficient

2750

3000

3250

3500

3750

4000

4250

4500
Ant-v2

1 0.5 0.2 0.1 0.15 0.05
Classifier coefficient

2600

2800

3000

3200

3400

3600

TruncatedAnt-v2

Figure 20: Returns at different values for classifier coefficient.
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F COMPARISON TO BASELINES

Here we provide a quick comparison to baselines, conceptually in terms of number of gradient
updates per env step, usage of ensembles are used for dynamics model or Q-function, and objectives
for representations, model, and policy.

Table 5: Table showing conceptual comparisons of ALM to baselines.

Ensembles Representations Model Policy UTD

ALM 7 Lower bound Lower bound Lower bound 3
SAC-SVG 7 MLE MLE Actor-Critic (stochastic value gradients) 4

MBPO 3 7 MLE Soft Actor-Critic (dyna-style) 20-40
REDQ 3 7 7 Soft Actor-Critic 20
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