
A coupled Variational Encoder-Decoder - DeepONet surrogate model for the
Rayleigh-Bénard convection problem

João Lucas de Sousa Almeida1, Pedro Roberto Barbosa Rocha1,2

Allan Moreira de Carvalho,1, Alberto Costa Nogueira Jr.1
1IBM Research Brazil,

2Pontifical Catholic University of Rio de Janeiro

Abstract

Fluid mechanics continues to advance quickly in the age of
artificial intelligence, mainly due to the abundance of exper-
imental data, field data assimilation, and high-fidelity multi-
scale simulations. Among the many data-driven approaches
recently applied to such a discipline, ML-based reduced-
order models (ROMs) have received particular attention be-
cause of their algorithmic simplicity, explainability, and com-
putational efficiency. In this work, we have devised and im-
plemented an ML-based ROM which combines dimension-
ality reduction via an Encoder-Decoder (ED) neural network
with forecasting capabilities in latent space using Deep Neu-
ral Operators (DeepONets). We assessed the proposed archi-
tecture with a spatiotemporal dataset generated by the numer-
ical solution of the Rayleigh-Bénard convection (RBC) prob-
lem. The reconstruction error of the model over the unseen
datasets was lower than 10%, demonstrating the ED tech-
nique’s accurate spatial representation and the neural opera-
tors’ robustness in estimating future system states. This work
represents a solid contribution to the fluid dynamics commu-
nity with an accurate and efficient ML-based model to tackle
the challenging well-known RBC problem.

1 Introduction
In recent years, machine learning (ML) has gained mo-
mentum in many fields of science and engineering, es-
pecially in fluid dynamics applications, where new algo-
rithms and architectures have emerged and tackled increas-
ingly complex problems. The unprecedented availability of
high-performance hardware specialized in machine learning
tasks, such as GPUs and TPUs, has motivated the develop-
ment of a broad class of ML techniques that extract infor-
mation from data in a principled way to capture the under-
lying fluid mechanics. Among these techniques, surrogate
models have stood out as reliable and computationally ef-
ficient alternatives to classical numerical methods, such as
finite volume or spectral discretizations, when repeated sim-
ulation runs are required.

Many approaches for building surrogates have been pro-
posed so far, but the subclass of the reduced order models

Copyright c© 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org), AAAI 2023 Workshop “When Ma-
chine Learning meets Dynamical Systems: Theory and Applica-
tions” (MLmDS 2023). All rights reserved.

(ROM) has particularly attracted the attention of the research
community due to its core feature: the compression of com-
plex multidimensional datasets into affordable sets of time
series allowing parsimonious and, usually, explainable in-
ference or prediction capabilities. Two of the most popu-
lar dimensionality reduction (DR) techniques are Principal
Components Analysis (PCA) and Encoder-Decoder neural
networks (EDs). The PCA algorithm relies on a linear trans-
formation of coordinates to describe most of the data vari-
ation with fewer dimensions than the original data. PCA
shows many favorable properties, such as orthonormal ba-
sis representation and energy preservation. It is often seen
in many fluid dynamics applications (Lui and Wolf 2019)
(Costa Nogueira et al. 2020) (McQuarrie, Huang, and Will-
cox 2021), being quite robust for describing even chaotic
(Almeida et al. 2022) and turbulent (McQuarrie, Huang, and
Willcox 2021) regimes. EDs are usually more computation-
ally expensive than PCA since their training relies heavily on
gradient-descent optimization. However, as they allow non-
linear basis representation in latent space, they potentially
provide a better description of the dynamical systems of in-
terest (Oommen et al. 2022). EDs may be constructed on
either Multi-Layer Perceptron (MLP), Convolutional Neu-
ral Network (CNN) or even Graph Neural Network (GNN)
architectures, among others. The low-dimensional space en-
coded by any DR technique usually consists of a set of time
series whose accurate extrapolation can become extremely
challenging even for relatively simple dynamical systems.

The problem of predicting time series has been tradition-
ally addressed using Recurrent Neural Networks (RNNs)
(Pathak et al. 2017) (Vlachas et al. 2020) (Nogueira Jr
et al. 2021) and, more recently, transformer-based architec-
tures (Zeng et al. 2022). Nevertheless, neural operators as
Deep Operator Networks (DeepONets) (Lu et al. 2021) and
Fourier Neural Operators (FNOs) (Li et al. 2021) have also
demonstrated excellent time series forecasting skills (Oom-
men et al. 2022) (Pathak et al. 2022). This work is inspired
by the schemes presented in (Oommen et al. 2022) and com-
bines CNN-ED for the dimensionality reduction of a large
multidimensional fluid dynamics dataset with an improved
version of a DeepONet (Wang, Wang, and Perdikaris 2021).
The latter was fine-tuned to extrapolate latent time series of
the dynamical system. All models implemented in this work
used the SimulAI toolkit, an open-source Python pack-



age aimed to accelerate surrogate modeling using Physics-
Informed machine learning (IBM 2022).

This work is organised as follows. In Section 2 we briefly
describe the Rayleigh-Bénard dataset we used as test case
and the simulation parameters necessary to generate it. Sec-
tion 3 describes the architecture of the proposed CNN-
based ED and its training procedure. In this section, we also
demonstrate the effectiveness of the ED technique in reduc-
ing and reconstructing the original dataset. Section 4 depicts
the DeepONet architecture and presents the way the training
dataset was prepared and the characteristics of the training
procedure. In the last subsection, we present and discuss the
numerical results regarding the complete ROM pipeline. We
conclude the paper in Section 5, summarizing the proposed
model’s main accomplishments and limitations, besides giv-
ing some perspectives for future work.

2 The Rayleigh-Bénard dataset
To assess the present ML-based surrogate model, we chose
the Rayleigh-Bénard convection (RBC) system, which is a
typical benchmark problem for emulating turbulent atmo-
spheric circulation. We used the package Dedalus (Burns
et al. 2020), a Python framework for discretizing partial dif-
ferential equations (PDEs) based on the spectral element
method, to generate a large spatiotemporal dataset. The full-
order RBC dataset contains 400, 000 samples with time res-
olution dt = 10−6, grid size of 80 × 80, Rayleigh number
Ra = 107 and variables [u,w, T ], corresponding to the x-
velocity, z-velocity and temperature fields, respectively. In
order to enable more effective learning of the neural net-
works (and for enhancing the visualization experience), we
normalized all state variables to the interval [−1, 1].

3 Dimensionality reduction
Overview
Encoder-Decoder (ED) architectures based on neural net-
works are commonly used in tasks involving data represen-
tation, since they transform the original data into an inter-
mediary space referred as latent space where modeling is
usually facilitated by the lower number of dimensions. This
process encodes the main features of the dynamical sys-
tem of interest and subsequently re-convert the latent states
into the original space. However, the encoding process can
also increase the dimension of the input space (a.k.a. lift-
ing operation) (Brunton et al. 2021). In the former case, di-
mensionality is reduced in the same sense as PCA, but in a
more general way, since ED can support nonlinear transfor-
mations. There is a number of architecture choices to build
an Encoder-Decoder model to compress dimensionality. In
this work, we adopted the Convolutional Neural Networks
(CNNs) since the samples of the RBC dataset can be viewed
as images whose channels are the different field variables. In
our perspective, CNNs seems to be the most suitable choice
for composing the encoder and the decoder stages.

In order to obtain a robust latent space representation,
we opted for a Convolutional Neural Network-based Vari-
ational Encoder-Decoder (CNN-VED) (Eivazi et al. 2022)
since VEDs may be used as generative models in the sense

that they can generate new reliable samples of data. Such a
property is a valuable feature if one is interested in extending
the original dataset for comprising slightly different scenar-
ios. Furthermore, the VED statistical operation is similar to
applying noise to the latent space during the training stage
which works as regularizing procedure (Behrens et al. 2022).
In this way, we did not use any additional penalization-like
regularizer over the VED paramters θR. A diagram illus-
trating the proposed CNN-VED architecture can be seen in
Figure 1.

Figure 1: The CNN-VED architecture.

CNN-VED training and results

The details of the proposed CNN-VED architecture are de-
scribed in Table 1 (Appendix A). All the convolution opera-
tions used padding equal to 1. It means that the input image
dimensions are not modified after the convolution operations
for a kernel size of 3 × 3 since one row or column of ze-
ros is added on each image boundary in order to keep the
dimensions unmodified. For the decoder, we used upsam-
pling operations for increasing the image dimensions after
each convolution instead of transposed convolutions, which
increased convergence rate. The upsampling operations en-
large image sizes by interpolating between pixels. In the
present work, we chose a re-scaling factor of 2 and bi-cubic
interpolation. We empirically determined the number of la-
tent series as Nd = 20 for the CNN encoder output s. The
variable s is inputted in two auxiliary sub-networks in order
to evaluate the mean µ and the standard deviation σ of the
statistical operation used for estimating the latent variable r,
given by r = µ + σ � ε, in which � represents pointwise
multiplication and ε is a random number generated by a nor-
mal distribution (Eivazi et al. 2022). Sub-networks revealed
helpful to allow more flexibility for describing the variables
related to the probabilistic distribution. Figure 1 depicts the
CNN-VAE architecture. We used 345, 000 samples for train-
ing the VED model and discarded the first 15, 000 in order to
avoid transient effects. We assessed its accuracy over the last
unseen 40, 000 timesteps. Some examples of the time series
generated for the training region of the dataset associated to



the modes 0, 4, 9, 14 and 19 are seen in Figure 2.

LV ED(θR) = Lrec(θR) + LKL(θR) (1)

Lrec(θR) =
1

Nb

Nb−1∑
i=0

(
Ũi −Ui

)2
LKL(θR) = − β

Nb

Nb−1∑
i=0

Nd−1∑
j=0

(1 + log(σ2
ij)− µ2

ij − σ2
ij)

We trained the network for 100, 000 epochs using the Adam
optimizer. We set the initial learning rate as lr = 10−3 with
exponential decay of 0.9 at every 5, 000 epochs and batch
size Nb of 1, 000. The entire model training was performed
in a V100 Nvidia GPU. The loss function used for adjusting
the VED parameters is written in Equation 1, which is com-
posed by two terms, a squared reconstruction error Lrec and
the statistics loss LKL (Eivazi et al. 2022), also known as
Kullback-Leibler (KL) loss term (Behrens et al. 2022). Re-
garding the parameter β, used for penalizing the KL term,
we followed the literature (Behrens et al. 2022) and set it to
0.5. After the training stage, we used the relative L2-norm
(cf. Equation 2) for evaluating the compression loss ε. This
norm compares the original field variables dataset U with
the output generated by the encoding-decoding process Ũ
(cf. Figure 1). The VED we trained produced a relative com-
pression loss of 2.17%. A visual comparison between the
original and reconstructed snapshots with respect to the last
time step of the testing dataset is shown in Figure 3.

Figure 2: Examples of time series generated by CNN-VED
for the training dataset.

ε(U, Ũ) = 100

√√√√N−1∑
i=0

(
Ũi −Ui

)2
/

√√√√N−1∑
i=0

U2
i (2)

Once trained, the CNN-VED was applied to compress
the initial full-order dataset from (4 × 105, 80, 80, 3) di-
mensions to only (4 × 105, 20). The latent reduced space
dataset was then used to train the DeepONet to perform
time-extrapolation.

x-velocity

z-velocity

Temperature

Figure 3: Examples of reconstructed (left) and ground truth
(right) snapshots for the dimensionaless state variables u, w
and T for the last time step of the testing dataset. Although
one can notice some misrepresentations, the CNN-VED is
able to depict the most important flow features.

4 DeepONets for time-extrapolation
Overview
Deep Operator Networks (DeepONets) (Lu et al. 2021)
are a relatively recent class of neural network architectures
aimed at better approximating function operators. The con-
ventional DeepONet architecture is composed by two sub-
networks, the branch and the trunk, each one dedicated to
a specific kind of input. Trunk usually deals with inputs re-
lated to coordinates and branch with wider scope inputs as
forcing terms, physical parameters and even boundary or
initial conditions, which we will term simply restrictions.
Broadly speaking, the trunk network works by searching
suitable bases for representing a dataset and the branch net-
work estimates the most proper weights for the linear combi-
nation of these bases. As there is no a priori restriction with
respect to the trunk and branch architectures, a broad variety
of choices has been tested since the DeepONets appearance,
as MLPs (Lu et al. 2021), CNNs (Oommen et al. 2022) and
even Spiking Neural Networks (SNNs) (Kahana et al. 2022).



DeepONets have been successfully employed in many re-
search fields as modelling multiscale bubble growth (Lin
et al. 2021), linear instabilities in boundary layers (Leoni
et al. 2021), evolution of two-phase microstructures (Oom-
men et al. 2022) and multifidelity simulation (Howard et al.
2022), in which Physics-Informed DeepONets are used for
learning complex operators from low-fidelity data.

Figure 4: The so-called improved DeepONet architecture.

Recently, it was introduced the so-called improved Deep-
ONet architecture (Wang, Wang, and Perdikaris 2021), as
shown in Figure 4. This framework consists of two new sub-
networks (termed as encoders) added to the original archi-
tecture in order to encode the different inputs into intermedi-
ary embeddings. The latter are shared among the hidden lay-
ers of the trunk and the branch networks, thereby enforcing
a stronger communication between the two DeepONet main
components. The improved DeepONet was first used in the
context of long-term time-integration tasks (Wang, Wang,
and Perdikaris 2021) that motivated its usage in this work as
a proper time series forecasting algorithm.

Data preparation
We want to train a DeepONet that receives an initial state
u0 = u(t0) in the latent space time series and predicts any
subsequent state u(t) for t ∈ [t0, t0 + ∆ t], with the time
step size ∆ t preliminarily chosen and treated as a hyper-
parameter. After training a DeepONet capable of producing
reliable predictions for the interval [t0, t0 + ∆ t], given any
initial state u0, we can compose extrapolations by using, for
instance, u(t0 + ∆ t) as the new initial state u0 and con-
tinuously predict states for new intervals of size ∆ t, thus
enabling long-term extrapolations.

In order to train the DeepONet, we preprocess the origi-
nal dataset and create a triple (Dt,Db, T ) of sets (cf. Figure
5). The set Dt is the trunk input and consists of a concate-
nation of time steps belonging to the interval [t0, t0 + ∆ t].
Db is inputted to the branch network and is composed by
multiple initial states whose time steps are in Dt. T is the

target dataset, in which every sample corresponds to a sin-
gle timestep in Dt.

Figure 5: The triple of datasets used for training a time-
integrator DeepONet.

To illustrate how the triple datasets are constructed, we
can imagine a moving window of fixed size with Q slots be-
ing shifted along the latent-space time series (cf. Figure 6).
All slots of this window can be considered as a ”chunk” of
data, whose first position is the initial state and the remain-
ing ones are the target outputs.

The initial state is repeated for each output as a means
of binding initial condition, elapsed time and correspond-
ing target state. This approach for generating the training
dataset allows a considerable flexibility since we can slide
the window using an arbitrary choice for the skip size and
we can arbitrarily sample states within each chunk instead
of choosing them sequentially. Nevertheless, for the sake
of simplicity, we adopted fixed skip sizes of value 10 and
took entire chunks. Figure 6 depicts a schematic view of the
datasets organization. It is worth noticing that the moving
window approach for preparing the DeepONet datasets can
be viewed as a data augmentation technique since we are
considering time steps repeatedly in the latent-space which
creates new correlations between data samples. Such data
preparation strategy improves the model predictability even
with limited data availability.

Figure 6: The concept of moving window used for construct-
ing the datasets triple. The time axis is always relative to the
initial state and each new position of the window restarts the
time counting.



On top of the branch and trunk forward operations, there
is a dot product computed in batches represented as ⊗ in
Figure 4 and defined in Equation 3 below.

ri =

Mi+qi∑
j=Mi

wr(0)j
wtj , r ∈ RNv (3)

M0 = 0; Mi =

i−1∑
j=0

qj , 1 ≤ i < Nv;

Nv−1∑
j=0

qj = P

where ri is the estimated system state, wr(0)j
and wtj are

the outputs of the branch and trunk networks, respectively,
qi is the number of branch or trunk outputs in each batch
(which must be equal) used for estimating the variable ri
via the ⊗ inner product, P is the total number of outputs
of the trunk and branch networks and Nv is the maximum
number of variables outputted by the DeepONet.

To keep simplicity, we choose the sizes qi as equal. The
parameters θ of the DeepONets are sought so that they min-
imize the loss function defined in Equation 4, which consists
of a weighted relative mean squared norm with a batch size
Nb with an L2 regularisation term added to mitigate over-
fitting. As the time series are well scaled, we set the coeffi-
cients αj as 1 and the regularisation penalty λ as 10−12.

L(θ) = Lpred(θ) + λLreg(θ) (4)

Lpred(θ) =

Nv∑
j=1

αj

(
Nb∑
i=1

(r̃i j − ri j)2/
Nb∑
i=1

r2i j

)

Lreg(θ) =

Nθ∑
k=1

θ2k

Training and results
Both the branch and the trunk DeepONet architectures are
comprised by 7-MLP networks whose configurations are de-
tailed in Table 2 of Appendix B. We trained the model for
200, 000 epochs using the Adam optimizer. We set initial
learning rate lr = 10−3 with exponential decay of 0.9 at
every 10, 000 epochs and specified the batch sizes as 1, 000.
The training stage was performed in a V100 Nvidia GPU.
The chunk size Q was chosen as 1, 000 and P as 200. Con-
sidering the dataset time-resolution and the value of Q, we
fixed the chunk sizes in the time axis as ∆ t = 10−3. Once
trained, we applied the DeepONet to predict the time series
in latent space. We can visualize five of these time series in
Figure 7.

Then, we used the decoder stage of the CNN-VED for
mapping the extrapolated time series to the full-order space,
as displayed in Figure 8. Using the error metric defined in
Equation 2, we achieved a reconstruction error of approxi-
mately 6.2% after the time extrapolation (see Appendix C
for more statistics). The extrapolation/reconstruction pro-
cess took approximately 8.8 seconds in a single Nvidia V100
GPU. The CNN-VED-DeepONet revealed a quite compact
model requiring less than 5 MB of disk to store the trained
network with mixed precision. A reconstruction error of

Figure 7: Latent space time series comparison between
ground-truth (continuous orange lines) and DeepONet pre-
dictions (black dashed lines) for the testing dataset. For the
sake of compactness, we exhibit only 5 latent time series.

such a magnitude is quite significant considering the com-
plex multi-scale patterns generated by the turbulent flow. Ex-
periments carried on by the same authors in an unpublished
work using the non-intrusive operator inference (Peherstor-
fer and Willcox 2016) technique revealed a very good agree-
ment with the level of accuracy shown in these results. It is
worth mentioning that we opted for a VAE offline training to
re-use the pre-trained encoder with other time-extrapolation
architectures than the DeepONet, enhancing the flexibility
of the proposed ROM. Although the online training, which
concurrently optimizes the VAE and DeepONet parameters
in a single loss function, seems attractive, it is arguable that
it could produce a fine-tuned ROM with an improved predic-
tion process. However, the training process would undoubt-
edly be costly.

5 Discussion, Limitations and Future Works
The proposed ML-pipeline CNN-VED-DeepONet showed
accurate forecasting capabilities for the benchmark RBC
problem in turbulent regime. The approximation error of
the reconstructed model for the entire time interval was
considerably small (≈ 6.2%) for the chosen spatiotempo-
ral dataset. DeepONet forecast preserved the topology of
the time series even for long-term extrapolations. More-
over, we observed that DeepONets also admit continuous
spaces as inputs, meaning that the inferred DeepONet oper-
ator G is naturally resolution independent and can be seam-
lessly trained with datastes of different quality and sizes.
Although the results in this work are quite encouraging,
we should keep in mind that the time series in the testing
dataset are still well-behaved for the turbulent regime driven
by the Rayleigh number Ra = 107. Turbulent dynamics
with higher Rayleigh numbers will impose extra difficulties
to build an accurate low dimension manifold representation
and to capture the chaotic fluctuations in each latent time
series. Thus, as a next step to improve robustness and gen-



x-velocity

z-velocity

Temperature

Figure 8: Ground truth vs. CNN-VAE-DeepONet predic-
tions for the dimensionless variables u, w and T at the last
time instant of the unseen dataset. The rightmost column
shows the pointwise error for each state variable. It is worth
noting that absolute errors are more convenient than relative
percentage errors in this plot since the reference variables
can take null values conveying useless visual information.

erality of the CNN-VED-DeepONet surrogates, we consider
to assess this architecture using RBC test cases with higher
Ra numbers and move on to tackle even more challenging
problems such as oceanic and atmospheric flows.

6 Acknowledgments
We want to thank the IBM Research Brazil Lab for support-
ing the authors and providing the computational resources
necessary to accomplish this work.

References
Almeida, J. L. d. S.; Pires, A. C.; Vaz, K. C. F.; and
Nogueira Junior, A. C. 2022. Non-Intrusive Reduced Mod-
els based on Operator Inference for Chaotic Systems. arXiv
preprint arXiv:2206.01604v1.

Behrens, G.; Beucler, T.; Gentine, P.; Iglesias-Suarez, F.;
Pritchard, M.; and Eyring, V. 2022. Non-Linear Dimension-
ality Reduction With a Variational Encoder Decoder to Un-
derstand Convective Processes in Climate Models. Journal
of Advances in Modeling Earth Systems, 14(8).

Brunton, S. L.; Budis̆ić, M.; Kaiser, E.; and Kutz, J. N. 2021.
Modern Koopman Theory for Dynamical Systems.

Burns, K. J.; Vasil, G. M.; Oishi, J. S.; Lecoanet, D.; and
Brown, B. P. 2020. Dedalus: A flexible framework for nu-
merical simulations with spectral methods. Physical Review
Research, 2(2): 023068. In press.

Costa Nogueira, A.; de Sousa Almeida, J. L.; Auger, G.; and
Watson, C. D. 2020. Reduced Order Modeling of Dynam-
ical Systems Using Artificial Neural Networks Applied to
Water Circulation. In Jagode, H.; Anzt, H.; Juckeland, G.;
and Ltaief, H., eds., High Performance Computing, 116–
136. Cham: Springer International Publishing. ISBN 978-
3-030-59851-8.

Eivazi, H.; Le Clainche, S.; Hoyas, S.; and Vinuesa, R. 2022.
Towards extraction of orthogonal and parsimonious non-
linear modes from turbulent flows. Expert Systems with Ap-
plications, 202: 117038. In press.

Howard, A. A.; Perego, M.; Karniadakis, G. E.; and Stinis,
P. 2022. Multifidelity Deep Operator Networks.

IBM. 2022. SimulAI Toolkit: A Python package with
data-driven pipelines for physics-informed machine learn-
ing. https://github.com/IBM/simulai.

Kahana, A.; Zhang, Q.; Gleyzer, L.; and Karniadakis, G. E.
2022. Spiking Neural Operators for Scientific Machine
Learning.

Leoni, P. C. d.; Lu, L.; Meneveau, C.; Karniadakis, G. E.;
and Zaki, T. A. 2021. DeepONet prediction of linear insta-
bility waves in high-speed boundary layers.

Li, Z.; Kovachki, N.; Azizzadenesheli, K.; Burigede, L.;
Bhattacharya, K.; Stuart, A.; and Anandkumar, A. 2021.
Fourier neural operator for parametric partial differential
equations. In nternational Conference on Learning Repre-
sentations (ICLR). In press.

Lin, C.; Li, Z.; Lu, L.; Cai, S.; Maxey, M.; and Karniadakis,
G. E. 2021. Operator learning for predicting multiscale bub-
ble growth dynamics. The Journal of Chemical Physics,
154(10): 104118. In press.

Lu, L.; Jin, P.; Pang, G.; Zhang, Z.; and Karniadakis, G. E.
2021. Learning nonlinear operators via DeepONet based on
the universal approximation theorem of operators. Nature
Machine Intelligence, 3: 218–229. In press.

Lui, H. F. S.; and Wolf, W. R. 2019. Construction of
reduced-order models for fluid flows using deep feedforward
neural networks. Journal of Fluid Mechanics, 872: 963–994.
In press.

McQuarrie, S. A.; Huang, C.; and Willcox, K. E. 2021. Data-
driven reduced-order models via regularised Operator Infer-
ence for a single-injector combustion process. Journal of the
Royal Society of New Zealand, 51(2): 194–211. In press.



Nogueira Jr, A. C.; Carvalho, F. C.; Almeida, J. L. S.; Codas,
A.; Bentivegna, E.; and Watson, C. D. 2021. Reservoir Com-
puting in Reduced Order Modeling for Chaotic Dynamical
Systems. In International Conference on High Performance
Computing, 56–72. Springer, Cham.
Oommen, V.; Shukla, K.; Goswami, S.; Dingreville, R.; and
Karniadakis, G. 2022. Learning two-phase microstructure
evolution using neural operators and autoencoder architec-
tures. npj Computational Materials, 8.
Pathak, J.; Lu, Z.; Hunt, B. R.; Girvan, M.; and Ott, E. 2017.
Using machine learning to replicate chaotic attractors and
calculate Lyapunov exponents from data. Chaos: An Inter-
disciplinary Journal of Nonlinear Science, 27(12): 121102.
Pathak, J.; Subramanian, S.; Harrington, P.; Raja, S.; Chat-
topadhyay, A.; Mardani, M.; Kurth, T.; Hall, D.; Li, Z.; Aziz-
zadenesheli, K.; Hassanzadeh, P.; Kashinath, K.; and Anand-
kumar, A. 2022. FourCastNet: A Global Data-driven High-
resolution Weather Model using Adaptive Fourier Neural
Operators. arXiv preprint arXiv:2202.11214.
Peherstorfer, B.; and Willcox, K. 2016. Data-driven oper-
ator inference for nonintrusive projection-based model re-
duction. Computer Methods in Applied Mechanics and En-
gineering, 306: 196–215. In press.
Vlachas, P. R.; Pathak, J.; Hunt, B. R.; Sapsis, T. P.; Girvan,
M.; Ott, E.; and Koumoutsakos, P. 2020. Backpropagation
algorithms and reservoir computing in recurrent neural net-
works for the forecasting of complex spatiotemporal dynam-
ics. Neural Networks, 126: 191–217. In press.
Wang, S.; Wang, H.; and Perdikaris, P. 2021. Improved ar-
chitectures and training algorithms for deep operator net-
works. arXiv preprint arXiv:2110.01654.
Zeng, A.; Chen, M.; Zhang, L.; and Xu, Q. 2022. Are
Transformers Effective for Time Series Forecasting? arXiv
preprint arXiv:2205.13504.



A Neural network architecture for VAE

Table 1: The CNN-VED architecture

Encoder

Layer Kernel Size / Width Activation Input size Output size
Re-scaling

Conv2D 3× 3 16 tanh 80× 80× 3 80× 80× 16
MaxPooling 2× 2 - - 80× 80× 16 40× 40× 16

Conv2D 3× 3 32 tanh 40× 40× 16 40× 40× 32
MaxPooling 2× 2 - - 40× 40× 32 20× 20× 32

Conv2D 3× 3 64 tanh 20× 20× 32 20× 20× 64
MaxPooling 2× 2 - - 20× 20× 64 10× 10× 64

Conv2D 3× 3 128 tanh 10× 10× 64 10× 10× 128
MaxPooling 2× 2 - - 10× 10× 128 5× 5× 128
Reshaping - - - 5× 5× 128 3200

s network

MLP - 20 tanh 3200 20

σ network

MLP - 20 tanh 20 20

µ network

MLP - 20 tanh 20 20

MLP decoder network

MLP - 3200 tanh 20 3200

Decoder

Reshaping - - - 3200 5× 5× 128
Conv2D 3× 3 64 tanh 5× 5× 128 5× 5× 64

UpSampling 2×, bi-cubic - - 5× 5× 64 10× 10× 64
Conv2D 3× 3 32 tanh 10× 10× 64 10× 10× 32

UpSampling 2×, bi-cubic - - 10× 10× 32 20× 20× 32
Conv2D 3× 3 16 tanh 20× 20× 32 20× 20× 16

UpSampling 2×, bi-cubic - - 20× 20× 32 40× 40× 16
Conv2D 3× 3 3 tanh 40× 40× 16 40× 40× 3

UpSampling 2×, bi-cubic - - 40× 40× 3 80× 80× 3



B Neural network architecture for DeepONet

Table 2: The DeepONet architecture

Trunk
#Layers Width Activation Input size Output size

7 100 sin 1 4000
Branch

#Layers Width Activation Input size Output size
7 100 sin 20 4000

Encoder Trunk
#Layers Width Activation Input size Output size

1 100 sin 1 100
Encoder Branch

#Layers Width Activation Input size Output size
1 100 sin 20 100

C Averaged error per physical variable in
relative L2-norm over all samples of the

testing dataset

u w T
Mean (%) 4.27 6.93 5.26
Std (%) 2.53 4.73 2.95


