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ABSTRACT

Hate speech detection is a challenging natural language processing task that re-
quires capturing linguistic and contextual nuances. Pre-trained language mod-
els (PLMs) offer rich semantic representations of text that can improve this task.
However there is still limited knowledge about ways to effectively combine rep-
resentations across PLMs and leverage their complementary strengths. In this
work, we shed light on various combination techniques for several PLMs and
comprehensively analyze their effectiveness. Our findings show that combining
embeddings leads to slight improvements but at a high computational cost and the
choice of combination has marginal effect on the final outcome. We also make
our codebase public here.

1 INTRODUCTION

Recent advances in deep learning have been significantly influenced by the introduction of pretrained
models Zhou et al. (2023), which serve as a strong foundation for various downstream tasks such as
classification, generation, and sequence labeling. In particular, these models generate dense vector
representations of input text that have been effective across a wide range of models, replacing older
techniques such as TF-IDF, Word2Vec, and GLoVe. The success of pretrained language models
(PLMs) has led to the development of domain-specific versions, such as HateBERT Caselli et al.
(2020) and BERTweet Nguyen et al. (2020), which use the same architecture as BERT Devlin et al.
(2019). In this study we aim to identify the most effective model or combination of models (BERT,
HateBERT, and BERTweet) for hate speech classification tasks.

2 RELATED WORK

Hate speech detection has been a prevalent task in the NLP community for a long time. Various
techniques have been used to recognize hate speech, such as combining n-gram and linguistic fea-
tures with machine learning models Davidson et al. (2017), contrastive learning Kim et al. (2022),
and retraining language models on hateful data Caselli et al. (2020). Pre-trained language mod-
els (PLMs) have been successful in generating context-rich word embeddings, which can be com-
bined to generate sentence embeddings using different methods like pooling embeddings or training
siamese networks Reimers & Gurevych (2019). However, as different PLMs were trained on dif-
ferent datasets and have different sizes, their capabilities are expected to differ. Although previous
works have shown that combining embeddings from different sources can boost performance (Lester
et al. (2020), Badri et al. (2022)), no work has compared all the well-known ways to combine word
embeddings for hate speech detection.

Overall, hate speech detection is an important task in NLP, and various techniques have been used
to achieve it. PLMs have been successful in generating context-rich word embeddings, but their ca-
pabilities differ depending on their training dataset and size. Combining embeddings from different
sources has been shown to improve performance, but there is currently no work that compares all
the well-known ways to combine word embeddings for hate speech detection.
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Model Accuracy
bert bertweet hatebert interleaved 0.716

bert bertweet hatebert concat 0.705
hatebert bertweet interleaved 0.704

hatebert bertweet concat 0.700
bert hatebert concat 0.693

Table 1: DynaHate Results: Top 5
Combinations2

Model Accuracy
hatebert bertweet interleaved 0.703
hatebert bertweet multiplied 0.700
bert bertweet hatebert concat 0.700

bert bertweet hatebert multiplied 0.700
bert bertweet interleaved 0.700

Table 2: LatentHatred Results: Top 5
Combinations

3 DATASET

Three datasets are utilized in this study: OLID Zampieri et al. (2019) for offensive vs non-offensive
Twitter post classification, Latent Hatred ElSherief et al. (2021) for implicit hate vs explicit hate vs
non hate classification, and DynaHate Vidgen et al. (2021) for hate vs non-hate classification with
human-in-the-loop generated sentences. Dataset statistics are provided in A.1 and preprocessing
steps are outlined in A.2.

4 METHODOLOGY

For each sentence we first produce an embedding using BERT, HateBERT as well as BERTweet by
using pooler output. Pooler output is the last layer hidden-state of the first token of the sequence
(classification token), further processed by a Linear layer and a Tanh activation function. This is a
model endpoint exposed under the HuggingFace API, Wolf et al. (2020).

We conduct experiments using three random seeds, utilizing five combination strategies (addition,
concatenation, interleaving, multiplication, and random interleaving) to combine two or all three
embeddings. Each standalone/combined embedding is used to train a multi-layer perceptron (MLP)
for the classification task using five-fold cross-validation. We anticipate Concatenation and Inter-
leave methods to perform similarly, as MLPs do not take positional information. We expect random
interleaving to perform poorly, as embeddings become degenerate and dimensions lose meaning.
Finally, we expect combining multiple embeddings to outperform using a single embedding. More
detailed explanations of these methods can be found in A.3 and A.4.

5 RESULTS

From Tables 1, 2, we observe that the performances of the classifiers are very similar irrespective of
the combination of embeddings. Only random interleaving is a poor choice as it makes the embed-
dings degenerate. Combinations where the dimensionality increases seem to be marginally better
which can be attributed to the fact that it brings in more data for the model to extrapolate relations.
In all the three tables 6, 7, and 8, the top 3 methods of combination remain to be interleaving, con-
catenation and multiplication of embeddings, but only marginally. In general having more than one
embedding seems to be marginally better and amongst the 3 models HateBERT and BERTweet are
more likely to perform better which can be attributed to their training on Hateful and Twitter data.

6 CONCLUSION

The results indicate that concatenation and interleaving have similar performance as expected. Ad-
dition, a commonly used embedding combination, also shows good performance. Although mul-
tiplication is rarely used, its performance is comparable to addition across tasks. Therefore, in
low-compute settings, an embedding combination such as addition can be used to achieve similar
performance as concatenation without increasing the input dimensionality by 2-3x, which would
require more training time and resources.

2Due to the paper’s length constraints, we have shown the results and a graphical representation of these
results for all embedding combinations in A.5.
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A APPENDIX

A.1 DATASET STATISTICS

Split Offensive (OFF) Not Offensive (NOT)

Train 3485 7107
Dev 915 1733
Test 240 620

Table 3: OLID Dataset Statistics

Split Hate Not Hate

Train 17740 15184
Dev 2167 1933
Test 2268 1852

Table 4: DynaHate Dataset Statistics

Split Implicit Hate Explicit Hate Not Hate

Train 3991 590 7501
Dev 1356 228 2444
Test 1753 271 3346

Table 5: LatentHatred Dataset Statistics
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A.2 DATA PREPROCESSING

We follow the following steps for dataset preprocessing -

1. Remove emojis
2. Remove stray punctuations
3. Replace URLs and HTML Tags with a placeholder
4. Replace usernames with a placeholder
5. Remove extra whitespaces

A.3 EMBEDDINGS COMBINATION METHODS

1. Addition: Simply adding the embeddings
2. Multiplication: Element wise multiplication of the embeddings
3. Interleaving: Interleaving the embeddings to form a common embedding. For instance if

the embeddings are [1,2,3] & [4,5,6] the interleaved output would be [1,4,2,5,3,6]
4. Concatenation: Simply concatenate the embeddings
5. Random Interleaving: Instead of interleaving in an ordered fashion we interleave in a ran-

dom fashion for each sample. This therefore acts as a baseline as the dimensions do not
align across samples

A.4 DESIGN CHOICES FOR THE MODELS

For all our experiments we use the MLPClassifier API from scikit-learn. We use the following
parameters for Grid Search -

1. ”hidden layer sizes”: [(128), (128,64)]
2. ”activation”: [”relu”]
3. ”solver”: [”adam”]
4. ”learning rate init”: [0.001, 0.0001]
5. ”learning rate”: [”adaptive”]
6. ”early stopping”: [True]
7. ”max iter”: [10000]

We use 3 Random Seeds - 3, 7, 42

A.5 RESULTS

We request the reader to refer to Tables 6, 7, and 8 given below, for quantitative information re-
garding the scores for all the embedding combinations reported over the Accuracy and Macro F1
metrics.

For a graphical representation of these scores, kindly refer to the Figures 1, 2 for results over the
DynaHate dataset, 3, 4 for results over the LatentHatred dataset, and 5, 6 for the OLID dataset.
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Embedding Combination Accuracy Macro F1
bert bertweet hatebert interleaved 0.716 0.710

bert bertweet hatebert concat 0.705 0.701
hatebert bertweet interleaved 0.704 0.698

hatebert bertweet concat 0.700 0.695
bert hatebert concat 0.693 0.687

bert hatebert interleaved 0.692 0.686
bert bertweet hatebert added 0.687 0.684

hatebert bertweet added 0.687 0.680
bert hatebert added 0.687 0.681

hatebert 0.686 0.681
hatebert bertweet multiplied 0.684 0.682

bert hatebert multiplied 0.682 0.675
bert bertweet concat 0.678 0.671

bert bertweet interleaved 0.678 0.664
bert bertweet hatebert multiplied 0.677 0.674

bert bertweet added 0.668 0.662
bert 0.663 0.652

bert bertweet multiplied 0.663 0.657
bertweet 0.642 0.638

bert hatebert randomlycombined 0.550 0.355
bert bertweet hatebert randomlycombined 0.550 0.360

bert bertweet randomlycombined 0.549 0.362
hatebert bertweet randomlycombined 0.548 0.369

Table 6: DynaHate Results for all embedding combinations.

Embedding Combination Accuracy Macro F1
hatebert bertweet interleaved 0.703 0.494
hatebert bertweet multiplied 0.700 0.469
bert bertweet hatebert concat 0.700 0.517

bert bertweet hatebert multiplied 0.700 0.486
bert bertweet interleaved 0.700 0.486
hatebert bertweet concat 0.699 0.465

bertweet 0.699 0.482
bert bertweet hatebert added 0.697 0.478

bert bertweet concat 0.697 0.474
bert bertweet multiplied 0.696 0.493

bert bertweet hatebert interleaved 0.695 0.477
bert hatebert concat 0.694 0.480

hatebert bertweet added 0.693 0.476
bert hatebert multiplied 0.693 0.457

bert bertweet added 0.690 0.452
bert hatebert added 0.689 0.463

bert hatebert interleaved 0.686 0.451
hatebert 0.684 0.440

bert 0.683 0.430
bert bertweet randomlycombined 0.623 0.256

bert bertweet hatebert randomlycombined 0.623 0.256
bert hatebert randomlycombined 0.623 0.256

hatebert bertweet randomlycombined 0.623 0.257

Table 7: LatentHatred Results for all embedding combinations.
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Embedding Combination Accuracy Macro F1
bert bertweet interleaved 0.813 0.732

bert bertweet concat 0.812 0.738
bert bertweet hatebert interleaved 0.808 0.719

bert bertweet hatebert concat 0.805 0.721
bert bertweet hatebert added 0.802 0.707

bert hatebert multiplied 0.802 0.700
hatebert bertweet concat 0.802 0.722

hatebert bertweet multiplied 0.801 0.720
bert bertweet added 0.797 0.700

bert hatebert interleaved 0.797 0.711
bert hatebert concat 0.795 0.702

hatebert bertweet interleaved 0.795 0.703
bert hatebert added 0.792 0.685

bert bertweet multiplied 0.792 0.698
bert bertweet hatebert multiplied 0.792 0.696

bert 0.791 0.704
hatebert 0.790 0.691
bertweet 0.783 0.680

hatebert bertweet added 0.777 0.663
bert hatebert randomlycombined 0.721 0.420
bert bertweet randomlycombined 0.721 0.419

bert bertweet hatebert randomlycombined 0.721 0.419
hatebert bertweet randomlycombined 0.721 0.419

Table 8: OLID Results for all embedding combinations.
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Figure 1: Accuracy for DynaHate
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Figure 3: Accuracy for Latent Hatred
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Figure 4: Macro F1 for Latent Hatred
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Figure 6: Macro F1 for OLID
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