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Abstract

Packing and shuffling tokens is a common
practice in training auto-regressive language
models to prevent overfitting and improve effi-
ciency. Documents are typically concatenated
to chunks of maximum sequence length (MSL)
and shuffled in chunks of tokens (atom-size
chunk), possibly breaking context within doc-
uments. An alternative approach is padding,
which only includes one document per chunk.
To optimize both packing strategies (concate-
nation vs padding), we explored the optimal
atom size for shuffling and compared perfor-
mance and efficiency. We found that in the
most common setup (where average document
length is greater than MSL), matching atom
size to MSL yields the lowest perplexity, con-
trolling for dataset. Also, padding yields lower
final perplexity than concatenation at the cost
of lower efficiency.! This trade-off informs
the choice of shuffling and packing methods in
training LMs.

1 Introduction

Shuffling removes underlying chronological or the-
matic order in the original dataset, which reduces
the risk of overfitting and improves generalizability
(Nicolae et al., 2016; Shen et al., 2020; Zhong et al.,
2023). For example, training a classifier for cats
versus dogs on an unshuffled dataset with 5,000
images of each can lead to bias. If the first 5,000
gradient updates are solely from cat images, the
model develops a "cat bias," making inference on
dogs problematic. This issue can be avoided by in-
terleaving cat and dog images prior to training, and
this shuffling process is now a standard approach.
Although shuffling helps unbiased learning with
independent samples, the optimal packing method
for shuffling remains unclear for language models
(Press, 2019; Abdou et al., 2022). For GPT mod-
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els (Radford et al., 2019), the commonly used Py-
Torch Dataloader class concatenates and packs doc-
uments into chunks of a fixed size (usually MSL)
before shuffling (hereafter referred to as "concat").
Another method is padding, which shuffles doc-
uments after padding them to a fixed size. Both
methods achieve the goal of generating fixed-length
sequences, but it is still an open question which
method is more effective for GPT models.

The optimal shuffling unit size for packing
("atom size" for conciseness) is also unclear for
language models. While the "atom" for vision tasks
is naturally images, finding an atom size for texts
is hard since language datasets contain documents
or sequences with varying lengths.

We hypothesize that shuffling data in an atom
size of MSL is best since the contextual informa-
tion within each chunk is maximized. Specifically,
the previous contexts that transformers rely on for
next-token prediction is disrupted when the atom
size is smaller than the MSL, as unrelated con-
textual fragments are concatenated together. On
the contrary, the context of consecutive sequences
would be dependent when the atom size is larger
than the MSL, introducing correlation and bias. Us-
ing the MSL as the shuffling unit thus maintains
data integrity and randomness.

Our experiments confirmed that when average
document length is greater than MSL, packing and
shuffling data in atom sizes of MSL indeed opti-
mizes performance for both concat and padding
methods. We also showed that padding results in
better model performance than concat, albeit at the
cost of efficiency due to more training steps. This
advantage however disappears when documents
are significantly shorter than MSL, as padding be-
comes an inferior packing method with samples
dominated by redundant padding tokens.
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2 Method

2.1 Model Pretraining Setting

We pretrained GPT-2 124M and GPT-2 XL 1.5B
models (Radford et al., 2019) on WikiText (average
document length of 143 tokens) with each packing
method—concat or padding—across various atom
sizes and MSLs. Table 1 shows different configu-
rations tested, with justifications provided in Ap-
pendix A.2. We used Alibi (Press et al., 2021) as a
positional encoding that introduces no additional
learnable parameters in order to control for the to-
tal parameter size regardless of MSLs. Padding
affects the total training steps for the same data,
as discussed in A.10. GPT-2 models were trained
on 1 NVIDIA A100 GPU, and GPT-2 XL models
were trained on 8 NVIDIA H100 GPUs. Appen-
dices A.1, A.3, A4, and A.5 provide details
on dataset and filtering, implementations for data
packing, explanation for parameter sizes with Alibi,
and justification for the step size, respectively.

2.2 Evaluation and Comparison Metric

We used final perplexity and perplexity ranking to
determine the optimal atom size for both packing
methods (concat or padding). Calculations for final
perplexity and perplexity ranking are explained in
Appendix A.6. Under each MSL, we compared
concat and padding models by final perplexity,
learning efficiency (perplexity at given steps) and
step size efficiency (steps per epoch).

model MSL Atom Size Choice for Both Concat and Padding.

GPT-2 32 8,16, 32, 64, 128
GPT-2 64 16, 32, 64, 128, 256
GPT-2 128 32,64, 128, 256

Table 1: MSL and atom size choices in GPT-2 (124M)

3 Results

3.1 Concat Experiments

We found that when average document length is
greater than MSL, atom sizes smaller or larger than
MSL increased perplexity, indicating that MSL is
indeed the optimal atom size for concat. Figure 1
shows the training perplexity of concat models
with different atom sizes (s € {0.25MSL, 0.5MSL,
1IMSL, 2MSL, 4MSL}) when MSL is 64. Among
all atom sizes, 0.25MSL (purple) and 0.5MSL (red)
obviously lead to higher perplexity (worse perfor-
mance). Although the differences in perplexity
among 4MSL (blue), 2MSL (orange) and 1MSL

(green) are less obvious, the zoom-in plot (right
side of Figure 1) shows that IMSL (green) consis-
tently had lower perplexity (better performance)
than 2MSL and 4MSL (blue and orange) in the
second epoch. Table 2 shows final perplexity and
perplexity ranking respectively. The model using
IMSL as the atom size has the lowest final perplex-
ity (118.08) and highest average ranking (1.05),
indicating optimal performance. MSL = 32 and
128 yielded similar results (see Appendix A.8).

Atom Size  Final Perplexity = Perplexity Ranking
Concat Padding Concat Padding
0.25MSL 207.04  175.33 5.00 5.00
0.5MSL 15739 13443 4.00 4.00
IMSL 118.08  102.82 1.05 1.18
2MSL 119.66  104.46 1.96 2.03
4MSL 121.18  105.85 2.99 2.79

Table 2: Comparison of final perplexity values and aver-
age perplexity rankings across different atom sizes for
concat and padding models when MSL is 64.

3.2 Padding Experiments

For padding experiments with GPT-2 124M, we
found that atom sizes smaller or larger than MSL
increased perplexity, confirming MSL as the op-
timal atom size when average document length
is greater than MSL. Figure 2 shows the train-
ing perplexity of padding models with atom sizes
s € {0.25MSL, 0.5MSL, 1IMSL, 2MSL, 4MSL}
when MSL is 64. Note that atom sizes affect the
training steps per epoch for models with paddings,
as discussed in Appendix A.10. Similar to the con-
cat experiments, 0.25MSL (purple) and 0.5MSL
(red) lead to higher perplexity, while differences
between 4MSL (blue), 2MSL (orange) and IMSL
(green) are subtle yet present: The zoom-in figure 2
(right side) shows that IMSL (green) had lower per-
plexity compared to 2MSL and 4MSL (blue and
orange) at the end of the second epoch, improving
fast despite starting with a higher perplexity. Table
2 presents the final perplexity and perplexity rank-
ing. The model with atom size of 1IMSL has the
lowest final perplexity (102.82) and highest aver-
age ranking (1.18), indicating optimal performance.
Experiments with MSL of 32 or 128 yielded similar
results (See Appendix A.8 for details).

3.3 Comparison between Padding and Concat

Although padding resulted in lower final perplexi-
ties (better performance) than concat, it has lower
learning efficiency (higher perplexity at given
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Figure 1: Comparison of concat models with different atom sizes when MSL is 64. The full training plot (left)
shows that IMSL (green) achieves the lowest perplexity, while smaller or larger atom sizes increase perplexity. The
zoom-in plot (right) shows the second epoch, where IMSL (green) consistently maintains the lowest perplexity.
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Figure 2: Comparison of padding models with different atom sizes when MSL is 64. The full training plot (left)
shows that IMSL (green) achieves the lowest perplexity, while smaller or larger atom sizes increase perplexity. The
zoom-in plot (right) shows the second epoch, where IMSL (green) achieves the best performance by the end.

steps) and step size efficiency (more steps per
epoch). Table 3 compares the step size and final
perplexity for concat and padding models when the
atom size matches the MSL, showing that padding
brings larger step (13% - 45% depending on MSL)
and lower final perplexity (5% - 24% depending on
MSL) than concat models across MSLs.

Figure 3 also shows the step-wise perplexity
comparison for concat (blue) and padding (orange)
models when the atom size matches the MSL (the
first 2,000 high-perplexity steps are discarded for
clarity). Again, we see that padding (orange) has
lower final perplexities, while concat (blue) has
fewer training steps.

3.4 GPT-2 XL Experiments

We conducted ablation studies with GPT-2 XL 1.5B
to test the scalability of our findings on a larger
model and larger MSLs (256, 512, 1024). Unlike
GPT-2 124M experiments, these MSLs exceed the
average document length (143 tokens). This is
uncommon in pretraining, as computational con-
straints from quadratic attention complexity typi-

cally force MSL to be shorter than documents.

In concat experiments, models with atom size
of MSL showed the lowest perplexities (best per-
formance), consistent with Section 3.1. However,
in padding experiments, IMSL, 2MSL, and 4MSL
showed similar final perplexities and average per-
plexity rankings. In addition, the advantage of
padding in reducing final perplexities, noted in Sec-
tion 3.3, disappears at larger MSLs due to excessive
padding tokens. See Appendix A.9 for details.

MSL Batch Size Step Size Final Step Perplexity
Concat Padding Concat Padding
32 256 28120 31816 91.01 87.22
64 256 14058 17308 110.45 99.79
128 128 14056 20496 102.42 82.55

Table 3: Concat models have fewer training steps while
padding models have lower final perplexity.
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Figure 3: Step-wise perplexity comparison between padding and concat models under different MSLs. As marked
by solid and dotted red lines, padding (orange) has lower final perplexities while concat (blue) has smaller steps.

4 Discussion

Effects of Matching MSL and Atom Size on Lan-
guage Coherence and Bias When average doc-
ument length is greater than MSL, matching MSL
and atom size optimizes packing (padding and con-
cat) by reducing language incoherence and bias as
shown in Section 3.1 and 3.2. Our intuition is
using an atom size smaller than MSL causes lan-
guage incoherence, as it merges unrelated shuffling
chunks into one sequence, damaging the contex-
tual completeness. Conversely, using an atom size
larger than MSL brings bias by splitting shuffling
chunks into multiple consecutive sequences, creat-
ing unintended correlations.

Implication of the Trade-off Between Perfor-
mance and Efficiency ML practitioners’ choice
of packing methods may be informed by the trade-
off between performance and efficiency. With lim-
ited data, padding outperforms as it brings higher
performance; with limited time, concat is preferred
because it packs each epoch in fewer steps, leading
to higher efficiency.

However, as shown in Section 3.4, padding
should be avoided when MSL is significantly larger
than average document lengths, as samples become
largely dominated by padding tokens. This brings
computational inefficiency and limits the amount of
useful information in each training sample, prevent-
ing the model from learning adequate knowledge.

5 Related Work

Shuffle in PyTorch. While the Datal.oader class in
PyTorch shuffles data in concatenated chunks of a
fixed atom size (usually MSL) to maximize training
efficiency, our work explored multiple atom sizes
(4MSL, 2MSL, IMSL, 0.SMSL and 0.25MSL) as
well as padding as an alternative packing method.
Data Shuffling Strategies for Context Preser-
vation. Zhao et al. (Zhao et al., 2024) studied

intra-document causal attention mask, which con-
catenates documents into fixed-length chunks and
computes the likelihood of each token conditioned
on previous tokens from the same document within
that chunk. This is similar to padding because at-
tention score is only calculated for intra-document
tokens, but each token may not have full attention
to other tokens in the same document since one doc-
ument may be packed into different chunks. While
this method saves padding tokens to improve effi-
ciency, we implement the original padding method
for better contextual completeness.

6 Conclusion

When average document length is greater than max-
imum sequence length (MSL) - a common setting
as MSL is often constrained by quadratic complex-
ity of attention computation while language doc-
uments can be much longer, we show that match-
ing atom size with MSL optimizes packing perfor-
mance (concat and padding). This finding shows
the importance of aligning atom size with MSL
during data shuffling to optimize language model
training. We also found that padding yields lower
final perplexity (higher performance) than concat at
the cost of more training steps and lower efficiency.
This trade-off guides packing choices in training
models: padding is preferred when data is scarce,
while concat is preferred when time is limited.

However, Section 3.4 shows that when MSL is
greater than average document length, matching
atom size with MSL only optimizes performance
for concat. Padding is not ideal because wasteful
padding tokens prevent efficient training.

Limitations and Future Work. We showed
MSL as the optimal atom size for packing in GPT-
2 124M and GPT-2 XL 1.5B models trained on
WikiText. Future work can test datasets with longer
documents and other model architectures to further
confirm our findings.
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A Appendix
A.1 Dataset and Filtering

We conducted our studies on the generative lan-
guage model training using the WikiText dataset
(Merity et al., 2016), chosen for its generalizability.
Specifically, we used the WikiText-103-raw subset,
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Figure 4: The distribution of tokenized sequence lengths
in WikiText-103-raw with 10,000 random samples. The
dataset mostly consists of short paragraphs with length
0 to 200.

which comprises approximately 1.81M rows and
over 100M words derived from filtered Wikipedia
content. Notably, the dataset mostly consists of
short paragraphs: Figure 4 shows the distribution
of tokenized sequence lengths using 10,000 ran-
domly sampled rows from the dataset.

Before tokenization or shuffling the WikiText
dataset, we removed blank rows and short title rows
that contained limited context information. We fil-
tered out rows with fewer than 50 words. This
filtered 55.62% rows (2.45% words) in the training
set and 53.86% rows (2.33% words) in the valida-
tion set. The training and validation corpus sizes
after filtering are 98,937,698 and 208,893 words
respectively.

Before feeding dataset to models, we prepro-
cessed the sequences by tokenization and packing.
We first used GPT2TokenizerFast (Radford et al.,
2019)to tokenize all sequences in parallel, then
used one of the two packing methods (padding and
concat) with shuffling to ensure that all sequences
could be batched in MSL.

A.2 Choices of MSL and Atom Size Explained

We set MSL = 32, 64, 128 for GPT-2 124M to
keep it smaller than average document lengths and
save wasteful padding tokens. Atom sizes followed
a geometric progression relative to MSL, set at
0.25MSL, 0.SMSL, IMSL, 2MSL, 4MSL. How-
ever, for MSL = 128, we did not test on an atom
size of 4 MSL = 512 because of wasteful padding
tokens. The batch sizes were also adjusted accord-
ing to MSL: we used batch sizes of 256 for MSLs
of 32 and 64, while reducing to a batch size of 128
when MSL was 128. These adjustments were made
to make optimal use of GPU memory.
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Figure 5: Illustration of packing steps of padding, when
MSL is 32 and atom size is 64. The "tail" subsequence
contains fewer tokens than the specified atom size and
is padded to meet the MSL requirement, ensuring con-
sistency in sequence length.

ly Arranged Sub:

For GPT-2 XL 1.5B, we set MSL = 256, 512,
and 1024, and tested all atom sizes regardless of
padding token waste. The choices of MSL and
atom size are detailed in table 4.

model MSL Atom Size Choice for Both Concat and Padding.
GPT-2 32 8, 16, 32, 64, 128

GPT-2 64 16, 32, 64, 128, 256

GPT-2 128 32, 64, 128, 256

GPT-2 XL 256
GPT-2XL 512
GPT-2 XL 1024

64,128,256,512,1024
128, 256,512,1024,2048
256, 512,1024,2048,4096

Table 4: MSL and atom size choices in GPT-2 (124M)
and GPT-2 XL (1.5B) models.

A.3 Concat and Padding Details

Padding. This method focuses on padding to gen-
erate sequences with lengths equal to MSL. The
steps are shown in Figure 5. Each input document
was segmented into smaller subsequences of length
(atom size - 1) with an <EOS> token placed at the
end. The role of the <EOS> token is to inform
the model that the current sequence has ended. To
maintain consistency in sequence length and en-
sure efficient batch processing, the tail end of any
subsequence that does not meet the requirement of
MSL would be padded. For example, in the case
of MSL = 64, a sequence of length 130 (L = 130)
would be segmented into 2 subsequences of length
64 (each with 63 word tokens and an <EOS> token
at the end), then a tail subsequence composed of
4 word tokens and 60 padding tokens. We used
<EOS> as the padding token for simplicity of the
special token set. All resulted subsequences have a
length of MSL regardless of the original sequence
length.
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Figure 6: Illustration of packing steps of concat, with
MSL of 32 and atom size of 64.

Split Subsequences

Final Subsequences

Next, all subsequences were randomly shuffled
with random seed set to 42. During this process,
any underlying chronological or thematic order in
the original dataset should be removed.

After shuffling, the subsequences were either
merged or split to align with the predefined MSL.
When atom size is less than MSL, we merged sub-
sequences; when atom size is larger than MSL,
we split subsequences. Finally, when atom size
equals MSL, we kept the shuffled subsequences
unchanged. For example, in the case where MSL is
32 and atom size is 64, we split every subsequences
to get 2 final subsequences of length 32 to feed to
the model.

Notably, when atom size is larger than MSL, we
do not pad every tail end to atom size, but to MSL
instead as shown in figure 5. This is because all
subsequences will be split into size of MSL after
shuffling. If we pad tail end to atom size instead
of MSL, we will produce some training sequences
that are completely composed of padding tokens.
For example, when MSL is 32 and atom size is
128, if we pad a document of 35 tokens to an atom
size of 128, we will yield a subsequence with 35
word tokens and 93 padding tokens, which will
lead to completely meaningless training samples
after split.

Concat. While the padding method handles dif-
ferent sequence lengths with padding tokens, the
concat method employs a concatenating and split-
ting process. The steps are shown in Figure 6. In
this approach, we firstly concatenate all sequences
together to obtain an extremely long sequence inter-
leaved with <EOS> tokens. Then we split the long
sequence into subsequences according to atom size,
shuffled them, and adjusted them to fit the max-



imum context length by merging or splitting as
needed.

The two methods reflect different strategies to
achieve the goal of generating fixed-length se-
quences for model training. The default method for
GPT models is concat, but we hope to test whether
padding outperforms concat in terms of efficiency
and model performance. Our experiments in Sec-
tion 3 would show that padding had better model
performance than concat with the cost of lower ef-
ficiency. Since our experiments on shuffling atom
size would focus on optimizing model performance,
we decided to employ padding during those experi-
ments.

It’s important to note here that we also applied
padding and concat respectively to the testing set
during padding vs concat experiments. This choice
is natural and reasonable because the training and
testing sets should be preprocessed in the same way
to accurately reflect performance. To make a fair
comparison, we calculated perplexity with cross
entropy loss normalized by max length, preventing
bias due to differences in max length.

A.4 Total Parameter Size

When we experiment on models with different
MSL, it is important to control the parameter size
across all models. In the vanilla GPT-2 architecture,
different MSLs lead to different parameter sizes.
This is because the positional encoding layer’s pa-
rameter size has a positive linear relationship with
maximum context length. To eliminate this differ-
ence, we decide to replace the positional encoding
with Attention with Linear Biases (Alibi) (Press
et al., 2021), which is a non-parametric positional
encoding algorithm that biases attention scores in
accordance with the distance between tokens. This
algorithm was originally designed to improve the
processing of long sequences in language models
and to reduce the computational load associated
with longer inputs. However, our smaller-scale
model with shorter maximum context lengths did
not benefit from these advantages. Instead, we fo-
cused on one particular characteristic of Alibi: it
does not introduce additional trainable parameters,
unlike the default positional encoding in the GPT-2
architecture. As a result, the total parameter size of
all models trained in our experiments were fixed to
124M.

A.5 Total Step Size

Our objective is to schedule and use computational
resources in ways that minimize training time and
adhere to optimal training practices. We estimate
the optimal number of tokens for training based
on the estimation table from Chinchilla (Hoffmann
et al., 2022). The table indicates that a model with
400M parameters requires 8B tokens, so our 124M-
parameter model will need (124/400) x 8 = 2.48B
tokens. Then we divided this number by batch size
and maximum context length to calculate the opti-
mal step size for training. However, due to limita-
tions in computational resources, it would take us
one day to train one model on the optimal number
of tokens. In this case, we decided to run two full
epochs (114,400,095 word tokens per epoch) for
all experiments instead, bringing the perplexity to
nearly convergence in 2 to 3 hours on one GPU
(NVIDIA Tesla V100-PCIE-32GB ).

A.6 Detailed Calculation of Final Perplexity
and Perplexity Ranking

After evaluating with perplexity, we compared all
models based on their average perplexity ranking
and final perplexity value. Here, we need to be
careful of how to calculate these two comparison
metrics in detail.

We chose to calculate the comparison metrics by
epochs rather than training steps due to variations
in the number of word tokens learned at each step
in padding models. For ranking, we divided the
last epoch into 100 segments, each covering 0.01
of an epoch, calculated the average perplexity for
all models within each segment, and ranked them.
We then averaged the rankings from all 100 ranges
as our final ranking. For the final perplexity value,
we selected the last range (0.99 epoch - 1.00 epoch)
and calculated its average perplexity.

A.7 Exponential Moving Average (EMA)

We use Exponential Moving Average (EMA) to
visualize smooth perplexity curves for our mod-
els. EMA computes a weighted average of past
data points, with exponentially decreasing weights
that effectively smooth out fluctuations in original
perplexity values. Specifically, EMA is computed
iteratively using the following formula:

St:Oé'yt—i-(l—Oé)'St_l

where S; represents the smoothed perplexity at
step t, y; is the observed perplexity at step t, and



a is the smoothing parameter. « is designed to
dynamically adjust based on changes in training
steps At:

oy = min(v/a, 0.999)3

where At is always 1 since the training step
is a discrete variable. Therefore, the smoothing
parameter remains constant during the process.

A.8 Concat and Padding Results under MSL
= 32 and 128 with GPT2 124M

Concat. See Figure 7, Figure 8 for details.

Padding. See Figure 9, Figure 10 for details.
A.9 Concat and Padding Results under MSL
=256, 512 and 1024 with GPT-2-XL 1.5B

Concat.
for details.

See Figure 11, Figure 12 and Figure 13

Padding. See Figure 14, Figure 15 and Figure 16
for details.

When training GPT-2 XL models with MSLs
(256, 512 and 1024) that are significantly larger
than average document lengths, aligning atom size
with MSL no longer always leads to the lowest per-
plexity. Instead, models with atom size of 1MSL,
2MSL and 4MSL take turn to achieve the lowest
perplexity in different MSLs. This is because when
document length < MSL < atom size, we only pad
to MSL instead of padding to atom size. This im-
plementation prevents us from getting training sam-
ples that purely consist of padding tokens. Since
WikiText has mostly short documents (150-200 to-
kens), there is actually no difference between atom
size = IMSL, 2MSL and 4MSL, as we are just
padding to 1IMSL.

A.10 Step Size Differences in Padding

As mentioned in Section 3.2, padding causes
model’s training steps per epoch to depend on the
atom sizes, due to the different amounts of padding
tokens in the training sequences. We added padding
tokens to the dataset in two ways.

(a) Between each Shuffling Chunk. As men-
tioned in Appendix A.3, documents are split
to shuffling chunks with an <EOS> token (our
padding token) added to their ends. A smaller atom
size will get more padding tokens in this way, since
the dataset is split into more chunks.

(b) At the End of an Unfilled Chunk. If a
shuffling chunk is not completely filled by word

tokens, we added padding tokens to fill the chunk.
A larger atom size will get more padding tokens
in this way, since it is more likely that the word
tokens cannot fill in each chunk.

In the case of atom size = 64 (as in Figure 2),
we see that atom size = 1/2/4 MSL is having more
steps than atom size = 0.25MSL / 0.5MSL, which
is a consequence of (b). However, within atom size
= 1/2/4 MSL, we see that IMSL is having the most
steps, which is a consequence of (a).

A.11 License for GPT-2

GPT-2 used a Modified MIT License, which can
be seen on this: https://github.com/openai/
gpt-2/blob/master/LICENSE. We only use GPT-
2 for research, which is consistent to its intended
use.


https://github.com/openai/gpt-2/blob/master/LICENSE
https://github.com/openai/gpt-2/blob/master/LICENSE
https://github.com/openai/gpt-2/blob/master/LICENSE

Training Perplexity with Concat for MSL = 32 (Both Epoch)

age Perplexity
2

Langu

(a) Full Training Perplexity. The models with atom
sizes of 0.SMSL (red) and 0.25MSL (purple) have higher
perplexity than the others. IMSL (green) stabilizes at a
low perplexity after an initial drop.

Final Perplexity with Concat, MSL = 32
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(c) Final Perplexity. The model with atom size of
0.25MSL has the highest final perplexity value(222.14),
while model with atom size of IMSL has the lowest final
perplexity value(91.21) for 2 epochs.

Training Perplexity with Concat for MSL = 32 (Second Epoch)

Language Perplexity

Step
(b) Second Epoch Perplexity. Models with atom size
of 4MSL (blue) has higher perplexity than the other two.
IMSL (green) consistently maintains the lowest perplexity
in the second epoch.

Average Perplexity Ranking with Concat, MSL = 32
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(d) Perplexity Ranking.The model with atom size of
0.25MSL has the highest perplexity ranking(5), while
model with atom size of 1MSL has the lowest perplexity
ranking(1) for 2 epochs.

Figure 7: Comparisons across concat models with different atom sizes when MSL is 32. Smaller or larger atom
sizes than 1MSL increase perplexity. The model with IMSL as the atom size has the lowest final perplexity value
and the smallest average perplexity ranking at the end of 2 epochs, indicating better performance.



Training Perplexity with Both Packing for MSL = 128 (Both Epoch)
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(a) Full Training Perplexity. The models with atom
sizes of 0.25MSL (red) and 0.5MSL (green) have higher
perplexity than the others. IMSL (orange) stabilizes at a
low perplexity after an initial drop.

Final Perplexity with Concat, MSL = 128
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(c) Final Perplexity. The model with atom size of
0.25MSL has the highest final perplexity value(159.81),
while model with atom size of IMSL has the lowest final
perplexity value(110.31) for 2 epochs.

Training Perplexity with Concat for MSL = 128 (Second Epoch)

200 \ Atom Size
— 2wms1
IMSL

Language Perplexity

7000 8000 9000 10000 11000 12000 13000 14000
Step

(b) Second Epoch Perplexity. Initially, the model with
atom size of IMSL (orange) shows higher perplexity than
2MSL (blue). IMSL continuously decreases and achieves
the lowest perplexity by the end of the second epoch.

Average Perplexity Ranking with Concat, MSL = 128
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(d) Perplexity Ranking.The model with atom size of
0.25MSL has the highest perplexity ranking (4), while
model with atom size of 1MSL has the lowest perplexity
ranking (1) for 2 epochs.

Figure 8: Comparisons across concat models with different atom sizes when MSL is 128. Smaller or larger atom
sizes than 1MSL increase perplexity. The model with IMSL as the atom size has the lowest final perplexity value
and the smallest average perplexity ranking at the end of 2 epochs, indicating better performance.
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Training Perplexity with Padding for MSL = 32 (Both Epoch)
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(a) Full Training Perplexity. The models with atom
sizes of 2MSL (orange) and 0.5MSL(red) have higher
perplexity than the others. IMSL (green) stabilizes at a
low perplexity after an initial drop.

Final Perplexity with Padding, MSL = 32
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(c) Final Perplexity. The model with atom size of
0.25MSL has the highest final perplexity value (196.83),
while model with atom size of IMSL has the lowest final
perplexity value (85.56) for 2 epochs.

Training Perplexity with Padding for MSL = 32 (Second Epoch)

130

Language Perplexity

Step
(b) Second Epoch Perplexity. The models with atom
size of 4MSL (blue) has higher perplexity than the other
two. IMSL (green) has the lowest perplexity at the end of
second epoch.

Average Perplexity Ranking with Padding, MSL = 32
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(d) Perplexity Ranking. The model with atom size of
0.25MSL has the highest perplexity ranking (5), while
model with atom size of 1MSL has the lowest perplexity
ranking (1.1) for 2 epochs.

Figure 9: Comparisons across padding models with different atom sizes when MSL is 32. Smaller or larger atom
sizes than 1MSL increase perplexity. The model with IMSL as the atom size has the lowest final perplexity value
and the smallest average perplexity ranking at the end of 2 epochs, indicating better performance.
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- Training Perplexity with Padding for MSL = 128 (Both Epoch)
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(a) Full Training Perplexity. The model with atom sizes

of 0.25MSL (red) has higher perplexity than the others.

IMSL (orange) stabilizes at a low perplexity after an initial
drop.
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(c) Final Perplexity. The model with atom size of
0.25MSL has the highest final perplexity value (146.95),
while model with atom size of IMSL has the lowest final
perplexity value (86.20) for 2 epochs.

Training Perplexity with Padding for MSL = 128 (Second Epoch)
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(b) Second Epoch Perplexity. Initially, the model with
atom size of 2MSL (blue) and 1MSL(orange) have similar

perplexity. 1IMSL (orange) has the lowest perplexity at
the end of second epoch.
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(d) Perplexity Ranking.The model with atom size of
0.25MSL has the highest perplexity ranking (4), while
model with atom size of 1MSL has the lowest perplexity
ranking (1.23) for 2 epochs.

Figure 10: Comparisons across padding models with different atom sizes when MSL is 128. Smaller or larger atom
sizes than 1MSL increase perplexity. The model with IMSL as the atom size has the lowest final perplexity value
and the smallest average perplexity ranking at the end of 2 epochs, indicating better performance.
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Training Perplexity with Concat for MSL = 256 (Both Epoch)
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(a) Full Training Perplexity. The models with atom
sizes of 0.5MSL (red) and 0.25MSL (purple) have higher
perplexity than the others. IMSL (green) stabilizes at a
low perplexity after an initial drop.
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(c) Final Perplexity. The model with atom size of
0.25MSL has the highest final perplexity value(23.85),
while model with atom size of IMSL has the lowest final
perplexity value(15.15) for 2 epochs.

‘Training Perplexity with Concat for MSL = 256 (Second Epoch)

Language Perplexity

Step
(b) Second Epoch Perplexity. Models with atom size of
4MSL (blue) has higher final perplexity than the other two.
IMSL (green) starts with relatively high perplexity, but
eventually reaches to the lowest perplexity in the second
epoch.
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(d) Perplexity Ranking. The model with atom size of
0.25MSL has the highest perplexity ranking(5), while
model with atom size of IMSL has the lowest perplexity
ranking(1.38) for 2 epochs.

Figure 11: Comparisons across concat models with different atom sizes when MSL is 256. Smaller or larger atom
sizes than 1MSL increase perplexity. The model with IMSL as the atom size has the lowest final perplexity value
and the smallest average perplexity ranking at the end of 2 epochs, indicating better performance.
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Training Perplexity with Concat for MSL = 512 (Both Epoch)
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(a) Full Training Perplexity. The models with atom
sizes of 0.25MSL (purple) and 0.5MSL (red) have higher
perplexity than the others. IMSL (green) stabilizes at a
low perplexity after an initial drop.
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(c) Final Perplexity. The model with atom size of
0.25MSL has the highest final perplexity value(19.62),
while model with atom size of 4MSL has the lowest final
perplexity value(14.44) for 2 epochs.

Training Perplexity with Concat for MSL = 512 (Second Epoch)
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(b) Second Epoch Perplexity. 1MSL maintains as the
lowest perplexity during most of the second epoch, but it

slows down at the very end of training and gets surpassed
by 2MSL.
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(d) Perplexity Ranking.The model with atom size of
0.25MSL has the highest perplexity ranking (5), while
model with atom size of IMSL has the lowest perplexity
ranking (1.91) for 2 epochs.

Figure 12: Comparisons across concat models with different atom sizes when MSL is 512. Smaller or larger atom
sizes than 1MSL increase perplexity. The model with IMSL as the atom size has the smallest average perplexity
ranking at the end of 2 epochs, indicating better performance. However, it does not have the best final perplexity as

the perplexity decrease slows down
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Training Perplexity with Concat for MSL = 1024 (Both Epoch)
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200
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(a) Full Training Perplexity. The models with atom
sizes of 0.SMSL (red) and 0.25MSL (purple) have higher
perplexity than the others. IMSL (green) stabilizes at a
low perplexity after an initial drop.
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(c) Final Perplexity. The model with atom size of
0.25MSL has the highest final perplexity value(17.74),
while model with atom size of IMSL has the lowest final
perplexity value(14.47) for 2 epochs.

Training Perplexity with Concat for MSL = 1024 (Second Epoch)
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(b) Second Epoch Perplexity. Models with atom size of
4MSL (blue) has higher final perplexity than the other two.
IMSL (green) maintains to have the lowest perplexity in
the second epoch.
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(d) Perplexity Ranking. The model with atom size of
0.25MSL has the highest perplexity ranking(5), while
model with atom size of 1MSL has the lowest perplexity
ranking(1.40) for 2 epochs.

Figure 13: Comparisons across concat models with different atom sizes when MSL is 1024. Smaller or larger atom
sizes than 1MSL increase perplexity. The model with IMSL as the atom size has the lowest final perplexity value
and the smallest average perplexity ranking at the end of 2 epochs, indicating better performance.
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Training Perplexity with Padding for MSL = 256 (Both Epoch)

Language Perplexity
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(a) Full Training Perplexity. The models with atom sizes
of 0.25MSL (purple) and 0.5MSL(red) have higher per-
plexity than the others. IMSL (green), 2MSL(orange) and
4MSL(blue) stabilizes at a low perplexity during training.
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(c) Final Perplexity. The model with atom size of
0.25MSL has the highest final perplexity value (21.69),
while model with atom size of 4MSL has the lowest final
perplexity value (15.17) for 2 epochs.

Training Perplexity with Padding for MSL = 256 (Second Epoch)
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(b) Second Epoch Perplexity. The models with atom size
of IMSL (green) has higher final perplexity than the other
two. 2MSL (orange) has the lowest perplexity at the end
of second epoch.
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(d) Perplexity Ranking. The model with atom size of
0.25MSL has the highest perplexity ranking (5), while
model with atom size of 2MSL has the lowest perplexity
ranking (1.43) for 2 epochs.

Figure 14: Comparisons across padding models with different atom sizes when MSL is 256. Larger atom sizes than
IMSL increase perplexity. The model with 4MSL as the atom size has the lowest final perplexity value, and the
model with 2MSL has the smallest average perplexity ranking at the end of 2 epochs.
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Training Perplexity with Padding for MSL = 512 (Both Epoch)
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(a) Full Training Perplexity. The model with atom sizes
of 0.25MSL (purple) has higher perplexity than the others.
The other models have comparable perplexity levels dur-
ing training.
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(c) Final Perplexity. The model with atom size of
0.25MSL has the highest final perplexity value (18.59),
while model with atom size of IMSL has the lowest final
perplexity value (15.00) for 2 epochs.
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(b) Second Epoch Perplexity. The model with atom size
of 4MSL (blue) has the highest perplexity. IMSL (green)
has the lowest perplexity at the end of second epoch.
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(d) Perplexity Ranking.The model with atom size of
0.25MSL has the highest perplexity ranking (5), while
model with atom size of 4MSL has the lowest perplexity
ranking (1.52) for 2 epochs.

Figure 15: Comparisons across padding models with different atom sizes when MSL is 512. Larger atom sizes than
IMSL increase perplexity. The model with IMSL as the atom size has the lowest final perplexity value, while the
model with 4MSL has smallest average perplexity ranking at the end of 2 epochs.
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Training Perplexity with Padding for MSL = 1024 (Both Epoch)
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(a) Full Training Perplexity. The model with atom size
of 0.5MSL (red) has slightly lower perplexity than the
others. The models with IMSL (green), 2MSL (orange)
and 4MSL (blue) have comparable perplexity levels.
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(c) Final Perplexity. The model with atom size of
0.25MSL has the highest final perplexity value (16.48),
while model with atom size of 2MSL has the lowest final
perplexity value (14.87) for 2 epochs.
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(b) Second Epoch Perplexity. The model with atom size
of 4MSL (blue) has the highest perplexity. 2MSL (orange)
has the lowest perplexity at the end of second epoch.
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(d) Perplexity Ranking. The model with atom size of
0.25MSL has the highest perplexity ranking (5), while
model with atom size of 2MSL has the lowest perplexity
ranking (1.01) for 2 epochs.

Figure 16: Comparisons across padding models with different atom sizes when MSL is 1024. The model with
2MSL as the atom size has the lowest final perplexity value and smallest average perplexity ranking at the end of 2

epochs.
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