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ABSTRACT

Multimodal large language models (MLLMs) extend the success of language
models to visual understanding, and recent efforts have sought to build unified
MLLMs that support both understanding and generation. However, constructing
such models remains challenging: hybrid approaches combine continuous em-
beddings with diffusion or flow-based objectives, producing high-quality images
but breaking the autoregressive paradigm, while pure autoregressive approaches
unify text and image prediction over discrete visual tokens but often face trade-
offs between semantic alignment and pixel-level fidelity. In this work, we present
Bridge, a pure autoregressive unified MLLM that augments pre-trained visual un-
derstanding models with generative ability through a Mixture-of-Transformers ar-
chitecture, enabling both image understanding and generation within a single next-
token prediction framework. To further improve visual generation fidelity, we pro-
pose a semantic-to-pixel discrete representation that integrates compact semantic
tokens with fine-grained pixel tokens, achieving strong language alignment and
precise description of visual details with only a 7.9% increase in sequence length.
Extensive experiments across diverse multimodal benchmarks demonstrate that
Bridge achieves competitive or superior results in both understanding and gen-
eration benchmarks, while requiring less training data and reduced training time
compared to prior unified MLLMs.

1 INTRODUCTION

Inspired by the success of large language models (LLMs)(Bai et al., 2023a; Brown, 2020; Rad-
ford et al., 2019; Google et al., 2023; Touvron et al., 2023a;b), multimodal large language models
(MLLMs)(Liu et al., 2023a; 2024c) have been developed to jointly process and understand visual
and textual information within a next-token prediction framework. Leveraging pre-trained visual
encoders such as CLIP (Radford et al., 2021) or SigLIP (Zhai et al., 2023; Tschannen et al., 2025),
existing approaches typically project the extracted visual features into the latent space of the LLM
and fine-tune the model to interpret visual signals through these embeddings. Despite their success
across a wide range of visual understanding applications, these kinds of MLLMs are not truly “mul-
timodal”, as they can only understand but not generate visual signals. This limitation not only
prevents them from generating images as desired by users, but also hinders their ability to reason
through the visual modality (Chern et al., 2025) when tackling more complex multimodal tasks.

To address these limitations, unified MLLMs have been designed to jointly learn visual understand-
ing and generation within a single system. Broadly, existing unified MLLMs fall into two cate-
gories. Hybrid MLLMs (Deng et al., 2025; Zhou et al., 2024; Xie et al., 2025b) represent visual
tokens with continuous embeddings and incorporate generative objectives such as diffusion or flow
matching, generating images through an iterative refinement process. In contrast, pure autoregres-
sive MLLMs (Han et al., 2025; Wu et al., 2024b; Wang et al., 2024b; Ma et al., 2025a; Chen et al.,
2025c) rely on discrete visual tokens encoded by vector-quantized (VQ) tokenizers (Van Den Oord
et al., 2017; Esser et al., 2021) and are trained solely with negative log-likelihood loss, thereby
following a clean next-token prediction paradigm for both language and vision generation.

Both understanding MLLMs and unified MLLMs are typically initialized from pure language LLMs
in order to inherit strong linguistic capabilities. However, while unified MLLMs is functionally a su-
perset of understanding MLLMs, most existing unified MLLMs do not inherit the visual understand-
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Figure 1: Qualitative Results on text-to-image generation and image editing tasks.

ing ability already established in understanding MLLMs. This gap can be attributed to differences
in architectural choices and training objectives. For instance, unified MLLMs sometimes discard
the pre-trained visual encoders (Han et al., 2025; Wu et al., 2024b) used in understanding-oriented
MLLMs, or employ non-autoregressive generative objectives (Deng et al., 2025; Zhou et al., 2024;
Chen et al., 2025a) that deviate substantially from the training paradigm of understanding-oriented
models.

In this paper, we propose Bi-modality Routing via Dual-branch Generative Experts (Bridge), a
pure autoregressive unified MLLM that performs both image understanding and generation through
the same next-token prediction framework. Unlike prior unified MLLMs, Bridge is directly built
upon existing understanding-oriented MLLMs, thereby inheriting their strong visual comprehen-
sion capabilities. Crucially, by adopting a dual-branch modeling design, our approach preserves
the inherited model’s visual understanding ability while enabling generative capacity, ensuring that
comprehension is not compromised. This design reduces dependence on large-scale, high-quality
visual understanding datasets, while also decreasing training time and enhancing overall training
efficiency.

To further enhance visual generation quality, we propose a semantic-to-pixel discrete representation
for images. This representation integrates two complementary levels of tokenization: compact, high-
level semantic tokens that capture global structure and meaning, and fine-grained pixel tokens that
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preserve detailed visual information such as textures and edges. By combining semantic abstraction
with pixel-level precision, our discrete visual representation achieves both strong alignment with
language modeling and accurate reconstruction of visual details. Remarkably, this richer represen-
tation requires only 7.9% increase in per-image token length compared to only using pixel tokens,
yet it delivers significantly improved generation fidelity across diverse tasks.

To summarize, our key contributions are as follows:

• We propose Bridge, a pure autoregressive unified MLLM that expands pre-trained MLLMs
with visual generative capacity while strictly preserving their inherited visual understand-
ing ability. This design enables efficient unification of multimodal understanding and gen-
eration under a single next-token prediction framework.

• We introduce a semantic-to-pixel discrete visual representation, which combines compact
high-level semantic tokens with fine-grained pixel tokens. This dual-level representation
provides strong semantic alignment with language models while preserving detailed visual
fidelity, significantly boosting generation quality with minimal increase in sequence length.

• We conduct extensive experiments across multimodal benchmarks, showing that our
method achieves competitive or superior performance in both understanding and gener-
ation tasks, while requiring less training data, shorter training time, and overall improved
efficiency compared to prior unified MLLMs.

2 RELATED WORK

Unified Multimodal Large Language Models. Recent advances in multimodal large language
models (MLLMs) aim to move beyond visual understanding to also support visual generation within
a unified framework. Existing approaches can be broadly divided into two families. The first em-
ploys continuous visual embeddings combined with diffusion or flow-based objectives for image
generation, as in Transfusion (Zhou et al., 2024), BAGEL (Deng et al., 2025), Show-o2 (Xie et al.,
2025b), JanusFlow (Ma et al., 2025c), and ILLUME (Wang et al., 2024a). While capable of produc-
ing high-quality synthesis, these methods break the clean autoregressive paradigm, thereby compli-
cating training and integration. The second line of work adopts discrete vision tokens produced by
VQ-based tokenizers (Van Den Oord et al., 2017; Esser et al., 2021), enabling unified next-token
prediction across both text and image tokens. Within this family, models such as Emu3 (Wang
et al., 2024b), Chameleon (Team, 2024), and Janus (Wu et al., 2025c; Chen et al., 2025c) achieve
more elegant unification, but their reliance on pixel-level VQ tokenizers (Esser et al., 2021; Sun
et al., 2024) often limits semantic alignment with language models and weakens visual comprehen-
sion (Han et al., 2025). Other variants, such as Tar (Han et al., 2025), UniTok (Ma et al., 2025a), and
VILA-U (Wu et al., 2024b), attempt to bridge this gap through semantic quantization, but still suffer
from reduced pixel-level fidelity. A few recent works (Lin et al., 2025; Pan et al., 2025; Wu et al.,
2025d) attempt to extend pre-trained MLLMs with generative capability, yet they heavily depend
on external diffusion or flow-based decoders, and thus cannot be considered truly unified MLLMs.
In contrast, Bridge relies solely on next-token prediction for image generation, without the need for
any external generative models.

3 METHOD

In this section, we present the design of our pure autoregressive unified MLLM, Bridge. We begin
with the architecture of Bridge in Section 3.1, describing how it is built on top of a pre-trained under-
standing MLLM. In Section 3.2, we introduce our semantic-to-pixel discrete visual representation,
which enhances visual generation quality significantly. We then detail the data usage in Section 3.3,
and finally outline the full training procedure in Section 3.4.

3.1 ARCHITECTURE

Bridge is built upon a pre-trained decoder-only MLLM. We adopt InternVL3 (Zhu et al., 2025)
with Qwen2.5 (Qwen et al., 2025) model architecture as the backbone, selected for its competitive
performance in both language modeling and visual understanding. To preserve these capabilities,
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continuous visual token discrete text token discrete semantic token discrete pixel token
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📘 Und. Expert QKV

📘 Und. Expert FFN 🎨 Gen. Expert FFN

Visual Understanding Visual Generation

🎨 Gen. Expert QKV

Figure 2: Method overview. Bridge adopts a Mixture-of-Transformers (MoT) architecture with two
experts: a frozen understanding (Und.) expert for text and visual understanding tokens, and a newly
trained generation (Gen.) expert for visual generation tokens. Both experts share unified causal
attention across all tokens. Visual generation representation are constructed by concatenating short
semantic token sequences with longer pixel token sequences, which are modeled jointly with text
tokens under a unified next-token prediction objective. Semantic tokens serve as a bridge between
text and pixel modalities, substantially improving visual generation quality.

we keep a complete copy of the InternVL3 model, including its continuous vision encoder, frozen
within Bridge. This ensures that the strong language modeling and visual understanding ability of
the underlying MLLM remains intact.

To endow the model with visual generation capacity, we introduce additional trainable modules.
Unlike prior works such as MetaQueries (Pan et al., 2025) or Qwen-Image (Wu et al., 2025a), which
treat the MLLM as a frozen text encoder and rely on external diffusion transformers (Peebles & Xie,
2023; Esser et al., 2024) for image synthesis, our goal is to construct a unified MLLM capable of
both understanding and generating multimodal information entirely within the next-token prediction
paradigm.

To achieve this, we leverage a Mixture-of-Transformers (MoT) design (Liang et al., 2024; Shi et al.,
2024; Deng et al., 2025), as illustrated in Figure 2. Specifically, we copy the LLM backbone to create
a generation expert and combine it with the frozen understanding expert. In contrast to Mixture-of-
Experts (MoE) architectures, where only the feed-forward networks differ across experts, both the
understanding and generation experts in Bridge are implemented as complete transformer blocks
with separate parameter sets. The two experts interact at every attention layer, where their tokens
are concatenated and processed jointly using standard causal masking, enabling seamless integration
of understanding and generation within a unified autoregressive framework.

Hard routing is employed to dispatch tokens between the two experts. Text tokens are passed directly
into the understanding expert. Images for understanding tasks are first encoded by the continuous
vision encoder inherited from the backbone MLLM and then fed into the understanding expert. In
contrast, image generation tokens are routed to the generation expert. During training, ground-
truth images are converted into discrete visual tokens and provided to the generation expert for
loss computation. At inference, the generation expert autoregressively predicts each discrete visual
token, which is then fed back into the same expert to generate the next token.

3.2 SEMANTIC-TO-PIXEL DISCRETE VISUAL REPRESENTATION

A central challenge in pure autoregressive unified MLLMs lies in designing effective visual repre-
sentations for generation. Most existing approaches (Wang et al., 2024b; Team, 2024; Wu et al.,
2025c; Chen et al., 2025c) rely on pixel-level tokens produced by VQGANs (Esser et al., 2021).
While these tokens capture fine-grained details, their heavy focus on low-level reconstruction makes
them poorly aligned with language tokens, often leading to suboptimal image generation quality.
In contrast, semantic-level tokens (Han et al., 2025; Wu et al., 2024b), which are encoded by text-
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aligned visual encoders, exhibit strong alignment with language but lack sufficient precision for
representing detailed visual content.

To combine the strengths of both representations, Bridge adopts a semantic-to-pixel discrete visual
representation. Each image is represented as a sequence that begins with semantic tokens and is
followed by pixel tokens:

<BOI> <SEM0> <SEM1> . . . <PIX0> <PIX1> . . . <EOI>,

where <BOI> and <EOI> denote special tokens marking the beginning and end of an image,
<SEMi> represents the i-th semantic token, and <PIXi> represents the i-th pixel token.

The semantic tokens, placed at the front of the sequence, provide high-level structure and holistic
information about the image. Their strong alignment with language tokens makes them easier to
generate and helps bridge the modality gap. The subsequent pixel tokens supply fine-grained details
necessary for accurate reconstruction. Although pixel tokens alone remain difficult to be modeled,
the presence of preceding semantic tokens reduces this difficulty, aligning the entire sequence more
effectively with text and thereby improving generation quality. This design is conceptually similar to
the Chain-of-Thought (CoT) mechanism (Wei et al., 2022) in LLMs, where intermediate reasoning
steps improve the final result.

Concretely, we employ TA-Tok (Han et al., 2025) as the semantic encoder and LlamaGen-
VQGAN (Sun et al., 2024) as the pixel encoder. Instead of using TA-Tok’s de-tokenizer, we rely
solely on the LlamaGen-VQGAN de-tokenizer to reconstruct images from the generated pixel to-
kens. Importantly, we find that a short, coarse semantic sequence is sufficient to capture holistic
image semantics and connect text and pixel tokens. Thus, we use 3× spatially downsampled seman-
tic tokens from TA-Tok, resulting in 81 semantic tokens. When combined with 1024 pixel tokens
for representing 512 × 512 images, this increases the total token length by less than 10%, while
yielding significantly improved visual generation fidelity, as demonstrated in Section 4.2.

3.3 DATA CURATION

Our training data consists of image-to-text, text-to-image and interleaved multimodal datasets.
Among them, our main goal is to collect and filter large-scale high-quality data for visual generation
tasks. (1) Filtering and recaptioning. We first apply the aesthetic score and resolution filtering to
the webdataset LAION-5B (Schuhmann et al., 2022), where images with an aesthetic score >5 and
resolution >512px will be preserved. Then we leverage open-sourced VLMs (Bai et al., 2025; Zhu
et al., 2025) to generate more accurate captions for these images. To enhance the model’s generation
capability on text rendering and human face, we also apply text and human face detection pipeline
to curate a subset. (2) Synthetic Images. To further improve the model’s generation quality, we
collect open-sourced datasets generated by GPT-4o-Image (Chen et al., 2025a;b; Ye et al., 2025a;
Wang et al., 2025b) and FLUX (Han et al., 2025). Besides, we also leverage Seedream 3.0 (Gao
et al., 2025) to curate million scale text-to-image datasets using prompts from other datasets (Deng
et al., 2009; DrawThingsAI, 2024) and users (Sun et al., 2023; Egan et al., 2024). Due to space
limit, we put the dataset details in the Appendix Section C.

3.4 TRAINING PROCEDURE

Since Bridge represents images entirely with discrete tokens, we train it using a unified negative log-
likelihood loss across all modalities. This formulation allows text and image tokens to be modeled
consistently under the same autoregressive objective. To fully exploit diverse multimodal data, we
adopt a multi-stage training procedure inspired by prior LLMs and MLLMs. Below, we describe the
details of each stage.

Stage 1: Unified Multimodal Pre-training. The objective of this stage is to establish robust multi-
modal generation capability. We pre-train Bridge on large-scale heterogeneous datasets that include
text-to-image pairs (Schuhmann et al., 2022), interleaved multimodal documents (Li et al., 2024c;
Qu et al., 2025a), and a small proportion of image-to-text data (Gu et al., 2024; Yu et al., 2024c).
During this stage, all input images, including those from image-to-text samples, are routed through
the newly introduced generation encoder and processed by the generation expert. In the latter case,
textual outputs are still produced by the frozen understanding expert but are conditioned on latent
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Table 1: Quantitative Results on Visual Understanding Benchmarks. Models without a specified
base (M)LLM are trained from scratch.

Model Base (M)LLM POPE↑ MME-P↑ MME-C↑ MMB↑ SEED↑ MMMU↑
Understanding Only Models
LLaVA-v1.5 Vicuna-7B 85.9 1511 - 64.3 58.6 35.4
Qwen-VL Qwen-7B - 1488 - 60.6 58.2 -
LLaVA-NeXT Vicuna-7B 86.5 1519 - 67.4 64.7 35.1
DeepSeek-VL DeepSeek-7B 88.1 - - 73.2 70.4 36.6
LLaVA-OV Qwen2-7B 87.2 1580 418 80.8 75.4 48.8

Unified Models
ILLUME Vicuna-7B 88.5 1445 - 65.1 72.9 38.2
Chameleon - - - - - - 22.4
LWM LLaMA2-7B 75.2 - - - - -
Emu3 - 85.2 - - 58.5 68.2 31.6
Liquid GEMMA-7B 81.1 1119 - - - -
UniTok LLaMA2-7B 83.2 1448 - - - -
VILA-U LLaMA2-7B 85.8 1402 - - 59.0 -
Janus-Pro DeepSeek-7B 87.4 1567 260 79.2 72.1 41.0
TokenFlow-XL Qwen-2.5-14B 87.8 1551 371 76.8 72.6 43.2
MetaMorph LLaMA-3.1-8B - - - 75.2 71.8 41.8
Tar Qwen2.5-7B 87.8 1571 355 74.4 73.0 39.0
Show-o2 Qwen2.5-7B - 1621 - 79.3 69.8 48.9
BAGEL Qwen2.5-7B - 1687 - 85.0 - 55.3
LMFusion LLaVA-NeXT-8B - 1604 - 72.1 72.5 41.7
MetaQuery-XL LLaVA-NeXT-8B - 1685 - 83.5 76.9 58.6
UniWorld-V1 Qwen2.5-VL-7B - - - 83.5 - 58.6
BLIP3-o Qwen2.5VL-7B - 1683 647 83.5 77.5 50.6
Bridge (Ours) InternVL3-8B 88.4 1730 677 84.4 77.4 57.4

representations provided by the generation expert. This setup encourages the generation expert
to learn rich and discriminative visual features, thereby improving downstream tasks that require
image-conditioned generation, such as image editing and inpainting. The full pre-training stage uses
410M text-to-image pairs for visual generation, 57M image-to-text pairs for visual understanding,
and 29M interleaved multimodal samples.

Stage 2: Continued Pre-training. In this stage, we focus on further enhancing the visual generation
ability of Bridge by training on high-quality text-to-image datasets (Han et al., 2025; Schuhmann
et al., 2022). Compared to the large but diverse corpus used in Stage 1, this data has higher aesthetic
quality and includes more challenging cases, such as images with OCR contents or human faces.
This stage exposes the model to approximately 60M multimodal examples (partially filtered from the
pre-training corpus), enabling it to refine generation quality while improving robustness on visually
complex and semantically demanding scenarios.

Stage 3: Supervised Fine-tuning. The supervised fine-tuning (SFT) stage uses the smallest amount
of data, but of the highest quality. We leverage carefully curated text-to-image datasets (Deng et al.,
2009; Sun et al., 2023; Egan et al., 2024; DrawThingsAI, 2024; Chen et al., 2025a;b; Ye et al.,
2025a) and instructional image editing data (Wang et al., 2025b; Wu et al., 2025d; Wei et al., 2024;
Yu et al., 2024a) to align the model’s outputs with human preferences. In total, this stage involves
approximately 28M training samples, providing precise guidance for controllable and instruction-
following generation.

Additional training details and hyper-parameters can be found in Appendix Section D.

4 EXPERIMENTS

In all experiments, we use InternVL3-8B (Zhu et al., 2025) as the base MLLM. Our semantic-to-
pixel discrete representation is built upon two components: the visual encoder of TA-Tok (Han et al.,
2025) for semantic tokens and LlamaGen-VQGAN (Sun et al., 2024) for pixel tokens. The TA-Tok
encoder takes images of size 384×384 as input, encodes and pools the features, and quantizes them
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Table 2: Quantitative Results on Text-to-image Generation Benchmarks. † refers to the methods
using prompt augmentation, e.g., LLM rewriter or self-CoT (Wei et al., 2022).

Method DPG Bench GenEval WISE

Entity Relation Overall↑ Two Obj. Color Attr. Overall↑ Time Space Overall↑
Generation Only Model
SDXL 82.43 86.76 74.65 0.74 0.23 0.55 0.48 0.47 0.43
Playground v2.5 82.59 84.08 75.47 - - - 0.58 0.55 0.49
Hunyuan DiT 80.59 74.36 78.87 - - - - - -
DALLE3 89.61 90.58 83.50 0.87 0.45 0.67 - - -
SD3-Medium 91.01 80.70 84.08 0.94 0.60 0.74 0.44 0.48 0.42
SANA-1.5 - - 84.70 0.93 0.65 0.81 - - -
NextStep-1 - - 85.28 - - 0.63 / 0.73† 0.54 0.61 0.54 / 0.79†

Unified Model
Chameleon - - - - - 0.39 - - -
LWM - - - 0.41 0.15 0.47
Emu3 86.68 90.22 80.60 0.71 0.21 0.54 / 0.66† 0.45 0.48 0.39
SEED-X-13B - - - 0.58 0.14 0.49 - - -
Transfusion - - - - - 0.63 - - -
ILLUME - - - 0.86 0.28 0.61 - - -
Janus-Pro-7B 88.90 89.32 84.19 0.89 0.66 0.80 0.37 0.49 0.35
Tar-7B 88.62 93.98 84.19 0.92 0.65 0.84 - - -
Show-o2-7B 91.78 91.81 86.14 0.87 0.62 0.76 - - -
MetaQuery-XL - - 82.05 - - 0.80† 0.55 0.62 0.55
BAGEL - - - 0.94 0.63 0.82 / 0.88† 0.55 0.68 0.52 / 0.70†

UniWorld-V1 - - - 0.93 0.70 0.80 0.55 0.73 0.55
BLIP3-o-8B - - 81.60 - - 0.84 - - 0.62
Bridge (Ours) 90.10 92.27 85.51 0.93 0.66 0.74 / 0.82† 0.56 0.65 0.53 / 0.69†

Table 3: Comparison results on ImgEdit. Bridge achieves the best overall performance.

Model Add Adjust Extract Replace Remove Background Style Hybrid Action Overall↑
Instruct-P2P 2.45 1.83 1.44 2.01 1.50 1.44 3.55 1.20 1.46 1.88
AnyEdit 3.18 2.95 1.88 2.47 2.23 2.24 2.85 1.56 2.65 2.45
UltraEdit 3.44 2.81 2.13 2.96 1.45 2.83 3.76 1.91 2.98 2.70
Step1X-Edit 3.88 3.14 1.76 3.40 2.41 3.16 4.63 2.64 2.52 3.06
BAGEL 3.56 3.31 1.70 3.30 2.62 3.24 4.49 2.38 4.17 3.20
UniWorld-V1 3.82 3.64 2.27 3.47 3.24 2.99 4.21 2.96 2.74 3.26
Bridge (Ours) 3.49 2.64 2.93 3.45 3.48 3.45 4.14 3.09 3.85 3.39

into 81 discrete tokens selected from a codebook of size 65,536. The LlamaGen-VQGAN encoder
uses a downsampling ratio of 16, producing 32 × 32 = 1024 pixel tokens from 512 × 512 images,
drawn from a codebook of size 16,384. Concatenating the 81 semantic tokens with the 1024 pixel
tokens yields a total of 1105 tokens per image. During training, we consistently resize and center-
crop images to 512×512 before feeding them into the model. Besides, to further enhance the visual
quality, we also develop an optional upscale module using Lumina-Accessory (Team, 2025), raising
the output resoluiton to 1024px.

4.1 MAIN RESULTS

Visual Understanding. We evaluate Bridge on a suite of visual understanding benchmarks, includ-
ing POPE (Li et al., 2023b), MME (Fu et al., 2024), MMBench (Liu et al., 2023b), Seed-Bench (Li
et al., 2023a), and MMMU (Yue et al., 2024). As reported in Table 1, thanks to the strong visual
understanding ability inherited from the base MLLM, Bridge achieves state-of-the-art or near state-
of-the-art results across these benchmarks. Notably, even on datasets where Bridge does not rank
first, its performance remains very close to the best reported results, demonstrating the robustness
of its inherited understanding capacity.

Text-to-image Generation. We evaluate visual generation performance on three commonly used
text-to-image benchmarks, including GenEval (Ghosh et al., 2023), DPG Benchmark (Hu et al.,
2024), and WISE (Niu et al., 2025). Results are reported in Table 2. Our Bridge achieves consis-
tently strong results across all three benchmarks. On DPG Bench, it obtains an overall score of 85.51,
surpassing most prior unified model and generation-only methods. On GenEval, Bridge achieves
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Table 4: Visual Representation Comparison.
Sem: Semantic token. Pix: Pixel token.

#Sem. #Pix. GenEval DPG ImgEdit
0 1024 0.48 71.7 2.93

729 0 0.57 73.1 3.16
729 1024 0.60 73.4 3.35
81 0 0.56 73.7 2.82
81 1024 0.61 75.8 3.33

Table 5: MLLM Architecture Comparison.
Und. denotes the harmonic mean of under-
standing benchmarks including MME, MM-
Bench, SEED Bench, POPE, and MMMU.

Arch. Und. GenEval DPG
Dense 90.1 0.53 77.2
MoT 108.0 0.63 76.3

Table 6: Token Routing Comparison. Visual understanding and generation performance under
different token routing schemes. In the Token Routing columns, Und. refers to the understanding
expert and Gen. refers to the generation expert.

Token Routing Und. Benchmarks Gen. Benchmarks
Und. Img Text MMBench MME-P MME-C SEED POPE MMMU GenEval DPG
Und. Und. 84.3 1730 677 77.4 88.4 57.4 0.63 76.3
Gen. Und. 80.9 1621 541 71.0 88.6 52.6 0.60 75.6
Und. Gen. 79.0 1479 564 75.2 85.3 46.0 0.59 77.1
Gen. Gen. 74.5 1228 475 71.4 80.2 42.1 0.53 77.2

0.82 overall score, which is competitive with recent state-of-the-art unified models like BAGEL. On
WISE, our model delivers a solid 0.69, reaching the best reported numbers (0.70) of unified mod-
els. These results demonstrate that Bridge achieves highly competitive performance across diverse
evaluation settings.

Instructional Image Editing. We leverage the ImgEdit benchmark (Ye et al., 2025b) to systemati-
cally evaluate the instructional image editing performance of Bridge. Comparisons are made against
a series of specialist editing models (Brooks et al., 2023; Yu et al., 2024a; Zhao et al., 2024; Liu
et al., 2025) as well as unified MLLMs (Deng et al., 2025; Lin et al., 2025). Table 3 summarizes the
results. As shown, Bridge not only surpasses the leading editing specialist model Step1X-Edit (Liu
et al., 2025), but also outperforms recent unified MLLMs such as BAGEL (Deng et al., 2025) and
UniWorld-V1 (Lin et al., 2025). In particular, Bridge achieves significant gains on the Extract, Re-
move, Background, and Hybrid categories, underscoring its ability to follow fine-grained instructions
while preserving global consistency.

Visualization. As shown in Figure 1, our model can generate a wide range of images including
cartoon-style scenes, fantasy illustrations, photorealistic portraits, stylized characters and animals
etc. In addition, it also supports image editing tasks such as style transfer, object remove or addition,
and replacement. For more visualization, please refer to our Appendix Section F.

4.2 ABLATION STUDIES

In this section, we present ablation studies to examine several key design choices of our method.
Unless otherwise noted, all experiments use 25M high-quality text-to-image samples to establish
the visual generation capability of the model. For ablations that also require training on visual
understanding and language modeling, we additionally incorporate image understanding and text-
only data, maintaining a sampling ratio of 6 : 2 : 1 across text-to-image, image understanding, and
text data.

Effectiveness and Efficiency of Semantic-to-pixel Visual Representation. In Bridge, visual rep-
resentations are constructed by sequentially combining semantic tokens with pixel tokens. To assess
the effectiveness of this design, we compare several alternatives, including using only pixel tokens,
only semantic tokens, or varying semantic sequence lengths. Results are shown in Table 4, where
#Sem. denotes the number of semantic tokens and #Pix. denotes the number of pixel tokens. All
models are trained for one epoch on text-to-image datasets, and further continued on 1.4M high-
quality image editing samples. For variants without pixel tokens, generation terminates after all
semantic tokens are sampled, and images are decoded with TA-Tok’s (Han et al., 2025) autoregres-
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sive de-tokenizer. Evaluation is performed using GenEval (Ghosh et al., 2023) and DPG (Hu et al.,
2024) for text-to-image generation, and ImgEdit (Ye et al., 2025b) for image editing.

The results reveal several key trends. First, using only pixel tokens yields the poorest scores, high-
lighting their limited alignment with language tokens. Second, incorporating semantic tokens con-
sistently improves performance, demonstrating their role in bridging the gap between language and
vision. Finally, when comparing variants that use the same number of semantic tokens, our approach
of natively generating pixel tokens outperforms those that rely on external generative de-tokenizers
on all text-to-image and editing benchmarks, with the advantage becoming more pronounced when
the semantic sequence is short (e.g., 81 tokens). This configuration not only achieves the best overall
performance but also increases the sequence length by only ∼7.9%, indicating that a small set of
semantic tokens is necessary and sufficient for effective in-context cross-modal alignment.

Effectiveness of the MoT Architecture. Bridge adopts a Mixture-of-Transformers (MoT) architec-
ture to develop visual generation ability on top of pre-trained understanding-oriented MLLMs. To
assess the necessity of this design, we compare it with a straightforward dense architecture, where a
single transformer backbone inherited from the same pre-trained MLLM is continually trained on a
mixture of text-to-image, image understanding, and pure language data. As shown in Table 5, after
continued training, the dense variant achieves a slightly higher DPG score but performs significantly
worse on GenEval and multiple understanding benchmarks. This result suggests that generative
training inevitably degrades the visual understanding ability of the base MLLM, whereas the MoT
architecture effectively isolates and preserves understanding while adding generative capacity, vali-
dating the importance of our design.

Token Routing Scheme. In Bridge, visual generation ability is introduced by routing newly added
generation image tokens to the generation expert, while all understanding image tokens and text
tokens remain routed to the understanding expert. This design preserves the original comprehension
capability of the base MLLM while extending it with generative capacity. To examine alternative
routing strategies, we experiment with all combinations of routing for understanding image tokens
and text tokens, and report results in Table 6. Note that generation image tokens are always routed to
the generation expert, since they cannot be modeled by the frozen understanding expert. For cases
where understanding image tokens are assigned to the generation expert, they are still encoded by
the inherited continuous vision encoder to ensure consistency.

The results highlight several key trends. Our default routing scheme (row 1), where only genera-
tion tokens are handled by the generation expert, achieves the best overall balance: strong visual
generation performance and excellent visual understanding ability. Moving understanding tokens
into the generation expert (row 2) causes interference between semantic and pixel representations,
leading to degradation in both understanding and generation benchmarks. Routing text tokens to
the generation expert (row 3) is counterintuitive and unsurprisingly results in worse visual under-
standing. Finally, sending all tokens to the generation expert (row 4) collapses to the dense model
setting, where limited capacity yields the weakest visual understanding performance. Interestingly,
this variant also achieves the lowest GenEval score but slightly outperforms other schemes on DPG.

In summary, keeping understanding image tokens and text tokens routed to the understanding ex-
pert, while restricting the generation expert to newly introduced generation tokens, delivers the best
overall trade-off between visual understanding and generation.

5 CONCLUSION

In this paper, we present Bridge, a pure autoregressive unified MLLM that augments pre-trained
models with visual generative capability while rigorously preserving their visual understanding,
enabling seamless multimodal understanding and generation within a single next-token prediction
paradigm. Central to our approach is a semantic-to-pixel discrete visual representation that fuses
compact high-level semantic tokens with fine-grained pixel tokens, achieving strong language align-
ment and high-fidelity synthesis with only a modest increase in sequence length. Extensive exper-
iments across diverse benchmarks demonstrate competitive or superior performance in both under-
standing and generation, alongside reduced data requirements, shorter training time, and overall
improved efficiency compared to prior unified MLLMs.
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Appendix

A OVERVIEW

• Section B:Additional Related Work

• Section C: Dataset

• Section D: Training Hyper-parameters

• Section E: Comparison Details

• Section F: More Visualization

• Section G: Limitation

• Section H: LLM Usage Disclosure

B ADDITIONAL RELATED WORK

Visual Generation. Discrete autoregressive (AR) models generate images by sequentially predict-
ing tokens, conditioned on class labels or text. Scalable AR approaches include next–scale predic-
tion (Tian et al., 2024), randomized sampling (Yu et al., 2024b), continuous-token Fluid (Fan et al.,
2024), tokenizer pre-alignment (Wang et al., 2025a), and large bitwise tokenization in Infinity (Han
et al., 2024), with hybrid designs such as HART combining AR backbones with lightweight diffu-
sion modules (Tang et al., 2024). Continuous diffusion models remain dominant for text-to-image
generation, from cascaded (Ho et al., 2022) and score-based (Batzolis et al., 2021) diffusion to con-
ditional text/image diffusion (Zhu et al., 2023; Graikos et al., 2024; Zheng et al., 2023) and recent
inference-time scaling (Ma et al., 2025b). Seedream 3.0 further advances bilingual text-conditioned
diffusion with timestep sampling and representation alignment (Gao et al., 2025). Recent compar-
isons show AR can match or surpass diffusion in scalability and quality (Sun et al., 2024). Unified
generative frameworks aim to bridge class-conditioned, text-conditional, and visual conditioning
within a single model, as demonstrated by OmniGen (Xiao et al., 2025), Janus (Wu et al., 2025b),
TokenFlow (Qu et al., 2025b), and unified latent diffusion (Ma et al., 2023). These trends highlight a
convergence of discrete AR and continuous diffusion paradigms toward versatile, multimodal image
generation.

C DATASET

In Table 7, we summarize our datasets of different training stages and tasks. Now we will explain
the detail of each dataset.

Stage I: Unified Pretraining. In this stage, we collect and filter diverse image-text datasets and
interleaved datasets to equip the model with fundamental image-text alignment capability.

• LAION-5B-Filtered. We apply aesthetic score (>5) and resolution (>512px) filtering to
LAION-5B (Schuhmann et al., 2022), resulting in 385M samples. Then we use Qwen2.5-
VL (Qwen et al., 2025) and InternVL3 (Zhu et al., 2025) to generate both short and long
captions for each image.

• Omnicorpus-Filtered. Similar to LAION-5B-Filtered, we apply aesthetic score and res-
olution filtering to Omnicorpus (Li et al., 2024c) and collect 20M image-text interleaved
samples. To enhance the image-text alignment, we use Qwen2.5-VL to recaption and refine
each sample’s text content, where each image is corresponding to a short paragraph.

• Infinity-MM-Stage1-2 and Capsfusion. We use the stage 1 and stage 2 data of Infinity-
MM (Gu et al., 2024), which contains image-text pairs and general visual instruction tuning
datasets. To balance the data ratio, we also incorporate 20M image-text pairs from Capsfu-
sion (Yu et al., 2024c).

• VINCIE is a large-scale multi-turn image editing dataset annotated from videos.
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Table 7: Dataset Summary. We list our datasets for Unified Pretraining, Continued Pretraining and
Supervised Finetuning. T2I: Text-to-image. I2T: Image-to-text.

Stage Type Data (Size)

Unified Pretrain
T2I LAION-5B-Filtered (385M)

I2T Infinity-MM-Stage1-2 (37M), Capsfusion (20M)

Interleave Omnicorpus-Filtered (20M), VINCIE (9M)

Continued Pretrain

T2I LAION-5B-Filtered (145M), Tar-Gen23M (23M),
LAION-OCR-30M (30M), LAION-Face-4M (4M)

I2T Infinity-MM (20M), Capsfusion (10M)

Interleave Omnicorpus-Filtered (5M), VINCIE (9M)

Supervised Finetuning

T2I
JourneyDB-SD (1.4M), IN1K-SD (1.3M), DALLE3-SD (1M),
Megalith-SD (3.5M), BLIP-3o (60K), ShareGPT-4o-Image (95K),
Echo-4o-Image (180K), Text-QwenImage (300K)

Edit OmniGen2 (3.2M), OmniEdit (1.2M), AnyEdit (2.5M),
GPTImgEdit (1.5M)

I2T Mammoth-VL (10M), Infinity-MM-Stage4 (1.8M)

Interleave LCT (200K)

Stage II: Continued Pretraining. For this stage, we focus on enhancing the model’s visual gen-
eration ability on high-quality datasets.

• LAION-5B-Filtered. we apply higher aesthetic score threshold (>6) and resolution
(>1024px) filtering to LAION-5B, resulting in 145M samples.

• OCR and Face. We also leverage OCR and face detection models to curate text render-
ing and face datasets. Except the aesthetic score and resolution filters, an image will be
preserved when it has at lease one text or human face. To suppress very challenging small
face, we only keep images with human face >32×32px.

• Tar-Gen23M. We also leverage Tar-Gen23M datasets (Han et al., 2025), which con-
sists of 23M high-quality images generated by FLUX (Labs, 2024) using diverse text
prompts (Deng et al., 2009; DrawThingsAI, 2024; Sun et al., 2023; Egan et al., 2024).

Stage III: Supervised Finetuning. Although the model has basic image generation capability
after Stage I and Stage II training, the SFT stage is very crucial for improving the model’s visual
quality.

• GPT-4o-Image Datasets. Recently, several datasets generated by GPT-4o-Image are pro-
posed, demonstrating strong instruction following and high image quality. These datasets
include BLIP3o-60K (Chen et al., 2025a), ShareGPT-4o-Image (Chen et al., 2025b) and
Echo-4o-Image (Ye et al., 2025a) for text-to-image generation, GPTImageEdit (Wang et al.,
2025b) for image editing.

• Seedream Datasets. The amount of GPT-4o-Image datasets cannot meet our require-
ments for balanced training with other tasks (e.g., I2T and Edit). Therefore, we curate
million-scale synthetic datasets using Seedream 3.0 (Gao et al., 2025). We re-use prompts
in previous text-to-image datasets such as JourneyDB (Sun et al., 2023) and DALLE3-
Images (Egan et al., 2024) to create JourneyDB-SD and DALLE3-SD. We also lever-
age Qwen2.5-VL to generate detailed captions for existing image datasets such as Ima-
geNet(Deng et al., 2009) and Megalith(DrawThingsAI, 2024), and then generate corre-
sponding images using Seedream 3.0.

• Text-QwenImage. To enhance the model’s text rendering quality, we curate Text-
QwenImage-300K dataset. Given diverse prompts from existing datasets, we first trans-
form them for the text rendering task using GPT-4o. For example, a prompt ”A boy and
a dog is running” will be augmented as ”A boy and a dog is running, with a banner in
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Table 8: Training Hyper-parameters. T2I: text-to-image. I2T: image-to-text. IL: interleave
datasets. EDIT: image editing datasets.

Stage Unified Pretrain Continued Pretrain Supervised Finetuning
learning rate 5e-5 1.25e-5 1.25e-5

lr schedule cosine cosine constant
optimizer AdamW AdamW AdamW

optimizer params β1=0.9,β2=0.999 β1=0.9,β2=0.999 β1=0.9,β2=0.999
weight decay 1e-4 1e-4 1e-4

input resolution 512 512 512
warmup steps 2000 2000 100
total samples 496M 60M 28M

global batch size 1536 384 384
gradient clip 1.0 1.0 0.1

data ratio 14:2:1
(T2I:I2T:IL)

7:2:1
(T2I:I2T:IL)

4:3:2:1
(T2I:EDIT:I2T:IL)

the background says ’Best Friends Forever’”. Then we prompt QwenImage to generate the
corresponding images.

• Image Edit Datasets. We collect image editing datasets from existing works, such as
OmniGen2 (Wu et al., 2025d), OmniEdit (Wei et al., 2024), AnyEdit (Yu et al., 2024a) and
GPTImgEdit (Wang et al., 2025b).

• Interleaved Datasets. We use the Long Context Tuning Dataset (LCT) (Guo et al., 2025)
for high-quality image-text interleaved finetuning. LCT is primarily designed for long
video generation. Here we only extra key frames of each shot to construct a multi-turn
text-to-image dataset.

D TRAINING HYPER-PARAMETERS

We list training hyper-parameters in Table 8.

E COMPARISON DETAILS

We evaluate Bridge against a broad set of baselines, grouped by task type.

Visual Understanding. For visual understanding benchmarks, we compare against both
understanding-only and unified models. Understanding-only baselines include LLaVA-v1.5 (Liu
et al., 2024b), Qwen-VL (Bai et al., 2023b), LLaVA-NeXT (Liu et al., 2024c), DeepSeek-VL (Lu
et al., 2024), and LLaVA-OneVision (LLaVA-OV) (Li et al., 2024a). Unified baselines include IL-
LUME (Wang et al., 2024a), Chameleon (Team, 2024), LWM (Liu et al., 2024a), Emu3 (Wang
et al., 2024b), Liquid (Wu et al., 2024a), UniTok (Ma et al., 2025a), VILA-U (Wu et al., 2024b),
Janus-Pro (Chen et al., 2025c), TokenFlow-XL (Qu et al., 2025b), MetaMorph (Tong et al., 2024),
Tar (Han et al., 2025), LMFusion (Shi et al., 2024), MetaQuery-XL (Pan et al., 2025), Show-o2 (Xie
et al., 2025b), UniWorld-V1 (Lin et al., 2025), and BLIP3-o (Chen et al., 2025a).

Visual Generation. For visual generation, we compare against both generation-only and unified
models. Generation-only baselines include SDXL (Podell et al., 2023), Playground v2.5 (Li et al.,
2024b), Hunyuan DiT (Li et al., 2024d), DALLE3 (Lin et al., 2024), SD3-Medium (Esser et al.,
2024), and SANA-1.5 (Xie et al., 2025a). Unified baselines include Chameleon (Team, 2024),
LWM (Liu et al., 2024a), Emu3 (Wang et al., 2024b), SEED-X-13B (Ge et al., 2024), Transfu-
sion (Zhou et al., 2024), ILLUME (Wang et al., 2024a), Janus-Pro-7B (Chen et al., 2025c), Tar (Han
et al., 2025), MetaQuery-XL (Pan et al., 2025), Show-o2-7B (Xie et al., 2025b), BAGEL (Deng
et al., 2025), UniWorld-V1 (Lin et al., 2025), and BLIP3-o-8B (Chen et al., 2025a).
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Instructional Image Editing. We assess instructional editing performance on the ImgEdit bench-
mark (Ye et al., 2025b), comparing against both specialized editing models—Instruct-P2P (Brooks
et al., 2023), AnyEdit (Yu et al., 2024a), UltraEdit (Zhao et al., 2024), and Step1X-Edit (Liu et al.,
2025)—and unified MLLMs, including BAGEL (Deng et al., 2025) and UniWorld-V1 (Lin et al.,
2025).

F MORE VISUALIZATION

We provide more visualization results of our model in Figure 3.

G LIMITATIONS

While Bridge achieves strong performance in both visual understanding and generation, several lim-
itations remain. First, since Bridge relies on discrete vision encoders from Han et al. (2025) and Sun
et al. (2024), its ultimate performance is bounded by the representational capacity of these encoders.
Second, the high compression inherent to discrete token representations makes it challenging to syn-
thesize fine-grained details such as small text within images, a common limitation shared by most
discrete token–based image generators. Finally, Bridge currently lacks the ability to generate images
with arbitrary resolutions. Extending the framework to support variable-resolution synthesis is an
important direction for future work.

H LLM USAGE DISCLOSURE

We used an external large language model as an assistive writing tool to help with phrasing, gram-
mar, and clarity during manuscript preparation. The LLM did not contribute to the core research
ideas, technical design, experiments, or the scientific content. All final writing was reviewed, edited,
and approved by the authors, and the authors take full responsibility for any errors or content in the
paper.
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1. A charming 3D-rendered cartoon toucan with exaggerated features, styled in a whimsical yet detailed manner. The character features a disproportionately large, bright orange beak that dominates its face, complemented by a single 
oversized expressive brown eye. Its plumage combines classic black and white coloring - a fluffy white chest and belly area contrasts beautifully with sleek black feathers covering its back and wings. The bird sports a distinctive messy 
crest of navy blue feathers on top of its head, giving it a playful, disheveled appearance. The texturing is remarkably detailed, showing individual feathers and subtle variations in the plumage. The character stands on thin, sturdy legs with 
detailed scaled texture. The lighting setup creates depth and dimension, casting soft shadows that emphasize the bird's round, appealing form against a neutral gradient background. The overall design strikes a perfect balance between 
cartoon stylization and realistic texturing, making it suitable for animation or game character design.

2. ultra-detailed glass bottle terrarium featuring a miniature 3-story traditional Japanese villa, architectural photography style, precise architectural details with wooden beams and tiled roofs, delicate moss and tiny plants 
growing organically on the structure, ambient interior lighting casting warm glows through miniature shoji screens, the entire scene captured inside a clean cylindrical glass vessel, soft living room lighting enhancing glass 
reflections, tilt-shift photography effect emphasizing the miniature scale, photorealistic rendering with attention to glass refraction and natural materials 

3. Gold and green mountain 3d illustration, in the style of fluid photography, orange and cyan, gold and cyan meticulous and detailed, Wang Ximeng, Northern Song Dynasty, Thousand-Mile Rivers and Mountains, Chinese 
landscape painting, traditional, vast and majestic, enchanting beauty, symbolism, glossy glass material, 4D render style, reflextions.

4. bright colorful illustration of lake with view mountain and hype detailed sunset view
5. highly detailed full body jellyfish
6. generate anime looking Japanese cute girl futuristic looking

1. High-fashion wool felt handmade plush toy, cute chibi two-heads-tall style, pure white fluffy bunny, round face, upright ears with yellow star blush, sky-blue beady eyes with highlights, red polka-dot bib, standing on tiptoes, 
smiling. Felt-textured grass field, wildflowers, pure blue sky, giant yellow sun, warm soft lighting, HD.

2. "Paint an artistic oil painting featuring vibrant clay vases painted in bright colors, adorned with colorful botanical flowers, in a classical artistic style similar to the works of Da Vinci."
3. Fischer's lovebird, Galah Cockatoo, Lutino Ringneck Parakeet and other psittacidae species.
4. Create a fusion of Frieren from Frieren: Beyond Journey's End and Sailor Moon from Sailor Moon, with the character primarily resembling Frieren. She should have Frieren’s calm and timeless expression, pointed elf ears, 

and signature pale blue hair styled in Sailor Moon’s iconic twin buns with flowing strands. Her attire should merge Frieren’s mage-like robes with subtle Sailor Moon-inspired celestial details, such as crescent moons and 
stars integrated into the design. She should wield a staff reminiscent of Frieren’s wand, enhanced with a crescent moon motif at the top. Surround her with a soft, ethereal glow, symbolizing the fusion of Frieren’s wisdom 
and magical mastery with Sailor Moon’s celestial grace and heroism.

5. Holistic healing flowers medicinal pollinator nectar hive new beginning butterfly bees mushrooms
6. A child’s drawing using crayons on a white piece of paper | a cityscape with tall, crooked buildings, stick figure people walking on the street, cars that look like rectangles with wheels, and a big smiling sun in the sky | 

Crayola, messy and lively.

1. Astronaut with fish tank is moving inside the galactic space suspended in the air with very fine and intertwined lines and acid watercolor and oil colors with strong contrast with different details and colors.
2. a female rabbit head, minimalistic colorful organic forms, energy, assembled, layered, depth, alive vibrant, 3D, abstract, on a light blue background
3. Blooming balcony goals. This house boasts a beautiful balcony overflowing with colorful flowers.
4. A beautiful cosplayer, portraying Ganyu, wore a cute expression and gave a victory sign. The background was a comic convention, captured with a Canon camera, using portrait focus.
5. Fairytale vibes. This stone house with its flower-filled balcony looks like it's straight out of a storybook.
6. cute picture with totoro and flowers

1. a girl with blue eyes, brown straught hair dressed in gryfindor hogwarts robes
2. A fully detailed city on a large tree in the middle of a plain full of red and pink flowers and pieces of rock
3. A hamster pawn wearing a blue and orange shirt. The hamster is wearing a hat. The hamsters must resemble those from Albert Heijn.
4. 8 bit style man silhouette sitting on skyscraper night scene, nostalgic synthwave colro scheme, but a little lonely
5. A girl with long straight hair in 80’s anime vintage style
6. A Silver Tabby British Shorthair cat takes a selfie close-up with wide, surprised eyes, ears pinned back in panic, and a mischievous, smiling grin. In the background, three Paul-style aliens are in fast pursuit—clearly visible 

through motion blur and cinematic bokeh. The scene features dynamic, fast-action movement and is shot with a landscape fisheye lens in a desert setting.

Figure 3: More Visualization of our model on text-to-image generation.
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