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Abstract

In this paper, we introduce a simple training-free
technique to improve the performance of drafter-
based speculative decoding (SpD) methods that
incorporates language modeling head (LM head)
during drafting process. A drafter-based spec-
ulative decoding leverages one or more smaller
language models, a.k.a. drafters or draft mod-
els, to sample a draft sequence or tree consisting
of multiple tokens, followed by verification by
a base LLM, a target model, accepting a subset
as its valid generation. As it is usually consid-
ered that the speculative decoding requires one-to-
one mapping between vocabularies of the target
model and the draft model, it has been natural
to share the vocabulary between them, or even
share the LM head as in EAGLE or Medusa. We
first identify that this draft token sampling scheme
inherently contains an unnecessary inference over-
head in drafting, especially for some target LLMs
with very large vocabularies. Then, we propose a
simple technique, VOCABTRIM, to mitigate the
drafting overhead to improve the generation speed
in memory-bound environment. VOCABTRIM re-
constructs the drafter LM head to contain only
a limited set of tokens, selected by the most fre-
quently sampled from the vocabulary of the target
model. While limiting the vocabulary in drafting
slightly degrades the acceptance rate, it signifi-
cantly reduces the drafting latency in memory-
bound process which is often the case on edge
devices, resulting in higher memory-bound speed
up (MBSU). We show that our method can boost
the memory-bound speed-up for Llama-3 models
on Spec-Bench, specifically by 16% for Llama-
3.2-3B-Instruct.
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is an initiative of Qualcomm Technologies, Inc.. Cor-
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goel/mingul@qti.qualcomm.com>.

Figure 1: xLAM (function-calling) dataset token freqeuncy
based on target model generation. Plots divided into three
parts for ease of readability.

1. Introduction
Speculative Decoding (SpD) (Leviathan et al., 2023) is a
widely adopted inference optimization technique for large
language models (LLMs). In SpD, a lightweight drafter
speculates the tokens that a larger target model would gen-
erate. The target model then selectively accepts or rejects
these speculations based on a policy that often ensures that
the output follows the same distribution as the target model.
Prior work on SpD has focused primarily on balancing the
expressiveness and efficiency of the drafter, either by de-
signing novel model architectures (Li et al., 2024a; Cai
et al., 2024; Zimmer et al., 2024) or by developing draft-
time search algorithms (Miao et al., 2023; Jeon et al., 2024).
However, these approaches typically require training a sepa-
rate drafter, with the shared tokenizer, when a well-aligned
pretrained model is not available (Goel et al., 2024).

While recent advances have proposed increasingly effec-
tive drafters, we observe that their predictions tend to focus
on “easy-to-predict” tokens such as articles, prepositions,
or completions of partially generated words. For exam-
ple, a drafter may suggest table immediately after the
target model generates vege, thereby completing the word
vegetable (Gagrani et al., 2024). This behavior suggests
that the role of the drafter could be shifted from a general-
purpose generator to a more specialized token suggester,
particularly by restricting its vocabulary.

We further observe that in many downstream tasks, the target
model generation is limited on a small portion of its full
vocabulary. As shown in Figure 1, we analyze the output
token distribution of Llama-3.2-3B-Instruct on the training
split of a function calling dataset (Liu et al., 2024). Only
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a small set of tokens occur at very high frequencies. For
instance, 15 tokens are sampled more than 10K times and
the next 140 tokens appear between 1K and 10K times. In
contrast, more than 120,000 tokens are rarely or not sampled
at all.

This observation suggests an opportunity to simplify the
output token space of the drafter. If the drafter only needs to
predict a limited set of frequently sampled tokens, comput-
ing logits over the full vocabulary may be unnecessary, i.e.,
saving memory and computation for drafting. The saving
becomes more significant when the target model is with a
large vocabulary size, which is common in modern LLMs
for improved support for multiple language and token ef-
ficiency, i.e., compression rate. (Dubey et al., 2024) The
language modeling (LM) head, which maps hidden repre-
sentations to vocabulary logits through a linear projection, is
often a major contributor to both model size and inference la-
tency. This issue is particularly pronounced in small drafters
with large vocabularies. For example, in a 314M-parameter
drafter using the Llama 3 vocabulary (128K tokens), the LM
head alone accounts for over 30% of the total parameters.
This significantly limits the speedup potential of SpD, given
that generation is typically a memory-bound process.

Motivated by these observations, we propose VOCABTRIM,
a training-free method for improving the efficiency of spec-
ulative decoding by reducing the size of the LM head of
the drafter. By restricting the output dimension of the LM
head, VOCABTRIM provides significant memory and la-
tency savings without requiring any training or architectural
changes. For Llama 3 models, we show that VOCABTRIM
can reduce the output dimension of the LM heads by up to
75% with negligible impact to the acceptance rates. When
applied to the state-of-the-art SpD method EAGLE-2, our
method achieves on average 16% latency improvement on
Spec-Bench tasks (Xia et al., 2024). We hope that this
work encourages further research into optimizing previously
underexplored components of the SpD pipeline.

2. Related Work
Speculative decoding was introduced in (Leviathan et al.,
2023), which showed using two language models: a smaller
drafter model, and the larger target model, in a memory
bound setting can help accelerate LLM token generation.
A key contribution of this work was the generations are
lossless, i.e., they follow the target model distribution. Sev-
eral works build on top of this, extending SpD to recursive
speculative decoding (Jeon et al., 2024; Miao et al., 2023),
instead of training independent small drafters, extra LM-
head were augmented (Cai et al., 2024), draft model was
attached to last layer of LLM (Li et al., 2024a; Zimmer
et al., 2024), etc. Additionally, some work propose training
separate drafters for different downstream tasks to achieve

Figure 2: SpD inference with trimmed vocabulary of drafter

further boost in speed (Kim et al.), training drafters is cum-
bersome and resource intense as many times small models
are simply unavailable (Goel et al., 2024). We propose a
plug-and-play, training-free method, based on the limited
representation capacity of drafter model, and exploit for
reducing computation while maintaining block efficiency
with boost in memory-bound speed-up.

Earlier work in (Gagrani et al., 2024) has shown in multi-
modal setting, that even using only a text-based drafter can
achieve good speed-ups and their qualitative analysis shows
that drafter primarily predicts easy words such as articles,
prepositions, or completing half-generated words.

Recently, AdaptiVocab (Nakash et al., 2025) explored us-
ing custom vocabularies for LLM generation, to reduce
computation and memory cost for target (or base) model. A
concept similar to our approach was independently proposed
in (Zhao et al., 2025), although their method is limited to
pruning draft LM-head using only raw-text data. Detailed
similarities and differences with (Zhao et al., 2025) are dis-
cussed in Appendix A.3. It is important to note that the LM
head linear layer consumes a significant portion of memory
and computation during inference. In contrast to AdaptiVo-
cab, our work focuses specifically on optimizing the LM
head of drafter. This design choice ensures that the final
performance of the target model remains unaffected, while
still leveraging the lossless nature of speculative decoding
methods.

3. Method
Based on our observation that only a small subset of to-
kens occur dominantly in many language modeling tasks (as
shown in Figure 1), we propose VOCABTRIM, a training-
free and efficient Speculative Decoding (SpD) method that
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removes infrequent tokens from the draft model’s vocabu-
lary. VOCABTRIM introduces minimal changes to the SpD
pipeline and imposes no architectural constraints, facili-
tating seamless integration into existing SpD techniques,
general flow is shown in Figure 2 with algorithm in Ap-
pendix C.1.

For a draft model with vocabulary V and LM head parameter
W , VOCABTRIM constructs a trimmed vocabulary VTrim

and a corresponding trimmed LM head W Trim by running
the target model on a calibration dataset D and selecting
the most frequently occurring tokens in V along with their
corresponding rows in W . Formally, vocabulary trimming
is defined as follows:

VTrim = V[Top-K(c, k)]

W Trim = W [Top-K(c, k), :]
(1)

where c is the token frequency counter and k is the desired
size of the trimmed vocabulary. The frequency counter c is
computed by counting how often each token in V appears
across the calibration dataset D, as shown in Algorithm 1.

Two types of calibration datasets are considered: (a) raw
text data, and (b) target model generation. Raw text data is
available in ample amounts, even for many evaluation tasks
which have train splits. Target model generation may also
be readily available as it is used to finetune the drafter (Goel
et al., 2024). If not, it may be easily generated by simply
letting the target model to generate completions following
queries from a dataset. As an ablation, we additionally use
drafter generated data (used for finetuning drafter in (Zhou
et al., 2023)). We find that the target model generated cali-
bration dataset performs the best (least drop in acceptance
rate while maximum increase in memory-bound speed-up)
as shown in Table 1.

Note that, in this paper, we restrict VOCABTRIM experi-
ments with Top-K-based trimming of the drafter LM-head.
However, our framework is general and also supports choos-
ing based on Top-P , or based on minimum frequency of
tokens in calibration datasets. Moreover, other selection
criteria for trimmed vocabulary can be: compute resources
available, hardware-memory constraints, or maximum al-
lowable drop in accuracy. We leave further exploration
including these as a future work.
4. Experiments
To show the efficacy of such trimmed-vocabulary drafter
models, we perform experiments using the LLAMA3 models
(Grattafiori et al., 2024), note that we perform greedy decod-
ing for target model which implies a token is only accepted
if exactly matched with the target model, enabling lossless
generations. In the following experiments, we assume a
fixed K depending on the evaluation task. We additionally
ablate over different sizes of draft LM head (W Trim) to com-

Algorithm 1 Count Token Frequencies

Require: Calibration dataset D
1: Initialize counter vector c ∈ N|V| with zeros
2: for each x ∈ D do
3: [t0, t1, . . . , tn]← Tokenize(x)
4: for i = 0 to n do
5: c[ti]← c[ti] + 1

6: Return c

pare the effect on acceptance and speed-up increase. Our
experiment setup and other details are as follows:

4.1. Settings

Models: We consider two Llama 3 models of different sizes:
Llama-3.2-3B-Instruct and Llama-3.1-8B-Instruct. For each
target model, we use two kinds of drafter architectures (a)
EAGLE-based SpD (Li et al., 2024b), and (b) independent
drafter-based SpD (Leviathan et al., 2023). However, in
both cases, we use the same draft tokens sampling, draft
trees construction, and verification following EAGLE-2.

Drafter Training: For (a), the EAGLE drafter model is
trained following EAGLE (Li et al., 2024a), while, for (b),
we follow (Goel et al., 2024) to train a 314M standalone
drafter (detailed configuration mentioned in Appendix B).

Tasks: We use tasks from Speculative-Decoding benchmark
(Spec-Bench) (Xia et al., 2024) which covers several tasks
including summarization, coding, and math tasks (from
GSM8K (Cobbe et al., 2021)) as well as additional tasks
such as function calling (xLAM) (Liu et al., 2024), and open-
ended text generation (creative writing subset of Dolly-15k)
(Conover et al., 2023).

Performance Metrics: (1) block efficiency (τ ): average
number of tokens generated per block (or target model run),
for a block of size γ and input x, the maximum value of
τ(x) can be γ + 1, (2) memory-bound speed-up (MBSU):
theoretical speed-up achieved by SpD for a given block
efficiency τ(x) and a relative latency c defined as ratio
between number of parameters of draft to target model, i.e.,
MBSU(x) := τ(x)

cγ+1 ,

Calibration Datasets: For general text generation tasks
such as open-ended text generation, summarization, etc.,
we use samples from Minipile (Kaddour, 2023) as the raw
dataset calibration. For target model-generated calibration,
we use instruction-based dataset: OIG-small-chip2 1 and
OpenAssistant 2 for Llama3.2-3B-Instruct and Llama3.1-
8B-Instruct respectively. OIG is also used to generate drafter
based calibration dataset. Lastly, for function-calling eval-

1OIG-small-chip2 huggingface link
2OpenAssistant huggingface link
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uation task (xLAM), samples from train split are used for
raw-dataset, target generations, and draft generation based
calibration datasets.

Draft Tree: We use the draft tree with the depth of 3 with
top-K= 8 and maximum tokens = 32 for all generation of
both EAGLE drafter and independent drafter.

4.2. Results

Llama-3.2-3B-Instruct results with VOCABTRIM on Spec-
Bench are shown in Table 1 for both the EAGLE drafter and
the independent drafter. We observe that target-generated
calibration dataset-based vocabulary trimming leads to the
smallest drop in block efficiency (2-5%) and the largest
gains in MBSU (14-18%), followed by the cases of using
draft model generation and the raw text. With the indepen-
dent drafter, in the similar vein, VOCABTRIM with target-
generated calibration dataset outperforms the raw text and
draft-generated dataset. The block-efficiency drop for target
model generated calibration dataset is 1-7% with the MBSU
gain of 2-12.3%.

To study the performance of VOCABTRIM on other do-
mains, we additionally conduct experiments on open-ended
text generation with relatively long generation, and on a
function calling task, for both the EAGLE and indepen-
dent drafter Table 2. Note that, while the same trimmed
vocabulary set can be shared across multiple tasks with
similar nature of text (e.g. chat, QA, writing), it may de-
grade performance on some other tasks with little overlaps
in expected target model generation (e.g., coding task Ap-
pendix A.2). As such, on xLAM function call task, we use a
different trimmed vocabulary with the size of 5K based on
training-split of xLAM dataset, unlike the trimmed vocab-
ulary used for Dolly with the size of ∼ 32K (same as the
one used for Spec-Bench). Similar to the previous result,
using target-generated calibration dataset gives the highest
boost in MBSU with the lowest drop in BE. For the EAGLE
drafter, BE drops only 1.4% with the MBSU gain of 19%
on Dolly, and 2.6% BE drop on xLAM with MBSU gains
of 25%. For the independent drafter, using target-generated
calibration dataset drops BE by 1.3% and 0.8% with the
MBSU gains of ∼ 8% and 11.8% on Dolly and xLAM,
respectively.

For Llama-3.1-8B-Instruct, we perform experiments on
Spec-Bench using the EAGLE drafter with the raw and
the target-generated calibration dataset Table 3. Note that
as the base model size is larger, the overall MBSU increases
as the ratio of drafter size and target model size decreases.
We observe that, even in this scenario, reduction in drafter
size via smaller LM head improves MBSU (8 − 12% on
Spec-Bench) with minimal BE (1 − 4% on Spec-Bench)
degradation with target-generated calibration dataset outper-
forming the others.

Figure 3: Llama3.2-3B-Instruct performance (BE, MBSU)
with different draft LM head sizes.

Figure 4: Llama3.1-8B-Instruct performance (BE, MBSU)
with different draft LM head sizes.

4.3. Ablation Study

4.3.1. PERFORMANCE OF EAGLE-2 WITH VARIOUS
DRAFTER LM HEAD SIZES

In Figure 3 and 4, we show the effects of amount of vocab
trimming, i.e., draft LM head sizes, to BE and MBSU on
Dolly dataset. As expected, BE increases accordingly as the
draft LM head size increases. However, due to the trade-
off between drafting cost and improved BE, the MBSU
has a sweet spot at around 70M sized W Trim correspond-
ing to k ∼ 23K out of 128K tokens for Llama-3.2-3B-
Instruct, boosting MBSU by 19.7% with only a ∼ 3% drop
in BE. Similarly, for Llama-3.1-8B-Instruct target, the high-
est MBSU is achieved by 143.4M sized draft LM-head
consisting of 35K out of 128K tokens leading to only
1.2% drop in block-efficiency with 11.6% improvement
in MBSU.

4.3.2. PERFORMANCE OF EAGLE-2 WITH VARIOUS
DRAFT TREE HYPERPARAMETERS

We ablate over different tree depth using EAGLE-2 decoder
to gauge its impact on VOCABTRIM, with total draft tokens
= 60. We use top-K = 32k for trimmed drafter LM head
as used in previous results. The original size of LM-head
is 394M while the size of trimmed LM-head is 101.3M.
The results are shown in Table 4, where we observe that
for different tree-depths, VOCABTRIM gives MBSU boost
with minimal drop in performance, the absolute of MBSU
increase remains consistent.
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Table 1: Spec-Dec Benchmark with Eagle and Independent-drafter based SpD for Llama3.2-3B-Instruct

Method LMHead,Draft Writing Roleplay Math/Reasoning Coding Extraction Translation Summarization QA RAG

(M) BE MBSU BE MBSU BE MBSU BE MBSU BE MBSU BE MBSU BE MBSU BE MBSU BE MBSU

Eagle 394.0 3.141 1.475 3.092 1.451 3.494 1.64 3.638 1.708 3.693 1.734 3.3 1.549 3.098 1.454 3.214 1.509 3.23 1.516

+Raw-dataset 101.3 2.974 1.685 3.062 1.735 3.421 1.938 3.294 1.866 3.405 1.928 3.14 1.778 2.996 1.697 3.098 1.755 3.131 1.774
+Target generated 101.3 3.081 1.745 3.038 1.721 3.443 1.950 3.434 1.945 3.588 2.032 3.241 1.836 2.993 1.695 3.165 1.793 3.133 1.775
+Draft generated 101.3 3.057 1.732 3.016 1.708 3.43 1.943 3.379 1.914 3.518 1.993 3.229 1.829 2.98 1.688 3.148 1.783 3.073 1.741

Independent 131.3 3.846 2.765 3.864 2.778 4.434 3.187 3.999 2.875 4.780 3.436 4.221 3.035 3.239 2.328 4.160 2.991 3.943 2.835

+Raw-dataset 33.8 3.682 2.900 3.551 2.797 4.224 3.327 3.592 2.829 4.332 3.412 3.975 3.131 3.097 2.439 3.883 3.059 3.737 2.944
+Target generated 33.8 3.941 3.104 3.781 2.978 4.379 3.449 3.707 2.920 4.704 3.705 4.147 3.267 3.086 2.431 4.078 3.212 3.769 2.969
+Draft generated 33.8 3.905 3.076 3.738 2.944 3.948 2.838 3.534 2.783 4.636 3.652 4.117 3.243 3.037 2.392 4.068 3.204 3.685 2.902

Table 2: Eagle based SpD for Llama3.2-3B-Instruct model
on open-ended text generation (DOLLY) and function call-
ing (xLAM) task

Method DOLLY xLAM

LMHead,Draft (M) BE MBSU LMHead,Draft (M) BE MBSU

Eagle 394.0 3.237 1.52 394.0 2.937 1.379

+Raw-dataset 101.3 3.091 1.751 15.4 2.397 1.445
+Target generated 101.3 3.193 1.809 15.4 2.860 1.725
+Draft generated 101.3 3.173 1.797 15.4 2.777 1.674

Independent 131.3 3.675 2.642 131.3 2.364 1.700

+Raw-dataset 33.8 3.483 2.744 5.1 2.075 1.681
+Target generated 33.8 3.629 2.858 5.1 2.344 1.900
+Draft generated 33.8 3.589 2.827 5.1 2.314 1.875

5. Conclusion
We propose a new direction of improving performance of
drafter-based speculative decoding methods by reducing
the size of drafter LM head. Our method VOCABTRIM
is a training-free off-the-shelf technique that can be easily
integrated with various speculative decoding methods that
incorporates LM head layers. Experiments with Llama 3
models on various downstream task shows that drafters can
operate on smaller vocabulary space giving significant boost
in performance in memory bound token generation process
of LLMs.
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A. Discussion
A.1. Future Work

In current work, we rely on limited number of datasets for
different tasks, specifically, Minipile (Kaddour, 2023) for
computing occurrence of tokens in raw-dataset, and OIG-
small-chip2, OpenAssistant datasets for generating target
(and draft) model dataset, and xLAM (Liu et al., 2024)
train-split for function-calling task. In following works,
we will experiment specific downstream tasks using more
task-specific domain dataset, for example, using train-split
from GSM8k (Cobbe et al., 2021) for math tasks, and using
train split from HumanEval (Chen et al., 2021) for coding
tasks, we believe this will further reduce the acceptance-rate
gap while boosting MBSU. The idea of having separate
draft model LM-head for separate downstream task can be
considered analogous to low-rank adaptation (LORA) for
LLMs (Hu et al., 2022), where for each downstream task, a
set of LORA parameters are trained.

A.2. Limitations

We observe that the coding task in Table 1 leads to slightly
higher BE drop (5.6% for Eagle-drafter using target based
calibration dataset) than other tasks with lower MBSU gains
(13.9%). We believe this is due to mismatch in the token
distribution used in code-generation compared to the token
distribution used in our calibration datasets (general english).
Using a code-dataset for calibrating the VocabTrim would be
beneficial in this scenario, to further boost the performance.

A.3. Comparison of VOCABTRIM and FR-Spec:
Similarities and Differences

It has come to our attention that VOCABTRIM and FR-Spec
(Zhao et al., 2025) share the idea of pruning LM head for
speculative decoding. In this section, we highlight some key
differences between them. First, they commonly identify
the LM head as a bottleneck in draft model as motivation for
the proposed works. While the induced algorithms resemble
to each other, we emphasize that our focus is on the memory
bandwidth of drafting process associated with the size of
the drafter, regardless of its computational complexity. This
is crucial in memory-bound environment, which is often
the case in edge devices but not obvious in larger scale de-
vices such as Nvidia GPUs in which cases the methods may
lead to only marginal improvements. In this context, we
report MBSU (memory-bound speed up) as the primary per-
formance metric and make the performance measurement
more consistent with on-edge-device performance.

Second, we propose the use of model-generated datasets,
i.e., distillation datasets, to construct the token distribution,
under the motivation of distribution matching and leading
to the best performance on many cases, while comparing

different types of calibration datasets: (a) target-generated,
(b) draft-generated, and (c) raw dataset, similarly in (Zhao
et al., 2025).

Lastly, our approach is a generic method for speculative
decoding method with drafter LM head in the loop, not
limited to EAGLE. Thus, we compare both independent
drafter model and EAGLE-style drafter model.

B. Independent Draft Model
B.1. Model configurations

The following configurations are used for 314M draft mod-
els following (Biderman et al., 2023):

Table 5: Draft model configurations

Llama 3-Instruct-Drafter
(314M, draft)

Layers 4
Attention heads 8
KV heads 8
Intermediate dim 2816
Hidden dim 1024
Activation SiLU

B.2. Training hyper-parameters

For draft model pretraining, we used deepspeed stage1 on
32 A100 GPUs. Additionally, during pre-training a large
batch-size can be used as compared to distillation which
requires the target model weight and output consuming a lot
of memory. The optimizer used is AdamW with WarmUpDe-
cayLR learning-rate scheduler, maximum learning rate was
0.0001 while minimum was 1e− 6.

For draft model fine-tuning, we used deepspeed stage 3 with
batch-size=40 on 8 A-100 GPUs with maximum learning-
rate=0.0003 with same optimizer and scheduler with 2000
warm-up steps.

B.3. Data processing

We preprocess the text data with the tokenizer of the target
language model while appending End-Of-Sentence (EOS)
token at the end of each input sequence. Furthermore, as
a postporcessing step, all the sequences are concatenated
into chunks of 4096 length, to maximize training throughput
without adding pad tokens.
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C. Trimmed draft LM-head
C.1. Algorithm Flow

The VocabTrim follows same inference code as standard
SpD systems, with minimal changes related to using a
lightweight draft LM-head, and mapping draft model gener-
ations back to original vocabulary space as shown in Algo-
rithm 2.

Algorithm 2 SpD with VOCABTRIM

1: Input: Prompt x, Draft model with trimmed vocab
Md trim, Target model Mt, Draft length k, token index
mapper Td→t

2: Initialize output y ← x
3: while not end of sequence do
4: for j = 1 to k do
5: ẑj ←Md trim(y, ŷ<j)
6: ŷj ← Td→t(ẑj)

7: Compute probabilities Pt ←Mt(ŷ1:k)
8: for i = 1 to k do
9: if ŷi is consistent with Pt then

10: Append ŷi to y
11: else
12: Generate yi ←Mt(y)
13: Append yi to y
14: break
15: Return y
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