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ABSTRACT

Accurately forecasting multiple future events within a given time horizon is cru-
cial for finance, retail, social networks, and healthcare applications. Event timing
and labels are typically modeled using Marked Temporal Point Processes (MTPP),
with evaluations often focused on next-event prediction quality. While some stud-
ies have extended evaluations to a fixed number of future events, we demonstrate
that this approach leads to inaccuracies in handling false positives and false neg-
atives. To address these issues, we propose a novel evaluation method inspired
by object detection techniques from computer vision. Specifically, we introduce
Temporal mean Average Precision (T-mAP), a temporal variant of mAP, which
overcomes the limitations of existing long-horizon evaluation metrics. Our ex-
tensive experiments demonstrate that models with strong next-event prediction
accuracy can yield poor long-horizon forecasts and vice versa, indicating that spe-
cialized methods are needed for each task. To support further research, we re-
lease HoTPP1, the first benchmark designed explicitly for evaluating long-horizon
MTPP predictions. HoTPP includes large-scale datasets with up to 43 million
events and provides optimized procedures for both autoregressive and parallel in-
ference, paving the way for future advancements in the field.

1 INTRODUCTION

The world is full of events. Internet activity, e-commerce transactions, retail operations, clinical vis-
its, and numerous other aspects of our lives generate vast amounts of data in the form of timestamps
and related information. In the era of AI, it is crucial to develop methods capable of handling these
complex data streams. We refer to this type of data as Event Sequences (ESs). Event sequences
differ fundamentally from other data types. Unlike tabular data (Wang & Sun, 2022), ESs include
timestamps and possess an inherent order. In contrast to time series data (Lim & Zohren, 2021), ESs
are characterized by irregular time intervals and additional data fields. These differences necessitate
the development of specialized models and evaluation practices.

Sequence modeling is the primary task in the Event Sequences (ESs) domain. In its simplest form,
each event is defined by its type and occurrence time, a framework commonly known as Marked
Temporal Point Processes (MTPP) (Rizoiu et al., 2017). Some studies extend MTPP to incorporate
additional data fields and model complex dependencies between them (McDermott et al., 2024).
However, the majority of MTPP approaches, as well as their evaluation pipelines, primarily focus
on predicting the next event based on historical data.

In practice, a common question arises: what events will occur, and when, within a specific time
horizon? Forecasting multiple future events presents unique challenges that differ from traditional
next-event prediction tasks. For instance, autoregressive event sequence prediction involves apply-
ing the model to its own potentially erroneous predictions. However, the challenges of autoregressive
prediction in the context of MTPP have not been thoroughly explored. Another difficulty lies in eval-
uation. Methods like Dynamic Time Warping (DTW) are typically unsuitable for event sequences
due to strict ordering constraints (Su & Hua, 2017). Some works have applied Optimal Transport
Distance (OTD), a variant of the Wasserstein distance, to compare sequences of predefined lengths.
Still, the limitations of this metric have not been previously considered.

1https://github.com/anonymous-10647849/hotpp-benchmark-submission
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Figure 1: Temporal mAP (T-mAP) evaluation pipeline. Unlike previous methods, T-mAP evaluates
sequences of variable lengths within the prediction horizon. It further improves performance assess-
ment by analyzing label distributions rather than relying on fixed predictions.

In this work, we provide the first in-depth analysis of models and metrics for long-horizon event
forecasting, establishing a rigorous evaluation framework and a baseline for MTPP studies. Our key
contributions are as follows:

1. We demonstrate that widely used evaluation methods for MTPPs often overlook critical
aspects of model performance. We demonstrate that simple rule-based baselines can some-
times outperform popular deep learning methods when evaluated using OTD.

2. We introduce Temporal mean Average Precision (T-mAP), a novel evaluation metric in-
spired by best practices in computer vision. T-mAP evaluates variable length sequences
within a specified time horizon, as illustrated in Figure 1. Unlike previous approaches,
T-mAP accurately accounts for false positives and false negatives while being invariant to
linear calibration. Additionally, we address a theoretical gap in computer vision by proving
the correctness of the T-mAP computation algorithm.

3. Using our established methodology, we demonstrate that high next-event prediction accu-
racy does not necessarily translate into high-quality long-horizon forecasts; in many cases,
our experiments show the opposite. This highlights the necessity of developing specialized
models for the long-horizon prediction task.

4. We release HoTPP, a new open-source benchmark designed to facilitate long-horizon event
sequence prediction research. HoTPP brings together datasets and methods from various
domains, including financial transactions, social networks, healthcare, and recommender
systems, greatly expanding the diversity and scale of data compared to prior benchmarks.
Additionally, we offer an efficient inference algorithm necessary for large-scale evalua-
tions.

2 RELATED WORK

Marked Temporal Point Processes. A Marked Temporal Point Process (MTPP) is a stochastic
process consisting of a sequence of pairs (t1, l1), (t2, l2), . . . , where t1 < t2 < . . . represent event
times and li ∈ {1, . . . , L} denote event type labels (Rizoiu et al., 2017). Common approaches to
MTPP modeling focus on predicting the next event. A basic solution involves independently pre-
dicting the event time and type. A more advanced approach splits the original sequence into subse-
quences, one for each event type, and independently models each subsequence’s timing. Depending
on the time-step distribution, the process is called Poisson or Hawkes.

Over the last decade, the focus has shifted toward increasing model flexibility by applying neural
architectures. Several works have employed classical RNNs (Du et al., 2016; Xiao et al., 2017; Omi
et al., 2019) and transformers (Zuo et al., 2020; Zhang et al., 2020), while others have proposed
architectures with continuous time (Mei & Eisner, 2017; Rubanova et al., 2019; Kuleshov et al.,
2024). In this work, we evaluate MTPP models with both discrete and continuous time architectures.
Unlike previous benchmarks, we also assess simple rule-based predictors and popular methods from
related fields, including GPT-like prediction models for event sequences (McDermott et al., 2024;
Padhi et al., 2021) and Next-K models from time series analysis (Lim & Zohren, 2021). For more
details on MTPP modeling, refer to Appendix A.
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Figure 2: Comparison of OTD and T-mAP metrics. In example 1.a prefix evaluation of three events
using OTD results in an incorrect, false negative. T-mAP addresses this issue by comparing all
events within the time horizon, as shown in example 1.b. Additionally, OTD evaluates only the label
with the maximum probability. From the OTD perspective, cases 2.a and 2.b have the same quality.
In contrast, T-mAP evaluates the entire distribution, yielding a low score of 0.33 in case 2.a and a
high score of 1 in case 2.b.

MTPP Evaluation. Previous benchmarks have primarily focused on medical data or traditional
MTPP datasets. EventStream-GPT (McDermott et al., 2024) and TemporAI (Saveliev & van der
Schaar, 2023) consider only medical data and do not implement methods from the MTPP field,
despite their applicability. Early MTPP benchmarks, such as Tick (Bacry et al., 2017) and Py-
Hawkes2, implement classical machine learning approaches but exclude modern neural networks.
While PoPPy (Xu, 2018) and EasyTPP (Xue et al., 2023) include neural methods, they do not con-
sider rule-based and Next-K approaches. Furthermore, PoPPy does not evaluate long-horizon pre-
dictions at all. EasyTPP addresses this limitation to some extent by reporting the OTD metric,
though it does not provide the corresponding evaluation code.

Previous work also highlighted the limitations of Dynamic Time Warping (DTW) for event sequence
evaluation (Su & Hua, 2017), showing that DTW’s strict ordering constraints are impractical and
should be avoided. This work proposed an alternative, the Order-preserving Wasserstein Distance
(OPW). In our study, we address the limitations of OTD, a variant of the Wasserstein Distance, and
propose a new metric called T-mAP. Unlike OPW, T-mAP operates on timestamps rather than event
indices and involves two hyperparameters, compared to three in OPW.

3 LIMITATIONS OF THE NEXT-EVENT AND OTD METRICS

MTPPs are typically evaluated based on the accuracy of next-event predictions, with time and type
predictions assessed independently. The quality of type predictions is measured by the error rate,
while time prediction error is evaluated using either Mean Absolute Error (MAE) or Root Mean
Squared Error (RMSE). However, these metrics do not account for the model’s ability to predict
multiple future events. For example, in autoregressive models, the outputs are fed back as inputs
for subsequent steps, which can lead to cumulative prediction errors. As a result, long-horizon
evaluation metrics are necessary.

2https://github.com/slinderman/pyhawkes
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Recent studies have advanced the measurement of horizon prediction quality by employing
OTD (Mei et al., 2019). This metric is analogous to the edit distance between the predicted event
sequence and the ground truth. Suppose there is a predicted sequence Sp = {(tpi , l

p
i )}

np

i=1, 0 < tp1 <

tp2 < . . . , and a ground truth sequence Sgt = {(tgtj , lgtj )}ngt

j=1, 0 < tgt1 < tgt2 < . . . . These two
sequences form a bipartite graph G(Sp, Sgt). The prediction is connected to the ground truth event
if their types are equal. Denote M(Sp, Sgt) a set of all possible matches in the graph G(Sp, Sgt).
OTD finds the minimum cost among all possible matchings:

OTD(Sp, Sgt) = min
m∈M(Sp,Sgt)

 ∑
(i,j)∈m

|tpi − tgtj |+ CdelUp(m) + CinsUgt(m)

 , (1)

where Up(m) is the number of unmatched predictions in matching m, Ugt(m) is the number of
unmatched ground truth events, Cins is an insertion cost, and Cdel is a deletion cost. It is common
to take Cins = Cdel (Mei et al., 2019). It has been proven that OTD is a valid metric, as it is
symmetric, equals zero for identical sequences, and satisfies the triangle inequality.

OTD is computed between fixed-size prefixes, but this approach limits metric flexibility in assessing
models with imprecise time step predictions, as illustrated in Fig. 2.1. If the model predicts events
too frequently, the first K predicted events will correspond to the early part of the ground truth
sequence, resulting in false negatives. This outcome is inaccurate because allowing the model to
predict more events would alter the evaluation. Conversely, if the time step is too large, the first
K predicted events will extend far beyond the horizon of the first K target events, leading to a
significant number of false positives. This is undesirable as it prevents the inclusion of additional
ground truth events in the evaluation. Therefore, evaluating a dynamic number of events is essential
to align with the ground truth’s time horizon properly.

MTPP evaluation metrics can be categorized into two groups: those considering event indices and
those assessing time and label prediction quality independently of actual positions. Next-event met-
rics rely on ordering, even when events share identical timestamps, making the order meaningless.
While OTD itself is invariant to order, the extraction of sequences for comparison is influenced by
event indices. For example, when OTD compares length prefixes K, the algorithm must place K
correctly predicted events at the beginning of a sequence to minimize the OTD score. As a result,
OTD, like next-event metrics, can depend on event ordering even when the order cannot be uniquely
determined. This dependency is non-trivial and difficult to measure or control accurately.

Another limitation of the OTD metric is its inability to evaluate the full predicted distribution of la-
bels, as shown in Figure 2.2. OTD considers only the labels with the highest probability, ignoring the
complete distribution. This makes it dependent on model calibration and limits the ability to assess
performance across a broader range of event types, such as long-tail predictions. However, models
typically predict probabilities for all classes, allowing for a more comprehensive assessment. There-
fore, we aim to develop an evaluation metric that accurately captures performance across common
and rare classes.

4 TEMPORAL MAP: PREDICTION AS DETECTION

In this section, we introduce a novel metric, Temporal mAP (T-mAP), which analyses all errors
within a predefined time horizon, explicitly controls ordering, and is invariant to linear calibration.
T-mAP is inspired by object detection methods from computer vision (Everingham et al., 2010), as
illustrated in Fig. 1. Object detection aims to localize objects within an image and identify their
types. In event sequences, we tackle a similar problem but consider the time dimension instead of
horizontal and vertical axes. Unlike object detection, where objects have spatial size, each event
in an MTTP is a point without a duration. Therefore, we replace the intersection-over-union (IoU)
similarity between bounding boxes with the absolute time difference.

T-mAP incorporates concepts from OTD but addresses its limitations, as outlined in the previous
section. Firstly, T-mAP evaluates label probabilities instead of relying on final predictions. Sec-
ondly, T-mAP restricts the prediction horizon rather than the number of events. These adjustments
result in significant differences in formulation and computation, detailed below.

4
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4.1 DEFINITION

T-mAP is parameterized by the horizon length T and the maximum allowed time error δ. T-mAP
compares predicted and ground truth sequences within the interval T from the last observed event.
Consider a simplified scenario with a single event type l. Assume the model predicts timestamps
and presence scores (logits or probabilities) for several future events: Sl

p = {(tpi , s
p
i )}, 1 ≤ i ≤ np.

The corresponding ground truth sequence is Sl
gt = {tgtj }, 1 ≤ j ≤ ngt. For simplicity, assume the

sequences Sl
p and Sl

gt are filtered to include only events within the horizon T .

For any threshold value h, we can select a subset of the predicted sequence Sl
p with scores exceeding

the threshold:
Sl
>(h) = {tpi : ∃(tpi , s

p
i ) ∈ Sl

p, s
p
i > h}. (2)

By definition, a predicted event i can be matched with a ground truth event j iff |tpi − tgtj | ≤ δ,
meaning the time difference between the predicted and ground truth events is less than or equal to
δ. T-mAP identifies the matching that maximizes precision and recall, i.e., matching with maximum
cover c. The precision of this matching is calculated as c/|Sl

>(h)| and the recall as c/|Sl
gt|. For any

threshold h, we can count true positives (TP), false positives (FP), and false negatives (FN) across
all predicted and ground truth sequences. Note that there are no true negatives, as the model cannot
explicitly predict the absence of an event. Similar to binary classification, we can define a precision-
recall curve by varying the threshold h and then estimate the Average Precision (AP), the area under
the precision-recall curve. Finally, T-mAP is defined as the average AP across all classes.

4.2 COMPUTATION

Finding the optimal matching independently for each threshold value h is impractical; thus, we need
a more efficient method to evaluate T-mAP. This section shows how to optimize T-mAP computa-
tion using an assignment problem solver, like the Jonker-Volgenant algorithm (Jonker & Volgenant,
1988). The resulting complexity of T-mAP computation is O(BN3), where B is the number of
evaluated sequences and N = max(np, ngt) is the number of events within the horizon.

a. Create a bipartite graph

Sp

Sg t

b. Find the optimal matching c. Gather scores and compute

pos.
pos.
neg.
pos.
neg.

s1
p

s2
p

s3
p

s4
p

s5
p

T-mAP

Figure 3: T-mAP computation pipeline.

For each pair of sequences Sl
p and Sl

gt we define a weighted bipartite graph G(Sl
p, S

l
gt) with |Sl

p|
vertices in the first and |Sl

gt| vertices in the second part. For each pair of prediction i and ground
truth event j with |tpi − tgtj | ≤ δ we add an edge with weight −spi , equal to negative logit of the
target class, as shown in Fig. 3.a. Jonker-Volgenant algorithm finds the matching with the maximum
number of edges in the graph, such that the resulting matching minimizes the total cost of selected
edges, as shown in Fig. 3.b. We call this matching optimal matching and denote a set of all optimal
matching possibilities as M(G). For any threshold h, there is a subgraph Gh(S

l
>(h), S

l
gt) with events

whose scores are greater than h. The following theorem holds:

Theorem 4.1. For any threshold h there exists an optimal matching in the graph Gh, that is a subset
of an optimal matching in the full graph G:

∀h∀m ∈ M(G)∃mh ∈ M(Gh) : mh ⊂ m. (3)

According to this theorem, we can compute the matching for the prediction Sl
gt and subsequently

reuse it for all thresholds h and subsequences Sl
>(h) to construct a precision-recall curve for the

entire dataset, as shown in Fig. 3.c. The proof of the theorem, the study of calibration dependency,
and the complete algorithm for T-mAP evaluation are provided in Appendix B.

5
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4.3 T-MAP HYPERPARAMETERS

T-mAP has two hyperparameters: the maximum allowed time delta δ and evaluation horizon H . We
set δ twice the cost of the OTD because when the model predicts an incorrect label, OTD removes
the prediction and adds the ground truth event with the total cost equal to 2C. The horizon H must
be larger than δ to evaluate timestamp quality adequately. Therefore, depending on the dataset, we
select H to be approximately 3-7 times larger than δ, ensuring the horizon captures an average of
6-15 events. The empirical study of T-mAP hyperparameters is presented in Figure 4. As shown,
the chosen δ parameter is positioned to the right of the initial slope of the parameter-quality curve,
ensuring an optimal balance between time granularity and task difficulty.
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Figure 4: T-mAP dependency on the δ parameter. The dashed line indicates the selected value.
Results for the StackOverflow and Amazon datasets are provided in the Appendix E.

5 HOTPP BENCHMARK

The HoTPP benchmark integrates data preprocessing, training, and evaluation in a single toolbox.
Unlike previous benchmarks, HoTPP introduces the novel T-mAP metric for long-horizon predic-
tion. HoTPP differs from prior MTPP benchmarks by including simple rule-based baselines and
next-k models, simultaneously predicting multiple future events. The HoTPP benchmark is de-
signed to focus on simplicity, extensibility, evaluation stability, reproducibility, and computational
efficiency.

Simplicity and Extensibility. The benchmark code is organized into a clear structure, separating
the core library, dataset-specific scripts, and configuration files. New methods can be integrated
at various levels, including the configuration file, model architecture, loss function, metric, and
training module. Core components are reusable through the Hydra configuration library (Yadan,
2019). For example, HoTPP can apply the HYPRO rescoring method to backbone models such
as IFTPP, RMTPP, NHP, and ODE. Another example is our Next-K implementation, which can be
applied to IFTTP or RMTPP.

Evaluation Stability. In the MTPP domain, many datasets contain only a few thousand sequences
for training and evaluation. For example, the StackOverflow test set includes 401 sequences,
Retweet contains 1956, and Amazon has 1851 sequences for testing. Previous long-horizon evalua-
tion pipelines (Xue et al., 2022; 2023) made predictions only at the end of each sequence, resulting
in a limited number of predictions and reduced evaluation stability. To address this limitation, we
evaluate long-horizon predictions at multiple intermediate points.

Reproducibility. The HoTPP benchmark ensures reproducibility at multiple levels. First, we use
the PytorchLightning library (Falcon & The PyTorch Lightning team, 2019) for training with a spec-
ified random seed and report multi-seed evaluation results. Second, data preprocessing is carefully
designed to ensure datasets are constructed reproducibly. Finally, we specify the environment in a
Dockerfile.

Computational Efficiency. Some methods are particularly slow, especially during autoregressive
inference on large datasets. Straightforward evaluation can take several hours on a single Nvidia
V100 GPU. We optimized the training and inference pipelines in two ways to accelerate computa-
tion. First, we implemented an efficient RNN that reuses computations during parallel autoregressive

6
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Table 1: Evaluation results. The best result is shown in bold. The mean and standard deviation of
each metric computed during five runs with different random seeds are reported.

Method Mean
length

Next-item Long-horizon
Acc (%) mAP (%) MAE OTD Val / Test T-mAP Val / Test (%)

Tr
an

sa
ct

io
ns

MostPopular 7.5 32.78± 0.00 0.86± 0.00 0.752± 0.000 7.37± 0.00 / 7.38± 0.00 1.06± 0.00 / 0.99± 0.00

Last 5 4.7 19.60± 0.00 0.87± 0.00 0.924± 0.000 7.40± 0.00 / 7.44± 0.00 2.46± 0.00 / 2.49± 0.00

IFTPP 11.0 34.08± 0.04 3.47± 0.01 0.693± 0.000 6.88± 0.01 / 6.90± 0.01 5.82± 0.27 / 5.88± 0.13

IFTPP-K 10.1 33.69± 0.03 3.25± 0.01 0.698± 0.001 7.18± 0.00 / 7.19± 0.00 4.42± 0.15 / 4.43± 0.16

RMTPP 7.5 34.15± 0.07 3.47± 0.02 0.749± 0.005 6.86± 0.01 / 6.88± 0.01 7.08± 0.16 / 6.69± 0.12

RMTPP-K 7.3 33.63± 0.07 3.24± 0.02 0.749± 0.001 7.10± 0.00 / 7.11± 0.00 5.82± 0.05 / 5.52± 0.13

NHP 9.4 35.43± 0.07 3.41± 0.01 0.696± 0.002 6.97± 0.01 / 6.98± 0.01 5.59± 0.07 / 5.61± 0.05

AttNHP 7.6 31.12± x.xx 1.21± x.xx 0.717± x.xxx 7.52± x.xx / 7.50± x.xx 1.71± x.xx / 1.48± x.xx

ODE 9.1 35.60± 0.06 3.34± 0.06 0.695± 0.002 6.96± 0.01 / 6.97± 0.01 5.53± 0.08 / 5.52± 0.13

HYPRO 6.9 34.26± x.xx 3.46± x.xx 0.758± x.xxx 7.04± x.xx / 7.05± x.xx 7.79± x.xx / 7.05± x.xx

M
IM

IC
-I

V

MostPopular 10.3 4.77± 0.00 2.75± 0.00 14.52± 0.00 19.82± 0.00 / 19.82± 0.00 0.55± 0.00 / 0.54± 0.00

Last 5 4.0 1.02± 0.00 2.63± 0.00 5.34± 0.00 19.75± 0.00 / 19.73± 0.00 2.41± 0.00 / 2.49± 0.00

IFTPP 12.7 58.59± 0.02 47.32± 1.39 3.00± 0.01 11.51± 0.01 / 11.53± 0.01 21.93± 0.21 / 21.67± 0.21

IFTPP-K 15.1 57.91± 0.13 44.60± 0.14 3.07± 0.02 13.17± 0.05 / 13.18± 0.05 22.46± 0.03 / 22.30± 0.03

RMTPP 10.0 58.33± 0.02 46.24± 1.18 3.89± 0.03 13.64± 0.03 / 13.71± 0.03 21.49± 0.31 / 21.08± 0.29

RMTPP-K 8.4 57.48± 0.06 43.47± 0.11 3.62± 0.02 14.68± 0.01 / 14.72± 0.02 20.70± 0.16 / 20.39± 0.14

NHP 6.1 24.97± 0.94 11.12± 0.49 6.53± 0.77 18.59± 0.18 / 18.60± 0.19 7.26± 1.35 / 7.32± 1.33

AttNHP 5.1 42.75± 0.52 28.55± 1.06 3.08± 0.04 14.66± 0.08 / 14.68± 0.08 22.64± 0.41 / 22.46± 0.40

ODE 12.5 43.21± 2.30 25.34± 3.05 2.93± 0.03 14.71± 0.34 / 14.74± 0.34 15.41± 0.21 / 15.18± 0.15

HYPRO 7.4 58.35± x.xx 45.45± x.xx 3.95± x.xx 14.82± x.xx / 14.87± x.xx 16.94± x.xx / 16.77± x.xx

R
et

w
ee

t

MostPopular 28.0 58.50± 0.00 39.85± 0.00 18.82± 0.00 174.9± 0.0 / 173.5± 0.0 25.15± 0.00 / 23.91± 0.00

Last 10 9.8 50.29± 0.00 35.73± 0.00 21.87± 0.00 152.3± 0.0 / 150.3± 0.0 29.12± 0.00 / 29.24± 0.00

IFTPP 26.1 59.95± 0.03 46.53± 0.04 18.27± 0.03 173.3± 4.1 / 172.7± 4.4 34.90± 4.63 / 31.75± 4.44

IFTPP-K 14.8 59.55± 0.26 45.09± 0.62 18.21± 0.42 168.6± 2.4 / 167.9± 2.8 37.11± 4.91 / 34.73± 5.11

RMTPP 19.0 60.07± 0.10 46.81± 0.06 18.45± 0.16 167.6± 3.4 / 166.7± 3.3 47.86± 0.91 / 44.74± 0.94

RMTPP-K 13.7 59.99± 0.05 46.34± 0.09 18.33± 0.13 164.7± 2.8 / 163.9± 2.8 49.07± 1.16 / 46.16± 1.32

NHP 18.1 60.08± 0.04 46.83± 0.11 18.42± 0.11 167.0± 1.6 / 165.8± 1.6 48.31± 0.67 / 45.07± 0.34

AttNHP 29.5 60.03± 0.03 46.74± 0.01 18.39± 0.05 173.3± 1.0 / 171.6± 1.0 28.32± 1.24 / 25.85± 1.08

ODE 19.0 59.95± 0.08 46.65± 0.04 18.38± 0.04 166.5± 0.5 / 165.3± 0.5 48.70± 0.93 / 44.81± 0.69

HYPRO 15.0 59.87± x.xx 46.69± x.xx 18.75± x.xx 171.4± x.x / 170.7± x.x 49.90± x.xx / 46.99± x.xx

A
m

az
on

MostPopular 20.6 33.46± 0.00 9.58± 0.00 0.304± 0.000 7.20± 0.00 / 7.18± 0.00 8.59± 0.00 / 8.31± 0.00

Last 5 5.0 24.23± 0.00 8.15± 0.00 0.321± 0.000 6.43± 0.00 / 6.41± 0.00 9.73± 0.00 / 9.21± 0.00

IFTPP 13.7 35.73± 0.12 17.14± 0.10 0.242± 0.003 6.58± 0.06 / 6.52± 0.05 21.94± 0.46 / 22.56± 0.52

IFTPP-K 13.3 35.11± 0.08 16.48± 0.03 0.246± 0.000 6.72± 0.01 / 6.68± 0.01 22.06± 0.05 / 22.57± 0.07

RMTPP 16.7 35.76± 0.06 17.21± 0.02 0.294± 0.001 6.62± 0.02 / 6.57± 0.03 19.70± 0.31 / 20.06± 0.33

RMTPP-K 15.8 35.06± 0.14 16.37± 0.20 0.300± 0.005 6.92± 0.01 / 6.87± 0.02 17.85± 0.29 / 18.12± 0.30

NHP 9.9 11.06± 3.43 11.22± 0.19 0.449± 0.014 9.04± 0.31 / 9.02± 0.35 26.24± 0.36 / 26.29± 0.55

AttNHP 18.5 31.83± 0.32 9.70± 0.28 0.461± 0.003 7.32± 0.06 / 7.30± 0.06 14.50± 0.58 / 14.62± 0.80

ODE 9.6 7.54± 0.95 10.14± 0.23 0.492± 0.018 9.48± 0.11 / 9.46± 0.08 23.54± 0.62 / 22.96± 0.61

HYPRO 18.0 35.69± x.xx 17.21± x.xx 0.295± x.xxx 6.63± x.xx / 6.61± x.xx 20.58± x.xx / 20.53± x.xx

St
ac

kO
ve

rfl
ow

MostPopular 14.0 42.90± 0.00 5.45± 0.00 0.744± 0.000 13.56± 0.00 / 13.77± 0.00 6.10± 0.00 / 5.56± 0.00

Last 10 9.3 26.42± 0.00 5.20± 0.00 0.934± 0.000 14.52± 0.00 / 14.55± 0.00 8.67± 0.00 / 6.72± 0.00

IFTPP 24.1 45.41± 0.11 13.00± 0.79 0.641± 0.002 13.57± 0.07 / 13.64± 0.05 8.78± 0.87 / 8.31± 0.50

IFTPP-K 15.3 44.85± 0.24 11.16± 1.07 0.644± 0.003 13.41± 0.07 / 13.51± 0.06 12.42± 0.97 / 11.42± 0.78

RMTPP 14.5 45.43± 0.13 13.33± 0.25 0.701± 0.007 12.95± 0.02 / 13.17± 0.05 13.26± 0.29 / 12.72± 0.16

RMTPP-K 12.0 44.89± 0.09 11.72± 0.10 0.689± 0.001 12.92± 0.01 / 13.13± 0.01 14.91± 0.19 / 14.30± 0.09

NHP 13.0 44.53± 0.05 10.86± 0.19 0.715± 0.004 13.02± 0.02 / 13.24± 0.02 12.67± 0.55 / 11.96± 0.40

AttNHP 15.5 45.17± 0.10 12.67± 0.13 0.705± 0.001 13.08± 0.03 / 13.30± 0.02 11.95± 0.19 / 11.13± 0.32

ODE 13.9 44.38± 0.09 10.12± 0.19 0.711± 0.004 13.04± 0.02 / 13.27± 0.03 11.37± 0.32 / 10.52± 0.23

HYPRO 11.8 45.18± x.xx 12.88± x.xx 0.715± x.xxx 13.04± x.xx / 13.26± x.xx 15.57± x.xx / 14.69± x.xx

inference from multiple starting positions. Second, we developed highly optimized versions of the
thinning algorithm used for sampling in NHP and continuous-time neural architectures (NHP and
ODE), achieving up to a 4x performance improvement compared to the official implementations.
These optimizations allowed us to conduct the first large-scale evaluations of algorithms such as
NHP, AttNHP, ODE, and HYPRO on datasets like Transactions and MIMIC-IV. Additionally, we
provide the first open-source CUDA implementation of the batched linear assignment solver, signif-
icantly enhancing the applicability of the proposed T-mAP metric.

A detailed description of the benchmark can be found in Appendix C, with further details on
HoTPP’s computational performance in Appendix C.5.
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6 EXPERIMENTS

We conduct experiments on five datasets of varying sizes and origins: the Transactions dataset (AI-
Academy, 2021), the MIMIC-IV medical dataset (Johnson et al., 2023), two social networks
datasets, Retweet (Zhao et al., 2015) and StackOverflow (Jure, 2014), and the Amazon reviews
dataset (Jianmo, 2018). Dataset statistics and evaluation parameters are provided in Appendix C.4.

We evaluate representative modeling methods from different groups:

1. Rule-based baselines. MostPopular generates a constant output with the most popular
label from the prefix and the average time step. The Last N baseline outputs N previous
events with adjusted timestamps.

2. Intensity-free approaches. We implement the IFTPP method, which combines mean abso-
lute error (MAE) of the time step prediction with cross-entropy categorical loss for labels
(Shchur et al., 2019; Padhi et al., 2021; McDermott et al., 2024).

3. Intensity-based approaches. We implement RMTPP (Du et al., 2016) as an example of
the TPP approach with a traditional RNN. We add NHP (Mei & Eisner, 2017), based on a
continuous time LSTM architecture. We also evaluate the AttNHP approach that utilizes a
continuous time transformer model (Yang et al., 2022) and ODE (Rubanova et al., 2019).

4. Next-K approaches. We adapt IFTPP and RMTPP to predict multiple future events directly,
implementing IFTPP-K and RMTPP-K, respectively. These approaches originate in time
series analysis and have not been previously applied in the MTPP domain.

5. Reranking. We implement HYPRO (Xue et al., 2022), which generates multiple hypothe-
ses and selects the best sequence using a contrastive approach.

Additional details on these methods are provided in Appendix A, with training specifics outlined in
Appendix D. Hyperparameters for both the methods and metrics are presented in Appendix E. The
main evaluation results are shown in Table 1. In the following sections, we will discuss these results
from various perspectives and offer additional analysis of the methods’ behavior.

6.1 METRICS COMPARISON

The evaluation results in Table 1 show that the OTD metric can yield low values even for simple
rule-based baselines. For instance, the Last baseline achieves the lowest OTD values on the Retweet
and Amazon datasets. In contrast, the T-mAP metric more clearly distinguishes between rule-based
baselines and deep learning models. This difference arises from the ability to measure model confi-
dence. OTD evaluates predicted labels alone, while T-mAP measures average precision by adjusting
logits thresholds. Unlike rule-based baselines, deep models provide confidence scores, whereas
baselines output only labels, resulting in low T-mAP scores for simple baselines.

The HYPRO and NHP methods maximize T-mAP, while statistical baselines, IFTPP, and RMTPP
achieve the lowest OTD values. The difference between the two metrics lies in balancing the im-
portance of event order versus time prediction quality. OTD evaluates the first 5-10 events, and
to minimize OTD, a model must correctly identify the events that constitute the beginning of the
sequence. IFTPP and RMTPP jointly predict the next event’s time and label, leading to better or-
dering. In contrast, methods like NHP, AttNHP, and ODE predict time steps independently for each
event type. When the differences between timestamps are small, these methods can result in random
ordering, negatively affecting the OTD score. T-mAP, on the other hand, is less sensitive to event
order as long as the time predictions are accurate.

The HYPRO method, designed to differentiate between ground truth and predicted sequences using
a discriminator model, achieves high T-mAP scores. This highlights T-mAP’s ability to reward
models that generate realistic sequences. We also observed that methods with high T-mAP scores
often have low next-event prediction accuracy. For instance, on the Retweet, Amazon, and MIMIC-
IV datasets, high long-horizon performance is usually accompanied by low next-event prediction
scores. This is particularly true for the HYPRO method, whose loss function is heavily focused on
long-horizon quality. The contrast on the MIMIC-IV dataset can be attributed to the large number of
events with identical timestamps, making precise event ordering more difficult and impacting both
next-event and OTD scores.
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6.2 INTENSITY-BASED VS INTENSITY-FREE

Previous works mostly compared either intensity-based neural methods (Du et al., 2016; Xue et al.,
2022) or intensity-free approaches (Padhi et al., 2021; McDermott et al., 2024). The only exception
is IFTPP (Shchur et al., 2019), which did not compare with NHP and included only test set likelihood
as an evaluation metric. This raises the question: which approach is superior? We compare the
intensity-free IFTPP method with intensity-based RMTPP, NHP, and ODE approaches. Table 1
shows that the intensity-free IFTPP method excels in the next-event MAE prediction, as it optimizes
this metric. In other scenarios, the results vary between datasets. Therefore, we conclude that there
is no preferred solution, and both approaches warrant attention in future research.

6.3 AUTOREGRESSION VS DIRECT HORIZON PREDICTION

We compared the IFTPP and RMTPP methods with their Next-K counterparts. Our results indicate
that autoregressive models generally perform better regarding next-event prediction quality, while
Next-K approaches improve T-mAP scores on all datasets except Transactions. The OTD-based
rankings vary across datasets, with no single approach consistently outperforming the others. De-
spite these findings, little effort has been made to adapt Next-K models to MTPPs, suggesting future
research in this area.

We also observed that the Next-K approaches exhibit some interesting properties compared to au-
toregression. For instance, the entropy of label distributions in autoregression models decreases
with increasing generation steps, as shown in Figure 5. The likely reason for this behavior is the
dependency of the model’s future output on its past errors. Conversely, Next-K models demonstrate
increasing entropy, which is expected as future events become harder to predict. This suggests that
Next-K models have the potential to predict better the distributions of future labels, a factor that
should be considered in future research. Appendix G provides a qualitative analysis of predictions
diversity.
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Figure 5: Entropy of label distributions as a function of the position in the generated sequence.
Results for StackOverflow and Amazon datasets are provided in Appendix J.

6.4 THE MAXIMUM SEQUENCE LENGTH

We observed that long-horizon prediction quality largely depends on the maximum number of al-
lowed predictions in autoregression and Next-K models. As shown in Fig. 6, the optimal number of
predicted events is usually less than the maximum number of events on the horizon. For example,
in the Transactions dataset, the optimal length ranges from 3 to 5, depending on the method. This
indicates that the quality of confidence estimation degrades for events further in the future, therefore
it is beneficial to limit the number of predictions manually.

Therefore, we conclude that greater attention should be given to probability calibration between
generation steps. This finding also highlights progress in long-horizon prediction tasks, particularly
in determining the maximum horizon that can be accurately modeled. T-mAP is the only metric ca-
pable of evaluating the optimal predicted sequence length, while the OTD metric remains unaffected
by sequence length as it compares fixed-size prefixes.
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Figure 6: T-mAP dependency on the maximum length of the predicted sequence. Results for the
StackOverflow and Amazon datasets are detailed in Appendix K.

7 LIMITATIONS AND FUTURE WORK

The proposed benchmark has several shortcomings. The training process for some methods is rela-
tively slow. For example, a continuous time LSTM from the NHP method lacks an effective open-
source GPU implementation, which could be developed in the future. Autoregression can also be
optimized using specialized GPU implementations, which would significantly impact HYPRO train-
ing. Additionally, the list of implemented backbone architectures and losses can be extended, for
example, by incorporating hybrid (Deshpande et al., 2021) and diffusion models (Zhou et al., 2023).

Our benchmark encourages future research to develop improved techniques for predicting future
events and establish simple baselines for better measurement of progress in the field. For example,
Next-K models, which predict multiple future events without autoregression, show promising results
in long-horizon prediction tasks. We suggest further exploration of these models. We also highlight
the importance of label distribution estimation and emphasize the need to improve confidence esti-
mation and calibration.

The T-mAP metric can be applied in domains beyond event sequences, like action recognition (Su
& Hua, 2017). T-mAP can potentially offer better timestamp evaluation in these domains than
evaluating indices with OPW. T-mAP can also provide a more natural hyperparameter selection
regarding the modeling horizon and maximum allowed time error. Our theoretical justification of
T-mAP can potentially be adapted to the mAP estimation algorithms in computer vision.

8 CONCLUSION

In this paper, we propose the HoTPP benchmark to assess the quality of long-horizon events fore-
casting. Our extensive evaluations using established datasets and various predictive models reveal
a critical insight: high accuracy in next-event prediction does not necessarily correlate with su-
perior performance in horizon prediction. This finding underscores the need for benchmarks like
HoTPP, emphasizing the importance of long-horizon accuracy and robustness. By shifting the fo-
cus from short-term to long-term predictive capabilities, HoTPP aims to drive the development of
more sophisticated and reliable event sequence prediction models. This, in turn, has the potential
to significantly enhance the practical applications of sequential event prediction in various domains,
fostering innovation and improving decision-making processes across a wide range of industries.
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A BACKGROUND ON MARKED TEMPORAL POINT PROCESSES MODELING

Intensity-based approaches. Modeling the probability density function (PDF) f∗(ti) =
f(ti|t1, . . . , ti−1) for the next event time is typically challenging, as it requires the additional con-
straint that its integral equals one. Instead, the non-negative intensity function λ(ti) ≥ 0 is usually
modeled. The following equation gives the relationship between the PDF and the intensity function:

f∗(ti) = λ(ti) exp

(
−
∫ ti

ti−1

λ(s)ds

)
. (4)
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The derivation is provided in (Rizoiu et al., 2017). Different TPPs are characterized by their inten-
sity function λ(ti). In Poisson and non-homogeneous Poisson processes, the intensity function is
independent of previous events, meaning event occurrences depend solely on external factors. In
contrast, self-exciting processes are characterized by previous events increasing the intensity of fu-
ture events. A notable example of a self-exciting process is the Hawkes process, in which each event
linearly affects the future intensity:

λ(ti) = λ0(ti) +

i−1∑
k=1

ϕ(ti − tk), (5)

where λ0(ti) ≥ 0 is the base intensity function, independent of previous events, and ϕ(x) ≥ 0 is the
so-called memory kernel function. Given the intensity function λ(ti), predictions are typically made
by sampling or expectation estimation. Sampling is usually performed using the thinning algorithm,
a specific rejection sampling approach. For details on the implementation of sampling, please refer
to (Rizoiu et al., 2017).

Recent research has focused on modeling complex intensity functions. Various neural network ar-
chitectures have been adapted to address this problem. These approaches differ in the type of neural
network used and the model of the intensity function. Neural architectures range from simple RNNs
and Transformers to specially designed continuous-time models like NHP (Mei & Eisner, 2017)
and Neural ODEs (Rubanova et al., 2019). The intensity function between events can be modeled
as a sum of intensities from previous events, as in Hawkes processes, or by directly predicting the
inter-event intensity given the context embedding.

Intensity-free modeling. Some methods evaluate the next event time distribution without using
intensity functions. For example, intensity-free (Shchur et al., 2019) represents the distribution as a
mixture of Gaussians or through normalizing flows. Instead of predicting the distribution directly,
other approaches solve a regression problem using MAE or RMSE loss. However, it can be shown
that both MAE and RMSE losses are closely related to distribution prediction. Specifically, RMSE
is analogous to log-likelihood optimization with a Normal distribution, and MAE is similar to the
log-likelihood of a Laplace distribution (Bishop, 1994). In our experiments, we evaluated a model
trained with MAE loss as an example of an intensity-free method.

Rescoring with HYPRO. HYPRO (Xue et al., 2022) is an extension applicable to any sequence
prediction method capable of sampling. HYPRO takes a pretrained generative model and trains an
additional scoring module to select the best sequence from a sample. It is trained with a contrastive
loss to distinguish between the generated sequence and the ground truth. HYPRO generates multiple
sequences with a background model during inference and selects the best one by maximizing the
estimated score. Although HYPRO is intended to improve quality compared to simple sampling, it is
unclear whether HYPRO outperforms expectation-based prediction. In our work, we apply HYPRO
to the outputs of the RMTPP model.

Next-K models. While not commonly used in the MTPP field, Next-K approaches are popular
in time series modeling (Lim & Zohren, 2021). These methods predict multiple future events at
once, avoiding the need for autoregressive inference. The advantages of Next-K approaches include
fast inference and stability, as predictions do not depend on potential errors from previous steps,
unlike autoregression. The main limitation is a fixed prediction horizon, as the model cannot predict
sequences of arbitrary length. However, applying a modified autoregressive approach can potentially
address this limitation.

In our work, we implement a Next-K variant of the IFTPP model, which is straightforward. Given
K predictions and K ground truth events, we compute MAE and cross-entropy losses between cor-
responding pairs of events from both sequences. The Next-K variant of the RMTPP approach is
more complex, as it violates Hawkes assumptions: the i-th prediction doesn’t depend on predictions
1 . . . i− 1. Consequently, RMTPP-K, unlike RMTPP, cannot model dependencies between the pre-
dicted K events. Despite this, RMTPP-K still performs strongly, particularly on the StackOverflow
dataset.
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B T-MAP COMPUTATION AND PROOFS

Definitions and scope. In this section, we consider weighted bipartite graphs. The first part consists
of predictions, and the second consists of ground truth events. We assume that all edges connected to
the same prediction have the same weight. A matching is a set of edges (ai, bi) between predictions
and ground truth events. A matching is termed optimal if it (1) has the maximum size among all
possible matching and (2) has the minimum total weight among all matches of that size. We denote
all optimal matchings in the graph G as M(G).
Lemma A. Consider a graph G′, constructed from a graph G by adding one ground truth vertex
with corresponding weighted edges. Then any optimal matching m′ ∈ M(G′) will either have a size
greater than the sizes of matchings in M(G) or have a total weight equal to that of matchings in
M(G).

a. The process stops on a prediction

Sp :

Sg t :

b. The process stops on a ground truth

NewNew

Figure 7: Illustration of the iterative process in Lemma A.

Proof. If the size of m′ is greater than the size of matchings in M(G), then the lemma holds. The
optimal matching in the extended graph G′ cannot have a size smaller than the optimal matching in
G. Now, consider the case when both matchings have the same size. We will show that m′ has a
total weight equal to that of the matchings in M(G).
Denote b the new ground truth event in graph G′. If m′ does not include vertex b, then m′ is also
optimal in G, and the lemma holds. If m′ includes vertex b, then we can walk through the graph with
the following process:

1. Start from the new vertex b.

2. If we are at a ground truth event bi and there is an edge (ai, bi) in matching m′, move to
the vertex ai.

3. If we are at a prediction ai and there is an edge (ai, bi) in matching m, move to the vertex
bi.

Example processes are illustrated in Fig. 7. The vertices in each process do not repeat; otherwise,
there would be two edges in either m or m′ with the same vertex, which contradicts the definition
of a matching.

If the process finishes at a predicted event, then m′ has a size greater than the size of m, and the
lemma holds. If the process finishes at a ground truth event, we can replace a part of matching m′

traced with a part of matching m. The resulting matching m̂ will have a size equal to m and m′ and
a total weight equal to both matchings. This proves the lemma.

Theorem 4.1. For any threshold h, there exists an optimal matching in the graph Gh such that it is
a subset of an optimal matching in the full graph G:

∀h∀m ∈ M(G)∃mh ∈ M(Gh) : mh ⊂ m. (6)

Proof. If the threshold is lower than any score spi , then Gh = G, and mh = m satisfies the theorem.
Otherwise, some predictions are filtered by the threshold and Gh ⊂ G.

Without the loss of generality, assume that the threshold is low enough to filter out only one predic-
tion. Otherwise, we can construct a chain of thresholds h1 < h2 < · · · < h, with each subsequent
threshold filtering an additional vertex, and apply the theorem iteratively.
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Denote i to be the only vertex present in G and filtered from Gh. If there is no edge containing vertex
i in the matching m(G), then m(G) is also the optimal matching in Gh and theorem holds.

Consider the case when matching m(G) contains an edge (i, j). Let m̂h = m(G) \ {(i, j)}, i.e.,
the matching without edge (i, j). If it is optimal for the graph Gh, then it will satisfy the theorem.
Otherwise, there is an optimal matching mh with either (a) more vertices or (b) a smaller total weight
than m̂h.

In (a), matching mh has a size greater than the size of m̂h. It follows that mh has the maximum size
in the complete graph G. If the total weight of mh is larger or equal to the optimal weight in G, then
it can not be less than the total weight of m̂h, which contradicts our assumption. At the same time,
the total weight of mh can not be less than the optimal weight in the complete graph G. It follows
that case (a) leads to a contradiction.

Consider the case (b) when the size of mh equals m̂h. If mh does not include vertex j, then both
mh and m̂h are optimal. Otherwise, we can remove vertex j from Gh and construct a new optimal
matching m′

h without j by using Lemma A, and again, both matchings m′
h and m̂h are optimal.

This concludes the proof.

Algorithm. Using the theorem, we can introduce an effective algorithm for T-mAP computation.
T-mAP is defined on a batch of predictions {Si

p}ni=1 and ground truth sequences {Si
gt}ni=1. Let

Si,l
gt denote a subsequence of the ground truth sequence Si

gt containing all events with label l. By
definition, multiclass T-mAP is the average of the average precision (AP) values for each label l:

T-mAP({Si
p}, {Si

gt}) =
1

L

L∑
l=1

AP({Si
p}, {S

i,l
gt }). (7)

Consider AP computation for a particular label l. AP is computed as the area under the precision-
recall curve:

AP =
∑
i

(Reci − Reci−1) Preci, (8)

where Reci is the i-th recall value in a sorted sequence and Prec is the corresponding precision.
Iteration is done among all distinct recall values (Rec0 = 0).

We have several correct and incorrect predictions for each threshold h on the predicted label prob-
ability. These quantities define precision, recall, and the total number of ground truth events.
A prediction is correct if it has an assigned ground truth event within the required time interval
|tpi − tgtj | ≤ δ. Note that each target can be assigned to at most one prediction. Therefore, we de-
fine a matching, i.e., the correspondence between predictions and ground truth events. The theorem
states that the maximum size matching for each threshold h can be constructed as a subset of an
optimal matching between full sequences {Si

p}ni=1 and Si,l
gt , where optimal matching is a solution of

the assignment problem with a bipartite graph, defined in Section 4.2.

As the matching, without loss of generality, can be considered constant for different thresholds, we
can split all predictions into two parts: those that were assigned a ground truth and those that were
unmatched. The matched set constitutes potential true or false positives, depending on the threshold.
The unmatched set is always considered a false positive. Similarly, unmatched ground truth events
are always considered false negatives. The resulting algorithm for AP computation for each label l
involves the following steps:

1. Compute the optimal matching between predictions and ground truth events.

2. Collect (a) scores of matched predictions, (b) scores of unmatched predictions, and (c) the
number of unmatched ground truth events.

3. Assign a positive label to matched predictions and a negative label to unmatched ones.

4. Evaluate maximum recall as the fraction of matched ground truth events.

5. Find the area under the precision-recall curve for the constructed binary classification prob-
lem from item 3 and multiply it by the maximum recall value.
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We have thus defined all necessary steps for T-mAP evaluation. Its complexity is O(LBN3), where
L is the number of classes, B is the number of sequence pairs, and N is the maximum length of
predicted and ground truth sequences.

Calibration dependency. Calibration influences the weights assigned to the edges of the graph
G. T-mAP computation involves two key steps for each class label: matching and AP estimation.
While average precision (AP) is invariant to monotonic transformations of predicted class logits, the
matching step is only invariant to linear transformations. Specifically, the optimal matching seeks to
minimize the total weight in the following form:

C = argmin
m∈M(G)

∑
(i,j)∈m

(−spi ). (9)

A linear transformation of logits with a positive scaling factor will adjust the total weight accord-
ingly, but the optimal matching will remain unchanged. Since the matching is performed indepen-
dently for each class, we conclude that T-mAP is invariant to linear calibration.

C HOTPP BENCHMARK DETAILS

C.1 ARCHITECTURE

HoTPP incorporates best practices from extensible and reproducible ML pipelines. It leverages
PyTorch Lightning (Falcon & The PyTorch Lightning team, 2019) as the core training library, en-
suring reproducibility and portability across various computing environments. Additionally, HoTPP
utilizes the Hydra configuration library (Yadan, 2019) to enhance extensibility. The overall archi-
tecture is illustrated in Figure 8. HoTPP supports both discrete-time and continuous-time models
as well as RNN and Transformer architectures. Implementing a new method requires only adding
essential components, while the rest can be configured through Hydra and configuration files.

Metric

Module

Trainer
- Training
- Evaluation
- Multiseed evaluation
- Hyperpameter tuning

Scripts:

- Training step
- Validation step
- Next event prediction
- Sequence generation

DataModule

- Distributed sampler
- Data loaders

PaddedBatch:

Parquet:
- id: integer
- timestamps: Array[float]
- labels: Array[integer]

Sequence encoder

Events:

Time

Predictions:

Interpolated (cont. models):

Loss
next-event (MAE, RMSE,  Acc.)
long horizon (OTD, T-mAP)

Figure 8: The architecture of the HoTPP library.
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C.2 METRICS

MTPP models are typically evaluated based on the accuracy of next-event predictions. Common
metrics include mean absolute error (MAE) or root mean square error (RMSE) for time shifts and
accuracy or error rate for label predictions. Some studies also assess test set likelihood as predicted
by the model, but we do not include this measure as it is intractable for the IFTPP and Next-K
models. Previous works have advanced long-horizon evaluation using OTD (Mei et al., 2019; Xue
et al., 2023). In addition to these metrics, we evaluate the novel T-mAP metric, which addresses the
shortcomings of previous metrics, as discussed in Section 3.

C.3 BACKBONES

We use three types of architectures in our experiments. The first is the GRU network (Cho et al.,
2014), one of the top-performing neural architectures for event sequences (Babaev et al., 2022).
We also implement the continuous-time LSTM (CT-LSTM) from the NHP method (Mei & Eisner,
2017). Since CT-LSTM requires a specialized loss function and increases training time, we use
it exclusively with the NHP method, preferring GRU in other cases. An additional advantage of
GRU is that its output is equal to its hidden state, simplifying the estimation of intermediate hidden
states for autoregressive inference starting from the middle of a sequence. Lastly, we implement the
AttNHP continuous-time transformer model (Yang et al., 2022).

C.4 DATASETS

For the first time, we combine domains such as financial transactions, social networks, and medical
records into a single evaluation benchmark. Specifically, we provide evaluation results on a transac-
tional dataset (Babaev et al., 2022), the MIMIC-IV medical dataset (Johnson et al., 2023), and social
network datasets (Retweet (Zhao et al., 2015), StackOverflow (Jure, 2014), and Amazon (Jianmo,
2018)). These datasets represent diverse underlying processes: social network data is influenced
by cascades (Zhao et al., 2015), medical records exhibit repetitive patterns and transactional data
reflects daily activities, combining regularity with significant uncertainty.

The dataset statistics are presented in Table 2. The Transactions dataset has the longest average
sequence length and the largest number of classes, while MIMIC-IV contains the highest number of
sequences. Retweet is medium size, whereas Amazon and StackOverflow can be considered small
datasets.

Table 2: Datasets statistics

Dataset Sequences Events Mean Length Mean Horizon Length Mean Duration Classes

Transactions 50k 43.7M 875 9.0 719 203
MIMIC-IV 120k 2.4M 19.7 6.6 503 34
Retweet 23k 1.3M 56.4 14.7 1805 3
Amazon 9k 403K 43.6 14.8 22.1 16
StackOverflow 2k 138K 64.2 12.0 55.3 22

Transactions3, Retweet4, Amazon5, and StackOverflow6 datasets were obtained from the Hugging-
Face repository. Transactions data was released in competition and came with a free license7.
Retweet, Amazon, and StackOverflow come with an Apache 2.0 license. MIMIC-IV is subject
to PhysioNet Credentialed Health Data License 1.5.0, which requires ethical use of this dataset. Be-
cause of a complex data structure, we implement a custom preprocessing pipeline for the MIMIC-IV
dataset.

3https://huggingface.co/datasets/dllllb/age-group-prediction
4https://huggingface.co/datasets/easytpp/retweet
5https://huggingface.co/datasets/easytpp/amazon
6https://huggingface.co/datasets/easytpp/stackoverflow
7https://www.kaggle.com/competitions/clients-age-group/data
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Notes on MIMIC-IV preprocessing

MIMIC-IV is a publicly available electronic health record database that includes patient diagnoses,
lab measurements, procedures, and treatments. We leverage the data preprocessing pipeline from
EventStreamGPT to construct intermediate representations in EFGPT format. This process yields
three key entities: a subjects data frame containing time-independent patient records, an events data
frame listing event types occurring to subjects at specific timestamps, and a measurements data
frame with time-dependent measurement values linked to the events data frame.

We combine events and measurements to create sequences of events for each subject. The classi-
fication labels are generally divided into two categories: diagnoses, represented by ICD codes, and
event types, such as admissions, procedures, and measurements. A key challenge is that relying
solely on diagnoses results in sequences that are too short, while using only event types leads to
highly repetitive sequences dominated by periodic events, such as treatment start and finish.

However, using both diagnoses and event types together introduces another issue: diagnoses are
sparsely distributed within a constant stream of repeated procedures, leading to imbalanced class
distributions and poor performance. To mitigate this, we filter the data by removing duplicate events
between diagnoses, allowing us to retain useful treatment data while preserving class balance.

The final labels are created by converting ICD-9 and ICD-10 codes to ICD-10 chapters using Gen-
eral Equivalence Mapping (GEM) and adding event types as additional classes. This conversion is
necessary because the number of ICD codes is too large to use them directly as classes. Addition-
ally, we address the issue of multiple diagnoses occurring in a single event by sorting timestamps
for reproducibility.

C.5 PERFORMANCE IMPROVEMENTS

The HoTPP benchmark provides highly optimized training and inference procedures for the efficient
evaluation of datasets containing up to tens of millions of events. First, we implement parallel
RNN inference, which reuses computations when inference is initiated from multiple starting points
within a sequence. Additionally, we optimize the code and apply PyTorch Script to the CT-LSTM
model from NHP and the ODE model. CT-LSTM from EasyTPP and the ODE model from the
original repository serve as baselines. The timing results are presented in Table 3. Experiments were
conducted using a synthetic batch with a size of 64, a sequence length of 100, and an embedding
dimension of 64. Evaluation was performed on a single Nvidia RTX 4060 GPU. The results show
that HoTPP is 17 times faster at RNN autoregressive inference compared to simple prefix extension.
HoTPP also accelerates CT-LSTM and ODE by 4 to 8 times. These optimizations significantly
extend the applicability of the implemented methods to larger-scale datasets8. Additionally, HoTPP
offers a GPU implementation of the Hungarian algorithm, which also finds applications in computer
vision.

Table 3: HoTPP computation speed improvements in terms of seconds per batch.

Implementation

Study

RNN autoreg.
inference

CT-LSTM
inference

CT-LSTM
train

ODE
inference

ODE
train

Baseline 2.44 0.0158 0.0519 0.08 0.162
HoTPP 0.14 0.0025 0.0276 0.01 0.048

8Experiments are documented in the “notebooks” folder of the HoTPP repository
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D TRAINING DETAILS

We trained each model using the Adam optimizer, which has a learning rate 0.001, and a scheduler
that reduces the learning rate by 20% after every five epochs. Gradient clipping was applied, and the
maximum L2-norm was set to 1.

We performed computations on NVIDIA V100 and A100 GPUs, with some smaller experiments
conducted on an Nvidia RTX 4060. Each method was trained on a single GPU. The training time
varied depending on the dataset and method, ranging from 5 minutes for RMTPP on the StackOver-
flow dataset to 40 minutes for the same method on the Transactions dataset and up to 15 hours for
NHP on Transactions. Multi-seed evaluations took approximately five times longer to complete.

E HYPERPARAMETERS

We analyzed the behavior of OTD and T-mAP metrics depending on their parameters. The results
are shown in Figure 11. The OTD cost has little effect on the ranking of methods but significantly
influences the metric scale. The choice of the δ parameter in T-mAP can, in some cases, affect
method rankings, but as long as δ is not set too small or too large, the metric demonstrates stable
rankings. We set the δ parameter to approximately 10-30% of the horizon duration.

Evaluation hyperparameters are presented in Table 4. Dataset-specific training parameters are listed
in Table 5.

Table 4: Evaluation hyperparameters.

Dataset Maximum Length OTD prefix size OTD Cost C T-mAP horizon T-mAP δ

Transactions 32 5 1 7 (week) 2
MIMIC-IV 32 5 2 28 (days) 4
Retweet 32 10 15 180 (seconds) 30
Amazon 32 5 1 10 (unk. unit) 2
StackOverflow 32 10 1 10 (minutes) 2

Table 5: Training hyperparameters.

Dataset Num epochs Max Seq. Len. Label Emb. Size Hidden Size Head hiddens

Transactions 30 1200 256 512 512 → 256
MIMIC-IV 30 64 16 64 64
Retweet 30 264 16 64 64
Amazon 60 94 32 64 64
StackOverflow 60 101 32 64 64

F DATASETS ANALYSIS

HoTPP incorporates datasets from various domains, including finance, social networks, and health-
care. Below, we provide additional details highlighting the key differences among these datasets.

Ordering Sensitivity. While most datasets—such as StackOverflow, Amazon, Retweet, and
Transactions—exhibit a relatively balanced distribution of timestamps, we observed that in MIMIC-
IV, the proportion of zero time steps exceeds 50%, as shown in Table 6. This results in a significant
number of events sharing the same timestamp. Consequently, the actual order of events within the
dataset may hold greater significance during evaluation than the precise prediction of timestamps.
This characteristic can lead to instability in timestamp-based metrics, such as OTD and T-mAP,
compared to index-based metrics like next-event quality, pairwise MAE and accuracy. The low
next-item accuracy of methods based on NHP loss (NHP, AttNHP, and ODE) on MIMIC-IV can be
attributed to their independent modeling of each event class, which results in a random ordering of
events with identical timestamps.
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Table 6: Time step percentiles.

Dataset 1% 5% 10% 50% 90% 95% 99%

Transactions 0.0 0.0 0.0 1.0 2.0 2.0 5.0
MIMIC-IV 0.0 0.0 0.0 0.0 6.9 63.8 768.0
Retweet 0.0 0.0 1.0 8.0 85.0 151.0 377.0
Amazon 0.01 0.01 0.01 0.73 0.79 0.79 0.80
StackOverflow 0.0003 0.01 0.05 0.51 2.16 2.97 5.08

Discrete Timestamps. Some datasets feature continuous timestamps (e.g., StackOverflow, Ama-
zon, MIMIC-IV), while others round timestamps to a specific precision (e.g., Retweet, Transac-
tions). Modeling discrete timestamps presents a unique challenge, as density estimation methods
like NHP can produce infinite PDF values. We introduce small Gaussian noise to discrete times-
tamps to address this issue, effectively smoothing the distribution. The degree of smoothing was
carefully tuned for each dataset individually. The exact values are provided in the configuration files
included with the source code.

G QUALITATIVE ANALYSIS OF PREDICTIONS

Table 7 presents example predictions from various methods on the Transactions, MIMIC-IV, and
Retweet datasets. The table focuses exclusively on predicted label sequences. It can be seen that all
methods, except HYPRO, exhibit issues with constant or repetitive outputs. We believe this behavior
stems from a bias in the predictions toward the most frequent labels, especially in scenarios with high
uncertainty. For the MIMIC-IV dataset, the prediction patterns differ significantly, as most events
follow a predefined sequence, such as admission, a standard set of laboratory tests, and diagnosis.
In this case, the uncertainty is lower, enabling the methods to generate sequences with more diverse
event types. Addressing the mentioned limitation in future research could lead to the development
of methods capable of producing more varied and realistic sequences in high-uncertainty scenarios.

Table 7: Example predictions (labels only).

Method Seq. ID Transactions MIMIC-IV Retweet

IFTPP
0 3, 1, 3, 1, 3, 1, 3, 3, 3 10, 27, 23, 22, 1, 27, 3, 28, 26, 25, 23, 30 1, 1
1 6, 3, 6, 6, 6, 6, 6 11, 10 0, 0, 0, 0, 0, 0, 0, 0, 0
2 3, 1, 3, 1, 3, 1, 3, 1, 3 2, 7, 14, 12, 4, 6, 11, 10 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

IFTPP-K
0 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 10, 1, 1, 3, 3, 8, 9, 23, 2, 2, 5, 2 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
1 6, 6, 6, 6, 6, 6, 6 11, 1, 3, 5, 8, 2, 9, 2, 2, 7, 7, 4 1, 1, 1, 1, 0, 0, 0, 0, 0
2 3, 1, 1, 1, 1, 1, 1 15, 4, 2, 7, 4, 1, 1, 3, 3, 2, 3, 2 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

RMTPP
0 3, 1, 3, 1, 3, 1 10, 27, 23, 22, 1, 30, 27, 5, 8, 9, 16, 15 1, 1, 1, 1
1 6, 6, 6, 6, 6, 6 11, 10, 1 0, 0, 0, 0, 0, 0, 0, 0
2 3, 1, 3, 1, 3 2, 7, 14, 12, 4, 6, 11, 10 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

RMTPP-K
0 3, 3, 3, 3, 3, 3, 3 10, 22, 22, 28, 28, 26, 25, 23, 23, 27, 5, 8 1, 1, 1, 1, 1, 1
1 6, 6, 6, 6, 6, 6, 6 11, 1, 3 1, 0, 1, 0, 0, 0, 0, 0
2 3, 1, 1, 1, 1, 1 2, 2, 7, 7, 4, 6, 1, 3 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

NHP
0 1, 1, 1, 1, 1, 3, 1, 1, 1, 1 6 1, 1, 1, 1
1 1, 1, 6, 6, 6, 6, 6 6, 6, 6 1, 1, 1, 1, 1, 1, 1
2 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 6, 6 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

ODE
0 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 10, 1, 3, 5, 2, 4, 6, 1 1, 1, 1, 1
1 6, 6, 6, 6, 6 1, 3, 5, 2, 4, 6, 1, 3, 5, 2, 4, 6 0, 0, 0, 0, 0, 0, 0
2 1, 1, 1, 1, 1, 1, 1 2, 4, 6, 1, 3, 5, 2, 4, 10 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

HYPRO
0 3, 1, 16, 3, 12, 1 23, 27, 22, 1, 28, 26, 25, 23 0, 0, 1, 0
1 1, 32, 6, 6, 1, 6 1, 28, 25, 23, 3, 26, 22, 5 0, 0, 0, 1, 1, 0, 1
2 3, 5, 1, 3, 5 15, 13, 2, 7, 4, 1, 3, 5 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0
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H T-MAP FOR HIGHLY IRREGULAR SEQUENCES

This section analyzes a toy dataset containing highly irregular event sequences. This dataset includes
a single label, which aims to predict timestamps. Most time intervals in the dataset are zero, with
only 5% of intervals equal to one. We compare three simple baselines:

• ZeroStep, which predicts events with timestamps identical to the last observed event (zero
intervals);

• UnitStep, which predicts events with a unit time step (the largest time step in the dataset);

• MeanStep predicts events using the average time step computed from historical data.

Evaluation results are shown in Figure 9. The results indicate that the MAE and OTD metrics assign
the lowest error to the ZeroStep baseline, which simply repeats the last event without accounting for
the dataset’s irregularity. In contrast, T-mAP identifies the MeanStep baseline as the most effective,
as it is the only method that analyzes historical data and incorporates timestamp statistics (mean
interval) into its predictions.

These findings suggest that T-mAP is a more appropriate metric for assessing the ability of methods
to predict irregular events.
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Figure 9: Comparison of simple baselines on the Toy dataset with highly irregular time intervals.
MAE and OTD metrics represent error values, while T-mAP measures model quality.

I LONG-TAIL PREDICTION

In this section, we assess the capability of various evaluation metrics to capture long-tail prediction
quality, specifically the ability of models to predict rare classes. Unlike OTD, T-mAP evaluates
each class independently, allowing for different aggregation strategies. The standard T-mAP com-
putes a macro average, where the quality for each event class contributes equally to the final score.
Additionally, the HoTPP benchmark includes a weighted variant of T-mAP, where the weights are
proportional to class frequencies. Figure 10 compares the performance of IFTPP, IFTPP-K, and
RMTPP on the Transactions dataset, which includes 203 classes. The results show that all metrics,
except macro T-mAP, remain unaffected as the dataset size increases beyond 60 classes. In con-
trast, macro T-mAP effectively evaluates the ability of models to predict across all available classes,
highlighting its suitability for long-tail prediction tasks.
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Figure 10: Comparison of various metrics on the Transactions dataset across subsets with fewer
event classes.
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J LABELS ENTROPY DEGRADATION

For simplicity, some datasets were omitted in the main part of the paper. In Figure 12, we show the
dependency of label distribution entropy on step size for all datasets.

K THE OPTIMAL SEQUENCE LENGTH

For simplicity, some datasets were omitted from the main part of the paper. Figure 13 illustrates the
relationship between label distribution entropy and step size across all datasets.
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Figure 11: The dependency of metric values on the metric parameter.
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Figure 12: Entropy of label distributions as a function of the position in the generated sequence.
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Figure 13: T-mAP dependency on the maximum length of the predicted sequence.
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