
High-dimensional Analysis of Knowledge Distillation:
Weak-to-Strong Generalization and Scaling Laws

M. Emrullah Ildiz∗ Halil Alperen Gozeten∗ Ege Onur Taga
University of Michigan, Ann Arbor

{eildiz, alperen, egetaga}@umich.edu

Marco Mondelli†
Institute of Science and Technology Austria
marco.mondelli@ist.ac.at

Samet Oymak†
University of Michigan, Ann Arbor
oymak@umich.edu

Abstract

A growing number of machine learning scenarios rely on knowledge distillation where
one uses the output of a surrogate model as labels to supervise the training of a target
model. In this work, we provide a sharp characterization of this process for ridgeless,
high-dimensional regression, under two settings: (i) model shift, where the surrogate model
is arbitrary, and (ii) distribution shift, where the surrogate model is the solution of empirical
risk minimization with out-of-distribution data. In both cases, we characterize the precise
risk of the target model through non-asymptotic bounds in terms of sample size and data
distribution under mild conditions. As a consequence, we identify the form of the optimal
surrogate model, which reveals the benefits and limitations of discarding weak features in
a data-dependent fashion. In the context of weak-to-strong (W2S) generalization, this has
the interpretation that (i) W2S training, with the surrogate as the weak model, can provably
outperform training with strong labels under the same data budget, but (ii) it is unable to
improve the data scaling law. We validate our results on numerical experiments both on
ridgeless regression and on neural network architectures.

1 Introduction

The increasing number and diversity of machine learning models has motivated the development of techniques
that leverage the output of one model to train a different one – a process known as knowledge distillation
(Hinton et al., 2015). Variations of this approach include generating synthetic data from powerful language
models (Wang et al., 2023; Gunasekar et al., 2023; Abdin et al., 2024), weak-to-strong generalization to
obtain stronger models under weak supervision (Burns et al., 2023), and filtering/curating ML datasets via a
smaller model to train a larger model (Fang et al., 2023; Lin et al., 2024b). The diversity of these applications
motivates a deeper understanding of the statistical properties and limits of the distillation process.

In this work, we focus on the scenario where a target/student model is trained on the labels of a surrogate/teacher
model. LetDt denote the target distribution, (xi, yi)n

i=1 be sampled i.i.d. from this distribution, and p denote the
dimension of the features xi. Given a surrogate model s, we create the synthetic labels ys

i = s(xi) and obtain
the target model by minimizing the empirical risk, i.e.,

f̂ = arg min
f∈F

1
n

n∑
i=1

ℓ(ys
i , f (xi)), (1)

where F denotes the hypothesis class and ℓ the loss function. This procedure motivates a few fundamental
questions regarding (1): (i) What is the excess risk of f̂ compared to that of the minimizer of the population
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Figure 1: Structure and performance of optimal surrogate models. (a): We compare the weights of the optimal
surrogate model (green) with the ground-truth (blue). This reveals a transition from amplification to shrinkage
as we move from principal to tail eigenvalues. The yellow curve displays the optimal 0-1 masking of the
ground-truth where we either keep or discard a feature. (b): Associated test risks as a function of sample size.
The theoretical bounds (full lines) match the experiments (markers). Setting: The feature size is p = 500; the
sample size is n = 200 in (a) and variable in (b); the feature covariance follows the power-law structure λi = i−2,
λiβ

2
i = i−1.5; ζi is the covariance statistics (see Corollary 1) governing the optimal surrogate’s structure.

risk f⋆ = arg min f∈F E(x,y)∼Dt [ℓ(y, f (x))]? (ii) What is the optimal surrogate model s that minimizes such
excess risk? (iii) Can the optimal s strictly outperform using true labels yi or setting s = f⋆ in (1)? Furthermore,
in practice, s itself is the outcome of an empirical risk minimization (ERM) procedure. Specifically, letDs be
the surrogate distribution, (x̃i, ỹi)m

i=1 be sampled i.i.d. fromDs (having feature dimension p), and assume

s = arg min
f∈S

1
m

m∑
i=1

ℓ(ỹi, f (x̃i)), (2)

where S denotes the surrogate hypothesis class. Thus, as a final (and more challenging question), one may ask:
(iv) How do the sample sizes n,m and the data distributionsDt,Ds affect the performance of f̂ ?

Main contributions. We address these questions in the context of high-dimensional ridgeless regression,
where F ,S are the class of linear models and ℓ is the quadratic loss. We provide a sharp non-asymptotic
characterization of the test risk of f̂ in two core settings:

1. The surrogate s is provided and we solve f̂ via (1), which addresses the first three questions above;

2. f̂ is obtained via two stages of ERM, i.e., (2) followed by (1), which addresses the last question.

We focus on the regime where the sample sizes n,m and the feature dimension p are all proportional and also
allow for a distribution shift betweenDt andDs, which correspond to the two ERM stages. Our theoretical
guarantees in Section 3 precisely characterize the regression coefficients βs of the optimal surrogate model
in terms of the corresponding coefficients β⋆ of the population risk minimizer f⋆ and the feature covariance.
This is depicted in Figure 1a where β⋆ and βs are displayed by blue and green curves, respectively. This
unveils a remarkable phenomenology in the process of knowledge distillation, that can be described as follows.
Define the per-feature ‘gain’ of the optimal surrogate as gain = βs/β⋆ where the division is entrywise, which
corresponds to the ratio between green and blue curves. We show that the gain vector is entirely controlled by
the covariance statistics, denoted by (ζi)

p
i=1, that summarize the role of feature covariance and finite sample

size n in the test risk. There is a well-defined transition point, ζi = 1−Ω in Fig. 1a, where the gain passes from
strict amplification (gaini > 1) to strict shrinkage (gaini < 1) as we move from principal eigendirections to
tail. Our theory also clarifies when we are better off discarding the weak features. The yellow curve shows the
optimal surrogate when βs is restricted to be a 0-1 mask on the entries of β⋆ so that the surrogate has the direct
interpretation of feature pruning. We show that beyond the transition point ζ2

i = 1 −Ω, truncating the weak
features that lie on the tail of the spectrum is strictly beneficial to distillation. This masked surrogate model
can be viewed as a weak supervisor as it contains strictly fewer features compared to the target, revealing a
success mechanism for weak-to-strong supervision.
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Notably, as the sample size n decreases, the optimal surrogate provably becomes sparser (transition points
shift to the left) under a power-law decay covariance model. In Section 4, under this power-law model, we
also quantify the performance gain that arises from the optimal surrogate and show that while the surrogate
can strictly improve the test risk, it does not alter the exponent of the scaling law. This is depicted in Figure
1b where the surrogate risks are smaller but behave similarly to the ground-truth. Finally, in Section 5, we
study the more intricate problem of two-stage ERM ((2) followed by (1)) and establish a non-asymptotic
risk characterization that precisely captures the influences of the sample sizes m, n and of the surrogate/target
covariance matrices.

1.1 Related work

Our work relates to the topics of high-dimensional learning, distribution shift, scaling laws, and distillation.

High-dimensional risk characterization. There is a large body of literature dedicated to the study of linear
regression in over- and under-parameterized regimes. Via random matrix theory tools, one can precisely
study the test risk and various associated phenomena, such as benign overfitting (Bartlett et al., 2020) or
double descent (Belkin et al., 2019). Specifically, asymptotic and non-asymptotic risk characterizations for the
minimum ℓ2-norm interpolator (i.e., ridgeless regression with p ≥ n) have been provided in a recent line of
work (Hastie et al., 2020; Cheng & Montanari, 2024; Han & Xu, 2023; Wu & Xu, 2020; Richards et al., 2021;
Loureiro et al., 2022).

While the standard ERM formulation is well studied, the analysis of the distillation problem necessitates a fine-
grained characterization of the ERM process. A series of papers (Chang et al., 2021; Montanari et al., 2023;
Han & Xu, 2023) utilize Gaussian process theory (Thrampoulidis et al., 2015) to characterize the distribution
of ridgeless estimators. Our theory builds on these to precisely characterize the distillation performance by
(i) accounting for model and covariate shift and (ii) tracking the distribution across the two-stage problem
where (2) is followed by (1). Our setting strictly subsumes the problem of characterizing the test risk under
distribution shift, which relates to the recent papers (Patil et al., 2024; Song et al., 2024; Yang et al., 2023;
Mallinar et al., 2024). A distinguishing feature of our work is that we precisely characterize the optimal
surrogate model that minimizes the downstream target risk, as highlighted in Figure 1.

Distillation and weak-to-strong generalization. Mobahi et al. (2020) provide a theoretical analysis of self-
distillation, whereas Menon et al. (2020); Nagarajan et al. (2023); Harutyunyan et al. (2023) study knowledge
distillation in a teacher-student setting. A related problem is self-training which relies on progressively
generating pseudo-labels for unlabeled data (Frei et al., 2022; Oymak & Gulcu, 2021; Wei et al., 2022b).
While these works consider low-dimensional settings or provide loose bounds, our study provides a sharp
analysis of ridgeless over-parameterized regression. Closer to us, Jain et al. (2024) investigate the benefit of
surrogate data by employing both real and surrogate data in a single step of ERM, but the analysis is limited
to isotropic covariance. Kolossov et al. (2023) consider the problem of surrogate-based data selection. Finally,
Charikar et al. (2024); Lang et al. (2024) aim to demystify weak-to-strong generalization by formalizing the
intuition that W2S generalization occurs when the strong model avoids fitting the mistakes of the weak teacher.
In contrast, our theory reveals that the strong student can benignly overfit the weak teacher, and in fact, a
carefully crafted weak teacher provably outperforms strong labels, see again Figure 1.

Scaling laws. The dependence of the performance on the available statistical and computational resources is
often empirically well-captured by a power-law (Hestness et al., 2017; Kaplan et al., 2020). This experimental
evidence has led to a flurry of theoretical work aimed at characterizing the emergence of scaling laws, mostly
focusing on linear regression (Spigler et al., 2020; Simon et al., 2023; Bahri et al., 2024; Paquette et al., 2024;
Bordelon et al., 2024b; Lin et al., 2024a; Maloney et al., 2022). Bordelon et al. (2024a) analyze a random
feature model trained with gradient descent via dynamical mean field theory. Jain et al. (2024) consider scaling
laws with surrogate data, whereas Sorscher et al. (2022) study the benefits of data pruning.

2 Problem setup

Notation. Let [p] denote the set {1, · · · , p} for an integer p ≥ 1. We use lower-case and upper-case bold
letters (e.g., x, X) to represent vectors and matrices, respectively; xi denotes the i-th entry of the vector x, X†
the pseudo-inverse of the matrix X, and tr (X) the trace of X. For further notations, please see Table 1.
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We consider a two-stage linear learning problem. In the first stage, pairs of labels and input features from the
distributionDs are used to produce an estimate of the ground-truth parameter, which is then used to generate
labels along with input features from a different distributionDt. The second stage uses these generated labels
to obtain the final estimate of the ground-truth parameter. The models trained in the first and second stages are
referred to as surrogate and target models, respectively.

Stage 1: Surrogate model. We consider a data distribution (x̃, ỹ) ∼ Ds following the linear model ỹ = x̃⊤β⋆+z̃,
where β⋆ ∈ Rp, x̃ ∼ N(0,Σs) and z̃ ∼ N(0, σ2

s) is independent of x̃. Let {(x̃i, ỹi)m
i=1} be the dataset for the

surrogate model drawn i.i.d. fromDs. We analyze both under- and over-parametrized settings: in the former,
we estimate β⋆ by minimizing the quadratic loss; in the latter, we estimate β⋆ as the minimum norm interpolator.
As a result, the estimator of the surrogate model can be written as follows:

βs = Est(X̃, ỹ) :=
{

arg minβ ∥ỹ − X̃β∥22, if m ≥ p,
arg minβ{∥β∥2 : X̃β = ỹ}, if m < p,

(3)

where X̃ = [x̃⊤1 , . . . , x̃
⊤
m]⊤ ∈ Rm×p and ỹ = [y1, . . . , ym]⊤ ∈ Rm.

Stage 2: Target model. Given βs ∈ Rp, we consider another data distribution (x, ys) ∼ Dt(βs) following the
linear model ys = x⊤βs + z, where x ∼ N(0,Σt) and z ∼ N(0, σ2

t ). Let {(xi, ys
i )n

i=1} be the dataset for the target
model drawn i.i.d. fromDt(βs). As for the surrogate model, the estimator for the target model is defined as

βs2t = Est(X, ys), (4)

where X = [x⊤1 , . . . , x
⊤
n ]⊤ ∈ Rn×p and ys = [ys

1, . . . , y
s
n]⊤ ∈ Rn. Our analysis will generally apply to an arbitrary

βs choice and will not require it to be the outcome of (3). Finally, we define the excess (population) risk for a
given estimator β̂ ∈ Rp as

R(β̂) := E(x,y)∼Dt(β⋆)[(y − x⊤β̂)2] − σ2
t = ∥Σ

1/2
t (β̂ − β⋆)∥22. (5)

Throughout the paper, we compare the surrogate-to-target model with two different reference models.

Reference 1: Standard target model. We study the generalization performance of βs2t with respect to the
standard target model, which has access to the ground-truth parameter through labeling. Specifically, consider
the dataset {(xi, yi)n

i=1} drawn i.i.d. fromDt(β⋆); then, the estimation is
βt := Est(X, y), (6)

where X = [x⊤1 , . . . , x
⊤
n ]⊤ ∈ Rn×p and y = [y1, . . . , yn]⊤ ∈ Rn. We compare the excess risks of the surrogate-to-

target model R(βs2t) with that of the standard target model R(βt).

Reference 2: Covariance shift model (Mallinar et al., 2024; Patil et al., 2024). Given β⋆ ∈ Rp, let
{(xi, yi)n

i=1} be a dataset drawn i.i.d. from Dcs
s , where xi ∼ N(0,Σs), zi ∼ N(0, σ2

t ), and yi = x⊤t β⋆ + zi;
then, using the same notation X = [x⊤1 , . . . , x

⊤
n ]⊤ ∈ Rn×p and y = [y1, . . . , yn]⊤ ∈ Rn, the estimation is

β̂cs := Est(X, y). The test risk of β̂cs is calculated under covariance shift. Let (x, y) ∼ Dt be a distribution such
that x ∼ N(0,Σt), z ∼ N(0, σ2

t ), and y = x⊤β⋆ + z. Then, the excess transfer risk is

R(β̂cs) := E(x,y)∼Dt [(y − x⊤β̂)2] − σ2
t .

We discuss the equivalence between the surrogate-to-target model and the covariance shift model in Section 3.

3 Analysis for model shift
We start by examining the behavior of the surrogate-to-target model when there is a model shift βs , β⋆. First,
we provide a non-asymptotic bound on the risk conditioned on βs, and then we optimize this quantity with
respect to βs (finding also a closed-form expression of the corresponding optimal value of βs). In addition, we
build a connection between our surrogate-to-target model and knowledge distillation (Hinton et al., 2015), as
well as weak-to-strong generalization (Burns et al., 2023). Finally, we extend our analysis to ridge regression
in Appendix A.1.

We note that when βs = β⋆, the calculations in this section simplify to the non-asymptotic risk characterization
of the minimum ℓ2-norm interpolator, recently studied by Hastie et al. (2020); Cheng & Montanari (2024);
Han & Xu (2023). When βs , β⋆, the problem is instead equivalent to covariance shift in transfer learning, as
formalized by the following observation whose proof is deferred to Appendix A.
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Observation 1. The model shift in the surrogate-to-target model is equivalent to the covariance shift model
(Mallinar et al., 2024). Formally, given any β⋆ ∈ Rp and any jointly diagonalizable covariance matrices
Σs,Σt ∈ R

p×p, there exists a unique βs ∈ Rp such that the risk of the surrogate-to-target problem R(βs2t) with
(β⋆,βs,Σt) is equivalent to the risk of the covariance shift model Rcs(β̂) with (β⋆,Σs,Σt).

The joint diagonalizability of Σs and Σt is also required by Mallinar et al. (2024) (see their Assumption 2.1),
where upper and lower bounds for the bias and variance are provided by adapting results from (Bartlett et al.,
2020; Tsigler & Bartlett, 2022). In contrast, our approach utilizes the non-asymptotic characterization of
the ℓ2-norm interpolator by Han & Xu (2023). This allows us to directly characterize the non-asymptotic
risk (instead of giving upper and lower bounds, as in (Mallinar et al., 2024)) and, thus, to obtain the optimal
surrogate parameter βs. We begin by defining the asymptotic risk of the surrogate-to-target model, given the
surrogate parameter βs, in the proportional regime where p, n −→ ∞ and the ratio κt = p/n > 1 is kept fixed.
Definition 1. Let κt = p/n > 1 and τt ∈ R be the unique solution of the following equation

κ−1
t =

1
p
tr

(
(Σt + τt I)−1Σt

)
. (7)

Let θ1 := (Σt + τt I)−1Σt and θ2 := (Σt + τt I)−1Σ
1/2
t

gt√
p where gt ∼ N(0, Ip). Now, define the asymptotic

characterization of the minimum ℓ2-norm interpolator and the function γt : Rp −→ R as the following fixed
point equation based on the asymptotic risk

Xt
κt ,σ

2
t
(Σt,β

s, gt) := θ1β
s + γt(βs)θ2, (8)

γ2
t (βs) := κt

(
σ2

t + R̄
s2t
κt ,σt

(Σt,β
s,βs)

)
, (9)

where the asymptotic risk is defined as

R̄s2t
κt ,σt

(Σt,β⋆,β
s) := Egt

[
∥Σ

1/2
t (Xt

κt ,σ
2
t
(Σt,β

s, gt) − β⋆)∥22
]

= ∥Σ
1/2
t (θ1β

s − β⋆)∥22︸                  ︷︷                  ︸
(a)

+ γ2
t (βs)Egt [θ

⊤
2 Σtθ2]︸                  ︷︷                  ︸

(b)

= (βs − β⋆)⊤θ⊤1 Σtθ1(βs − β⋆) + γ2
t (βs)Egt [θ

⊤
2 Σtθ2]

+ β⋆
⊤(I − θ1)⊤Σt(I − θ1)β⋆ − 2β⋆⊤(I − θ1)⊤Σtθ1(βs − β⋆).

(10)

In the asymptotic risk, the term (a) corresponds to a part of the bias risk caused by the model shift (βs), and
the implicit regularization term where the eigenvalues of θ1 are less than 1. The term (b) corresponds to the
remaining part of the bias and variance risks. We now state our non-asymptotic characterization of the risk.

Theorem 1. Suppose that, for some constant Mt > 1, we have 1/Mt ≤ κt, σ
2
t ≤ Mt and ∥Σt∥op ,

∥∥∥Σ−1
t

∥∥∥
op ≤ Mt.

Recall from (5) that R(βs2t) represents the risk of the surrogate-to-target model given βs. Then, there exists a
constant C = C(Mt) such that, for any ε ∈ (0, 1/2], the following holds with R + 1 < Mt:

sup
β⋆,βs∈Bp(R)

P(
∣∣∣R(βs2t) − R̄s2t

κt ,σt
(Σt,β⋆,β

s)
∣∣∣ ≥ ε) ≤ Cpe−pε4/C . (11)

The proof of Theorem 1 utilizes the non-asymptotic characterization of the minimum norm interpolator in Han
& Xu (2023), which is based on the convex Gaussian min-max theorem (Gordon, 1988; Thrampoulidis et al.,
2015). The proof is deferred to Appendix A.

The surrogate parameter βs that minimizes the individual term (a) in (10) is θ−1
1 β⋆. On the other hand, the

surrogate parameter βs that minimizes the individual term (b) in (10) is the zero vector, which follows from
(16) in Appendix A. Now, we are going to jointly minimize the asymptotic risk in the next proposition. The
optimal surrogate parameter is visualized as the green curve in Figure 1.

Proposition 1. Let Ω = tr(Σ
2
t (Σt+τt I)−2)

n . The optimal surrogate βs minimizing the asymptotic risk in (10) is

βs∗ =

(
(Σt + τt I)−1Σt +

Ωτ2
t

1 −Ω
Σ−1

t (Σt + τt I)−1
)−1

β⋆.
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Note that, under the setting of Theorem 1, Proposition 1 can be extended to the non-asymptotic risk by
applying (11). The corollary below then offers a direct interpretation of the optimal surrogate parameter βs∗.
The proofs of both Corollary 1 and Proposition 1 are in Appendix A.
Corollary 1. Without loss of generality, suppose that Σt is diagonal.1 Let (λi)

p
i=1 be the eigenvalues of Σt in

non-increasing order and let ζi =
τt
λi+τt

for i ∈ [p]. Then, the following results hold:

1. βs∗
i = (β∗)i

(
(1 − ζi) + ζi Ω1−Ω

ζi
1−ζi

)−1
for every i ∈ [p].

2. |βs∗
i | > |(β∗)i| if and only if 1 − ζi > Ω =

∑p
j=1(1−ζ j)2∑p
j=1(1−ζ j)

for every i ∈ [p].

3. βs∗ = β⋆ if and only if the covariance matrix Σt = cI for some c ∈ R.

The first part shows that the optimal surrogate parameter is fully characterized by (ζi)
p
i=1, which only depends

on the covariance spectrum (via λi) and the sample size n (via τt). Note that the spectrum (ζi)
p
i=1 characterizes

the risk in both linear regression and random features regression, shown in Ildiz et al. (2024) and Simon et al.
(2023), respectively. As the eigenvalues (λi)

p
i=1 are ordered, the ζi’s are ordered as well, and the second part of

the corollary identifies a threshold behavior: before the transition point 1 − ζi = Ω, the entries of the surrogate
are amplified w.r.t. the ground-truth parameter β⋆, while they experience shrinkage after the transition. The
threshold corresponds to the ratio of the sample second moment to the sample first moment of the random
variable whose realization is given by (1 − ζi), and it arises from the optimization of the trade-off between the
bias and variance terms in (10). Finally, the third part of the corollary shows that, unless the eigenvalues of the
covariance matrix are constant, there is potential for improvement by tuning the surrogate parameter.

The intuition behind improving the performance of the standard target model by utilizing a surrogate parameter
βs different from β⋆ is associated with the implicit regularization of the minimum norm interpolator in the
over-parametrized region (p > n). As long as the covariance matrix eigenvalues are not constant, there is a
way to mitigate the bias risk caused by the implicit regularization. This implicit regularization term is specific
to the over-parametrized region. Indeed, in the next proposition (proved in Appendix A), we will show that the
optimal surrogate parameter βs is β⋆ when the target model is under-parametrized:
Proposition 2. The optimal surrogate parameter βs that minimizes the asymptotic risk in the under-
parametrized region (n > p) is equivalent to the ground truth parameter β⋆. In other words, for any
βs, the surrogate-to-target model cannot outperform the standard target model in the asymptotic risk.

In other words, the result above shows that the improvement in the surrogate-to-target model compared to the
standard target model is special to the over-parameterized region.

3.1 Weak-to-strong generalization

To connect with knowledge distillation (Hinton et al., 2015) and weak-to-strong generalization (Burns et al.,
2023), we allow the surrogate model to use fewer features, ps < p, by introducing a mask operationM(x),
whereM(x) ∈ Rps selects ps features from the full set of p features in x ∈ Rp. Alongside this mask, we adjust
the distributions for both the surrogate and target models as

(M(x̃), ỹ) ∼ Dps
s follows ỹ =M(x̃)⊤M(β⋆) + z̃, where β⋆ ∈ Rp, x̃ ∼ N(0,Σs), z̃ ∼ N(0, σ2

s),

(x, ys) ∼ Dps
t (βs) follows ys =M(x)⊤βs + z, where βs ∈ Rps , x ∼ N(0,Σt), z ∼ N(0, σ2

t ).

Then, βs2t is estimated based on the samples fromDps
t (βs), and the risk R(βs2t) is still calculated with respect

to the standard target model distributionDt(β⋆) as defined in (5). As we focus on analyzing the model shift
case, we assume that the covariance matrices Σs and Σt are identical.

In this formulation, the surrogate model is considered weak because it has access to fewer features, while
the target model is the strong model. We now address the following question: Can the surrogate-to-target
model outperform the standard target model, provided in (6), in the absence of model shift (M(β⋆) = βs)?

1If not, there exists an orthogonal matrix U ∈ Rp×p s.t. UΣtU⊤ is diagonal. Then, we can consider the covariance matrix
as UΣtU⊤ and the ground truth parameter as Uβ⋆, which behaves the same as the original parameters, see Observation 2.
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The absence of model shift corresponds to the case where the surrogate model has infinitely many data. The
next proposition provides a sufficient condition to answer the question above in the affirmative, and it derives
the optimal selection of features.
Proposition 3. Consider the target model in (6), assume that Σt is diagonal, and recall the definitions of ζi
and Ω. Then, the following results hold:

1. If the mask operationM selects all the features that satisfy 1 − ζ2
i > Ω, then the surrogate-to-target model

outperforms the standard target model in the asymptotic risk in (10).
2. Let M represent the set of all possibleM, where |M| = 2p. The optimalM∗ for the asymptotic risk in (10)

within M is the one that selects all features satisfying 1 − ζ2
i > Ω.

The proof of Proposition 3 is provided in Appendix A, and the result can be extended to the non-asymptotic
risk by applying Theorem 1. Similarly to Corollary 1, the result above identifies a threshold behavior: the
entries of the surrogate are masked (i.e., set to 0) after the transition point 1 − ζ2

i = Ω, while they coincide
with the ground-truth parameter β⋆ otherwise. The transition point changes with respect to Corollary 1 and,
as 1 − ζ2

i > 1 − ζi, it is shifted to the right: the optimal mask includes not only features whose magnitude
increases, but also features whose magnitude decreases while selecting the optimal surrogate βs∗.

In Figure 1a, we illustrate the optimalM and βs, showing that the threshold associated with the optimalM is
larger than the threshold associated with the transition from amplification to shrinkage in the optimal βs. In
addition, we note that the ratio between the green curve and the blue curve in Figure 1a is not monotone with
respect to λi. In Figure 1b, we also present a comparison of their associated risks.

In Figure 2a, we examine the surrogate-to-target model in the context of image classification. Specifically, we
fine-tune a pretrained ResNet-50 model (He et al., 2015) using both ground-truth labels and predictions from a
surrogate (weak) model on the CIFAR-10 dataset (Krizhevsky & Hinton, 2009). The surrogate models are
shallow, 3-layer convolutional neural networks with varying parameter sizes. In all cases, surrogate-to-target
models consistently outperform surrogate models across different model sizes. However, in this setting,
surrogate-to-target models do not outperform the standard target (strong) model. This is in agreement with
the weak-to-strong results in Burns et al. (2023), where the GPT-4 model trained with GPT-2 labels performs
comparably to GPT-3.5. The reason why the surrogate-to-target model underperforms the standard target
model is the surrogate model is not able to follow the feature selection mechanism characterized in Proposition
3. This suggests that the feature selection mechanism is crucial for surpassing the performance of the standard
target model. We provide further experimental details in Appendix A.2.

4 Fundamental limits and scaling laws

We now study the fundamental limits of the surrogate-to-target model with the optimal surrogate parameter
βs∗ (see Proposition 1) and the optimal mask operatorM∗ (see Proposition 3). Our analysis shows that, when
eigenvalues (λi) and signal coefficients (λiβ

2
i ) follow a power law, the risk of the surrogate-to-target model

under the optimal selection of the parameters βs∗ andM∗ scales the same as that of the target model (even
though there is a strict improvement in the risk, as per Corollary 1). By Observation 1, this also indicates that
the gain obtained by the covariance shift model, as outlined in Mallinar et al. (2024), does not change the
scaling law. We start our analysis with the definition of the omniscient test risk estimate.
Definition 2 (Omniscient test risk estimate). Fix p > n ≥ 1. Given a covariance Σ = U diag(λ)U⊤, β⋆, and
the noise term σ, set β̄ = U⊤β⋆ and define τ ∈ R as the unique non-negative solution of n =

∑p
i=1

λi
λi+τ
. Then,

the omniscient excess test risk estimate is the following:

Rom(β̂) ≈ Eβ̂∼D(β⋆)

[
(y − x⊤β̂)2

]
− σ2 =

σ2Ω + B(β̄)
1 −Ω

, (12)

where ζi =
τ

λi + τ
, Ω =

1
n

p∑
i=1

(1 − ζi)2, B(β̄) =
p∑

i=1

λiζ
2
i β̄i

2
.

The above test risk estimate yields exact results (and, hence, ≈ in (12) becomes =) in the proportional limit via
the analysis of Section 3. In other words, the omniscient test risk estimate is identical to R̄s2t

κ,σ(Σ,β⋆,β⋆), which
can be derived by substituting βs = β⋆ into Equation 10. Specifically, suppose that the empirical distributions
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Figure 2: (a): On the CIFAR-10 dataset, we fine-tune a ResNet50 model using the ground-truth labels
(target) and the predictions of three weak convolutional models (surrogate) with different capacities: big (b),
medium (m), and small (s). We observe that surrogate-to-target models consistently outperform surrogate
models’ accuracies, even though they are trained on the surrogate models’ predictions. (b): We compare the
experimental two-stage risk with our estimated theoretical risk. In the experimental setup, p = 100, and we
vary n = m from 1 to 100. Both feature covariances follow the power-law structure λi = i−α for α = 0.5, 1, 1.5
and 2; the ground truth parameter β⋆ is specified as βi = 1.

of β̄ and λ converge as p→ ∞ having fixed the ratio p/n = κ. Then, the risk obtained in Theorem 1 converges
to the omniscient risk estimate given in (12), as proved in Appendix B. We will use this omniscient risk
estimate in the limit of p→ ∞, as considered in several papers (Cui et al., 2022; Simon et al., 2024; Wei et al.,
2022a). Yet, our empirical validations in Figure 1 demonstrate that this framework yields consistent results
even when applied to scenarios with moderately sized p and n.

Throughout the section, we analyze the case where the surrogate parameter βs is given, therefore we need
to take into account only the target covariance matrix Σt. Without loss of generality, we assume that the
covariance matrix Σt is diagonal by Observation 2. From now on, we will consider the particular case of
power-law eigenstructure, that is Σi,i = λi = i−α. The omniscient risk under this structure still depends on the
parameters τt and Ω, and the next proposition analyzes them asymptotically. Its proof is in Appendix B.
Proposition 4 (Asymptotic analysis of τt and Ω). Let the covariance matrix Σ ∈ Rp×p be diagonal and
Σi,i = λi = i−α for 1 < α. Recall from Definition 2 that, as p→ ∞, τt and Ω are given by the equations

∞∑
i=1

λi

λi + τt
= n, nΩ =

∞∑
i=1

(
i−α

i−α + τt

)2

.

Then, the following results hold

τt = cn−α
(
1 + O(n−1)

)
, for c =

(
π

α sin (π/α)

)α
,

Ω =
α − 1
α
− O(n−1).

(13)

Recall from Corollary 1 and Proposition 3 that the cut-off indices for the optimal surrogate parameter βs∗ and
the optimal mask operationM∗ are respectively ζi < 1 −Ω and ζ2

i < 1 −Ω, which depend on τt,Ω. Armed
with the asymptotic expressions in (13), we now identify the cut-off indices as a function of the sample size n.

Proposition 5. Set the constants C1 :=
α sin (π/α)
π(α − 1)1/α and C2 :=

α sin (π/α)
π(
√
α − 1)1/α

and assume the power-law

eigenstructure Σi,i = λi = i−α for 1 < α. Let τt and Ω be the solutions given by Proposition 4 and define
ζi =

τt
λi+τt

. Then, the indices i for which ζi < 1 − Ω are i < nC1 + O(1); while the indices i for which is
ζ2

i < 1 −Ω are i < nC2 + O(1).
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The result above is proved in Appendix B, and it shows that, as the sample size n decreases, the cut-off indices
of both the optimal surrogate parameter βs∗ and the optimal maskM∗ shift to the left linearly in n. This also
implies that, with less data, optimal surrogate models tend to be more sparse.

Next, we address the question of how the excess test risk scales with respect to the sample size n, when
the surrogate parameter is the optimal βs∗. Specifically, Proposition 6 below shows that, under a power-
law decay of both the eigenvalues (λi) and the signal coefficients (λiβ

2
i ), the excess test risk of the optimal

surrogate-to-target model scales the same as the standard target model.

Before stating the result, we make a comment on the noise assumption needed to ensure that the scaling law of
the excess test risk remains unaffected by the introduction of noise, which allows us to analyze the model’s
inherent error. Specifically, we choose the variance of the noise term σ2

t to be at most of the order of the
scaling law of the excess test risks when σ2

t = 0. This corresponds to σ2
t = O(n−γ), where γ is the exponent of

the scaling law in the noiseless setting. Conversely, a fixed noise variance σ2
t = Θ(1) that does not decay with

n would cause the noise to overshadow the uncaptured part of the signal, which scales down with n. In this
unintended scenario, the noise would dominate our observations.

Proposition 6 (Scaling law). Let the covariance matrix Σt be diagonal with eigenvalues λi, and let the
ground-truth parameter β⋆ have components βi corresponding to each feature. Assume that both eigenvalues
λi and signal coefficients λiβ

2
i follow a power-law decay, i.e., λiβ

2
i = i−β and λi = i−α for α, β > 1. Let the

optimal surrogate parameter βs∗ be given by Proposition 1 and define the minimum surrogate-to-target risk
attained by βs∗ as R∗om(βs2t) = min Rom(βs2t), where Rom(βs2t) is described in Definition 2. Then, in the limit
of p→ ∞, the excess test risk of the surrogate-to-target model with an optimal surrogate parameter scales the
same as that of the standard target model. Specifically, we have

R∗om(βs2t) = Θ(n−(β−1)) = Rom(βt), if β < 2α + 1,

R∗om(βs2t) = Θ(n−2α) = Rom(βt), if β > 2α + 1.

Since R∗om(βs2t) is a lower bound on Rom(βs2t), we have that the scaling law of the excess test risk of the
surrogate-to-target model cannot be improved beyond that of the standard target model, even with the freedom
to choose βs. This also indicates that the optimal selection of the mask does not improve the scaling law, see
Proposition 7 in Appendix B for details.

The proof of Proposition 6 is deferred to Appendix B. Here, we note that we utilize the expression
Ω

1−Ω

(∑p
i=1 λi(βs

i )2ζ2
i

)
as a lower bound for the risk, while proving the scaling law for the optimal surrogate-to-

target model. Although this expression alone is insufficient to determine an asymptotic lower bound for an
arbitrary βs, it becomes particularly useful when considering the optimal surrogate parameter βs∗ provided in
Proposition 1. We then leverage the fact that the optimal surrogate parameter yields the minimum test risk to
characterize its asymptotic behavior.

Finally, we provide in Appendix B also a non-asymptotic analysis of τt and Ω (see Propositions 8 and 9,
respectively), which complements the asymptotic one in Proposition 4 above. This allows us to characterize a
region with finite n and p where the surrogate-to-target model strictly outperforms the standard target model,
see Proposition 10.

5 Risk characterization for the two-stage model

Until now, we have examined the behavior of the surrogate-to-target model when βs is given. In this section, we
characterize the non-asymptotic risk of the surrogate-to-target model when βs is the solution of the surrogate
problem (3) where κs = p/m > 1. Our analysis includes two cases: (i) the target model has infinitely many
data (n = ∞), and (ii) the target model is overparametrized, i.e., κt = p/n > 1.

When the target model has infinitely many data, the estimate of the surrogate-to-target model βs2t is equal to
the estimate of the surrogate model βs. This means that the correct ground-truth parameter β⋆ is estimated
under a distributionDs and tested under another distributionDt(β⋆), which is equivalent to the covariance
shift model by definition. By Observation 1, the model shift in the surrogate-to-target model is equivalent to
the covariance shift model and, hence, the analysis in Sections 3 and 4 is valid for this case.
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Finally, we consider the case where the target model is overparametrized and begin with the following
asymptotic risk definition.
Definition 3. Recall the definition of τt and γt in Theorem 1. Let κs = p/m > 1 and define τs ∈ R similarly to
τt. We define the random variable Xs

κs,σ
2
s

based on gs ∼ N(0, I) and the function γs : Rp −→ R as follows:

Xs
κs,σ

2
s
(Σs,β⋆, gs) := (Σs + τsI)−1Σs

β⋆ + Σ−1/2
s γs(β⋆)gs
√

p


γ2

s (β⋆) := κs

(
σ2

s + Egs [∥Σ
1/2
s (Xs

κs,σ
2
s
(Σs,β⋆, gs) − β⋆)∥22]

)
.

Let κ̇ = (κs, κt), Σ̇ = (Σs,Σt), and σ̇ = (σ2
s , σ

2
t ). Then, we define the asymptotic risk estimate as

R̄κ̇,σ̇(Σ̇,β⋆) = ∥Σ1/2
t

(
I − (Σt + τt I)−1Σt(Σs + τsI)−1Σs

)
β⋆∥

2
2 +

Eβs∼Xs
κs ,σ2

s
[γ2

t (βs)]

p
tr

(
Σ2

t (Σt + τt I)−2
)

+
γ2

s (β⋆)
p
tr

(
Σ1/2

s (Σs + τsI)−1Σt(Σt + τt I)−1Σt(Σt + τt I)−1Σt(Σs + τsI)−1Σ1/2
s

)
.

The non-asymptotic characterization of the risk is stated below and proved in Appendix C, which also contains
a closed-form expression for Eβs∼Xs

κs ,σ2
s
[γ2

t (βs)] (see Lemma 1).

Theorem 2. Suppose that, for some constant Mt > 1, we have 1/Mt ≤ κs, σ
2
s , κt, σ

2
t ≤ Mt and

∥Σs∥op ,
∥∥∥Σ−1

s

∥∥∥
op , ∥Σt∥op ,

∥∥∥Σ−1
s

∥∥∥
op ≤ Mt. Consider the surrogate-to-target model defined in Section 2, and

let R(βs2t) represent its risk when β⋆ is given. Recall the definition of Σ̇, κ̇, σ̇ and R̄κ̇,σ̇ in Definition 3. Then,
there exists a constant C = C(Mt) such that for any ε ∈ (0, 1/2], the following holds when R + 1 < Mt:

sup
β⋆∈Bp(R)

P(
∣∣∣R(βs2t) − R̄κ̇,σ̇(Σ̇,β⋆)

∣∣∣ ≥ ε) ≤ Cpe−pε4/C .

In the proof of Theorem 2, we apply the distributional characterization of the minimum norm interpolator
(Han & Xu, 2023) twice. The main technical difficulty is to satisfy the Lipschitz condition of the distributional
characterization in the second step, which is handled by bounding the intermediate step’s interpolator in a ball.

We implement the surrogate-to-target model with a synthetic dataset and demonstrate that our risk characteri-
zation agrees well with the experimental two-stage linear regression in Figure 2b. Furthermore, we extend our
analysis of the two-stage model to the under-parametrized region in Appendix C.1. This extension enables us
to analyze Section 3.1 thoroughly because this analysis allows the surrogate model to have finite data.

6 Concluding remarks

We have provided a sharp characterization of knowledge distillation for high-dimensional linear regression
when labels are generated by a surrogate model and, additionally, characterized the risk of the two-stage
process where the surrogate model is the outcome of an initial ERM. These results shed light on the form of
the optimal surrogate model, reveal an amplify-to-shrink phase transition as a function of the eigenspectrum,
and draw connections to weak-to-strong generalization. Specifically, we have shown that the labels coming
from the optimal surrogate model strictly allow for improving the performance of the target model, unless
the covariance is a multiple of the identity. However, even though there is a strict improvement in the risk,
the scaling behavior of the two-stage process with labels coming from the optimal surrogate model remains
unchanged compared to the standard target model that utilizes ground-truth labels.

We outline three interesting directions for future research. The first is to extend the two-stage process to
multiple stages, establishing whether this further improves the risk. The second is to apply the two-stage
learning to data pruning, using the surrogate model to decide whether to keep or discard each (x, y) pair during
the training of the target model. The third is to go beyond linear regression towards neural network models. In
this regard, the precise asymptotics of the test error of the ERM solution were provided by (Mei & Montanari,
2022) for the random features model and by (Montanari & Zhong, 2022) for two-layer neural networks in
the NTK regime. However, a non-asymptotic characterization (similar to that given by (Han & Xu, 2023) for
linear regression) remains an open problem. The resolution of this open problem, as well as the analysis of the
phenomena of knowledge distillation and weak-to-strong generalization, represent exciting future directions.
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A Proofs for Section 3

Below, we summarize the notations used throughout this paper:

Category Symbol Description

Risk

R(·) Excess population test risk.
R̄(·) Asymptotic excess test risk.
Rom(·) Asymptotic omniscient excess test risk, which is equivalent to the two-stage

risk when βs = β⋆.

Parameters

βs Estimator of the surrogate model after the stage 1.
βs2t Estimator of the target model after the stage 2.
βt Estimator of the standard target model.
β⋆ Ground truth parameter.

Covariances
Σs Covariance matrix of the data distribution used in surrogate model.
Σt Covariance matrix of the data distribution used in target and standard target

models.

Variables

λi i’th eigenvalue of the covariance matrix Σt in decreasing order.
τt The unique solution to the fixed point equation: κ−1

t =
1
ptr

(
(Σt + τt I)−1Σt

)
.

τs The unique solution to the fixed point equation: κ−1
s =

1
ptr

(
(Σs + τsI)−1Σs

)
.

ζi Covariance statistics given by ζi = τt
λi+τt

.

Ω Ω =
tr(Σ2

t (Σt+τt I)−2)
n =

∑p
j=1(1−ζ j)2∑p
j=1(1−ζ j)

.

Xs
κs,σ

2
s
(Σs,β⋆, gs) Asymptotic characterization of the minimum ℓ2 interpolator obtained after

training surrogate model.
Xt
κt ,σ

2
t
(Σt,β

s, gt) Asymptotic characterization of the minimum ℓ2 interpolator obtained after
training target model.

γ2
s (β⋆) γ2

s (β⋆) = κs

(
σ2

s + Egs [∥Σ
1/2
s (Xs

κs,σ
2
s
(Σs,β⋆, gs) − β⋆)∥22]

)
.

γ2
t (βs) γ2

t (βs) = κt
(
σ2

t + R̄
s2t
κt ,σt

(Σt,β
s,βs)

)
.

Table 1: Summary of notations used in the paper.

Observation 1. The model shift in the surrogate-to-target model is equivalent to the covariance shift model
(Mallinar et al., 2024). Formally, given any β⋆ ∈ Rp and any jointly diagonalizable covariance matrices
Σs,Σt ∈ R

p×p, there exists a unique βs ∈ Rp such that the risk of the surrogate-to-target problem R(βs2t) with
(β⋆,βs,Σt) is equivalent to the risk of the covariance shift model Rcs(β̂) with (β⋆,Σs,Σt).

Proof. By Observation 2, we assume that Σt and Σs are diagonal matrices. As Σt and Σs are jointly diagonaliz-
able, there exists a unique diagonal matrix A ∈ Rp×p such that

Σs = A⊤Σt A.
Then, consider the model shift discussed in Section 3. Take the case where βs = Aβ⋆ and labels are
generated as y = x⊤βs + z, where x ∼ N(0,Σt) and z ∼ N(0, σ2

t ). This is equivalent to the case where
y = (x⊤A)β⋆ + z = x̄⊤β⋆ + z such that x ∼ N(0,Σs) and z ∼ N(0, σ2

t ). Note that (i) the transformed inputs and
the labels are identical in both scenarios, and (ii) the estimators are computed in the same way. Thus, it follows
that the risks R(βs2t) and Rcs(β̂) are equivalent. The other way follows from an almost identical argument. □

Observation 2. For any covariance matrix Σ ∈ Rp×p, there exists an orthonormal matrix U ∈ Rp×p such that
the transformation of x → U⊤x and β → U⊤β does not affect the labels y but ensures that the covariance
matrix is diagonal.

Proof. Since the covariance matrix Σ is PSD, its unit-norm eigenvectors are orthogonal. Consider the matrix
U whose columns are the eigenvectors of Σ. Then, Σ can be expressed as Σ = UΛU⊤, where Λ is the diagonal
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matrix containing the eigenvalues of Σ. Consider now the transformation

z = U⊤x =⇒ E
[
zz⊤

]
= E

[
U⊤xx⊤U

]
= U⊤E

[
xx⊤

]
U = U⊤UΛU⊤U = Λ.

In this way, the covariance matrix is diagonalized. Thus, the transformation (x,β⋆)→ (U⊤x,U⊤β⋆) works as
intended since the labels are preserved. □

Definition 1. Let κt = p/n > 1 and τt ∈ R be the unique solution of the following equation

κ−1
t =

1
p
tr

(
(Σt + τt I)−1Σt

)
. (7)

Let θ1 := (Σt + τt I)−1Σt and θ2 := (Σt + τt I)−1Σ
1/2
t

gt√
p where gt ∼ N(0, Ip). Now, define the asymptotic

characterization of the minimum ℓ2-norm interpolator and the function γt : Rp −→ R as the following fixed
point equation based on the asymptotic risk

Xt
κt ,σ

2
t
(Σt,β

s, gt) := θ1β
s + γt(βs)θ2, (8)

γ2
t (βs) := κt

(
σ2

t + R̄
s2t
κt ,σt

(Σt,β
s,βs)

)
, (9)

where the asymptotic risk is defined as

R̄s2t
κt ,σt

(Σt,β⋆,β
s) := Egt

[
∥Σ

1/2
t (Xt

κt ,σ
2
t
(Σt,β

s, gt) − β⋆)∥22
]

= ∥Σ
1/2
t (θ1β

s − β⋆)∥22︸                  ︷︷                  ︸
(a)

+ γ2
t (βs)Egt [θ

⊤
2 Σtθ2]︸                  ︷︷                  ︸

(b)

= (βs − β⋆)⊤θ⊤1 Σtθ1(βs − β⋆) + γ2
t (βs)Egt [θ

⊤
2 Σtθ2]

+ β⋆
⊤(I − θ1)⊤Σt(I − θ1)β⋆ − 2β⋆⊤(I − θ1)⊤Σtθ1(βs − β⋆).

(10)

Theorem 1. Suppose that, for some constant Mt > 1, we have 1/Mt ≤ κt, σ
2
t ≤ Mt and ∥Σt∥op ,

∥∥∥Σ−1
t

∥∥∥
op ≤ Mt.

Recall from (5) that R(βs2t) represents the risk of the surrogate-to-target model given βs. Then, there exists a
constant C = C(Mt) such that, for any ε ∈ (0, 1/2], the following holds with R + 1 < Mt:

sup
β⋆,βs∈Bp(R)

P(
∣∣∣R(βs2t) − R̄s2t

κt ,σt
(Σt,β⋆,β

s)
∣∣∣ ≥ ε) ≤ Cpe−pε4/C . (11)

Proof. Even though the claim readily follows from Theorem 2, we give a proof for the sake of completeness.

Define a function f1 : Rp −→ R as f1(x) = ∥Σ1/2
t (x − β⋆)∥22. The gradient of this function is

∥∇ f1(x)∥2 = ∥2Σt(x − β⋆)∥2 ≤ 2 ∥Σt∥op ∥x − β⋆∥2.

Using Corollary 2, there exists an event E with P(Ec) ≤ Cte−p/Ct where Ct = Ct(Mt,
Mt−R

2 ) (with the definition
of Mt in Corollary 2), such that f1(βs2t) is 2M2

t -Lipschitz if β⋆,βs ∈ Bp(R). Applying Theorem 4 on the target
model, there exists a constant C̄s = C̄s(Mt) such that for any ε ∈ (0, 1/2], we obtain

sup
βs∈B( Mt+R

2 )
P
(∣∣∣∣ f (βs2t) − Egt [ f (Xt

κt ,σ
2
t
(Σt,β

s, gt))]
∣∣∣∣ ≥ ε) ≤ Cpe−pε4/C , (14)

where f (βs2t) = R(βs2t) and

Xt
κt ,σ

2
t
(Σt,β

s, gt) = (Σt + τt I)−1Σt

βs +
Σ
−1/2
t γt(βs)gt
√

p

 .
Furthermore,

Egt

[
f (Xs
κt ,σ

2
t
(Σt,β

s, gt))
]
= Egt

[
∥Σ

1/2
t (θ1(βs − β⋆) − (I − θ1)β⋆ + θ2γt(βs))∥22

]
= (βs − β⋆)⊤θ⊤1 Σtθ1(βs − β⋆) + γ2

t (βs)Egt [θ
⊤
2 Σtθ2]

+ β⋆
⊤(I − θ1)⊤Σt(I − θ1)β⋆ − 2β⋆⊤(I − θ1)⊤Σtθ1(βs − β⋆), (15)

where θ1 := (Σt + τt I)−1Σt and θ2 := (Σt + τt I)−1Σ
1/2
t

gt√
p . This completes the proof. □
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Proposition 1. Let Ω = tr(Σ
2
t (Σt+τt I)−2)

n . The optimal surrogate βs minimizing the asymptotic risk in (10) is

βs∗ =

(
(Σt + τt I)−1Σt +

Ωτ2
t

1 −Ω
Σ−1

t (Σt + τt I)−1
)−1

β⋆.

Proof. We have that

Egt

[
f (Xt
κt ,σ

2
t
(Σt,β

s, gt))
]
= Egt

[
∥Σ

1/2
t (θ1(βs − β⋆) − (I − θ1)β⋆ + θ2γt(βs))∥22

]
= (βs − β⋆)⊤θ⊤1 Σtθ1(βs − β⋆) + γ2

t (βs)Egt [θ
⊤
2 Σtθ2]

+ β⋆
⊤(I − θ1)⊤Σt(I − θ1)β⋆ − 2β⋆⊤(I − θ1)⊤Σtθ1(βs − β⋆),

where θ1 := (Σt + τt I)−1Σt, θ2 := (Σt + τt I)−1Σ
1/2
t

gt√
p . Recall from (9) that

γ2
t (βs) = κt

(
σ2

t + R̄
s2t
κt ,σt

(Σt,β
s,βs)

)
= κt

(
σ2

t + γ
2
t (βs)Egt [θ

⊤
2 Σtθ2] + (βs)⊤(I − θ1)⊤Σt(I − θ1)βs

)
.

This implies that

γ2
t (βs) = κt

σ2
t + (βs)⊤(I − θ1)⊤Σt(I − θ1)βs

1 − κt Egt [θ
⊤
2 Σtθ2]

(16)

(a)
=
σ2

t + τ
2
t ∥Σ

1/2
t (Σt + τt I)−1βs∥22

1 − 1
ntr

(
(Σt + τt I)−2Σ2

t

) ,
where (a) follows from the fact that I − θ1 = I − (Σt + τt I)−1Σt = τt(Σt + τt I)−1 and κt Egt [θ

⊤
2 Σtθ2] =

1
ntr

(
(Σt + τt I)−2Σ2

t

)
.

In order to optimize this with respect to βs, let’s take the derivative:

∂

∂βs Egt

[
f (Xt
κt ,σ

2
t
(Σt,β

s, gt))
]

= 2θ⊤1 Σtθ1(βs − β⋆) − 2θ⊤1 Σt(I − θ1)β⋆ + 2
κtτ

2
t

1 −Ω
Σt(Σt + τt I)−2βs

tr
(
Σ2

t (Σt + τt I)−2
)

p

= 2θ⊤1 Σtθ1β
s − 2Σtθ1β⋆ + 2

κtτ
2
t

1 −Ω
Σt(Σt + τt I)−2βs

tr
(
Σ2

t (Σt + τt I)−2
)

p

= 2θ⊤1 Σtθ1β
s − 2Σtθ1β⋆ + 2

κtτ
2
t

1 −Ω
Σt(Σt + τt I)−2βs nΩ

p

=⇒ θ⊤1 Σtθ1β
s∗ − Σtθ1β⋆ +

Ωτ2
t

1 −Ω
Σt(Σt + τt I)−2βs∗ = 0

=⇒ (θ⊤1 Σtθ1 +
Ωτ2

t

1 −Ω
θ1(Σt + τt I)−1)βs∗ = Σtθ1β⋆

Hence, the claimed result follows. □

Corollary 1. Without loss of generality, suppose that Σt is diagonal.2 Let (λi)
p
i=1 be the eigenvalues of Σt in

non-increasing order and let ζi =
τt
λi+τt

for i ∈ [p]. Then, the following results hold:

1. βs∗
i = (β∗)i

(
(1 − ζi) + ζi Ω1−Ω

ζi
1−ζi

)−1
for every i ∈ [p].

2If not, there exists an orthogonal matrix U ∈ Rp×p s.t. UΣtU⊤ is diagonal. Then, we can consider the covariance matrix
as UΣtU⊤ and the ground truth parameter as Uβ⋆, which behaves the same as the original parameters, see Observation 2.
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2. |βs∗
i | > |(β∗)i| if and only if 1 − ζi > Ω =

∑p
j=1(1−ζ j)2∑p
j=1(1−ζ j)

for every i ∈ [p].

3. βs∗ = β⋆ if and only if the covariance matrix Σt = cI for some c ∈ R.

Proof. When the definition of ζi and Ω is plugged in Proposition 1, the first claim is obtained. Using the
diagonalization assumption on Σt, let’s analyze only the i-th component of the optimal surrogate given in
Proposition 1:

βs∗
i =

1
λi
λi+τt
+ Ω

1−Ω
τ2

t
λi(λi+τt)

(β∗)i

⇐⇒ βs∗
i =

λi
λi+τt(

λi
λi+τt

)2
+ Ω

1−Ω

(
τt
λi+τt

)2 (β∗)i

⇐⇒ βs∗
i = (β∗)i

(1 − ζi)
(1 − ζi)2 + Ω

1−Ωζ
2
i

⇐⇒ βs∗
i = (β∗)i

1

(1 − ζi) + Ω
1−Ω

ζi
1−ζi
ζi
.

It’s now clear that ζi > 1 −Ω if and only if |βs∗
i | < |(β∗)i|.

Let’s now check when the ratio between them is 1. Algebraic manipulations give:

(1 − ζi)
(1 − ζi)2 + Ω

1−Ωζ
2
i

= 1

⇐⇒ (1 − ζi) − (1 − ζi)2 =
Ω

1 −Ω
ζ2

i

⇐⇒ ζi = 1 −Ω ⇐⇒ 1 − ζi = Ω where Ω =
∑p

i=1(1 − ζi)2∑p
i=1(1 − ζi)

.

This gives that βs∗ = β⋆ if all ζi’s are equal, which implies that all λi’s are equal. Concluding, the covariance
matrix is a multiple of the identity if and only if βs∗ = β⋆. □

Proposition 3. Consider the target model in (6), assume that Σt is diagonal, and recall the definitions of ζi
and Ω. Then, the following results hold:

1. If the mask operationM selects all the features that satisfy 1 − ζ2
i > Ω, then the surrogate-to-target model

outperforms the standard target model in the asymptotic risk in (10).
2. Let M represent the set of all possibleM, where |M| = 2p. The optimalM∗ for the asymptotic risk in (10)

within M is the one that selects all features satisfying 1 − ζ2
i > Ω.

Proof. The proof for Proposition 3 was correct, yet we made changes to it to improve clarity by explicitly
stating all intermediate steps. For the purposes of analysis, we assume, without loss of generality, that the
first ps dimensions are selected from β⋆ inM(β⋆) = βs ∈ Rps . Based on this, we no longer need to have the
decreasing order for the corresponding λi’s. Let R̄(βt) and R̄(β⋆) represent the asymptotic risk of the target
and the surrogate-to-target models, respectively. From the excess test risk formula in Definition 1, we have that

R̄(βt) = E
[(

y − x⊤βt
)2
]
− σ2

t =
B(β⋆) + σ2

tΩ

1 −Ω
, (17)

where B(β⋆) =
∑p

i=1 λiζ
2
i β

2
i . Now, consider the zero-padded vector β̄s =

[
βs

0p−ps

]
∈ Rp. This way, we consider

the labels in the second training phase as ys = x⊤β̄s + z, where z ∼ N(0, σ2
t ). Next, using the asymptotic risk
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estimate in Equation (10), we write the excess test risk formula for the surrogate-to-target model with respect
to the original ground truth labels:

R̄s2t
κt ,σt

(Σt,β⋆, β̄s) := (β̄s − β⋆)⊤θ⊤1 Σtθ1(β̄s − β⋆) + γ2
t (β̄s)Egt [θ

⊤
2 Σtθ2]

+ β⋆
⊤(I − θ1)⊤Σt(I − θ1)β⋆ − 2β⋆⊤(I − θ1)⊤Σtθ1(β̄s − β⋆),

where θ1 := (Σt + τt I)−1Σt, θ2 := (Σt + τt I)−1Σ
1/2
t

gt√
p , and gt ∼ N(0, Ip). Algebraic manipulations give:

R̄(βs2t)= E
[(

y − x⊤βs2t
)2
]
− σ2

t

≈ R̄s2t
κt ,σt

(Σt,β⋆, β̄s)

= (β̄s − β⋆)⊤θ⊤1 Σtθ1(β̄s − β⋆) + κt
σ2

t + τ
2
t (β̄s)⊤Σt(Σt + τt I)−2β̄s

1 −Ω

tr
(
Σ2

t (Σt + τt I)−2
)

p
+β⋆

⊤(I − θ1)⊤Σt(I − θ1)β⋆ − 2β⋆⊤(I − θ1)⊤Σtθ1(β̄s − β⋆)

=

p∑
i=ps+1

λiβ
2
i

(
λi

λi + τt

)2

+ Ω
σ2

t +
∑ps

i=1 λiβ
2
i

(
τt
λi+τt

)2

1 −Ω

+

p∑
i=1

λiβ
2
i

(
τt

λi + τt

)2

+

p∑
i=ps+1

λiβ
2
i

2τtλi

(λi + τt)2

=
σ2

tΩ +
∑ps

i=1 λiβ
2
i ζ

2
i

1 −Ω
+

p∑
i=ps+1

λiβ
2
i

=
B(β̄s) + σ2

tΩ

1 −Ω
+

p∑
i=ps+1

λiβ
2
i , (18)

Thus, the risk difference between the target and surrogate-to-target models is

R̄(βt) − R̄(βs2t) =
B(β⋆) − B(β̄s)

1 −Ω
−

p∑
i=ps+1

λiβ
2
i

=

∑p
i=ps+1 λiζ

2
i β

2
i

1 −Ω
−

p∑
i=ps+1

λiβ
2
i .

We observe that each dimension’s contribution to the excess test risk can be analyzed individually. Therefore,
if

ζ2
i > 1 −Ω, (19)

excluding feature i in the feature selection reduces the overall risk R̄(βs2t). Along the same lines, the projection
M that selects all the features i that satisfy ζ2

i < 1 −Ω minimizes the asymptotic excess test risk. □

Proposition 2. The optimal surrogate parameter βs that minimizes the asymptotic risk in the under-
parametrized region (n > p) is equivalent to the ground truth parameter β⋆. In other words, for any
βs, the surrogate-to-target model cannot outperform the standard target model in the asymptotic risk.

Proof. According to Theorem 3 of Chang et al. (2021), when the second stage is in the under-parameterized
regime, the estimator βs2t can be expressed asymptotically as:

βs2t = βs + σt
Σ
−1/2
t gt√

p
(
κ−1

t − 1
) ,
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where gt ∼ N(0, Ip). Then, the excess test risk estimate of this estimate is:

E(x,y)∼Dt(β⋆),gt [(y − x⊤βs2t)2] − σ2
t = Egt

[
∥Σ

1/2
t (βs2t − β⋆)∥22

]
= Egt


βs + σt

Σ
−1/2
t gt√

p
(
κ−1

t − 1
) − β⋆


⊤

Σt

βs + σt
Σ
−1/2
t gt√

p
(
κ−1

t − 1
) − β⋆




= (βs − β⋆)⊤ Σt (βs − β⋆) +
σ2

t

κ−1
t − 1

As Σt is positive semi-definite, the expression (βs − β⋆)⊤ Σt (βs − β⋆) is non-negative and takes its minimum
value of 0 at βs = β⋆. Note that at βs = β⋆ the expression corresponds to the risk of the standard target model.
Hence, we conclude that it is not possible to surpass the performance of the standard target model with the
surrogate-to-target model when the target model is under-parameterized (n > p). □

A.1 Analysis forModel Shift under Ridge Regression

In this subsection, we analyze the behavior of the surrogate-to-target model under ridge regression. First, we
redefine the surrogate and target models below.

Stage 1: Surrogate model. We consider a data distribution (x̃, ỹ) ∼ Ds following the linear model ỹ = x̃⊤β⋆+z̃,
where β⋆ ∈ Rp, x̃ ∼ N(0,Σs) and z̃ ∼ N(0, σ2

s) is independent of x̃. Let {(x̃i, ỹi)m
i=1} be the dataset for the

surrogate model drawn i.i.d. fromDs. The estimator of the surrogate model can be written as follows:

βs
r := arg min

β∈Rp

{
1

2p
∥ỹ − X̃β∥22 +

λs

2
∥β∥22

}
=

1
p

(
1
p

X̃⊤X̃ + λsI
)−1

X̃⊤ ỹ, (20)

where X̃ = [x̃⊤1 , . . . , x̃
⊤
m]⊤ ∈ Rm×p and ỹ = [y1, . . . , ym]⊤ ∈ Rm.

Stage 2: Target model. Given βs
r ∈ R

p, we consider another data distribution (x, ys) ∼ Dt(βs) following the
linear model ys = x⊤βs + z, where x ∼ N(0,Σt) and z ∼ N(0, σ2

t ). Let {(xi, ys
i )n

i=1} be the dataset for the target
model drawn i.i.d. fromDt(βs). As for the surrogate model, the estimator for the target model is defined as

βs2t
r := arg min

β∈Rp

{
1

2p
∥ys − Xβ∥22 +

λt

2
∥β∥22

}
=

1
p

(
1
p

X̃⊤X̃ + λt I
)−1

X̃⊤ys, (21)

where X = [x⊤1 , . . . , x
⊤
n ]⊤ ∈ Rn×p and ys = [ys

1, . . . , y
s
n]⊤ ∈ Rn. Our analysis will generally apply to an arbitrary

βs
r choice and will not require it to be the outcome of (20). Finally, we define the excess (population) risk for a

given estimator β̂ ∈ Rp as defined in (5). Throughout the section, we compare the surrogate-to-target model
with the following reference model.

Reference Model: Standard target model. We study the generalization performance of βs2t
r with respect

to the standard target model, which has access to the ground-truth parameter through labeling. Specifically,
consider the dataset {(xi, yi)n

i=1} drawn i.i.d. fromDt(β⋆); then, the estimation is

βt
r := arg min

β∈Rp

{
1

2p
∥y − Xβ∥22 +

λt

2
∥β∥22

}
=

1
p

(
1
p

X̃⊤X̃ + λt I
)−1

X̃⊤y, (22)

where X = [x⊤1 , . . . , x
⊤
n ]⊤ ∈ Rn×p and y = [y1, . . . , yn]⊤ ∈ Rn. We compare the excess risks of the surrogate-to-

target model R(βs2t
r ) with that of the standard target model R(βt

r).

Now, we will obtain a result similar to Theorem 1 under ridge regression. For this purpose, we have the
following definition:
Definition 4. Let κt = p/n > 1 and τt,r ∈ R be the unique solution of the following equation

κ−1
t −

λt

τt,r
=

1
p
tr

(
(Σt + τt,r I)−1Σt

)
. (23)

Then, define Xt
κt ,σ

2
t
(Σt,β

s, gt), the function γt, and the asymptotic risk R̄s2t
κt ,σt

(Σt,β⋆,β
s) as in Definition 1 based

on τt,r.
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Theorem 3. Suppose that, for some constant Mt > 1, we have 1/Mt ≤ κt, σ
2
t ≤ Mt and ∥Σt∥op ,

∥∥∥Σ−1
t

∥∥∥
op ≤ Mt.

Then, there exists a constant C = C(Mt) such that, for any ε ∈ (0, 1/2], the following holds with R + 1 < Mt:

sup
β⋆,βs∈Bp(R)

P( sup
λt∈[0,Mt]

∣∣∣R(βs2t) − R̄s2t
κt ,σt

(Σt,β⋆,β
s)
∣∣∣ ≥ ε) ≤ Cpe−pε4/C . (24)

Proof. The proof directly follows from the proof of Theorem 1 with only one modification in (14):

sup
βs∈B( Mt+R

2 )
P

(
sup
λt∈[0,Mt]

∣∣∣∣ f (βs2t) − Egt [ f (Xt
κt ,σ

2
t
(Σt,β

s, gt))]
∣∣∣∣ ≥ ε) ≤ Cpe−pε4/C . (25)

□

In Propositions 1, 3 and Corollary 1, we treat τt as a variable, which is a fixed point equation based on the
covariance matrix and ratio between numbers of features and samples under ridgeless regression. However,
under ridge regression, we modify the parameter τt,r and define the asymptotic risk the same as we define under
ridgeless regression based on this parameter. This means that we can directly apply the results of Propositions
1, 3 and Corollary 1 to ridge regression by only modifying the parameter τ. Similarly, Theorem 2 can also be
extended to ridge regression.

A.2 Experimental Details

In the CIFAR-10 experiment, we initially trained the surrogate models on the training portion of the CIFAR-10
dataset. While training the surrogate-to-target models, we employed the predictions from the surrogate models.
Conversely, when training the standard target model, we utilized the ground truth labels. During testing,
all models were evaluated using the test portion of the CIFAR-10 dataset. It is important to note that the
distributions for both surrogate and target are identical since we trained and tested the models on the same
training and testing sets.

We employ three distinct surrogate model sizes: big, medium, and small. The big model contains 127,094
parameters, the medium model 58,342 parameters, and the small model 28,286 parameters. All three models
are shallow, three-layer convolutional networks that follow the same architectural specifications. For the small
model, x = 4; for the medium model, x = 8; and for the big model, x = 16.

Layer Type Input Channels Output Channels Kernel/Stride/Pad
Conv2d 3 x 3 × 3/1/1
ReLU − − −

MaxPool2d − − 2 × 2/2
Conv2d x 2x 3 × 3/1/1
ReLU − − −

MaxPool2d − − 2 × 2/2/0
Conv2d 2x 4x 3 × 3/1/1
ReLU − − −

MaxPool2d − − 2 × 2/2/0
Flatten − − −

Linear 64x 100 −

ReLU − − −

Linear 100 10 −

We initialize the optimizer for our model using stochastic gradient descent (SGD) provided by the optim
module of PyTorch. The optimizer is configured with the following parameters: learning rate set to 0.01,
momentum to 0.9, and weight decay to 5 × 10−4. Additionally, we define a learning rate scheduler, specifically
a cosine annealing scheduler, which adjusts the learning rate using a cosine function over 200 iterations,
denoted T_max. We use a batch size of 32 and trained all models over 60 epochs.
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B Proofs for Section 4

Definition 2 (Omniscient test risk estimate). Fix p > n ≥ 1. Given a covariance Σ = U diag(λ)U⊤, β⋆, and
the noise term σ, set β̄ = U⊤β⋆ and define τ ∈ R as the unique non-negative solution of n =

∑p
i=1

λi
λi+τ
. Then,

the omniscient excess test risk estimate is the following:

Rom(β̂) ≈ Eβ̂∼D(β⋆)

[
(y − x⊤β̂)2

]
− σ2 =

σ2Ω + B(β̄)
1 −Ω

, (12)

where ζi =
τ

λi + τ
, Ω =

1
n

p∑
i=1

(1 − ζi)2, B(β̄) =
p∑

i=1

λiζ
2
i β̄i

2
.

In the following proof, we suppose that the empirical distributions of β̄ and λ converge as p→ ∞ having fixed
the ratio p/n = κ. Then, we will prove that the omniscient risk converges to the asymptotic risk defined in (10).

Proof for the proportional asymptotic case. Using Theorem 2.3 of Han & Xu (2023), we can estimate β̂ as
follows:

β̂ = (Σ + τI)−1Σ

(
β⋆ +

Σ−1/2γs(β⋆)g
√

p

)
,

where

g ∼ N(0, Ip), γ2
s (β⋆) = κ

σ + τ2∥(Σ + τI)−1Σ1/2β⋆∥
2
2

1 − 1
ntr

(
(Σ + τI)−2Σ2) , τ is the solution to n =

p∑
i=1

λi

λi + τ
.

Let

X1 = (Σ + τI)−1Σ , X2 =
(Σ + τI)−1Σ1/2γs(β⋆)

√
p

.

Using this estimate, we can calculate the excess test risk as

Rom(β̂) = E
[
((X1 − I)β⋆ + X2 g)⊤ Σ ((X1 − I)β⋆ + X2 g)

]
= β⋆

⊤(X1 − I)⊤Σ(X1 − I)β⋆ + E
[
g⊤X⊤2 ΣX2 g

]
= β⋆

⊤(X1 − I)⊤Σ(X1 − I)β⋆ + tr
(
X⊤2 ΣX2

)
. (26)

Then by recalling the eigendecomposition for the covariance matrix Σ = UΛU⊤, we have

X1 = (UΛU⊤ + τUU⊤)−1UΛU⊤

= U(Λ + τI)−1U⊤UΛU⊤

= U diag
(
λ

λ + τ

)
U⊤.

Using the diagonalization of I, X1 − I can now be computed as

X1 − I = U diag
(
−τ

λ + τ

)
U⊤.

Let’s now compute

β⋆
⊤(X1 − I)⊤Σ(X1 − I)β⋆ = β⋆⊤U diag

(
−τ

λ + τ

)
U⊤UΛU⊤U diag

(
−τ

λ + τ

)
U⊤β⋆

= β⋆
⊤U diag

(
λτ2

(λ + τ)2

)
U⊤β⋆.

As β̄ = U⊤β⋆, we obtain that the RHS of the previous expression equals
p∑

i=1

λiτ
2β̄2

i

(λi + τ)2 = B(β̄).
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Next, we write more compactly the terms tr
(
X⊤2 ΣX2

)
and γ2

s (β⋆). By defining the short-hand notation

Ω = 1
ntr

(
(Σ + τI)−2Σ2

)
= 1

n
∑p

i=1(1 − ζi)2, we have

tr
(
X⊤2 ΣX2

)
=
γ2

s (β⋆)
p

p∑
i=1

(
λi

λi + τ

)2

=
γ2

s (β⋆)nΩ
p

,

γ2
s (β⋆) = κ

σ2 + τ2∥(Σ + τI)−1Σ1/2β⋆∥
2
2

1 −Ω
= κ
σ2 +

∑p
i=1

λiτ
2β̄2

i
(λi+τ)2

1 −Ω
= κ
σ2 + B(β̄)

1 −Ω
,

where κ = p
n . Hence, putting it all together in (26) gives the desired result. □

Proposition 4 (Asymptotic analysis of τt and Ω). Let the covariance matrix Σ ∈ Rp×p be diagonal and
Σi,i = λi = i−α for 1 < α. Recall from Definition 2 that, as p→ ∞, τt and Ω are given by the equations

∞∑
i=1

λi

λi + τt
= n, nΩ =

∞∑
i=1

(
i−α

i−α + τt

)2

.

Then, the following results hold

τt = cn−α
(
1 + O(n−1)

)
, for c =

(
π

α sin (π/α)

)α
,

Ω =
α − 1
α
− O(n−1).

(13)

Proof. We start with the asymptotic analysis of τt. Along the same lines as Simon et al. (2024), since i−α
i−α+τt

is
a monotonically decreasing function, we have:

n =
∞∑

i=1

i−α

i−α + τt
≤

∫ ∞

0

x−α

x−α + τt
dx =

π

α sin (π/α)
τ−1/α

t .

Furthermore,
π

α sin (π/α)
τ−1/α

t − 1 =
∫ ∞

0

x−α

x−α + τt
dx − 1 ≤

∫ ∞

1

x−α

x−α + τt
dx ≤

∞∑
i=1

i−α

i−α + τt
= n.

Hence, combining these two facts gives
π

α sin (π/α)
τ−1/α

t − 1 ≤ n ≤
π

α sin (π/α)
τ−1/α

t

⇐⇒

(
(n + 1)α sin (π/α)

π

)−α
≤ τt ≤

(
nα sin (π/α)

π

)−α
,

which leads to the desired result.

Next, we move to the asymptotic analysis of Ω. We have that

nΩ =
∞∑

i=1

(
i−α

i−α + τt

)2

≤

∫ ∞

0

(
x−α

x−α + τt

)2

dx =
π(α − 1)
α2 sin (π/α)

τ−1/α
t .

Besides, since the summand is monotonically decreasing, we also have

π(α − 1)
α2 sin (π/α)

τ−1/α
t − 1 ≤

∫ ∞

0

(
x−α

x−α + τt

)2

dx − 1 ≤
∫ ∞

1

(
x−α

x−α + τt

)2

dx ≤
∞∑

i=1

(
i−α

i−α + τt

)2

= nΩ.

Hence,
π(α − 1)
α2 sin (π/α)

τ−1/α
t − 1 ≤ nΩ ≤

π(α − 1)
α2 sin (π/α)

τ−1/α
t . (27)

By the hypothesis on τt, we have that

τ−1/α
t = n

α sin (π/α)
π

(
1 − O

(
n−1

))
, (28)

and plugging this in (27) gives the desired result. □
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Proposition 5. Set the constants C1 :=
α sin (π/α)
π(α − 1)1/α and C2 :=

α sin (π/α)
π(
√
α − 1)1/α

and assume the power-law

eigenstructure Σi,i = λi = i−α for 1 < α. Let τt and Ω be the solutions given by Proposition 4 and define
ζi =

τt
λi+τt

. Then, the indices i for which ζi < 1 − Ω are i < nC1 + O(1); while the indices i for which is
ζ2

i < 1 −Ω are i < nC2 + O(1).

Proof. Recall from Proposition 3 that we should identify indices i which satisfy the condition ζ2
i > 1 −Ω to

decide if we’re better off not selecting this dimension i in the surrogate model. Furthermore, Proposition 4

gives that Ω =
α − 1
α
− O(n−1). Putting these together, we have

ζ2
i > 1 −Ω

⇐⇒ ζ2
i > c′ where c′ =

1
α
+ O(n−1)

⇐⇒
τ2

t

(τt + i−α)2 =
τ2

t i2α

(τtiα + 1)2 > c′

⇐⇒ (1 − c′)τ2
t i2α > 2c′τtiα + c′

⇐⇒

(
√

1 − c′τtiα −
c′

√
1 − c′

)2

>
c′

1 − c′

⇐⇒ iα >
√

c′

τt(1 −
√

c′)

⇐⇒ i > τ−1/α
t

 √
c′

1 −
√

c′

1/α

As c′ = 1
α
+ O(n−1), we get

( √
c′

1−
√

c′

)1/α
= 1

(
√
α−1)1/α (1 + O(n−1)). Incorporating (28), we achieve that

τ−1/α
t

 √
c′

1 −
√

c′

1/α

= n
α sin (π/α)
π(
√
α − 1)1/α

(
1 + O(n−1)

)
= nC2 + O(1).

Similarly, by following the same procedure with the initial inequality ζi > 1 −Ω, we get

ζi > 1 −Ω ⇐⇒ i > nC1 + O(1), where C1 =
α sin (π/α)
π(α − 1)1/α .

□

In Figure 3, we compare the empirical results with theoretical predictions for the number of features that meet

the selection criteria in the optimal maskM∗ (ζ2
i < 1−Ω). The theoretical value, calculated as n

α sin (π/α)
π(
√
α − 1)1/α

ignoring the O(1) term, aligns well with the experimental data and the accuracy in estimation increases with α.
Notably, our theoretical estimate also closely matches the empirical results when the sample size n is small
relative to the feature size p.

Proposition 7 (Scaling law for masked surrogate-to-target model). Together with the eigenvalues, also assume
now power-law form for λiβ

2
i , that is λiβ

2
i = i−β for β > 1. Then, in the limit of p → ∞, the excess test risk

for the masked surrogate-to-target model with the optimal dimensionality has the same scaling law as the
reference (target) model:

Rom(βs2t) = Θ(n−(β−1)) if β < 2α + 1,

and

Rom(βs2t) = Θ(n−2α) if β > 2α + 1.
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Figure 3: Comparison of the empirical and theoretical number of features satisfying the feature selection

condition in the optimal maskM∗ (ζ2
i < 1−Ω). The theoretical value is calculated as n

α sin (π/α)
π(
√
α − 1)1/α

, ignoring

the O(1) in Proposition 5. Setting: The feature size is p = 500, and the feature covariance follows the
power-law structure λi = i−α for α = 1.5, 3.0, and 4.5.

Proof. As discussed in Section 4, in order to analyze the model’s inherent error, we need to set σ2
t = O(n−γ)

where γ is the exponent characterizing the scaling law of the test risk in the noiseless setting. We will work on
this proof in two cases depending on β and 2α + 1.

Case 1: β < 2α + 1. In this case, it is previously stated by Cui et al. (2022); Simon et al. (2024) that the test
risk of ridgeless overparameterized linear regression can be described in the scaling sense as err = Θ(n−β+1)
when β < 2α + 1. Consider the optimal mask operationM mentioned in Proposition 3 that selects all features
satisfying 1 − ζ2

i > Ω. Let ps be the number of selected features. We can then decompose the risk estimate in
Definition 2 as follows:

B(β̄⋆) + σ2
tΩ

1 −Ω
=

∑ps
i=1 λiζ

2
i β

2
i +

∑p
i=ps+1 λiζ

2
i β

2
i + σ

2
tΩ

1 −Ω
=

err1 + err2 + σ2
tΩ

1 −Ω
,

where err1 and err2 are the contributions to the total risk of the target model from dimensions selected and
omitted in the surrogate model, respectively. Therefore, we express the total error as:

err1 + err2 + σ2
tΩ

1 −Ω
= err = Θ(n−β+1).

Going back to Proposition 5, we know that, as p → ∞, the criterion for selecting a feature i in the optimal
masked surrogate model is given by

i<nC2 + O(1), where C2 =
α sin (π/α)
π(
√
α − 1)1/α

.

Define now ωn = nC2 + O(1). The equation (18) tells us that after the optimal mask operationM,
err2
1 −Ω

is

replaced by err2′, which is calculated as follows

err2′ =
p∑

i=ωn+1

λiβ
2
i =

p∑
i=ωn+1

i−β.

Since x−β is a monotonically decreasing function, we can bound the summation by the following two integrals:∫ p+1

ωn+1
x−β dx ≤

p∑
ωn+1

i−β ≤
∫ p

ωn

x−β dx

(ωn + 1)−β+1 − (p + 1)−β+1

β − 1
≤

p∑
ωn+1

i−β ≤
(ωn)−β+1 − p−β+1

β − 1
.
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In the limit of p→ ∞, we obtain

err2′ = Θ(n−β+1).

Thus, we have tightly estimated err2′. Using the fact from Proposition 4 that Ω = Θ(1), and our assumption on
the noise variance σ2

t = O(n−β+1), we conclude that the scaling law doesn’t change for the surrogate-to-target
model as

Rom(βs2t) =
err1 + σ2

tΩ

1 −Ω
+ err2′ = Θ(n−β+1).

Case 2: β > 2α + 1. In this case, we show that the scaling law is determined by err1, hence changing
err2 to err2′ has no effect in the scaling sense. From Proposition 4, we have the asymptotic expression

τt = cn−α
(
1 + O(n−1)

)
, for c =

(
π

α sin (π/α)

)α
. We can argue that there exists positive constants c1 <

1
c
< c2,

such that c1nα ≤
1
τt
≤ c2nα. We have that

err1 =
ωn∑
i=1

i−β

(1 + 1
τt

i−α)2
≤

ωn∑
i=1

i−β

(1 + c1nαi−α)2

=

ωn∑
i=1

i2α−β

(iα + c1nα)2 ≤

ωn∑
i=1

i2α−β

c2
1n2α
.

This implies err1 = O(n−2α). At the same time,

err1 =
ωn∑
i=1

i−β

(1 + 1
τt

i−α)2
≥

ωn∑
i=1

i2α−β

(iα + c2nα)2

≥

ωn∑
i=1

i2α−β

((ωn)α + c2nα)2 =

ωn∑
i=1

i2α−β

n2α((ωn/n)α + c2)2 .

Using ωn/n = Θ(1) gives err1 = Ω(n−2α) and we can conclude that err1 = Θ(n−2α). From Cui et al. (2022),
we already know that err = Θ(n−2α) when β > 2α + 1. Using Ω = Θ(1), and our assumption on the noise
variance σ2

t = O(n−2α) allows us to conclude that the scaling is dominated by err1, and thus, the scaling law
remains unchanged. □

Proposition 6 (Scaling law). Let the covariance matrix Σt be diagonal with eigenvalues λi, and let the
ground-truth parameter β⋆ have components βi corresponding to each feature. Assume that both eigenvalues
λi and signal coefficients λiβ

2
i follow a power-law decay, i.e., λiβ

2
i = i−β and λi = i−α for α, β > 1. Let the

optimal surrogate parameter βs∗ be given by Proposition 1 and define the minimum surrogate-to-target risk
attained by βs∗ as R∗om(βs2t) = min Rom(βs2t), where Rom(βs2t) is described in Definition 2. Then, in the limit
of p→ ∞, the excess test risk of the surrogate-to-target model with an optimal surrogate parameter scales the
same as that of the standard target model. Specifically, we have

R∗om(βs2t) = Θ(n−(β−1)) = Rom(βt), if β < 2α + 1,

R∗om(βs2t) = Θ(n−2α) = Rom(βt), if β > 2α + 1.

Proof. From asymptotic risk decomposition in (34), we can write

Egt

[
f (Xt
κt ,σ

2
t
(Σt,β

s, gt))
]
= (βs − β⋆)⊤θ⊤1 Σtθ1(βs − β⋆) + γ2

t (βs)Egt [θ
⊤
2 Σtθ2]

+ β⋆
⊤(I − θ1)⊤Σt(I − θ1)β⋆ − 2β⋆⊤(I − θ1)⊤Σtθ1(βs − β⋆)

≥ γ2
t (βs)Egt [θ

⊤
2 Σtθ2],
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Figure 4: Scaling law behavior of the test risks of optimal surrogate models. (a): Associated test risks as a
function of sample size in log-log scale. Setting: The feature size is p = 500; the sample size n changes from
50 to 450 with increments of 50; the feature covariance follows the power-law structure λi = i−2, λiβ

2
i = i−1.5

(b): Associated test risks as a function of sample size in log-log scale when p ≫ n. Setting: Same as in (a)
except that p = 5000.

since we can put in the form of (a − b)2 + c2 ≥ c2. At the same time, we know that

γ2
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⊤
2 Σtθ2] = κt
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1 −Ω
nΩ
p

=
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σ2
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p∑
i=1

λiβ
s2
i ζ

2
i

 .
Recall the optimal surrogate vector discussed in Proposition 1 and the corresponding minimal surrogate-to-
target risk R∗om(βs2t). In this case, we can write

p∑
i=1

λiβ
s∗2
i ζ

2
i =

p∑
i=1

λiβ
2
i

(1 − ζi)2ζ2
i(

(1 − ζi)2 + Ω
1−Ωζ

2
i

)2 .

Similar to the previous proposition and as discussed in Section 4, to analyze the model’s inherent error, we set
σ2

t = O(n−γ) where γ is the exponent characterizing the scaling law of the test risk in the noiseless setting. It is
previously stated by Cui et al. (2022); Simon et al. (2024) that the test risk of ridgeless overparameterized
linear regression can be described in the scaling sense as err = Θ(n−β+1) when β < 2α + 1. We will proceed
by considering two cases based on the relationship between β and 2α + 1.

Case 1: β < 2α + 1

Consider the interval of i’s satisfying ζi > 1 −Ω and ζ2
i < 1 −Ω. By Proposition 5, we have

ζi > 1 −Ω ⇐⇒ i > nC1 + O(1), where C1 =
α sin (π/α)
π(α − 1)1/α .

ζ2
i > 1 −Ω ⇐⇒ i > nC2 + O(1), where C2 =

α sin (π/α)
π(
√
α − 1)1/α

.

Let ωn be defined as in the previous proposition and define ϕn = nC1 + O(1). Then, the interval of interest
corresponds to the set of indices i such that ϕn < i < ωn. Within this interval, we observe

(1 − ζi)2ζ2
i ≥

(
1 −

√
(1 −Ω)

)2
(1 −Ω)2 = k1

(1 − ζi)2 +
Ω

1 −Ω
ζ2

i ≤ 1 +
Ω

1 −Ω
= k2
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Using the fact from Proposition 4 that Ω =
α − 1
α
− O(n−1) tells us k1 = Θ(1) and k2 = Θ(1). Utilizing these

bounds, we obtain

R∗om(βs2t) ≥
Ω

1 −Ω

p∑
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λiβ
2
i

(1 − ζi)2ζ2
i(

(1 − ζi)2 + Ω
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2
i

)2 ≥
Ω
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i(
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2
i

)2

≥
Ω
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ωn∑
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i−β
k1

k2

≥ n−β+1 k1

k2

Ω

1 −Ω

(
(ϕn/n)−β+1 − (ωn/n)−β+1

β − 1

)
(a)
= Θ(n−β+1),

where (a) follows from the fact ωn/n = Θ(1), ϕn/n = Θ(1), and Ω = Θ(1). This implies that
R∗om(βs2t) = Ω(n−β+1).

Recall that the optimal surrogate-to-target improves over the risk of the standard target model, thus R∗om(βs2t) =
O(n−β+1). We therefore conclude R∗om(βs2t) = Θ(n−β+1) for this case.

Case 2: β > 2α + 1

In this case, we have

R∗om(βs2t) ≥
Ω

1 −Ω

p∑
i=1

λiβ
2
i

(1 − ζi)2ζ2
i(

(1 − ζi)2 + Ω
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2
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Ω3(
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)2
(1 −Ω)
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ϕn∑
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i−β

(1 + 1
τt

i−α)2
k3,

where k3 =
Ω3

(1+ Ω
1−Ω )2

(1−Ω)
= Θ(1). From Case 2 in Proposition 7, we already know that the same summation –

with upper bound ωn rather than ϕn – scales as Θ(n−2α). Yet, since ϕn and ωn have the same order Θ(n), the
result remains. This gives R∗om(βs2t) = Ω(n−2α), which eventually yields

R∗om(βs2t) ≤ Rom(βt) = O(n−2α) =⇒ R∗om(βs2t) = Θ(n−2α).
Hence, this allows us to say that the scaling law doesn’t improve even with the freedom to choose any βs. □

In Figures 4 and 5, we illustrate the scaling-law behavior of the test risk. In Figure 4a, the sample size n varies
from small values up to values close to p. Even though a linear trend is observable for smaller values of n
when p = 500 in the log-log scale, as n approaches p, it is less apparent due to finite-sample effects of p. We
note that the asymptotic approximations in Propositions 4 and 5 rely on p being significantly large compared
to n. Thus, Figure 4b considers the same experiment with a larger dimension (p = 5000) and the same range
of n values to satisfy n ≪ p. In this scenario, we observe a clear linear behavior in the log-log plot, which is
consistent with the scaling-law results presented in Proposition 6.

In Figure 5, we analyze the scaling-law behavior of the test risk under a two-stage framework where the
sample sizes m = n vary relative to a fixed dimension p = 1000. In this scenario, we observe a similar linear
behavior in the log-log scale when m = n is sufficiently small compared to p = 1000. Whereas, as the gap
between m = n and p diminishes, the linearity in the figure disappears as the asymptotic approximations in
Propositions 4 and 5 require p to be significantly larger compared to n. These observations align well with our
expectations and results in Section 4.
Proposition 8 (Non-asymptotic analysis of τ). Suppose that Σ ∈ Rp×p is diagonal and Σi,i = λi = i−α for

1 < α. Assume that n < pk for k =
3 + 2−α

4 + 2−(α−2) . If τt satisfies

p∑
i=1

λi

λi + τt
= n,
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Figure 5: We compare the experimental two-stage risk with our estimated theoretical risk in log-log scale to
demonstrate the scaling law. Setting: The feature size is p = 1000; the sample sizes m = n change from 50 to
900 with increments of 50; both feature covariances follow the power-law structure λi = i−α for α = 0.5, 1, 1.5
and 2; the ground truth parameter β⋆ is specified as βi = 1.

then cnα ≤ τ−1
t ≤ c
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)α
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(
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)α
.

Proof. In a similar vein to Simon et al. (2024), we have:
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We conclude by proving that τ−1
t < pα. For the sake of contradiction, assume that τ−1

t ≥ pα. Then,
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which contradicts our assumption that n < pk. □

Proposition 9 (Non-asymptotic analysis of Ω). Suppose that Σ ∈ Rp×p is diagonal and Σi,i = λi = i−α for

1 < α. Let τt be defined as in Proposition 8 and assume that pk1 +
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Let’s now utilize the upper and lower bounds for τ−1
t from Proposition 8. Substituting, we have
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Dividing both left and right-hand side by n gives:
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α
by our assumption on n. □

Proposition 10. Under the assumption that
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and 4 < α, we can find a masked surrogate-to-target setting that improves over the risk of the standard target
model by selecting all features i such that ζ2

i > 1 −Ω.

Proof. From Proposition 9, we have
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From the proof of Proposition 5, we know that
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Hence, using the bound on τ−1
t from Proposition 8, it’s enough to find indices i such that

i >
α sin (π/α)
π

(
n + 1 +

p + 1
α − 1

)  √
c′

1 −
√

c′

1/α

where c′ =
1
α
+

1
α

n + 1 + p+1
α−1

p + 1

2α−1

+
1
n
. (29)

31



By our assumption p + 1 > n + 1 + p+1
α−1 and n > 2α, we obtain that 5

2α > c′. Since
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)1/α
is increasing with

x when 0 ≤ x ≤ 1, we have  1√
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Then, to ensure the existence of an interval of i’s satisfying the above inequality, we choose
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which follows from our assumption on n. Thus, discarding the features i provided in the interval (29) will
strictly improve the test risk of the masked surrogate-to-target model over the standard target model. □

One can verify that our assumptions are coherent because they ensure a non-empty interval for n when α > 4
as the coefficients of p are positive and

α

(α − 1)2 is smaller compared to the other three coefficients of p in the

minimum function.

C Proofs for Section 5

Theorem 4 (Distributional characterization, Han & Xu (2023)). Let κs = p/m > 1 and suppose that, for
some M > 1, 1/M ≤ κs, σ

2
s ≤ M and ∥Σs∥op ,
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We define the random variable Xs
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2
s
(Σs,β⋆, gs) based on gs ∼ N(0, I) and the function γs : Rp −→ R as

follows:
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(31)

Then, for any L-Lipschitz function f : Rp −→ R where L < L(M), there exists a constant C = C(M) such that
for any ε ∈ (0, 1/2], we have the following:

sup
β⋆∈B(R)

P( sup
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∣∣∣∣ ≥ ε) ≤ Cpe−pε4/C , (32)

where R < M.

Definition 3. Recall the definition of τt and γt in Theorem 1. Let κs = p/m > 1 and define τs ∈ R similarly to
τt. We define the random variable Xs

κs,σ
2
s

based on gs ∼ N(0, I) and the function γs : Rp −→ R as follows:
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Let κ̇ = (κs, κt), Σ̇ = (Σs,Σt), and σ̇ = (σ2
s , σ

2
t ). Then, we define the asymptotic risk estimate as
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Theorem 2. Suppose that, for some constant Mt > 1, we have 1/Mt ≤ κs, σ
2
s , κt, σ

2
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op ≤ Mt. Consider the surrogate-to-target model defined in Section 2, and

let R(βs2t) represent its risk when β⋆ is given. Recall the definition of Σ̇, κ̇, σ̇ and R̄κ̇,σ̇ in Definition 3. Then,
there exists a constant C = C(Mt) such that for any ε ∈ (0, 1/2], the following holds when R + 1 < Mt:
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Proof. Define a function f1 : Rp −→ R as f1(x) = ∥Σ1/2
t (x − β⋆)∥22. The gradient of this function is
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where f (βs2t) = R(βs2t) and
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Let f3 : Rp −→ R be defined as f3(x) := γ2
t (x)θ⊤2 Σtθ2. By Proposition 14 and Proposition 2.1 in Han & Xu

(2023), the function f3 is 4M2
t -Lipschitz if β⋆ ∈ Bp(R) on the event E(Mt,

Mt−R
2 ). Applying Theorem 4 on the

surrogate model, there exists a constant C̄w,2 = C̄w,2(Mt) such that for any ε ∈ (0, 1/2], we obtain
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Let f4 : Rp −→ R as f4(x) := −2β⋆⊤(I − θ1)⊤Σtθ1(x − β⋆). By Proposition 15 and Proposition 2.1 in Han &
Xu (2023), the function f4 is 2M2

t −Lipschitz if β⋆ ∈ Bp(R) on the event E(Mt,
Mt−R

2 ). Applying Theorem 4 on
the surrogate model, there exists a constant C̄w,3 = C̄w,3(Mt) such that for any ε ∈ (0, 1/2], we obtain

sup
β⋆∈Bp(R)

P
(∣∣∣∣ f4(βs) − 2

[
β⋆
⊤(I − θ1)⊤Σtθ1(Φ1 − I)β⋆

]∣∣∣∣ > ε) ≤ C̄w,3 pe−pε4/C̄w,3 . (37)

By the definition of these functions, we have

Egt

[
f (Xs
κt ,σ

2
t
(Σt,β

s, gt))
]
− β⋆

⊤(I − θ1)⊤Σt(I − θ1)β⋆ = f2(βs) + f3(βs) − f4(βs) (38)

By the definition of θ1, θ2, Φ1, and Φ2, we have

R̄κ̇,σ̇(Σ̇,β⋆) − β⋆⊤(I − θ1)⊤Σt(I − θ1)β⋆ = β⋆⊤(I −Φ1)⊤θ⊤1 Σtθ1(I −Φ1)β⋆ + γ2
s (β⋆)Egs [Φ

⊤
2 θ
⊤
1 Σtθ1Φ2]

+ Eβs∼Xs [γ2
t (βs)]Egt [θ

⊤
2 Σtθ2] − 2

[
β⋆
⊤(I − θ1)⊤Σtθ1(Φ1 − I)β⋆

]
.

(39)

Using (38)-(39) and applying a union bound on (33), (35), (36), and (37), we obtain the advertised claim. □

Proposition 11. Suppose that, for some Mt > 1, 1/Mt ≤ κs, σ
2
s ≤ Mt and ∥Σs∥op ,

∥∥∥Σ−1
s

∥∥∥
op ≤ Mt. For every

cs > 0, there exists an event E(Mt, cs) with P((E(Mt, cs))c) ≤ Cse−p/Cs where Cs = Cs(Mt, cs) such that

∥βs∥2 ≤ ∥β⋆∥2 + cs and ∥βs − β⋆∥2 ≤ ∥β⋆∥2 + cs.

Proof. By the definition of βs, we have

βs = X̃⊤(X̃X̃⊤)−1 ỹ

= X̃⊤(X̃X̃⊤)−1X̃β⋆ + X̃⊤(X̃X̃⊤)−1 z̃, (40)

where z̃ ∼ N(0, σ2
s I). By triangle inequality, we obtain

∥βs∥2 ≤ ∥X̃⊤(X̃X̃⊤)−1X̃β⋆∥2 + ∥X̃⊤(X̃X̃⊤)−1 z̃∥2
(a)
≤ ∥β⋆∥2 + ∥X̃⊤(X̃X̃⊤)−1 z̃∥2, (41)

where (a) in above follows from the fact that X̃⊤(X̃X̃⊤)−1X̃ is a projection matrix, and so all of its eigenvalues
are either 0 or 1. Focusing on the second term of the RHS, we derive

∥X̃⊤(X̃X̃⊤)−1 z̃∥22 = z̃⊤(X̃X̃⊤)−1 z̃ =
z̃⊤
√

p

(
X̃X̃⊤

p

)−1 z̃
√

p

(a)
≤

z̃⊤ z̃
p

∥∥∥∥∥∥∥
(

X̃X̃⊤

p

)−1
∥∥∥∥∥∥∥

op

, (42)

where (a) in the above inequality follows from Cauchy-Schwarz inequality. Using Bernstein’s inequality, there
exists an absolute constant C0 > 0 that depends on σ2

s such that

P

(
z̃⊤ z̃
p
− σ2

s > t
)
≤ exp

−c min

 pt2

4C2
0

,
pt

2C0


 .

On the other hand, let Z̃ = X̃Σ−1/2
s , which means that the entries of Z̃ are independent and normally distributed

with zero mean and unit variance. Then,∥∥∥∥∥∥∥
(

X̃X̃⊤

p

)−1
∥∥∥∥∥∥∥

op

=

∥∥∥∥∥∥∥
(

Z̃Σs Z̃⊤

p

)−1
∥∥∥∥∥∥∥

op

≤
∥∥∥Σ−1

s

∥∥∥
op

∥∥∥∥∥∥∥
(

Z̃ Z̃⊤

p

)−1
∥∥∥∥∥∥∥

op

. (43)
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Using Theorem 1.1 in Rudelson & Vershynin (2009), there exist absolute constants C1,C2 > 0 such that we
have the following for every ε > 0

P


∥∥∥∥∥∥∥
(

Z̃ Z̃⊤

p

)−1
∥∥∥∥∥∥∥

op

≤ ε2
(
1 −

1
κs

)2
 ≤ (C1ε)p−m+1 + e−pC2 . (44)

By combining (42), (43), and (44), we obtain that

P
(
∥βs∥2 ≤ ∥β⋆∥2 + ε(1 −

1
κs

)
√

(t + σ2
s)

∥∥∥Σ−1
s

∥∥∥
op

)
≤ (C1ε)p−m+1 + e−pC2 + e

−c min
{

pt2

4C2
0
,

pt
2C0

}

The advertised claim for ∥βs∥2 follows when ε is selected as ε < 1
C1e . For ∥βs − β⋆∥2, using the definition of

βs, we write as follows:

∥βs − β⋆∥2 = ∥X̃⊤(X̃X̃⊤)−1X̃β⋆ + X̃⊤(X̃X̃⊤)−1 z̃ − β⋆∥2
≤ ∥X̃⊤(X̃X̃⊤)−1X̃ − I∥2∥β⋆∥2 + ∥X̃⊤(X̃X̃⊤)−1 z̃∥2
(a)
≤ ∥β⋆∥2 + ∥X̃⊤(X̃X̃⊤)−1 z̃∥2, (45)

where (a) in the above inequalities follows from the fact that the eigenvalues of X̃⊤(X̃X̃⊤)−1X̃ − I are either 1
or 0 as the eigenvalues of X̃⊤(X̃X̃⊤)−1X̃ are either 1 or 0. The remaining part of this proof is identical to the
previous part. □

Corollary 2. Suppose that βs ∈ Rp is given, and for some Mt > 1, we have 1/Mt ≤ κt, σ
2
t ≤ Mt and

∥Σt∥op ,
∥∥∥Σ−1

t

∥∥∥
op ≤ Mt. For every ct > 0, there exists an event E(Mt, ct) with P((E(Mt, ct))c) ≤ Cte−p/Ct where

Ct = Ct(Mt, ct) such that

∥βs2t∥2 ≤ ∥β
s∥2 + ct and ∥βs2t − βs∥2 ≤ ∥β

s∥2 + ct.

Proof. The result directly follows from the proof of Proposition 11. □

Proposition 12. Suppose that, for some Mt > 1, 1/Mt ≤ κt, σ
2
t ≤ Mt and ∥Σt∥op ,

∥∥∥Σ−1
t

∥∥∥
op ≤ Mt. For every

ct > 0, there exists an event E(Mt, ct) with P((E(Mt, ct))c) ≤ Cte−p/Ct where Ct = Ct(Mt, ct) such that we have
the following on this event E(Mt, ct):

∥βs2t∥2 ≤ ∥β⋆∥2 + ct and ∥βs2t − β⋆∥2 ≤ ∥β⋆∥2 + ct

Proof. By the definition of βs2t, we have the following:

βs2t = X(XX⊤)−1Xβs + X⊤(XX⊤)−1 z (46)

where z ∼ N(0, σ2
t I). Plugging (40) into (46), we obtain

βs2t = X(XX⊤)−1X
(
X̃⊤(X̃X̃⊤)−1 X̃β⋆ + X̃⊤(X̃X̃⊤)−1 z̃

)
+ X⊤(XX⊤)−1 z (47)

Note that X(XX⊤)−1X and X̃⊤(X̃X̃⊤)−1X̃ are projection matrices. Multiplication of two projection matrices
results in a projection matrix. Using the fact that the eigenvalues of a projection matrix are either 1 or 0 in
(47), we have

∥βs2t∥2 ≤ ∥β⋆∥2 + ∥X̃⊤(X̃X̃⊤)−1 z̃∥2 + ∥X⊤(XX⊤)−1 z∥2 (48)

By a similar reasoning used in (42),(43), and (44); there exist absolute constants C0,C1,C2, c > 0 such that
we have the following for every ε, t > 0:

P
(
∥X⊤(XX⊤)−1 z∥2 ≤ ε(1 −

1
κt

)
√

(t + σ2
t )

∥∥∥Σ−1
t

∥∥∥
op

)
≤ (C1ε)p−n+1 + e−pC2 + e

−c min
{

pt2

4C2
0
,

pt
2C0

}
(49)
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Similarly, for every ε̃ > 0, there exist absolute constants C̃0, C̃1, C̃2, c̃ > 0 such that we have the following for
every ε̃, t̃:

P
(
∥X̃⊤(X̃X̃⊤)−1z̃∥2 ≤ ε̃(1 −

1
κs

)
√

(t̃ + σ2
s)

∥∥∥Σ−1
s

∥∥∥
op

)
≤ (C̃1ε̃)p−m+1 + e−pC̃2 + e

−c̃ min
{

pt2

4C̃2
0
,

pt̃
2C̃0

}
(50)

Note that X, z, X̃, and z̃ are independent of each other. Therefore, we can apply union bound on (49)

and (50) with selecting ε, t, ε̃, and t̃ such that ε < 1
C1e , ct

2 < ε(1 −
1
κt

)
√

(t + σ2
t )

∥∥∥Σ−1
t

∥∥∥
op, ε̃ < 1

C̃1
, and

ct
2 < ε(1 −

1
κs

)
√

(t̃ + σ2
s)

∥∥∥Σ−1
s

∥∥∥
op. As a result, there exists an event E with P(Ec) ≤ Ct(Mt, ct) such that

∥βs2t∥2 ≤ ∥β⋆∥2 + ct.

Using a similar argument in (45), we derive the following on the same event E1

∥βs2t − β⋆∥2 ≤ ∥β⋆∥2 + ct.

This completes the proof.

□

Proposition 13. Let g : Rp −→ R be a function such that

g(βs) := ∥Σ1/2
t (Σt + τt I)−1Σt(βs − β⋆)∥22

Then, on the same event E(Mt, cs) in Proposition 11, the function g is (∥β⋆∥2 + cs)
2λ3

1
(λ1+τt)2−Lipschitz where λ1

is the largest eigenvalue of Σt.

Proof. We take the gradient of the function g:

∥∇g(βs)∥2 = 2∥Σt(Σt + τt I)−1Σt(Σt + τt I)−1Σt(βs − β⋆)∥2

≤ ∥βs − β⋆∥2 max
i

2λ3
i

(λi + τt)2

= ∥βs − β⋆∥2 max
i

2λi

(
1 −

τt

λi + τt

)2

= ∥βs − β⋆∥2
2λ3

1

(λ1 + τt)2 .

Combining Proposition 11 on the event E(Mt, cs) with the above inequality provides the advertised claim. □

Proposition 14. Let g : Rp −→ R be a function such that

g(βs) :=
1
p
∥Σ

1/2
t (Σt + τt I)−1Σ

1/2
t γt(βs)∥2F

Then, on the same event E(Mt, cs) in Proposition 11, the function g is L−Lipschitz where (λi)
p
i=1 are the

eigenvalues of Σt with a descending order and

L =
4τ2

t

m
λ3

1

(λ1 + τt)4

∥β⋆∥2 + cs

1 − 1
m

∑p
i=1

(
λi
λi+τt

)2 .

Proof. We take the gradient of the function g:

∇g(βs) =
2
p
Σ

1/2
t (Σt + τt I)−1Σt(Σt + τt I)−1Σ

1/2
t ∇γ

2
t (βs).
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Note that

γ2
t (βs) = κs

(
σ2

s + Egs [∥Σ
1/2
s (Xs

κs,σ
2
s
(Σs,β⋆, gs) − β⋆)∥22]

)
= κt
σ2

t + τ
2
t ∥(Σt + τt I)−1Σ

1/2
t β

s∥22

1 − 1
mtr

(
(Σt + τt I)−2Σ2

t

) .
Then, we have

∇γ2
t (βs) = 2κt

τ2
t Σ

1/2
t (Σt + τt I)−2Σ

1/2
t β

s

1 − 1
mtr

(
(Σt + τt I)−2Σ2

t

) .
Plugging ∇γ2

t (βs) into ∇g(βs), we obtain that

∥∇g(βs)∥2 =
4τ2

t

m
Σ

1/2
t (Σt + τt I)−1Σt(Σt + τt I)−2Σt(Σt + τt I)−1Σ

1/2
t β

s

1 − 1
mtr

(
(Σt + τt I)−2Σ2

t

)
≤

4τ2
t

m
λ3

1

(λ1 + τt)4

∥βs∥2

1 − 1
m

∑p
i=1

(
λi
λi+τt

)2 .

Combining Proposition 11 on the event E(Mt, cs) with the above inequality provides the advertised claim. □

Proposition 15. Let g : Rp −→ R be a function such that

g(βs) := 2β⋆⊤
(
I − (Σt + τt I)−1Σt

)⊤
Σt(Σt + τt I)−1Σt(βs − β⋆).

Then, the function g is 2∥β⋆∥2τt

(
λ1
λ1+τt

)2
−Lipschitz where λ1 is the largest eigenvalue of Σt.

Proof. We take the gradient of the function g:

∥∇g(βs)∥2 = 2∥Σt(Σt + τt I)−1Σt

(
I − (Σt + τt I)−1Σt

)
β⋆∥2

≤ 2∥β⋆∥2τt max
i

(
1 −

τt

λi + τt

)2

= 2∥β⋆∥2τt

(
λ1

λ1 + τt

)2

,

and the desired result readily follows. □

Lemma 1. We have that

Eβs∼Xs
κs ,σ2

s
[γ2

t (βs)] = κt
σ2

t + τ
2
t ∥(Σt + τt I)−1Σ

1/2
t ((Σs + τsI)−1Σsβ⋆∥

2
2

1 − 1
ntr

(
(Σt + τt I)−2Σ2

t

)
+
κtτ

2
t γ

2
s (β⋆)
p

tr
(
Σ

1/2
s (Σs + τsI)−1Σ

1/2
t (Σt + τt I)−2Σ

1/2
t (Σs + τsI)−1Σ

1/2
s

)
1 − 1

ntr
(
(Σt + τt I)−2Σ2

t

) .
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Proof. The desired claim follows from the following manipulations using the definition of Xs
κs,σ

2
s

in (14):

Eβs∼Xs
κs ,σ2

s
[γ2

t (βs)] = Eβs∼Xs
κs ,σ2

s

κtσ2
t + τ

2
t ∥(Σt + τt I)−1Σ

1/2
t β

s∥22

1 − 1
ntr

(
(Σt + τt I)−2Σ2

t

) 
= Egs

κtσ2
t + τ

2
t ∥(Σt + τt I)−1Σ

1/2
t

(
(Σs + τsI)−1Σsβ⋆ + (Σs + τsI)−1Σ

1/2
s γs(β⋆)gs/

√
p
)
∥22

1 − 1
ntr

(
(Σt + τt I)−2Σ2

t

) 
= κt
σ2

t + τ
2
t ∥(Σt + τt I)−1Σ

1/2
t ((Σs + τsI)−1Σsβ⋆∥

2
2

1 − 1
ntr

(
(Σt + τt I)−2Σ2

t

)
+
κtτ

2
t γ

2
s (β⋆)
p

tr
(
Σ

1/2
s (Σs + τsI)−1Σ

1/2
t (Σt + τt I)−2Σ

1/2
t (Σs + τsI)−1Σ

1/2
s

)
1 − 1

ntr
(
(Σt + τt I)−2Σ2

t

) .

□

C.1 Analysis of Two-stageModel in Under-parametrized Region

Proposition 16. Consider the two-stage model where the surrogate model is under-parameterized with ps ≤ p
features (m < ps) and the target model is over-parameterized (n > p) with p features. Then, the difference in
the asymptotic risks of surrogate-to-target and standard target models is:

(β⋆)′⊤ θ⊤1 Σtθ1 (β⋆)′ +
σ2

s

κ−1
s − 1

tr
(
θ⊤1 Σtθ1Σ̄

−1
s

)
+ 2 (β⋆)′⊤ (I − θ1)⊤Σtθ1 (β⋆)′

+
Ω

1 −Ω

(
σ2

s

κ−1
s − 1

τ2
t tr

(
(Σt + τt I)−2ΣtΣ̄

−1
s

)
− τ2

t ∥(Σt + τt I)−1Σ
1/2
t (β⋆)′∥22

)
,

where θ1 = (Σt + τt I)−1Σt, Ω = 1
ntr

(
Σ2

t (Σt + τt I)−2
)
, and (β⋆)′ =

[
0 0 · · · βps+1 βps+2 · · · βp

]⊤
∈ Rp.

Proof. Let θ2 := (Σt+τt I)−1Σ
1/2
t

gt√
p where gt ∼ N(0, Ip). Then, by Equation (10), the asymptotic risk estimate

for the single-stage linear regression is given as:

R̄s2t
κt ,σt

(Σt,β⋆,β
s) := (βs − β⋆)⊤θ⊤1 Σtθ1(βs − β⋆) + γ2

t (βs)Egt [θ
⊤
2 Σtθ2]

+ β⋆
⊤(I − θ1)⊤Σt(I − θ1)β⋆ − 2β⋆⊤(I − θ1)⊤Σtθ1(βs − β⋆).

(51)

For the ease of the analysis, define

Σ̄−1/2
s =

[
Σ
−1/2
s 0ps×(p−ps)

0(p−ps)×ps 0(p−ps)×(p−ps)

]
∈ Rp×p, β̄s =

[
βs

0p−ps

]
∈ Rp, ḡs =

[
gs

0p−ps

]
∈ Rp.

Let β̄⋆ = β⋆ − (β⋆)′ be obtained by setting the last p − ps entries of β⋆ to 0. Then, by Theorem 3 of Chang
et al. (2021), since the surrogate model is under-parameterized, the following asymptotic estimate for the
surrogate model obtained after this stage holds:

β̄s = β̄⋆ + σs
Σ̄
−1/2
s ḡs√

p
(
κ−1

s − 1
) ,

where gs ∼ N(0, Ip). Let κ̇ = (κs, κt), Σ̇ = (Σs,Σt), and σ̇ = (σ2
s , σ

2
t ). Thus, plugging this surrogate parameter

in the asymptotic risk estimate for the second stage gives:

R̄κ̇,σ̇(Σ̇,β⋆) = Egs


(β⋆)′ − σs

Σ̄
−1/2
s ḡs√

p
(
κ−1

s − 1
) ⊤ θ⊤1 Σtθ1

(β⋆)′ − σs
Σ̄
−1/2
s ḡs√

p
(
κ−1

s − 1
)  + γ2

t (β̄s)
tr

(
Σ2

t (Σt + τt I)−2
)

p


+ β⋆

⊤(I − θ1)⊤Σt(I − θ1)β⋆ − Egs

2β⋆⊤(I − θ1)⊤Σtθ1

σs
Σ̄
−1/2
s ḡs√

p
(
κ−1

s − 1
) − (β⋆)′

 ,
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where

γ2
t (β̄s) = κt

σ2
t + τ

2
t ∥(Σt + τt I)−1Σ

1/2
t β̄

s∥22

1 − 1
ntr

(
(Σt + τt I)−2Σ2

t

) = κt

σ2
t + τ

2
t ∥(Σt + τt I)−1Σ

1/2
t (β̄⋆ + σs

Σ̄
−1/2
s ḡs√

p(κ−1
s −1)

)∥22

1 −Ω
.

Further modifications give:

R̄κ̇,σ̇(Σ̇,β⋆) = (β⋆)′⊤ θ⊤1 Σtθ1 (β⋆)′ +
σ2

s

p
(
κ−1

s − 1
)tr (Σ̄−1/2

s θ⊤1 Σtθ1Σ̄
−1/2
s

)
+
Ω

1 −Ω

σ2
t + Egs

τ2
t ∥(Σt + τt I)−1Σ

1/2
t (β̄⋆ + σs

Σ̄
−1/2
s ḡs√

p
(
κ−1

s − 1
) )∥22


+ β⋆

⊤(I − θ1)⊤Σt(I − θ1)β⋆ + 2β⋆⊤(I − θ1)⊤Σtθ1 (β⋆)′

= (β⋆)′⊤ θ⊤1 Σtθ1 (β⋆)′ +
σ2

s

p
(
κ−1

s − 1
)tr (θ⊤1 Σtθ1Σ̄

−1
s

)
+
Ω

1 −Ω

(
σ2

t + τ
2
t ∥(Σt + τt I)−1Σ

1/2
t β̄⋆∥

2
2 +

σ2
s

p
(
κ−1

s − 1
)τ2

t tr
(
(Σt + τt I)−2ΣtΣ̄

−1
s

))
+ β⋆

⊤(I − θ1)⊤Σt(I − θ1)β⋆ + 2 (β⋆)′⊤ (I − θ1)⊤Σtθ1 (β⋆)′ .

Then, using the fact that since (β⋆)′ is orthogonal to β̄⋆ (thus, their supports do not overlap), it follows that the
difference between this surrogate-to-target risk and the standard target model risk is:

Difference = (β⋆)′⊤ θ⊤1 Σtθ1 (β⋆)′ +
σ2

s

p
(
κ−1

s − 1
)tr (θ⊤1 Σtθ1Σ̄

−1
s

)
+ 2 (β⋆)′⊤ (I − θ1)⊤Σtθ1 (β⋆)′

+
Ω

1 −Ω

(
σ2

s

p
(
κ−1

s − 1
)τ2

t tr
(
(Σt + τt I)−2ΣtΣ̄

−1
s

)
− τ2

t ∥(Σt + τt I)−1Σ
1/2
t (β⋆)′∥22

)
.

(52)

This completes the proof. □

Proposition 17. Consider the two-stage model where the surrogate model is under-parameterized with p
features (m < p) and the second stage is over-parameterized (n > p) with p features. Under this setting, the
surrogate-to-target model cannot outperform the standard target model in terms of asymptotic risk.

Proof. Let θ1 := (Σt + τt I)−1Σt and θ2 := (Σt + τt I)−1Σ
1/2
t

gt√
p where gt ∼ N(0, Ip). Then, by Equation (10),

the asymptotic risk estimate for the single-stage linear regression is given as:

R̄s2t
κt ,σt

(Σt,β⋆,β
s) := (βs − β⋆)⊤θ⊤1 Σtθ1(βs − β⋆) + γ2

t (βs)Egt [θ
⊤
2 Σtθ2]

+ β⋆
⊤(I − θ1)⊤Σt(I − θ1)β⋆ − 2β⋆⊤(I − θ1)⊤Σtθ1(βs − β⋆).

(53)

When the surrogate model is under-parameterized, we can use the following asymptotic estimate for the
surrogate model obtained after this stage by Theorem 3 of Chang et al. (2021):

βs = β⋆ + σs
Σ
−1/2
s gs√

p
(
κ−1

s − 1
) ,

where gs ∼ N(0, Ip). Let κ̇ = (κs, κt), Σ̇ = (Σs,Σt), and σ̇ = (σ2
s , σ

2
t ). Then, by plugging this in Equation (53),

the asymptotic risk estimate is the following:

R̄κ̇,σ̇(Σ̇,β⋆) = Egs

 σ2
s

p
(
κ−1

s − 1
) g⊤s Σ

−1/2
s θ⊤1 Σtθ1Σ

−1/2
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2
t (βs)
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p


+ β⋆
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2 σs√
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(
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s − 1
)β⋆⊤(I − θ1)⊤Σtθ1Σ

−1/2
s gs

 ,
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where

γ2
t (βs) = κt

σ2
t + τ

2
t ∥(Σt + τt I)−1Σ

1/2
t β

s∥22

1 − 1
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(
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.

Further simplifications give:

R̄κ̇,σ̇(Σ̇,β⋆) =
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,

which is the asymptotic risk estimate of the standard target model (follows from Definition 2 or by simply
plugging βs = β⋆ in Equation (53)). Hence, we conclude that improvement over the excess test risk is not
possible when the first stage is under-parameterized with p-dimensions. □

Corollary 3. Consider the setting of Proposition 3. Let Σt be the covariance matrix of the target model and
letM be the mask such that the surrogate-to-target model with Σt andM outperforms the standard target
model in the asymptotic risk. Let Σs = E[M(x)M(x)⊤] where x ∼ N(0,Σt). Then, for any β⋆ ∈ Rp, there
exists K ∈ N such that the surrogate-to-target model with two stages given Σt, Σs, β⋆, and m > K outperforms
the standard target model.

Proof. We make the following three observations. First, the expression in (52) is continuous with respect
to m ∈ R when m > p. Note that m is a natural number in our setting, but we consider the expression in
(52) as a function of m where m ∈ R. Second, the expression in (52) is monotone with respect to m since
tr

(
θ⊤1 Σtθ1Σ̄

−1
s

)
≥ 0 and Ω

1−Ωτ
2
t tr

(
(Σt + τt I)−2ΣtΣ̄

−1
s

)
≥ 0. Third, by definition, we know that the standard

target model with Σt andM outperforms the standard target model in the asymptotic setting. This means
that the standard target model with two stages given Σt,Σs, and β⋆ while m approaches ∞ outperforms the
standard target model. By combining these three observations, the desired result follows. □
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