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OmniWorld: A MULTI-DOMAIN AND MULTI-MODAL
DATASET FOR 4D WORLD MODELING
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The environment is a kitchen setting. The 
person’s hand extends forward to grasp
the bowl with the egg …

The environment is a simple indoor setting. A 
hand reached forward and grasped the bottle 
in the wooden cabinet …

MULTI-DOMAIN MULTI-MODAL 300M+ FRAMES

Figure 1: We introduce OmniWorld, a large-scale, multi-domain, and multi-modal dataset. Omni-
World provides a rich resource for 4D world modeling by integrating high-quality data from multiple
domains and offers a variety of data types, including depth maps, camera poses, text captions, op-
tical flow and foreground masks. OmniWorld is designed to accelerate the development of more
general models for modeling the real physical world.

ABSTRACT

The field of 4D world modeling—aiming to jointly capture spatial geometry and
temporal dynamics—has witnessed remarkable progress in recent years, driven
by advances in large-scale generative models and multimodal learning. However,
the development of truly general 4D world models remains fundamentally con-
strained by the availability of high-quality data. Existing datasets and benchmarks
often lack the dynamic complexity, multi-domain diversity, and spatial-temporal
annotations required to support key tasks such as 4D geometric reconstruction, fu-
ture prediction, and camera-controlled video generation. To address this gap, we
introduce OmniWorld, a large-scale, multi-domain, multi-modal dataset specifi-
cally designed for 4D world modeling. OmniWorld consists of a newly collected
OmniWorld-Game dataset and several curated public datasets spanning diverse
domains. Compared with existing synthetic datasets, OmniWorld-Game provides
richer modality coverage, larger scale, and more realistic dynamic interactions.
Based on this dataset, we establish a challenging benchmark that exposes the
limitations of current state-of-the-art (SOTA) approaches in modeling complex
4D environments. Moreover, fine-tuning existing SOTA methods on OmniWorld
leads to significant performance gains across 4D reconstruction and video genera-
tion tasks, strongly validating OmniWorld as a powerful resource for training and
evaluation. We envision OmniWorld as a catalyst for accelerating the development
of general-purpose 4D world models, ultimately advancing machines’ holistic un-
derstanding of the physical world.
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Table 1: Comparisons between OmniWorld-Game and existing synthetic datasets. OmniWorld-
Game surpasses existing public synthetic datasets in modal diversity and data scale.

Dataset Scene Type Motion Resolution # Frames Data modality
Depth Camera Text Optical flow Fg. masks

MPI Sintel (Butler et al., 2012) Mixed Dynamic 1024 × 436 1K ✔ ✔ ✗ ✔ ✔
FlyingThings++ (Mayer et al., 2016; Harley et al., 2022) Outdoor Dynamic 960 × 540 28K ✔ ✗ ✗ ✔ ✔
TartanAir (Wang et al., 2020) Mixed Dynamic 640 × 480 1,000K ✔ ✔ ✗ ✔ ✔
BlendedMVS (Yao et al., 2020) Mixed Static 768 × 576 17K ✔ ✔ ✗ ✗ ✗
HyperSim (Roberts et al., 2021) Indoor Static 1024 × 768 77K ✔ ✔ ✗ ✗ ✔
Dynamic Replica (Karaev et al., 2023) Indoor Dynamic 1280 × 720 169K ✔ ✔ ✗ ✔ ✔
Spring (Mehl et al., 2023) Mixed Dynamic 1920 × 1080 23K ✔ ✔ ✗ ✔ ✗
EDEN (Le et al., 2021) Outdoor Static 640 × 480 300K ✔ ✔ ✗ ✔ ✔
PointOdyssey (Zheng et al., 2023) Mixed Dynamic 960 × 540 216K ✔ ✔ ✗ ✗ ✔
SeKai-Game (Li et al., 2025) Outdoor Dynamic 1920 × 1080 4,320K ✗ ✔ ✔ ✗ ✗
OmniWorld-Game (Ours) Mixed Dynamic 1280 × 720 18,515K ✔ ✔ ✔ ✔ ✔

1 INTRODUCTION

The development of world models (DeepMind, 2025; Ha & Schmidhuber, 2018; Agarwal et al.,
2025; LeCun, 2022; Hafner et al., 2023) has become a central pursuit in visual intelligence systems,
aiming to build systems that can simulate and reason about the physical world. This capability
goes beyond simple static perception, demanding models that can simulate dynamic environments,
predict object motion, infer causality, and generate content that adheres to physical laws. Such
spatio-temporal modeling is a cornerstone for effective world models, with its development critically
dependent on large-scale, multi-domain, and multi-modal datasets (Feng et al., 2024; Team et al.,
2025a; Chen et al., 2025; He et al., 2025b; Team et al., 2025b; Yu et al., 2025b;a).

Two fundamental tasks that reflect a model’s world modeling capability have drawn widespread
attention: 3D geometric foundation models (Wang et al., 2024c; Leroy et al., 2024; Zhang et al.,
2024; Yang et al., 2025a; Tang et al., 2024; Wang et al., 2025b; Zhang et al., 2025; Wang et al.,
2025a;d), and camera-controlled video generation models (Wang et al., 2024d; He et al., 2024;
Zheng et al., 2024; Bahmani et al., 2024; Bai et al., 2025; YU et al., 2025). The former aims to
extract comprehensive 3D geometric information from 2D image inputs, while the latter focuses
on generating dynamic video content that follows precise spatio-temporal instructions. Both tasks
heavily rely on large-scale, high-quality datasets with rich modalities, including RGB images, depth
maps, and camera poses.

However, existing benchmarks and datasets for evaluating and training these models have signifi-
cant limitations. In the domain of 3D geometric foundation models, existing benchmarks suffer from
short sequence lengths, which constrain the evaluation of a model’s long-term robustness. For ex-
ample, Sintel (Butler et al., 2012), which is a widely used dataset, consists of videos with an average
length of only 50 frames. Furthermore, the limited motion amplitude and single-action types within
these datasets (e.g., Bonn’s (Palazzolo et al., 2019) focuses on indoor human motion, Kitti’s (Geiger
et al., 2013) focuses on outdoor street scenes) fail to comprehensively evaluate model performance
in complex, dynamic environments. Similarly, in the field of camera-controlled video generation,
mainstream datasets like RealEstate10K (Zhou et al., 2018) primarily consist of static scenes with
smooth camera trajectories. This lack of diverse object motion and complex camera operations re-
sults in a noticeable gap between the dataset’s content and real-world scenarios, thereby hindering a
comprehensive assessment of a model’s true capabilities.

From the perspective of training data, there is a critical scarcity of high-quality, multi-domain, multi-
modal datasets that include rich geometric annotations. For instance, in image or video generation,
while there are numerous image-text (Schuhmann et al., 2022; Gadre et al., 2023) or video-text
datasets (Chen et al., 2024; Nan et al., 2024; Ju et al., 2024), they often lack critical geometric
modalities such as depth maps, camera poses, and optical flow. Similarly, the demand for large-
scale, diverse datasets with accurate geometric annotations is increasingly urgent for 3D geometric
foundation models.

To address these shortcomings, we introduce OmniWorld, a large-scale, multi-domain, and multi-
modal dataset composed of a self-collected high-quality OmniWorld-Game synthetic dataset and
several public datasets. Its core characteristics are: 1) High-Quality 4D Data. OmniWorld-Game
is a massive synthetic video dataset comprising over 96K clips and more than 18M frames, with a
total duration of over 214 hours. It is captured from diverse game environments with 720P RGB
images, dense ground truth depth maps, accurate camera poses, and annotations for text captions,
optical flow and foreground masks. As shown in Tab. 1, the dataset significantly surpasses existing
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Table 2: OmniWorld structure. A smiling face ( ) indicates the modality is newly (re-)annotated
by us, a green check (✔) denotes ground-truth data that already exists in the original dataset, and a
red cross (✗) marks missing modalities.

Dataset Domain # Seq. FPS Resolution # Frames Data modality
Depth Camera Text Opt. flow Fg. masks

OmniWorld-Game Simulator 96K 24 1280×720 18,515K
AgiBot (Bu et al., 2025) Robot 20K 30 640×480 39,247K ✔ ✔ ✗
DROID (Khazatsky et al., 2024) Robot 35K 60 1280×720 26,643K ✔
RH20T (Fang et al., 2024) Robot 109K 10 640×360 53,453K ✗ ✔
RH20T-Human (Fang et al., 2024) Human 73K 10 640×360 8,875K ✗ ✔ ✗ ✗
HOI4D (Liu et al., 2022) Human 2K 15 1920×1080 891K ✔
Epic-Kitchens (Damen et al., 2018) Human 15K 30 1280×720 3,635K ✗ ✗ ✗
Ego-Exo4D (Grauman et al., 2024) Human 4K 30 1024×1024 9,190K ✗ ✔ ✗
HoloAssist (Wang et al., 2023) Human 1K 30 896×504 13,037K ✗ ✗
Assembly101 (Sener et al., 2022) Human 4K 60 1920×1080 110,831K ✗ ✔
EgoDex (Hoque et al., 2025) Human 242K 30 1920×1080 76,631K ✗ ✔ ✗ ✗
CityWalk (Li et al., 2025) Internet 7K 30 1280×720 13,096K ✗ ✔ ✗ ✗

public synthetic datasets in modal diversity and scale. 2) Multi-Domain Coverage. By integrating
datasets from four key domains including simulator, robot, human, and the internet, OmniWorld
covers a wide range of real-world and virtual scenarios, greatly enhancing data diversity. 3) Multi-
Modality Annotations. OmniWorld provides a rich suite of multi-modal annotations, crucial for
detailed world modeling, as shown in Tab. 2.

Based on OmniWorld-Game, we propose a new benchmark for both 3D geometric foundation
models and camera-controlled video generation models. Our OmniWorld-Game benchmark pro-
vides challenging, complex scenarios and dynamics that accurately reflect a model’s true world
capabilities, revealing the limitations of current SOTAs. By fine-tuning existing SOTAs (e.g.,
DUSt3R (Wang et al., 2024c), CUT3R (Wang et al., 2025b), Reloc3r (Dong et al., 2024),
AC3D (Bahmani et al., 2024)) with OmniWorld, we demonstrate significant performance improve-
ments on public benchmarks. This strongly validates OmniWorld as a powerful training resource for
enhancing world modeling capabilities.

In summary, our contributions are as follows:

1. We introduce OmniWorld, a multi-domain and multi-modal dataset designed to address the
lack of diversity in existing datasets. Its self-collected subset, OmniWorld-Game, surpasses
current synthetic datasets in both modality diversity and data volume.

2. We establish a comprehensive benchmark for 3D geometric foundation models and camera-
controlled video generation models based on OmniWorld-Game, providing a unified plat-
form for evaluation.

3. We fine-tune several SOTAs on OmniWorld and observe significant performance gains,
underscoring its value as a training resource.

2 OmniWorld DATASET

2.1 DATA ACQUISITION

Our data acquisition strategy is centered on our novel, self-collected OmniWorld-Game dataset,
which is strategically supplemented with curated data from three other distinct domains: robot,
human, and internet, as illustrated in Fig. 2. This strategy allows us to integrate the strengths of
diverse data sources to comprehensively capture real-world complexity.

Simulator domain. To acquire the high-precision and temporally consistent multi-modal data that
is hard to obtain in the real world, we collect OmniWorld-Game from game environments. Follow-
ing prior works (Richter et al., 2016; Yang et al., 2024a; Feng et al., 2024; Team et al., 2025a),
we utilize ReShade (ReShade Contributors, 2024) to access depth information during the rendering
process, and simultaneously capture synchronized RGB images from the screen using OBS (Con-
tributors, 2024). This approach offers significant advantages: 1) High-Precision Modal Data. We
can precisely control the environment and acquire accurate depth data, which is often unattainable
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Figure 2: OmniWorld acquisition and annotation pipeline. We collect raw data from diverse
domains and apply a video slicing filter to obtain high-quality RGB sequences. These sequences
are then processed through a suite of specialized pipelines to generate multi-modal annotations,
including text captions, depth maps, camera poses, foreground masks, and optical flow.

in real-world settings. 2) Rich Real-World Scene Simulation. Modern virtual environments provide
highly realistic graphics and diverse simulations of real-world scenarios, such as complex settings
from wilderness to urban areas.

Robot domain. We integrate public datasets from robot manipulation and human-robot interaction
tasks, including AgiBot (Bu et al., 2025), DROID (Khazatsky et al., 2024), and RH20T (Fang et al.,
2024). These datasets provide valuable sequences of robot-environment interactions and navigation,
which are essential for tasks involving robotic manipulation and physical world understanding.

Human domain. We incorporate public datasets describing various human activities, including
RH20T-Human (Fang et al., 2024), HOI4D (Liu et al., 2022), Epic-Kitchens (Damen et al., 2018),
Ego-Exo4D (Grauman et al., 2024), HoloAssist (Wang et al., 2023), Assembly101 (Sener et al.,
2022), and EgoDex (Hoque et al., 2025). These datasets capture diverse human behaviors, ranging
from daily activities to complex assembly tasks, from both egocentric and exocentric perspectives.

Internet domain. To acquire large-scale, realistic, and diverse in-the-wild scene data, we utilize the
CityWalk dataset (Li et al., 2025). It offers rich real-world street view videos from the internet.

To prepare the raw data, we perform video slicing to ensure high quality and temporal coherence.
This crucial preprocessing step filters out unsuitable frames (e.g., those with motion blur or insuf-
ficient features) and segments long recordings into shorter, manageable clips. The resulting high-
quality video segments are then passed to our multi-modal annotation pipeline.

2.2 DATA ANNOTATION

We primarily annotate the following key modalities: depth maps, camera poses, text captions, optical
flow, and foreground masks (see Fig. 2 for the overall pipeline). Here we briefly introduce the
annotation method of each modality.

Depth maps. Accurate depth information is paramount for geometric modeling. To ensure the
quality and consistency of depth maps, we adopt a tailored approach based on the data source. For
the self-collected dataset OmniWorld-Game, as mentioned in Sec. 2.1, we directly access depth
information during the rendering process using tools like ReShade (ReShade Contributors, 2024).

For public datasets like AgiBot (Bu et al., 2025) and HOI4D (Liu et al., 2022), which often provide
noisy and sparse raw depth maps, we employ Prior Depth Anything (Wang et al., 2025e) to robustly
optimize them, yielding denser and more reliable depth annotations. For the public stereo dataset
DROID (Khazatsky et al., 2024), we leverage FoundationStereo (Wen et al., 2025) for stereo depth
estimation on this dataset.
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Figure 3: Statistical information of OmniWorld. (a) displays compositional distribution of data
from different domains within OmniWorld, (b) presents internal composition of OmniWorld-Game.
(c) shows caption tokens distribution of OmniWorld.

Foreground masks. To provide precise, temporally consistent masks of primary subjects, we de-
velop specialized automated pipelines. For robot domain data, we use RoboEngine (Yuan et al.,
2025) to generate initial masks for keyframes, followed by temporal tracking and fusion with SAM
2 (Ravi et al., 2024). For OmniWorld-Game (e.g., player characters in third-person view), we lever-
age Grounding DINO (Liu et al., 2023) to detect initial bounding boxes within predefined regions
of keyframes, which then serve as prompts for SAM (Kirillov et al., 2023). These generated masks
can be used as dynamic foreground masks to guide camera pose estimation.

Camera poses. Accurate camera pose annotation in dynamic videos is highly challenging due to
transitions, weakly textured areas, and abrupt movements that hinder traditional Structure-from-
Motion methods (Rockwell et al., 2025; Li et al., 2024). Following prior work (Team et al., 2025a),
we develop a robust, automated, two-stage pipeline for dynamic camera pose annotation, whose
principles are validated across diverse data types.

The pipeline leverages the pre-computed foreground masks to focus on static background regions.
The stages include: 1) Coarse camera pose estimation leveraging VGGT (Wang et al., 2025a) for
videos without depth or DroidCalib (Hagemann et al., 2023) with depth constraints; 2) Camera
pose refinement through dense point tracking (SIFT (Lowe, 2004), SuperPoint (DeTone et al., 2018)
with CoTracker3 (Karaev et al., 2024)) on static regions and subsequent bundle adjustment to min-
imize reprojection errors, optionally enhanced by forward-backward reprojection with depth infor-
mation (Chen et al., 2019).

Text captions. We generate text descriptions using a semi-automated approach centered on the
Qwen2-VL-72B-Instruct model (Wang et al., 2024a). We employ domain-specific prompting strate-
gies for each 81-frame video segment. For instance, in the OmniWorld-Game domain, we generate
multi-faceted descriptions covering different viewpoints (e.g., first- and third-person), character ac-
tions, background details, and camera movements.

Optical flow. We generate optical flow annotations using DPFlow (Morimitsu et al., 2025) to capture
dense, pixel-level motion. Unlike models that require downsampling high-resolution inputs (Teed &
Deng, 2020), DPFlow processes videos at their original resolution. This makes it ideal for our high
resolutions dataset.

2.3 DATA STATISTICS

OmniWorld is a large-scale dataset composed of 12 distinct datasets from four domains: simulators,
robots, humans, and the internet (see Tab. 2 for a summary). It contains over 600K video sequences
and 300M frames with high resolutions. The dataset is richly annotated with multiple modalities,
including depth, camera poses, text, optical flow, and foreground masks.

As shown in Fig. 3a, the human domain constitutes the largest portion of OmniWorld, highlighting
its focus on real-world activities. Our self-collected OmniWorld-Game subset is particularly diverse,
as detailed in Fig. 3b. It spans various scene types (e.g., outdoor-urban, indoor), camera perspectives
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Table 3: Monocular depth & video depth estimation on OmniWorld-Game benchmark.

Method
Mono-Depth Video-Depth

scale scale scale&shift FPS
Abs Rel ↓ δ<1.25 ↑ Abs Rel ↓ δ<1.25 ↑ Abs Rel ↓ δ<1.25 ↑

DUSt3R (Wang et al., 2024c) 0.742 0.460 0.709 0.447 0.379 0.560 0.96
MASt3R (Leroy et al., 2024) 0.485 0.560 0.482 0.579 0.217 0.724 0.79
MonST3R (Zhang et al., 2024) 0.670 0.493 0.669 0.505 0.272 0.648 0.95
Fast3R (Yang et al., 2025a) 0.755 0.404 0.741 0.384 0.464 0.531 14.99
CUT3R (Wang et al., 2025b) 0.624 0.518 0.690 0.479 0.429 0.603 10.75
FLARE (Zhang et al., 2025) 0.664 0.475 0.757 0.453 0.511 0.527 4.24
VGGT (Wang et al., 2025a) 0.531 0.554 0.440 0.625 0.194 0.755 18.75
MoGe-1 (Wang et al., 2024b) 0.459 0.586 – – – – –
MoGe-2 (Wang et al., 2025c) 0.401 0.589 – – – – –

(first-person and third-person), historical eras (ancient to futuristic), and dominant objects (natural
terrain, architecture, vehicles). This multi-dimensional diversity ensures the data is both challenging
and comprehensive.

Furthermore, OmniWorld features structured and detailed text annotations. The captions typically
range from 150 to 250 tokens (Fig. 3c), a density that significantly surpasses other large-scale video-
text datasets like OpenVid-1M (Nan et al., 2024) and Panda-70M (Chen et al., 2024).

3 OmniWorld-Game BENCHMARK

3.1 3D GEOMETRIC PREDICTION BENCHMARK

Benchmark design. Existing benchmarks for 3D Geometric Foundation Models (GFMs) often
feature short sequences and limited motion dynamics. For example, Sintel (Butler et al., 2012) se-
quences average only 50 frames, while datasets like Bonn (Palazzolo et al., 2019) and KITTI (Geiger
et al., 2013) are confined to specific scenarios (e.g., indoor human motion or outdoor street views).
These limitations hinder the comprehensive evaluation of a model’s long-term and complex-scene
modeling capabilities. To address this, our OmniWorld-Game benchmark provides a more challeng-
ing testbed featuring extended, high-resolution sequences (up to 384 frames at 720P) with diverse
and complex motions.

Evaluation details. We evaluate a suite of recent GFMs, including DUSt3R (Wang et al., 2024c),
MASt3R (Leroy et al., 2024), MonST3R (Zhang et al., 2024), Fast3R (Yang et al., 2025a),
CUT3R (Wang et al., 2025b), FLARE (Zhang et al., 2025), VGGT (Wang et al., 2025a), and
MoGe (Wang et al., 2024b; 2025c). The evaluation is conducted on two tasks: monocular depth
estimation and video depth estimation.

Analysis. Our evaluation on OmniWorld-Game reveals significant challenges for current GFMs
(Tab 3). For monocular depth estimation, MoGe-2 (Wang et al., 2025c) achieves the best quan-
titative results. This finding is supported by qualitative results in the supplementary materials,
where it produces visibly sharper depth maps. In the more demanding video depth estimation task,
VGGT (Wang et al., 2025a) demonstrates superior accuracy and efficiency (FPS). Point cloud visual-
izations (Fig. 4) confirm that VGGT generates more coherent 3D structures, yet even it produces no-
ticeable artifacts in highly dynamic scenes. No single GFM masters all tasks on OmniWorld-Game.
The results highlight that current SOTA models still struggle with long-sequence consistency and
complex dynamics, validating our benchmark as a challenging testbed for advancing future research.

3.2 CAMERA-CONTROLLED VIDEO GENERATION BENCHMARK

Benchmark design. Existing benchmarks for camera-controlled video generation, such as
RealEstate10K (Zhou et al., 2018), are often limited to static scenes with smooth camera paths,
failing to reflect real-world complexity. In contrast, our OmniWorld-Game benchmark provides a
more challenging evaluation environment, featuring rich dynamic content, complex camera trajec-
tories, and diverse scenes.
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Input Images Fast3R CUT3R FLARE VGGTGround Truth

Figure 4: Qualitative comparison of multi-view 3D reconstruction on OmniWorld-Game bench-
mark.

Table 4: Camera-controlled video generation evaluation on OmniWorld-Game benchmark.

Method TransErr↓ RotErr↓ CamMC↓ FVD
VideoGPT↓ StyleGAN↓

AC3D (T2V) (Bahmani et al., 2024) 6.2788 0.8867 6.6965 1745.778 1594.885

MotionCtrl (I2V) (Wang et al., 2024d) 7.8633 1.1402 8.2710 694.342 745.652
CamCtrl (I2V) (He et al., 2024) 1.2882 0.2022 1.3856 615.417 637.574
CAMI2V (I2V) (Zheng et al., 2024) 5.9626 0.5087 6.2010 837.185 742.594

Evaluation details. We evaluate several recent models, including the Text-to-Video model
AC3D (Bahmani et al., 2024) and Image-to-Video models like CamCtrl (He et al., 2024), MotionC-
trl (Wang et al., 2024d), CAMI2V (Zheng et al., 2024). Following prior work (Zheng et al., 2024),
we assess performance using two sets of metrics: camera-controlled accuracy (RotError, TransError,
CamMC) and perceptual quality (Fréchet Video Distance, FVD) (Unterthiner et al., 2018).

Analysis. Our analysis on OmniWorld-Game reveals current models failing to achieve either high
generation quality or precise camera control. For instance, the Text-to-Video model AC3D (Bahmani
et al., 2024) generates subtle dynamics and fails to follow camera paths, resulting in poor quantitative
and qualitative scores (Tab. 4, Fig. 5). Among Image-to-Video (I2V) models, CamCtrl (He et al.,
2024) shows better quantitative performance. However, its generated videos often suffer from blurry
moving characters as shown in Fig. 5. Other methods, including MotionCtrl (Wang et al., 2024d)
and CAMI2V (Zheng et al., 2024), face similar quality degradation issues. These results underscore
the unique challenges posed by our benchmark in evaluating spatio-temporal generation capabilities.

4 MODEL FINE-TUNING AND EFFICACY VALIDATION

4.1 IMPROVING 3D GEOMETRIC PREDICTION WITH OmniWorld

To demonstrate OmniWorld’s value as a training resource, we fine-tune three baseline models,
DUSt3R (Wang et al., 2024c), CUT3R (Wang et al., 2025b), and Reloc3r (Dong et al., 2024), on
subsets of our dataset. The fine-tuned models consistently surpass their original performance across
monocular depth estimation (Tab. 5), video depth estimation (Tab. 6), and camera pose estimation
(see supplementary). Notably, for monocular depth, the fine-tuned DUSt3R not only improved upon
its baseline but also outperformed MonST3R Zhang et al. (2024), which is fine-tuned on several ex-
isting dynamic datasets. The enhancements in video depth estimation also underscore OmniWorld’s
effectiveness in improving temporal consistency. These results validate that OmniWorld’s scale and
diversity provide a powerful resource for boosting the generalization and robustness of 3D geometric
foundation models.
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“A man in a suit walks along tram tracks in an urban setting, passing stationary trams and observing his surroundings…”
AC3D

MotionCtrl

CamCtrl

CAMI2V

Figure 5: Qualitative comparison of camera-controlled video generation on OmniWorld-Game
benchmark. AC3D takes text as a condition signal. MotionCtrl, CamCtrl, CAMI2V take an image
as a condition signal. Condition images are the first images of each row.

Table 5: Comparison of original and fine-tuned models for monocular depth estimation on
Sintel (Butler et al., 2012), Bonn (Palazzolo et al., 2019), KITTI (Geiger et al., 2013) and NYU-
v2 (Silberman et al., 2012). * denotes models that have been fine-tuned on OmniWorld.

Method
Sintel Bonn KITTI NYU-v2

Abs Rel↓ δ < 1.25 ↑ Abs Rel↓ δ < 1.25 ↑ Abs Rel↓ δ < 1.25 ↑ Abs Rel↓ δ < 1.25 ↑
DUSt3R (Wang et al., 2024c) 0.488 0.532 0.139 0.831 0.109 0.873 0.081 0.909
MonST3R (Zhang et al., 2024) 0.402 0.525 0.069 0.954 0.098 0.895 0.094 0.887
DUSt3R* 0.370 0.529 0.067 0.948 0.088 0.932 0.089 0.902

CUT3R (Wang et al., 2025b) 0.420 0.520 0.058 0.967 0.097 0.914 0.081 0.914
CUT3R* 0.408 0.522 0.075 0.944 0.087 0.935 0.075 0.920

4.2 ENHANCING CAMERA-CONTROLLED VIDEO GENERATION WITH OmniWorld

Existing datasets for camera-controlled video generation, such as RealEstate10K (Zhou et al., 2018),
are often limited to static scenes with simple camera movements, which restricts a model’s ability
to handle dynamic content. To address this data bottleneck, we fine-tuned the AC3D (Bahmani
et al., 2024) baseline on OmniWorld. This approach aligns with prior findings (He et al., 2025a) that
highlight the critical role of dynamic data in improving camera control. As shown in Tab. 7, our
fine-tuned model significantly outperforms the original baseline on both the RealEstate10K and our
OmniWorld-Game benchmarks. This result validates OmniWorld as a powerful training resource for
enhancing a model’s capability to follow complex camera instructions in dynamic environments.

5 RELATED WORK

World model dataset. The ability of models to perform world modeling is intrinsically linked to
the availability of large-scale, high-quality spatio-temporal datasets. Static 3D datasets (Dai et al.,
2017; Silberman et al., 2012; Li & Snavely, 2018) have advanced 3D reconstruction by providing
precise geometric information. However, their static nature limits their utility for modeling mo-
tion. In video generation, large-scale video-text datasets (Chen et al., 2024; Bain et al., 2021; Nan
et al., 2024; Ju et al., 2024) offer rich semantic annotations but lack geometric information (e.g.,
depth), making them unsuitable for 4D world modeling. To bridge this gap, researchers have cre-
ated dynamic real-world datasets for autonomous driving (Geiger et al., 2013; Sun et al., 2020) and
human-robot interaction (Palazzolo et al., 2019; Liu et al., 2022; Damen et al., 2018; Fang et al.,
2024). While valuable, these datasets often suffer from a lack of scene diversity and noisy geo-
metric annotations. With advancements in modern rendering technology significantly reducing the
sim-to-real gap (Wang et al., 2020), synthetic datasets have emerged as a valuable alternative provid-
ing precise annotations. However, recent synthetic datasets (Butler et al., 2012; Mayer et al., 2016;
Harley et al., 2022; Wang et al., 2020; Karaev et al., 2023; Mehl et al., 2023) still fall short in terms
of scale, diversity, and modal richness compared to our OmniWorld-Game dataset (Tab. 1).
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Table 6: Comparison of original and fine-tuned models for video depth estimation on Sin-
tel (Butler et al., 2012), Bonn (Palazzolo et al., 2019) and KITTI (Geiger et al., 2013). * denotes
models that have been fine-tuned on OmniWorld.

Method Align
Sintel Bonn KITTI

Abs Rel ↓ δ<1.25 ↑ Abs Rel ↓ δ<1.25 ↑ Abs Rel ↓ δ<1.25 ↑
DUSt3R (Wang et al., 2024c) scale 0.652 0.436 0.151 0.839 0.143 0.814
DUSt3R* 0.512 0.456 0.083 0.920 0.135 0.800

CUT3R (Wang et al., 2025b) scale 0.417 0.510 0.078 0.937 0.123 0.875
CUT3R* 0.396 0.516 0.078 0.938 0.107 0.907
DUSt3R (Wang et al., 2024c) scale&shift 0.570 0.493 0.152 0.835 0.135 0.818
DUSt3R* 0.520 0.480 0.084 0.914 0.136 0.808

CUT3R (Wang et al., 2025b) scale&shift 0.537 0.556 0.075 0.944 0.111 0.884
CUT3R* 0.314 0.574 0.067 0.964 0.103 0.912

Table 7: Comparison of original and fine-tuned models for camera-controlled video generation evalua-
tion on RealEstate10K (Zhou et al., 2018) and OmniWorld-Game benchmark. * denotes models that have been
fine-tuned on OmniWorld.

Method Benchmark TransErr↓ RotErr↓ CamMC↓ FVD
VideoGPT↓ StyleGAN↓

AC3D (Bahmani et al., 2024) RealEstate10K 3.4433 0.6308 3.6615 479.320 409.795
AC3D* 2.8648 0.5314 3.0518 472.683 416.948

AC3D (Bahmani et al., 2024) OmniWorld-Game 6.2788 0.8867 6.6965 1745.778 1594.885
AC3D* 4.1428 0.7610 4.4854 1437.247 1249.186

3D geometric foundation models. 3D geometric foundation models have recently emerged as
a data-driven alternative to traditional methods. Early works like DUSt3R (Wang et al., 2024c)
and MonST3R (Zhang et al., 2024) operate on image pairs, requiring expensive global alignment
for larger scenes. Further research has introduced diverse architectural innovations to overcome
this, including parallel processing (Fast3R (Yang et al., 2025a)), decomposing the learning task
(FLARE (Zhang et al., 2025)), online processing for image streams (CUT3R (Wang et al., 2025b)),
multi-task learning (VGGT (Wang et al., 2025a)), and permutation-equivariant designs (π3 (Wang
et al., 2025d)). However, the efficacy of these models is fundamentally tied to large-scale, multi-
modal training data. We validate OmniWorld as a powerful training resource that fulfills this need.

Camera-controlled video generation. Most methods in this field inject camera parameters (such as
Plücker embeddings) into a pre-trained video diffusion model (Blattmann et al., 2023; Chen et al.,
2023; Yang et al., 2024b) with representative works including MotionCtrl (Wang et al., 2024d),
CameraCtrl (He et al., 2024), CAMI2V (Zheng et al., 2024), AC3D (Bahmani et al., 2024). Despite
this progress, these methods still struggle to generate dynamic content with complex camera control.
They are typically trained on datasets like RealEstate10K (Zhou et al., 2018) or DL3DV-10K (Ling
et al., 2024), which consist of static scenes with smooth camera motions. This data limitation inher-
ently restricts them to handle dynamic scenes (He et al., 2025a). The performance gap is evident on
our challenging OmniWorld-Game benchmark.

6 CONCLUSION

We introduce OmniWorld, a large-scale, multi-domain, and multi-modal dataset designed to address
the critical data bottleneck for 4D world modeling. By integrating self-collected OmniWorld-Game
dataset and several public datasets from various domains, we create a comprehensive data resource
for 4D world modeling. We demonstrate that OmniWorld-Game serves as a challenging benchmark
for 3D geometric prediction and camera-controlled video generation, revealing the limitations of
current methods. Furthermore, we provide strong evidence that fine-tuning with OmniWorld sig-
nificantly boosts the performance of these models, underscoring its value as a powerful training
resource. We believe that OmniWorld will serve as a crucial data resource for the community, accel-
erating the development of more general and robust models for understanding and interacting with
the real physical world.
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ETHICS STATEMENT

Our work, the OmniWorld dataset, is a composite dataset consisting of a newly collected game-
derived dataset (OmniWorld-Game) and several curated public datasets. We have undertaken a multi-
faceted approach to ensure our practices for both collecting new data and curating existing data are
legally compliant.

1) Responsible Acquisition of Game-Derived Data. Game data was captured from legally purchased
games using standard, non-invasive tools (e.g., OBS, ReShade) without any reverse engineering
or cheating. To respect the source material, we automatically remove UI elements and text, and
manually filter for sensitive content such as story spoilers.

2) Adherence to Terms of Use for Game Content. Our use of game content is strictly non-
commercial, aligning with publisher terms of service (e.g., Rockstar Games (Rockstar Games,
2024)). The dataset is intended solely to advance academic research and does not compete with
or infringe upon the economic interests of the copyright holders.

3) Curation of Public Datasets. OmniWorld also incorporates public datasets to enhance domain
diversity. We have strictly adhered to the original license of each dataset, ensuring proper attribution
and compliance with all usage terms.
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A OVERVIEW

Sec. B discusses more details of OmniWorld. Sec. C and Sec. D discuss more details of our bench-
mark and fine-tuning experiments.

B OmniWorld DATASET

Figure 6: The OmniWorld-Game distribution of scene category (the primary POI locations).

To quantitatively analyze the scene diversity of OmniWorld-Game, we adopt the methodology from
DL3DV (Ling et al., 2024) to classify and count scenes across 16 Point-of-Interest (POI) cate-
gories (Ye et al., 2011). The statistical results are shown in Fig. 6. OmniWorld-Game encompasses a
wide variety of scene categories, including ”Nature & Outdoors”, ”Tourist Attractions”, ”Parks and
Recreation”, and ”Hotels and Accommodations”. ”Nature & Outdoors” represents the largest share,
reflecting its dominant presence in the dataset. The distribution of these scene categories aligns
with their prevalence in the real world and the characteristics of the games themselves. For instance,
scenes related to ”Government & Civic Services” and ”Events & Conferences” are typically less fre-
quent in games, leading to their lower representation in our dataset. These statistics further validate
the richness and real-world attributes of OmniWorld-Game.

To provide a more detailed analysis of the dominant ”Nature & Outdoors” scenes in OmniWorld-
Game, we further subdivide this category into 5 second-level and 40 third-level categories. The
detailed distribution is shown in Fig. 7. Our statistics reveal that ”Natural Landforms & Ecosys-
tems” is the dominant second-level category. Within this category, scenes depicting ”Forests &
Rainforests” and ”Cliffs & Rock Formations” are the most prevalent. ”Outdoor Sports & Scenic
Routes” is the second-largest category, with scenes of ”Rock-Climbing Areas” and ”Scenic Drives
& Viewpoints” being particularly prominent. Additionally, ”Urban Outdoor Spaces & Activities”
and ”Agricultural & Rural Landscapes” also make up a small portion of the data. These detailed
statistics confirm that the ”Nature & Outdoors” scenes in OmniWorld-Game are not only abundant
but also internally diverse. This rich composition provides a diverse data source for world modeling
in complex natural environments.
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Figure 7: Scene diversity within the ”Nature & Outdoors” category. A quantitative breakdown
of second- and third-level scene categories in OmniWorld-Game dataset, demonstrating the high
internal diversity and distribution of natural environments.

C OmniWorld-Game BENCHMARK

C.1 3D GEOMETRIC PREDICTION

Experiment details. We adhere to the default configurations of each evaluated model. The entire
evaluation process is conducted on a single A800 GPU. All images are consistently resized to a long
side of 512 pixels while preserving aspect ratio.

For the monocular depth Estimation, we evaluate the first 200 frames of 18 test sequence from the
OmniWorld-Game benchmark. Following the evaluation protocols of prior works (Zhang et al.,
2024; Wang et al., 2025b;d), we focus on scale-invariant monocular depth accuracy. The primary
evaluation metrics are Absolute Relative Error (Abs Rel) and threshold accuracy (δ < 1.25). Under
this setting, the depth map of each frame is independently aligned with its corresponding ground
truth.

For the video depth estimation, we select the first 100 frames of the same test sequence from the
OmniWorld-Game benchmark. To ensure a fair comparison across all models, we cap the input
sequence length at 100 frames, as some models (e.g., FLARE (Zhang et al., 2025)) cannot handle
longer sequences without errors. Similar to the monocular depth estimation, we report Abs Rel
and δ < 1.25. To more comprehensively evaluate depth consistency across video sequences, we
provide results under two different alignment settings: (i) scale-only alignment (scale) and (ii) com-
bined scale and translation alignment (scale & shift). These settings test a model’s depth estimation
capabilities under different constraints, particularly in handling motion and viewpoint changes.

It is important to note that since the benchmark data is included in the training set of π3 (Wang et al.,
2025d), we did not evaluate it in our benchmark.

C.2 CAMERA-CONTROLLED VIDEO GENERATION

Experiment details. AC3D (Bahmani et al., 2024) uses CogVideoX-5B (Yang et al., 2024b) as
base T2V model, it generates 25 frames per inference at a resolution of 480 × 720. CamCtrl (He
et al., 2024) and MotionCtrl (Wang et al., 2024d) use Stable Video Diffusion (SVD) (Blattmann
et al., 2023) as base I2V model and generate 14-frame video sequences at a resolution of 320 ×
512. CAMI2V (Zheng et al., 2024) uses DynamiCrafter (Xing et al., 2023) as base I2V model.
It generates 16-frame video sequences at a resolution of 320 × 512. For a fair comparison with
CamCtrl and MotionCtrl, we use the first 14 frames of its generated videos for evaluation. We use
π3 (Wang et al., 2025d) to get camera poses of the generated videos. All methods are evaluated on
an A800 GPU.
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RGB DUSt3R MASt3R MonST3R Fast3R CUT3R FLARE VGGT MoGe-1 MoGe-2Ground Truth

Figure 8: Qualitative comparison of monocular depth estimation on OmniWorld-Game bench-
mark across various methods.

Table 8: Comparison of original and fine-tuned models for camera pose estimation on Sin-
tel (Butler et al., 2012), TUM-dynamics (Sturm et al., 2012) and ScanNet (Dai et al., 2017). *
denotes models that have been fine-tuned on OmniWorld.

Method
Sintel TUM-dynamics ScanNet

ATE↓ RPE trans↓ RPE rot↓ ATE↓ RPE trans↓ RPE rot↓ ATE↓ RPE trans↓ RPE rot↓
CUT3R (Wang et al., 2025b) 0.210 0.071 0.627 0.045 0.014 0.441 0.096 0.022 0.733
CUT3R* 0.178 0.055 0.651 0.041 0.013 0.374 0.095 0.022 0.604

C.3 ADDITIONAL QUALITATIVE RESULTS

We provide additional qualitative results that complement the quantitative analysis in Sec. 3.1 of the
main paper. Fig. 8 provides a visual comparison of monocular depth estimation results from various
methods on our OmniWorld-Game benchmark. These visualizations confirm that MoGe-2 (Wang
et al., 2025c) generates depth maps with significantly sharper details and more coherent geometric
structures compared to its counterparts.

D MODEL FINE-TUNING

D.1 CAMERA POSE ESTIMATION.

Following prior work (Wang et al., 2025b;d), we report the Absolute Trajectory Error (ATE), Rel-
ative Pose Error for translation (RPE trans), and Relative Pose Error for rotation (RPE rot) on Sin-
tel (Butler et al., 2012), TUM-dynamics (Sturm et al., 2012) and ScanNet (Dai et al., 2017). The
results in Tab. 8 show that CUT3R’s performance notably improved after fine-tuning on OmniWorld
in camera pose estimation.

We perform relative camera pose evaluation on the DynPose-100K (Rockwell et al., 2025) and the
OmniWorld-CityWalk test set. Following prior work (Dong et al., 2024), we assess performance
with three indicators: AUC@5/10/20, which measure the area under the pose accuracy curve. This
curve is based on minimum thresholds of 5, 10, and 20 degrees for rotation and translation angular
errors. Reloc3r (Dong et al., 2024) demonstrated substantial improvements in its ability to estimate
dynamic camera poses after fine-tuning on OmniWorld in relative camera pose evaluation (Tab. 9).

D.2 IMPLEMENTATION DETAILS

We conduct comprehensive fine-tuning experiments on several SOTAs to validate the efficacy of our
OmniWorld as a training resource. All experiments are performed on 8 A800 GPUs.

DUSt3R (Wang et al., 2024c). For fine-tuning, we use OmniWorld-Game alongside a portion of
DUSt3R’s original training sets, including ARKitScenes (Baruch et al., 2021), MegaDepth (Li &
Snavely, 2018), and Waymo (Sun et al., 2020). We load the pre-trained weights of DUSt3R and per-
formed full fine-tuning. The model is fine-tuned on images with random resolutions (e.g., 288×512,
384×512, 336×512). The training runs for 40 epochs, with each epoch consisting of 800 iterations.
We use the AdamW optimizer with an initial learning rate of 2.5×10−5 and a weight decay of 0.05.
Each GPU had a batch size of 7, with each batch containing two images.
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Table 9: Comparison of original and fine-tuned models for relative camera pose evaluation on
DynPose-100K (Rockwell et al., 2025), OmniWorld-CityWalk (Li et al., 2025). * denotes models
that have been fine-tuned on OmniWorld.

Method
DynPose-100K OmniWorld-CityWalk

AUC@5↑ AUC@10↑ AUC@20↑ AUC@5↑ AUC@10↑ AUC@20↑
Reloc3r (Dong et al., 2024) 6.9 15.4 27.1 33.3 49.4 63.1
Reloc3r* 14.4 25.5 37.8 42.5 58.0 70.3

CUT3R (Wang et al., 2025b). We fine-tune CUT3R using OmniWorld-Game and a subset of its
original training data, including CO3Dv2 (Reizenstein et al., 2021), WildRGBD (Xia et al., 2024),
ARKitScenes (Baruch et al., 2021), Waymo (Sun et al., 2020), and TartanAir (Wang et al., 2020).
We load the pre-trained weights and follow the training strategy from CUT3R’s training stage 3. We
fine-tune on higher-resolution images with varied aspect ratios, setting the maximum side to 512
pixels. The encoder is frozen, with only the decoder and heads being trained on longer sequences
of 4 to 64 views. The model is fine-tuned for 2,000 iterations with a total batch size of 96 and a
learning rate of 1.0× 10−6, optimized by AdamW with a weight decay of 0.05.

Reloc3r (Dong et al., 2024). For fine-tuning Reloc3r, we utilize OmniWorld-Game, OmniWorld-
CityWalk, OmniWorld-HoloAssist, and OmniWorld-EpicKitchens, along with a portion of its original
training sets, including CO3Dv2 (Reizenstein et al., 2021), ARKitScenes (Baruch et al., 2021),
Scannet++ (Yeshwanth et al., 2023), BlendedMVS (Yao et al., 2020), and MegaDepth (Li & Snavely,
2018). We load the pre-trained weights, freeze the ViT encoder, and only update the weights for
the decoder and pose regression head. Fine-tuning is performed on images of random resolutions,
including 288 × 512, 384 × 512, and 336 × 512. The model is trained for 80 epochs, with each
epoch comprising 400 iterations. We use the AdamW optimizer with a learning rate of 5.0 × 10−6

and a weight decay of 0.05. Each GPU has a batch size of 32, with each batch containing two
images.

AC3D (Bahmani et al., 2024). We fine-tune AC3D using OmniWorld-Game, OmniWorld-
EpicKitchens, OmniWorld-HOI4D, OmniWorld-HoloAssist, OmniWorld-EgoExo4D, and
OmniWorld-EgoDex, as well as the original training set, RealEstate10K (Zhou et al., 2018).
We load the pre-trained weights of the AC3D ControlNet (Zhang et al., 2023), which is based on
CogVideoX-5B (Yang et al., 2024b). Only the ControlNet model is fine-tuned, with other network
structures frozen. The fine-tuning is performed on video clips of 49 frames with a resolution of 352
× 640. The model is fine-tuned for 6,000 iterations with a total batch size of 8 and a learning rate
of 5.0 × 10−5, optimized by AdamW with a weight decay of 0.0001. The fine-tuned and original
models are evaluated on two distinct benchmarks: a random subset of 150 video samples from the
RealEstate10K (Zhou et al., 2018) test set and OmniWorld-Game benchmark, which consists of
200 video samples. For a fair comparison, all models are configured to output videos at a uniform
resolution of 720 × 480 with a sequence length of 25 frames.

D.3 VISUAL RESULTS.

Fig. 9 provides a qualitative comparison of DUSt3R (Wang et al., 2024c) and CUT3R (Wang et al.,
2025b) on the Sintel (Butler et al., 2012) subset of the Video Depth Estimation benchmark, evalu-
ated both before and after fine-tuning on OmniWorld. After fine-tuning, both models recover finer
geometric details and generate more accurate depth maps. These results indicate that OmniWorld
offers strong geometric supervision and can substantially enhance a model’s geometric prediction
capability.

Fig 10 presents a visual comparison of AC3D (Bahmani et al., 2024) on the OmniWorld-Game
benchmark before and after fine-tuning on the OmniWorld dataset for the camera-controlled video
generation task. The visualizations clearly show that after fine-tuning, the generated videos more
closely follow the desired camera trajectory and exhibit higher temporal consistency for moving
objects. This demonstrates that OmniWorld can significantly enhance a model’s ability to model
dynamics.
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Figure 9: Qualitative comparison of original and fine-tuned models for video depth estimation
on the Sintel (Butler et al., 2012). * denotes models that have been fine-tuned on OmniWorld. After
fine-tuning, both models recover finer geometric details and produce more accurate depth maps,
highlighting the efficacy of OmniWorld as a geometric supervision source.

"A character rides a horse along a dirt path through a lush forested area, surrounded by tall pine trees and distant snow-covered

mountains under a partly cloudy sky."

AC3D

AC3D*

Figure 10: Qualitative comparison of original and fine-tuned models for camera-controlled
video generation. * denotes models that have been fine-tuned on OmniWorld. The visualizations
show that fine-tuning with our dataset significantly improves the model’s ability to generate videos
that more accurately follow camera trajectories and maintain higher temporal consistency for mov-
ing objects.

E STATEMENT ON LLM USAGE

In the preparation of this manuscript, we use Large Language Models (LLMs) only to polish writing.

F HIGH-QUALITY VIDEO CLIP SELECTION

To ensure the precision and geometric consistency of camera pose annotations within the OmniWorld
dataset, we implemented a sophisticated, multi-stage automated filtering pipeline. This pipeline is
designed to extract high-quality, texture-rich, and smoothly moving video segments (Splits) from
raw, long video sequences, while discarding frames unsuitable for robust 3D reconstruction. The
filtering process encompasses two primary stages: frame-level quality assessment and temporal
consistency validation.
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Severe UnderexposureTexture Scarcity Dynamic Occlusion Motion Blur

Figure 11: Examples of low-quality frames discarded by the filtering pipeline. Each column
illustrates a specific failure case: Texture Scarcity, Severe Underexposure, Dynamic Occlusion,
Motion Blur.

F.1 FRAME-LEVEL QUALITY ASSESSMENT

Before sequence segmentation, each individual frame undergoes a rigorous evaluation. Any frame
failing to meet the following criteria is designated as an ”invalid frame,” triggering a truncation of
the current video segment.

Texture Scarcity. Robust feature matching is fundamental for accurate camera pose estimation. We
employ the SIFT (Lowe, 2004) algorithm for feature point extraction. A frame is discarded if it
yields few valid keypoints, indicative of homogenous surfaces or extreme blur.

Geometric Invalidity. For source data including depth information, we check the integrity of the
depth maps. A frame is deemed geometrically invalid if it contains invalid values or if the area of
invalid depth (zero values) exceeds 60% of the total image pixels.

Severe Underexposure. Extremely dark scenes significantly degrade the signal-to-noise ratio, ad-
versely affecting reconstruction quality. We quantify the proportion of pixels with values below 20
in the RGB image. If dark pixels constitute over threshold of the frame, it is marked as unusable.

Dynamic Occlusion. Large-area dynamic foreground objects can confound SfM algorithms, which
typically assume a static scene. Leveraging semantic masks generated by Grounding DINO (Liu
et al., 2023) and SAM2 (Ravi et al., 2024), we calculate the screen occupancy of dynamic entities
(e.g., characters, vehicles). If the dynamic region exceeds 60% of the frame, it is consequently
excluded.

F.2 TEMPORAL CONSISTENCY AND MOTION FILTERING

To guarantee the continuity of inter-frame relationships within video segments, we integrate optical
flow estimation, utilizing RAFT (Teed & Deng, 2020), to impose constraints on adjacent frame
motion characteristics.

Forward-Backward Flow Consistency. We compute bidirectional optical flow between frames
at time t and t + 1, and employ the forward-backward error to detect occlusions and matching
inaccuracies. If the proportion of pixels satisfying geometric consistency constraints falls below
50%, it indicates a sudden scene change or severe occlusion, leading to the truncation of the current
sequence.

Motion Magnitude Limitation. Excessive camera motion often results in motion blur and reduced
inter-frame overlap, which can severely impede feature tracking. We calculate the mean magnitude
of normalized optical flow. If the average motion exceeds 10% of the image dimensions (a threshold
set at 0.1), it is classified as rapid motion, and the current segment is truncated. This criterion is
crucial for preventing tracking loss during SfM.

Fig. 11 provides visual examples of various ”bad cases” that our filtering pipeline effectively iden-
tifies and discards. These examples illustrate frames affected by texture scarcity, severe underexpo-
sure, dynamic occlusion, and significant motion blur, all of which compromise the quality of camera
pose estimation.
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Reference Image DroidCalib Ours

Figure 12: Qualitative comparison of point cloud reconstructions between DroidCalib (Hage-
mann et al., 2023) and our camera pose estimation pipeline. We visualize the consistency of
camera poses by accumulating point clouds over a video sequence. The Left column shows the
reference frame. The Middle column shows the reconstruction using poses from the baseline Droid-
Calib, where red arrows indicate significant misalignment and ghosting artifacts on static structures.
The Right column shows the reconstruction using ours, which effectively resolves these artifacts,
resulting in sharper and more geometrically consistent 3D structures.

Through this stringent filtering methodology, we effectively eliminate low-quality data, thereby
ensuring that each selected video segment within the OmniWorldis suitable for generating high-
precision camera pose annotations.

G QUALITATIVE VALIDATION OF ANNOTATION PIPELINES

To visually substantiate the effectiveness of our annotation pipelines, we provide qualitative valida-
tion.

G.1 CAMERA POSE ESTIMATION

We compare our two-stage pipeline (DroidCalib (Hagemann et al., 2023) initialized, refined via Co-
Tracker3 (Karaev et al., 2024) and Bundle Adjustment) against the baseline DroidCalib (Hagemann
et al., 2023). To visualize the accuracy of the estimated camera poses, we project the ground truth
depth maps into a unified 3D point cloud using the estimated camera extrinsic parameters. As shown
in Fig. 12, the baseline DroidCalib often suffers from drift or misalignment in dynamic scenes, re-
sulting in ”ghosting” artifacts or structural inconsistencies (highlighted by red arrows). In contrast,
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SegAnyMo

GroundingDINO
SAM

SegAnyMo

GroundingDINO
SAM

Figure 13: Qualitative comparison of foreground mask generation on in-the-wild videos. We
compare SegAnyMo (Huang et al., 2025) with our pipeline. SegAnyMo struggles to consistently
track and segment all moving subjects, while our method provides precise masks for the moving
subjects.

Figure 14: Failure case analysis of foreground mask annotations. We visualize the segmentation
masks (green overlay) in challenging scenarios.

our pipeline produces globally consistent point clouds where static background geometries (e.g.,
walls, pillars, trees) are sharply aligned, demonstrating superior pose accuracy in the presence of
dynamic foregrounds.

G.2 FOREGROUND MASK GENERATION IN DYNAMIC SCENARIOS

We compare our semantic segmentation pipeline (Grounding DINO (Liu et al., 2023) with
SAM (Ravi et al., 2024)) against the recent SOTA video-specific segmentation model
SegAnyMo (Huang et al., 2025).

As illustrated in Fig. 13, our pipeline demonstrates superior mask results and robustness in complex
dynamic environments. In the second row (narrow alley), our method successfully segments multi-
ple walking pedestrians that are missed by the baseline. In the third row (road scene), SegAnyMo
incorrectly segments static traffic signs as dynamic foregrounds, whereas our method correctly iden-
tifies and segments the moving vehicles. These results validate our choice of the Grounding DINO
with SAM pipeline for generating reliable foreground masks, which are crucial for filtering dynamic
interference in downstream tasks.

H FAILURE CASE ANALYSIS

While our automated pipeline (Grounding DINO (Liu et al., 2023) with SAM (Ravi et al., 2024))
demonstrates high reliability across diverse domains, we provide a transparent analysis of typical
failure cases to highlight potential limitations. We identify two primary scenarios where the pipeline
may exhibit imperfections: extreme crowd density and color ambiguity in close-range interactions.
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Figure 15: Statistical distribution of the OmniWorld-Game benchmark samples. (a) The geomet-
ric prediction benchmark is balanced across scene types (Indoor, Outdoor) and dynamic complexity
levels. (b) The video generation benchmark covers a diverse range of camera trajectory complexi-
ties, environmental conditions, and perspectives.

As shown in the top row of Fig. 14, in highly cluttered outdoor scenes with numerous dynamic
agents, the pipeline successfully segments the majority of pedestrians. However, due to resolution
limitations and severe occlusion, detection may fail for distal subjects (i.e., small figures in the far
background).

In ego-centric robotic manipulation scenarios (bottom row of Fig. 14), the camera often operates
in close proximity to objects. When the robotic arm interacts with objects that share similar color
textures or are spatially adjacent, the segmentation mask may exhibit semantic leakage, inadvertently
covering nearby static objects along with the moving arm.

Crucially, empirical observations suggest that these localized annotation imperfections have a neg-
ligible impact on our primary downstream task: dynamic camera pose estimation. As long as the
dominant dynamic foregrounds are masked and a sufficient portion of the static background remains
visible, the pose estimation remains accurate and stable.

I DETAILED BENCHMARK STATISTICS AND ANALYSIS

I.1 GEOMETRIC PREDICTION BENCHMARK

To ensure a comprehensive evaluation of SOTA models, we employed an ”Attribute-Balanced Sam-
pling” strategy for the OmniWorld-Game benchmark. This section details the quantitative distribu-
tions and qualitative definitions of our test samples.

We curated a set of 90 long-sequence samples, each containing 384 frames, specifically designed to
evaluate long-term geometric consistency. Each sample lasts for 16 seconds.

Scene Distribution. As illustrated in Fig. 15a, the dataset maintains a balance across Outdoor-
Urban (58%), Outdoor-Natural (18%), and Indoor (24%) environments. This distribution ensures
that models are rigorously tested on both unbounded scenes with complex backgrounds and bounded
scenes featuring intricate internal structures.

Dynamic Complexity. We categorize motion into three distinct levels based on the intensity of object
and camera movement. High-Dynamic (48%): Features intense motions such as running, flying, or
rapid vehicle movement. Medium-Dynamic (38%): Includes standard motion (walking, running)
and regular interactions. Low-Dynamic (14%): Primarily consists of background environmental
motion or still character animations.
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I.2 CAMERA-CONTROLLED VIDEO GENERATION BENCHMARK

For the camera-controlled video generation task, we selected 200 samples, prioritizing trajectory
complexity and environmental richness to ensure a challenging evaluation.

Camera Trajectory Complexity. As depicted in Fig. 15b, we split the samples based on camera
motion. High-Complexity (51%): Features rapid translations combined with rotations, or compound
high-speed movements. Medium-Complexity (49%): Represents distinct but stable motions, typical
of cinematic tracking shots.

Environmental Diversity. The benchmark spans a wide range of lighting conditions (Day 60%, Night
31%, Dusk 9%) and weather scenarios (Sunny 53%, Cloudy 25%, Rain/Snow 22%).

Perspective. We include both First-person (64%) and Third-person (36%) views to test generation
robustness across different field-of-view dynamics.

As shown in the visual examples in Fig. 16, OmniWorld-Game high-dynamic sequences introduce
complex camera trajectories and drastic geometric changes, posing a substantial challenge for both
geometric prediction and camera-controlled video generation.

J QUANTITATIVE VALIDATION OF ANNOTATION PIPELINES

To ensure the trustworthiness of the OmniWorld dataset, we conducted extensive quantitative analy-
ses in key modalities.

J.1 DEPTH ANNOTATION VALIDATION

The accuracy of our ground truth (GT) depth in OmniWorld-Game is intrinsically guaranteed by
the rendering engine and validated by the fine-tuning experiments in Sec.4.1. Here, we focus on
validating the quality of our pseudo-labeled depth for the DROID (Khazatsky et al., 2024) dataset,
which was generated using FoundationStereo (Wen et al., 2025).

To assess the utility of these annotations in downstream tasks, we pre-trained the FP3 (Yang et al.,
2025b) model on point clouds projected from two sources: (1) the original DROID depth, and (2)
our refined depth annotations. We then evaluated these models on four real-world tasks.

As presented in Table 10, the model pre-trained on our annotated depth yields significantly higher
success rates across all tasks compared to the baseline using original DROID depth. This result
demonstrates that our depth annotations preserve better geometric consistency.

Table 10: Real-world manipulation task success rates (%). Comparison of the FP3 pre-trained
on the original DROID depth and our refined depth annotations. Our annotations consistently lead
to higher success rates.

Method Open Drawer Stack Cups Pick up Toy Put Toy into Basket

FP3 (Original DROID depth) 25 10 60 35
FP3 (Ours refined depth) 40 35 90 55

J.2 CAMERA POSE ANNOTATION VALIDATION

We evaluate our camera pose annotation pipeline in two scenarios: datasets without GT depth (e.g.,
in-the-wild videos) and datasets with GT depth (e.g., OmniWorld-Game).

Scenario 1: Evaluation on Data without GT Depth. We compared our full pipeline (VGGT (Wang
et al., 2025a) initialization followed by CoTracker3 (Karaev et al., 2024) and Bundle Adjustment)
against the baseline VGGT on the Sintel benchmark (Butler et al., 2012). As shown in Table 11,
our method significantly outperforms the baseline, reducing the Absolute Trajectory Error (ATE) by
over 50%. This confirms that our optimization strategy effectively refines coarse initializations into
precise trajectories.
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Table 11: Pose estimation performance on the Sintel benchmark. Comparison between the base-
line VGGT and our full annotation pipeline.

Method ATE ↓ RPE trans ↓ RPE rot ↓
VGGT (Baseline) 0.167 0.062 0.491
Ours 0.082 0.042 0.246

Scenario 2: Evaluation on Data with GT Depth. To evaluate the reliability of our camera pose an-
notations where GT depth is available, we adopted the rigorous validation protocol following (Rock-
well et al., 2025). We conducted a large-scale evaluation across 8,345 randomly sampled frame pairs
from our dataset.

For each pair, we extracted high-quality sparse correspondences on static regions using Super-
Point (DeTone et al., 2018) and LightGlue (Lindenberger et al., 2023), explicitly masking out dy-
namic objects to ensure geometric validity. We then computed the geometric consistency (via Samp-
son error) for poses estimated by our pipeline compared to the DroidCalib (Hagemann et al., 2023)
baseline.

The results, summarized in Table 12, demonstrate the superiority of our approach. Our pipeline
reduces the mean reprojection error to 1.09 px (from 1.30 px) and improves fine-grained precision,
with 78.36% of correspondences across frame pairs falling within a 1-pixel error threshold, com-
pared to 69.85% for the baseline. Beyond numerical metrics, our pipeline produces visibly more
consistent point cloud reconstructions and the visualizations in Appendix G.1 have already demon-
strated this.

Table 12: Evaluation of camera pose annotation reliability. We report the geometric consistency
(reprojection error) on 8,345 sampled pairs, comparing our pipeline against the DroidCalib baseline.

Method Mean Error (px) ↓ % < 1 Pix ↑ % < 3 Pix ↑ % < 5 Pix ↑
DroidCalib (Baseline) 1.30 69.85% 91.42% 96.02%
Ours 1.09 78.36% 93.90% 96.66%
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Figure 16: Visual examples of the OmniWorld-Game Benchmark. Each row displays sample
RGB frames from a long sequence alongside the corresponding ground truth 3D point cloud and
camera trajectory (indicated by yellow frustums). The samples demonstrate high diversity in scene
types and complex camera motions, reflecting the challenging nature of the benchmark.
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