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Abstract

Multilingual language models (MLMs) store001
factual knowledge across languages but of-002
ten struggle with cross-lingual factual consis-003
tency, i.e., with providing consistent responses004
to semantically equivalent prompts in different005
languages. While previous studies point out006
this issue, the underlying causes remain un-007
explored. In this work, we use mechanistic008
interpretability methods to investigate cross-009
lingual inconsistencies in MLMs. We find010
that MLMs encode knowledge in an language-011
independent concept space through most lay-012
ers, and only transition to language-specific013
spaces in the final layers. Failures during014
this language transition process often result015
in incorrect predictions in the target language,016
even when the model correctly predicts the an-017
swer in other languages. To mitigate this in-018
consistency issue, we propose a linear short-019
cut method that bypasses computations in the020
final layers, enhancing both prediction accu-021
racy and cross-lingual consistency. Overall,022
this study deepens the understanding of MLM023
mechanisms and offers insights for generating024
consistent factual predictions.025

1 Introduction026

Multilingual language models (MLMs) have027

shown remarkable capabilities in storing and028

retrieving factual knowledge across languages029

(Jiang et al., 2020; Kassner et al., 2021). However,030

they often exhibit inconsistencies when respond-031

ing to semantically equivalent prompts in different032

languages. For instance, an MLM might correctly033

predict the capital of Canada when asked in En-034

glish but fail to do so when queried in another lan-035

guage, e.g., Chinese. This phenomenon is known036

as cross-lingual factual inconsistency (Qi et al.,037

2023). It raises questions about how effectively038

MLMs transfer knowledge across languages, and039

shows limitations in their robustness and fairness.040
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Figure 1: Illustration of language transition failure in
LLaMA2 when answering the question: ‘‘加拿大的首
都在哪里?答案是:” (“What is the capital of Canada?
The answer is:”). In intermediate layers, the model pro-
cesses information in its latent language, i.e., a con-
cept space independent of the input language.1 While
it correctly identifies “Ottawa” in English during the
concept-space object extraction, the final output ‘‘多伦
多” (“Toronto”) is incorrect after transitioning to Chi-
nese. This indicates the model’s failure to adapt knowl-
edge from the concept space to the target language,
leading to cross-lingual inconsistency.

Understanding the root causes of such inconsis- 041

tencies is crucial, yet research in this area remains 042

limited. While prior studies have explored the in- 043

ner workings of MLMs (Wendler et al., 2024; Du- 044

mas et al., 2024; Fierro et al., 2024), they mainly 045

focus on scenarios where models make correct pre- 046

dictions, leaving the reasons behind inconsistent 047

predictions unexplored. Furthermore, while Qi 048

et al. (2023) identify frequent cross-language in- 049

consistencies in MLMs, they do not investigate the 050

underlying causes behind them. 051

In this work, we address this research gap 052

1This concept space in LLaMA2, as seen through the
Logit Lens (Nostalgebraist, 2020), exhibits a bias towards
English, reflecting its English-centric nature (Wendler et al.,
2024).
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by analyzing cross-lingual factual inconsistency053

through the lens of mechanistic interpretability054

(Olah, 2022; Nanda et al., 2023), which aims at055

reverse-engineering and, thereby, understanding056

language models. We trace information flows057

within MLMs to identify where inconsistencies058

arise on two complementary scenarios: (1) cases059

where models produce correct predictions consis-060

tent with English and (2) cases where models pre-061

dicts correctly in English but generates incorrect062

answers in other languages.2 This comparison063

aims at uncovering the causes of both success and064

failure in multilingual factual recall.065

Our analysis reveals that MLMs process factual066

knowledge in a concept space largely independent067

of the input language through most layers, and068

transition to language-specific spaces in the final069

layers. However, even when the correct prediction070

is encoded in this concept space, the model can fail071

the language transition, leading to incorrect predic-072

tions in the target language (see Figure 1). This073

highlights the critical role of the language transi-074

tion mechanism for cross-lingual consistency.075

Overall, our contributions are as follows:076

(i) Dataset Construction (§3): We introduce077

KLAR, an enhanced KnowLedge probing dataset078

for Auto-Regressive models, covering 17 lan-079

guages and 20 relation types. It provides a ro-080

bust framework for multilingual knowledge prob-081

ing, which we use to evaluate the cross-lingual082

consistency of two state-of-the-art MLMs (§4).083

(ii) Mechanistic Analysis (§5): We conduct the084

first interpretability-driven study of cross-lingual085

factual inconsistency, revealing how MLMs en-086

code and process factual knowledge across layers.087

(iii) Failure Mode Identification (§6): In a088

detailed layer-wise analysis, we identify the lan-089

guage transition mechanism as main failure point090

that leads to cross-lingual inconsistency.091

(iv) Approach (§7): We propose a shortcut092

method that bypasses the model’s final-layer com-093

putations, enhancing both prediction accuracy and094

cross-lingual consistency in MLMs.3095

2 Related Work096

Mechanistic Interpretability (MI) aims to un-097

derstand LLMs by decomposing their computa-098

tions into smaller, interpretable components. It099

2English serves as the pivot language due to its central
role in many multilingual language models (Held et al., 2023;
Zhang et al., 2023).

3We will release our dataset and code upon publication.

has gained significant attention for studying fac- 100

tual knowledge recall in LLMs (Meng et al., 2022; 101

Dai et al., 2022; Geva et al., 2023; Yu et al., 2023; 102

Lv et al., 2024; Wang et al., 2024). 103

Following Olah et al. (2020) and Rai et al. 104

(2024), MI research is categorized into the study of 105

features, which capture human-interpretable prop- 106

erties in model representations or components like 107

neurons and attention heads (Elhage et al., 2022; 108

Gurnee et al., 2023), and the study of circuits, 109

which refer to subgraphs of the model’s compu- 110

tation graph responsible for implementing specific 111

behaviors (Wang et al., 2023; Elhage et al., 2021). 112

In this work, we focus on representation-level 113

feature-based interpretability analysis to interpret 114

the behavior of multilingual language models in 115

the knowledge probing task. Specifically, we use 116

Logit Lens (Nostalgebraist, 2020) to project latent 117

state representations of LMs into the vocabulary 118

space, enabling the analysis of intermediate repre- 119

sentations and tracking how information evolves 120

across layers. 121

Interpreting Multilingual Language Models. 122

Recent studies have explored the internal work- 123

ings of MLMs. Wendler et al. (2024) examine 124

the latent language of LLaMA2 models using con- 125

trolled translation, completion, and cloze tasks, 126

finding that LLaMA2 internally relies on English 127

as a pivot language. Building on this setup, Dumas 128

et al. (2024) investigate the disentanglement of lan- 129

guage and concept representations, demonstrating 130

that LLaMA2 processes language and concept in- 131

formation independently. Fierro et al. (2024) ana- 132

lyze knowledge probing tasks to study how mech- 133

anisms identified in monolingual contexts general- 134

ize to multilingual settings, but their focus remains 135

limited to correct prediction cases. 136

In contrast, our work centers on understand- 137

ing the internal mechanisms responsible for cross- 138

lingual inconsistencies. By examining both con- 139

sistent and inconsistent predictions, we uncover 140

how MLMs transition from language-independent 141

to language-specific processing. This approach 142

offers new insights into how MLMs encode and 143

transfer factual knowledge across languages, ad- 144

dressing a key gap in prior research. 145

3 KLAR Dataset 146

We focus on the factual knowledge probing task, 147

where a fact is represented as a subject-relation- 148

object triple ⟨si, ri, oi⟩ and expressed in natural 149
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language prompts. Given a prompt constructed150

from the subject si and relation ri, LMs are ex-151

pected to predict the object oi. For example, the152

fact ⟨Canada, capital, Ottawa⟩ can be queried as,153

“What is the capital of Canada?”, and the model154

should predict the object Ottawa as the answer.155

Qi et al. (2023) introduce the BMLAMA17156

dataset for evaluating multilingual factual knowl-157

edge in MLMs. However, in many factual ques-158

tions in BMLAMA17, the object appears in the159

middle of the sentence rather than at the end,160

which is incompatible with knowledge probing161

for auto-regressive models. Furthermore, BM-162

LAMA17 includes many relations with multiple163

correct answers,4 making it difficult to reliably164

evaluate the correctness of a model’s response for165

a given ⟨si, ri, oi⟩ triple where oi is only one of the166

possible answers.167

To address these limitations, we construct168

KLAR, a KnowLedge probing dataset that en-169

sures compatibility with Auto-Regressive models170

and provides clarity in factual evaluation. We ex-171

tract parallel factual knowledge triples in 17 lan-172

guages from BMLAMA17 and design prompts173

where the object consistently appears at the174

end. Relation-specific templates are structured as175

“<Question> The answer is:”, e.g., ⟨Canada, cap-176

ital, Ottawa⟩ becomes: “What is the capital of177

Canada? The answer is:”. These templates are178

initially created in English and translated into 16179

other languages using gpt-35-turbo. To ensure180

clarity, we exclude relations with multiple cor-181

rect answers and inspect the semantic clarity in182

prompt templates manually and/or through back-183

translation.184

The resulting KLAR dataset includes 2,621 par-185

allel factual knowledge triples in 17 languages,186

covering 20 relation types. Table 1 provides an187

overview of the languages and sample relations.188

Detailed statistics are provided in Appendix A.1.189

4 Cross-lingual Consistency Evaluation190

Models and Languages We analyze two widely191

used open-source multilingual auto-regressive lan-192

guage models: LLaMA2-7B (Touvron et al.,193

2023) and BLOOM-560M (Le Scao et al., 2023).194

LLaMA2 is trained on a multilingual corpus domi-195

nated by English, which accounts for 89.7% of the196

4For example, the relation "shares_border_with" (prompt:
"Which country does <subject> share a border with?") of-
ten involves multiple correct answers, as a country typically
shares borders with several others.

Languages (17)

Arabic (ar), Catalan (ca), Greek (el), English (en),
Spanish (es), Persian (fa), French (fr), Hebrew (he),
Hungarian (hu), Japanese (ja), Korean (ko), Dutch (nl),
Russian (ru), Turkish (tr), Ukrainian (uk), Vietnamese
(vi), Chinese (zh)

Relations (4/20) Prompt example

capital What is the capital of <subject>?
The answer is:

continent Which continent is <subject> lo-
cated in? The answer is:

field_of_work What field does <subject> work in?
The answer is:

religion What is the religious belief of <sub-
ject>? The answer is:

Table 1: Overview of the languages and 4 sample rela-
tions (out of 20 relations in total) in KLAR.

data, whereas BLOOM’s training data is more bal- 197

anced, with English comprising 31.3% of the cor- 198

pus. Our analysis considers the languages shared 199

between each model and our dataset, covering 12 200

languages for LLaMA2 and 7 for BLOOM. De- 201

tails on the selected languages are provided in Ta- 202

ble 4 in Appendix A.1. 203

Evaluation Many prior studies (Geva et al., 204

2023; Qi et al., 2023; Fierro et al., 2024) assess cor- 205

rectness based on the model’s first predicted token. 206

However, this approach is problematic, especially 207

in multilingual settings with complex tokenization. 208

In many cases, even if the model predicts the cor- 209

rect first token, its complete output can still be in- 210

correct.5 To address this issue, we evaluate cor- 211

rectness based on the model’s full answer to each 212

factual question rather than relying solely on the 213

first token. Following Jiang et al. (2020), we eval- 214

uate cross-lingual consistency using the overlap ra- 215

tio of correct predictions for parallel facts between 216

language pairs.6 217

Results Figure 2 shows the cross-lingual consis- 218

tency results for LLaMA2 and BLOOM. While 219

LLaMA2 generally performs better than BLOOM, 220

both models face challenges in achieving high con- 221

sistency across languages, particularly between 222

5For example, given the Chinese prompt ‘‘文森山位于
哪个大陆？答案是：” (“Which continent is Vinson Massif
located in? The answer is:”), the BLOOM model outputs
‘‘南美洲” (“South America”) instead of the correct answer
‘‘南极洲” (“Antarctica”). Although both responses share the
same first token, the final prediction is incorrect.

6We do not adopt the candidate-based consistency metric
proposed by Qi et al. (2023), as it relies on the next-token
prediction, which, as discussed in Section 4, is unreliable in
a multilingual setup.
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Figure 2: Cross-lingual consistency results across lan-
guage pairs. The heatmaps show the overlap ratio of
correct predictions between language pairs.

linguistically diverse pairs. The impact of lan-223

guage scripts is especially evident: Non-Latin224

scripts, such as Arabic (ar), Chinese (zh), and225

Korean (ko), consistently show lower consistency226

scores. This underscores that cross-lingual con-227

sistency remains a key limitation for both models,228

emphasizing the need for more robust approaches229

to effectively analyze and address this issue.230

5 Analyzing Multilingual Factual Recall231

To understand how multilingual language models232

recall factual knowledge across languages, we an-233

alyze their internal mechanisms from multiple per-234

spectives: the layer-wise evolution of prediction235

ranks (§5.1), latent state similarities across lan-236

guage pairs (§5.2), information flow within the237

model (§5.3), and the composition of the latent238

concept space (§5.4).239

5.1 From the Perspective of Rankings240

First, we use Logit Lens (Nostalgebraist, 2020) to241

project latent states at each layer to the vocabulary242

(unembedding) and measure the rank (the lower,243

the better) of the target object at each layer. Specif-244

ically, we compare the rank of the correct object in245

its target language (rank_target_correct) and246

its English equivalent (rank_en_correct). This247

approach allows us to trace how the model pro-248

cesses factual knowledge across layers and transi-249

tions between different representation modes.250

Figure 3a shows distinct phases of knowledge251

processing in both models. In the early lay-252

ers, both ranks remain high, indicating that the 253

models have not begun extracting the target ob- 254

ject. Around layer 15 in BLOOM and layer 12 255

in LLaMA2, both (rank_target_correct) and 256

(rank_en_correct) drop significantly, marking 257

the beginning of the object extraction phase. 258

This phase continues until layer 28 in 259

LLaMA2 and layer 19 in BLOOM, where a 260

notable divergence occurs. The English rank 261

(rank_en_correct) begins to increase, while the 262

target-language rank (rank_target_correct) 263

continues to decrease. This divergence re- 264

flects a transition from language-independent 265

object extraction to target language-specific 266

object extraction, where the models adapt the 267

representations to align with the target language. 268

These findings show that MLMs recall know- 269

ledge through an initial concept-space object ex- 270

traction phase (marked by significant rank drops 271

for both English and target language answers) be- 272

fore transitioning to language-specific object ex- 273

traction and producing the final output. 274

5.2 From the Perspective of Latent States 275

Moreover, we measure the cosine similarity of la- 276

tent states between language pairs across layers. 277

Figure 3b shows the average cosine similarity of 278

latent states between English and individual target 279

languages for LLaMA2 and BLOOM.7 As infor- 280

mation propagates through the layers, similarity 281

increases, peaking around 0.8 in the middle lay- 282

ers for both models. This trend holds even for 283

linguistically diverse pairs, such as English and 284

Arabic, suggesting the formation of a shared con- 285

cept space where factual knowledge is encoded in 286

the model’s latent language which is generic and 287

independent of the input language. In the final 288

layers, similarity decreases, reflecting a transition 289

to language-specific processing. This aligns with 290

the divergence observed in Section 5.1, where the 291

rank changes of the target language object and its 292

English equivalent begin to differ. These observa- 293

tions confirm the model’s transition from concept- 294

space object extraction to language-specific adap- 295

tations in the final layers. 296

5.3 Information Flow Dissection 297

While Sections 5.1 and 5.2 demonstrate the pres- 298

ence of a concept space in the middle layers, they 299

7For clarity, only language pairs involving English are
shown here. Complete results for all language pairs are pro-
vided in Appendix A.2.1.
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(a) Layer-wise rank of correct predictions averaged across all languages and relations (§5.1). “rank_target_correct” denotes
the rank of correct predictions in the target language, while “rank_en_correct” represents the rank of their English equivalents.

(b) Cosine similarity of latent state similarity between each language pair averaged across all relations (§5.2).

(c) Comparative study of latent state similarity across language pairs (§5.3). We compare the latent state similarity for parallel
facts, non-parallel facts sharing the same relation, and non-parallel facts belonging to different relations, respectively.

Figure 3: Analysis of multilingual knowledge probing of LLaMA2 and BLOOM, including (3a) layer-wise evolu-
tion of correct prediction ranks, (3b) latent state similarities across languages, and (3c) the development of latent
state similarities in different settings.

do not clarify the type of information contributing300

to the observed high similarity between language301

pairs. To disentangle whether this similarity arises302

from relational information, object information, or303

both, we perform comparative experiments under304

three conditions: (1) Same relation, same object305

(Parallel, as in Section 5.2): Latent state similar-306

ity is calculated using parallel facts between each307

language pair (e.g., "the capital of Canada" in both308

English and another language); (2) Same relation,309

different objects (Dissection 1): Similarity is cal-310

culated using non-parallel facts sharing the same311

relation (e.g., "the capital of Canada" in one lan-312

guage versus "the capital of Spain" in another);313

(3) Different relation, different objects (Dissec- 314

tion 2): Similarity is calculated using non-parallel 315

facts from different relations (e.g., "the capital of 316

Canada" versus "the official language of Spain"). 317

Figure 3c shows distinct processing phases. 318

Around layer 9, the Dissection 2 curve drops sig- 319

nificantly in both models, while Parallel and Dis- 320

section 1 curves remain close, indicating that mod- 321

els process relational information specific to the 322

current fact’s relation. The high similarity during 323

this stage suggests that such relation processing 324

happens in a language-independent concept space. 325

From layer 12 in LLaMA2 and layer 15 in 326

BLOOM, the Dissection 1 curve begins to drop, 327
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marking a transition to object-specific processing.328

During layers 12–28 in LLaMA2 and layers 15–19329

in BLOOM, the Parallel curve remains high, indi-330

cating that object information is processed in the331

model’s latent language.332

At layer 28 in LLaMA2 and layer 19 in333

BLOOM, the Parallel curve drops significantly,334

signaling the language transition phase, where the335

concept-space object representations are adapted336

to the target language.337

Together, the progression shows the models’338

transitions from relation processing to object ex-339

traction and to language-specific adaptation.340

5.4 Concept Space Language Composition341

To further explore how the concept space encodes342

information in MLMs, we analyze the language343

composition of their latent states. Using Logit344

Lens, we project intermediate layer representa-345

tions onto the vocabulary space and identify the346

language of the top-10 predicted tokens at each347

layer using fasttext (Joulin et al., 2017).8348

Figure 4 shows the language composition for349

LLaMA2 and BLOOM with Chinese (zh) as the350

input language, averaged across factual queries351

spanning all relations. Results for other input lan-352

guages are provided in Appendix A.2.3.353

In LLaMA2, English dominates the middle-354

to-upper layers, suggesting that factual knowl-355

edge is processed in an English-centric concept356

space. This is consistent with prior findings357

that “LLaMA2 models think in English” (Wendler358

et al., 2024). In contrast, BLOOM exhibits a more359

diverse composition in the middle-to-upper layers,360

comprising primarily Latin-based languages like361

English, French, Spanish, German, etc. Across dif-362

ferent input languages (see Appendix Figures 10363

and 11), both models show similar middle-to-364

upper layer compositions, regardless of the input365

language. This demonstrates that MLMs encode366

knowledge in a concept space independent of the367

input language.368

5.5 Summary369

Our analysis reveals a three-stage knowledge re-370

call process in MLMs (as illustrated in Figure 1):371

first relation processing, then object extraction in372

the model’s latent language, and finally the tran-373

sition to language-specific processing to adapt the374

object to the target language. These findings pro-375

8We filter out tokens with confidence scores below 0.5.

Figure 4: Language composition of latent representa-
tions with Chinese as the input language. In LLaMA2,
English dominates the middle-to-upper layers, whereas
BLOOM has a more diverse language composition.

vide a comprehensive view on the mechanisms of 376

multilingual factual recall. 377

6 Examining the Cause of Cross-Lingual 378

Inconsistency 379

Next, we analyze incorrect predictions across lan- 380

guages to investigate the causes of cross-lingual 381

inconsistencies in MLMs. 382

Figure 5 shows the rank evolution for incorrect 383

predictions in LLaMA2 and BLOOM. While the 384

rank of the correct answer decreases significantly 385

in the middle layers (both in the target language 386

and in English) — consistent with the behavior 387

observed in correct predictions (Figure 3a) — the 388

rank of the incorrect answer surpasses that of the 389

correct answer during language transition in the fi- 390

nal layers. This suggests that factual knowledge is 391

processed in the concept space in the middle lay- 392

ers as in correct predictions, but errors arise during 393

the transition to language-specific processing. 394

To further investigate this phenomenon, we ex- 395

amine individual examples of LLaMA2.9 Figure 6 396

presents cases in Spanish and Chinese, with addi- 397

tional examples provided in Appendix A.2.3. A 398

9LLaMA2’s English-biased latent space provides clearer
insights into the switch from English to the target language,
while BLOOM’s latent space is less interpretable, as shown
in Figure 4.
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Figure 5: Layer-wise rank of incorrect predictions
averaged across all languages and relations. The
rank_target_wrong curve represents the rank of the
model’s final incorrect prediction across layers, while
rank_target_correct and rank_en_correct denote
the ranks of the correct answer in the target language
and the English equivalent, respectively.

consistent pattern emerges: in the middle-to-upper399

layers, the correct answer in English often ranks400

lowest (rank_en_correct=0), indicating accurate401

recall during the concept space processing stage.402

However, in the final layers, the rank of the incor-403

rect target-language answer decreases, surpassing404

the correct answer during language transition.405

This observation underscores the critical role406

of language transition in cross-lingual inconsis-407

tencies. Although MLMs encode correct factual408

knowledge in the middle-layer concept space, the409

transition to language-specific processing intro-410

duces errors, causing incorrect predictions. Ad-411

dressing this issue is crucial for improving cross-412

lingual consistency and robustness of MLMs.413

7 Linear Shortcut for Improving414

Cross-Lingual Consistency415

In this section, we propose a linear shortcut416

method to address language transition errors. Our417

approach bypasses final-layer computations, di-418

rectly adapting concept-space representations to419

the target language, enhancing both prediction ac-420

curacy and cross-lingual consistency of MLMs.421
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(a) Prompt in Spanish:“¿Dónde se encuentra la capital de
Reino de los Países Bajos? La respuesta es:” (“What is the
capital of the Kingdom of Netherlands? The answer is:”).
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Correct answer:  (Bonn)
Wrong answer:  (Berlin)
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(b) Prompt in Chinese: ‘‘西德的首都在哪里？答案是：”
(“What was the capital of West Germany? The answer is:”).

Figure 6: Rank evolution for prompts in Spanish
(6a) and Chinese (6b). rank_target_wrong repre-
sents the rank of the model’s final incorrect predic-
tion across layers, while rank_target_correct and
rank_en_correct denote the ranks of the correct an-
swer in the target language and the English equivalent,
respectively. The plots show the impact of errors dur-
ing language transition, where the rank of the incorrect
answer surpasses the correct answer in the final layers.

7.1 Shortcut with Linear Approximation 422

The proposed method involves a two-step process 423

(as illustrated in Figure 7): (a) Deriving the lin- 424

ear shortcut: Inspired by Hernandez et al. (2023), 425

we hypothesize that the mapping from the model’s 426

latent state at layer n to the final layer N , i.e., 427

hn → hN can be well-approximated by a linear 428

function f(hn) = Whn + b ≈ hN . Using m 429

correctly predicted samples, we use first-order ap- 430

proximation to estimate W and b, approximating 431

the adaptation of concept-space representations to 432

the target language.10 For further details on the 433

derivation and hyperparameters, please refer to 434

Appendix A.3. (b) Applying the linear shortcut: 435

During inference, the shortcut f(·) is applied to by- 436

10The selection of layer n and training size m for approx-
imating the linear transformation are treated as hyperparam-
eters, set to n = 30 for LLaMA2, n = 20 for BLOOM,
and m = 25 for both models. Details are provided in Ap-
pendix A.3.2.
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加 拿 大 的 首 都 在 哪 里 ？ 答 案 是：
(What is the capital of Canada? The answer is:)

Shortcut function 

"渥太华"("Ottawa")✅

-th layer
representation

Derive       on correct predictions to
approximate language transition

(a)

"Ottawa"✅

 Apply        at layer       
to mitigate language transition error

(b)

Final layer
representation

"多伦多"("Toronto")❌ 

"多伦多"("Toronto")❌ 

"多伦多"("Toronto")❌ 

Figure 7: Illustration of the proposed shortcut method
for mitigating cross-lingual inconsistency. (a) The
shortcut function is learned on correct predictions to
approximate language transition; (b) The learned func-
tion is then applied to bypass the error-prone final lay-
ers. In the example, the shortcut successfully recovers
the correct answer, ‘‘渥太华” (“Ottawa”), in Chinese.

pass the original final-layer computations, mitigat-437

ing errors introduced during language transition.438

7.2 Results and Disucssion439

We evaluate the prediction accuracy and cross-440

lingual consistency of LLaMA2 and BLOOM and441

the shortcut ton all KLAR samples.442

Baselines. We compare our shortcut method to443

two translation-based baselines: (1) translation-444

en: We translate all input queries from each lan-445

guage to English using Google Translate, obtain446

model predictions in English, and then translate447

them back to the target language. (2) translation-448

early-exit: We use Logit Lens to extract top-449

predicted tokens from the same layers as the short-450

cut method, translate them into the target language451

and evaluate their accuracy.452

Results. Figure 8 shows the effectiveness of the453

shortcut mapping: It improves prediction accuracy454

and cross-lingual consistency across models and455

languages. This demonstrates its ability to adapt456

concept-space knowledge to target languages for457

more reliable predictions.458

original shortcut trans-en trans-exit

LLaMA2 71.47 76.08 53.88 13.93
BLOOM 43.24 51.67 28.03 15.68

Table 2: Average accuracy across languages..

As shown in Table 2, both baseline methods459

perform poorly (see Table 7 and 8 in Appendix460

for more details), indicating that existing transla-461
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ar ca en es fr vi zh0.0

0.1
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0.3

0.4
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Acc original model
Acc with shortcut

CLC original model
CLC with shortcut

Figure 8: Accuracy (ACC) and cross-lingual consis-
tency (CLC) per language for LLaMA2 and BLOOM,
with and without the shortcut method.

tors are insufficient for cross-lingual factual pre- 462

diction. In contrast, our shortcut method directly 463

adapts latent representations from earlier layers, 464

preserving richer contextual information and thus 465

achieving higher prediction accuracy. Moreover, it 466

is lightweight and efficient, relying only on linear 467

operations, making it easily adaptable to existing 468

MLMs. 469

8 Conclusion 470

This study investigates cross-lingual factual in- 471

consistency in multilingual language models, re- 472

vealing a three-stage knowledge recall process: 473

language-independent relation processing, object 474

extraction, and a final transition to language- 475

specific adaptation. Errors in this transition often 476

lead to incorrect predictions despite accurate ob- 477

ject extraction. To address this, we propose a short- 478

cut method that bypasses final-layer computations, 479

improving prediction accuracy and cross-lingual 480

consistency. Our findings enhance understanding 481

of multilingual knowledge processing and intro- 482

duce an efficient, interpretable solution for mitigat- 483

ing language transition errors. 484

Future work could expand the investigation to 485

more languages and additional language models 486

to assess broader applicability. Additionally, de- 487

veloping non-linear shortcut methods could better 488

mitigate language transition errors, offering more 489

robust solutions for cross-lingual consistency. 490
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Limitations491

First, our cross-lingual consistency analysis as-492

sumes English as the pivot language, reflecting the493

English-centric nature of most multilingual mod-494

els. While this aligns with prior studies (Wendler495

et al., 2024; Dumas et al., 2024; Fierro et al.,496

2024), it may limit applicability to language pairs497

that do not involve English.498

Second, although the KLAR dataset covers 17499

languages, it does not fully capture the diversity of500

world languages. Expanding the analysis to more501

languages and exploring models with different ar-502

chitectures and sizes could provide deeper insights503

into cross-lingual inconsistencies.504

Additionally, our shortcut method relies on lin-505

ear approximation for simplicity. Investigating506

non-linear approaches could better capture com-507

plex transformations during language switching508

and further enhance performance.509

Finally, our analysis provides insights relevant510

to downstream tasks, such as multilingual knowl-511

edge localization (Chen et al., 2024; Kojima et al.,512

2024; Tang et al., 2024) and cross-lingual knowl-513

edge editing (Xu et al., 2023; Nie et al., 2024).514

However, these applications fall beyond the scope515

of this study and are left for future work.516
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A Appendix 723

A.1 KLAR Dataset Details 724

As discussed in Section 3, BMLAMA17 (Qi et al., 725

2023) is incompatible with multilingual knowl- 726

edge probing in auto-regressive models with many 727

objects placed in the middle of sentences, and 728

many relations types with multiple correct an- 729

swers. To address these limitations, we construct 730

KLAR for reliable multilingual knowledge prob- 731

ing evaluation. 732

BMLAMA17 does not explicitly specify rela- 733

tion types; however, many factual questions share 734

the same templates. We first group sentences with 735

identical templates and use gpt-35-turbo to iden- 736

tify the relation for each template and map them to 737

Wikidata property IDs (Wikidata, 2025). We dis- 738

card the samples which cannot be mapped to any 739

Wikidata property. This process yields a total of 740

42 relation types. 741

For each relation, we generate English prompt 742

templates in the format of “<Question> The an- 743

swer is:” as introduced in Section 3, using 744

gpt-35-turbo. We created five templates per re- 745

lation and manually verify their clarity. The tem- 746

plates are then translated into 16 additional lan- 747

guages using gpt-35-turbo. Their quality is man- 748

ually reviewed for Chinese, Spanish, and Japanese. 749

Back-translation is used to verify clarity and con- 750

sistency in the remaining languages. 751

Finally, we remove relation types with multiple 752

correct answers and those with fewer than 30 sam- 753

ples. The resulting KLAR dataset comprises par- 754

allel factual knowledge spanning 17 languages and 755

20 relation types. For the analysis on LLaMA2 756

and BLOOM models, we use the intersection of 757

languages supported by these models and included 758

in KLAR, covering 12 languages for LLaMA2 759

and 7 for BLOOM, see Table 4 for the respective 760

language list. Listing 1 illustrates the example of 761

the KLAR dataset structure for the relation capital 762

in English. 763

A.2 Additional Experimental Results 764

A.2.1 Latent State Similarity 765

Here, we present the complete results for latent 766

state similarity across all language pairs in Fig- 767

ure 9. 768

The plots follow the same trend as in Figure 3b, 769

where similarity across language pairs increases 770

from early to middle layers in both models, indi- 771

cating that MLMs encode information in a con- 772
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Relation # Facts Prompt Example

applies_to_jurisdiction 80 Which country has <subject> as a legal term? The answer is:
capital 336 What is the capital of <subject>? The answer is:
capital_of 213 Where is <subject> the capital of? The answer is:
continent 212 Which continent is <subject> located in? The answer is:
country_of_citizenship 60 Which country is <subject> a citizen of? The answer is:
developer 76 Which company is the developer of <subject>? The answer is:
field_of_work 167 What field does <subject> work in? The answer is:
headquarters_location 51 In which city is <subject>’s headquarter located? The answer is:
instrument 46 Which musical instrument is played by <subject>? The answer is:
language_of_work_or_name 108 What is the original language of <subject>? The answer is:
languages_spoken 104 What language did <subject> use to communicate? The answer is:
location_of_formation 66 Where did the formation of <subject> take place? The answer is:
manufacturer 35 Which company manufactures <subject>? The answer is:
native_language 130 What is the native language of <subject>? The answer is:
occupation 46 What is <subject>’s profession? The answer is:
official_language 602 What is the official language of <subject>? The answer is:
owned_by 50 Who is the current owner of <subject>? The answer is:
place_of_birth 35 In which city was <subject> born? The answer is:
place_of_death 79 In which city did <subject> pass away? The answer is:
religion 125 What is the religious belief of <subject>? The answer is:

Table 3: Relations in the KLAR dataset with fact counts and prompt examples used for knowledge probing.

KLAR languages (17) Arabic (ar), Catalan(ca), Greek (el), English (en), Spanish (es), Persian (fa), French
(fr), Hebrew (he), Hungarian (hu), Japanese (ja), Korean (ko), Dutch (nl), Russian
(ru), Turkish (tr), Ukrainian (uk), Vietnamese (vi), Chinese (zh)

LLaMA2 overlap (12) Catalan(ca), English (en), Spanish (es), French (fr), Hungarian (hu), Japanese (ja),
Korean (ko), Dutch (nl), Russian (ru), Ukrainian (uk), Vietnamese (vi), Chinese
(zh)

BLOOM overlap (7) Arabic (ar), Catalan(ca), English (en), Spanish (es), French (fr), Vietnamese (vi),
Chinese (zh)

Table 4: KLAR dataset languages and their overlap with LLaMA2 and BLOOM.

cept space independent of the input language. In773

the final layers, similarity declines as representa-774

tions transition to a language-specific form. This775

pattern holds even for linguistically diverse pairs,776

highlighting that MLMs initially process factual777

knowledge in a shared latent space before adapt-778

ing it to the target language.779

A.2.2 Latent Space Language Composition780

We examine the language composition of the la-781

tent states in LLaMA2 and BLOOM to understand782

how these MLMs encode information in the con-783

cept space. As described in Section 5.4, we apply784

Logit Lens to project latent states to the vocabu-785

lary, and use fasttext to identify the language of786

the top-10 predicted tokens at each layer.787

Figure 10 presents results for languages shared788

between LLaMA2 and BLOOM, while Figure 11789

shows results for languages unique to each model.790

LLaMA2’s middle-to-upper layers are domi-791

nated by English, aligning with prior findings792

that “LLaMA2 models think in English” (Wendler793

et al., 2024). In contrast, BLOOM displays a more794

diverse linguistic composition in these layers. 795

Across different input languages, both mod- 796

els exhibit similar language distributions in the 797

middle-to-upper layers, indicating that MLMs en- 798

code knowledge in a concept space largely inde- 799

pendent of the input language. 800

A.2.3 Rank Plots of Wrong Predictions 801

Figure 12 presents additional examples, one per 802

language, where the correct English answer ranks 803

highest in the middle-to-upper layers but is later 804

surpassed by an incorrect target-language answer 805

during the language transition phase. 806

A.3 Shortcut Experimental Details 807

A.3.1 Method 808

The idea of using linear approximation as a short- 809

cut is inspired by Hernandez et al. (2023), who 810

derive a linear transformation to approximate the 811

mapping from subject to object representations in 812

factual knowledge, showing that relational decod- 813

ing in transformer models can be effectively mod- 814

eled with linear functions. 815
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{

"relation_name": "capital",

"relation_id": "P36",

"prompt_templates": [

"Where is <subject>'s capital located?

The answer is:",↪→

"What is the capital of <subject>? The

answer is:",↪→

"Which city serves as the capital of

<subject>? The answer is:",↪→

"Name the capital city of <subject>. The

answer is:",↪→

"Where does <subject> have its capital?

The answer is:"↪→

],

"samples": [

{

"subject": "Azerbaijan",

"object": "Baku",

"index": 6152

},

{

"subject": "Germany",

"object": "Berlin",

"index": 6165

},

]

}

Listing 1: Example of KLAR for relation capital in
English.

Building on this idea, we apply linear ap-816

proximation to address cross-lingual inconsistency817

by bypassing the language transition process in818

MLMs. We hypothesize that the mapping from819

the model’s latent state at layer n to that at the final820

layer N , i.e., hn → hN can be well-approximated821

by a linear function f(hn) = Whn+b ≈ hN . Fol-822

lowing Hernandez et al. (2023), we use first-order823

approximation to estimate Wr and br as the mean824

Jacobian and bias across m correctly predicted fac-825

tual samples {hni , hNi}i=1,...,m. That is, we de-826

fine:827

Wr = Ehni ,hNi

[
∂F

∂hn

∣∣∣∣
(hni ,hNi

)

]
,

br = Ehni ,hNi

[
hN − ∂F

∂hn

∣∣∣∣
(hni ,hNi

)

hn

] (1)828

As noted in Hernandez et al. (2023), the first-829

order derivative Wr tends to underestimate the830

magnitude of changes from hn to hN in practice.831

Figure 9: Cosine similarity of latent states between all
language pairs averaged across all relation.

They attribute this to the use of layer normalization 832

(Lei Ba et al., 2016) in transformers: which does 833

not transmit changes in scale of inputs to changes 834

in scale of output. Specifically, the input hn at 835

layer n is normalized before being propagated to 836

subsequent layers. To address this underestima- 837

tion, a scalar constant β is introduced as a hyperpa- 838

rameter and multiplied by Wr as a corrective fac- 839

tor: 840

f(hn) = βWrhn + br = Whn + b (2) 841

A.3.2 Hyperparameters 842

Several hyperparameters are introduced when de- 843

termining the linear shortcut f(·): the layer n from 844

which the latent state is extracted for linear approx- 845

imation, the scalar constant β used to adjust the 846

13



slope of Wr to account for the underestimation in847

the first-order approximation of hn → hN , and848

the number of correct samples used to compute849

f(·). We perform a grid search to select these hy-850

perparameters for each language, aiming to max-851

imize prediction accuracy. For the layer n, we852

search within the range of [20, 32] for LLaMA2853

and [12, 24] for BLOOM. The scalar constant β is854

searched over the range [0, 5.0] in increments of855

0.25, following Hernandez et al. (2023). The num-856

ber of samples m is selected from [10, 25, 40, 50].857

The hyperparameter search is conducted for each858

language individually. We find that the optimal β859

value varies across languages, while the other two860

hyperparameters — the extraction layer n and the861

number of samples m — remain consistent across862

languages. The selected hyperparameters for both863

models are summarized in Table 5 and 6, respec-864

tively.865

LLaMA2 n β m

ca

30

4.75

25

en 1.50
en 1.50
es 3.00
fr 4.25
hu 2.50
ja 2.25
ko 4.50
nl 3.50
ru 4.25
uk 2.25
vi 1.00
zh 1.50

Table 5: Hyperparameters per language for LLaMA2.

BLOOM n β m

ar

21

1.25

25

ca 1.00
en 1.25
es 1.00
fr 0.75
vi 1.25
zh 1.50

Table 6: Hyperparameters per language for BLOOM.

A.3.3 Shortcut Translation Baselines.866

As mentioned in Section 7.2, we compare our867

shortcut method with two translation-based base-868

lines: (1) translation-en (trans-en): We trans-869

late all input queries from each language to En-870

glish using Google Translate, obtain model pre-871

dictions in English, and then translate them back872

to the target language to measure accuracy. (2)873

translation-early-exit (trans-exit): We use Logit874

Lens to project the latent states at the same ex- 875

traction layers as in the shortcut method, i.e., layer 876

30 for LLaMA2 and layer 20 for BLOOM, and 877

extract the top-predicted tokens. These tokens 878

are then translated into the target language using 879

Google Translate, and their accuracy is calculated 880

against the correct object. 881

As shown in Table 7 and 8, both translation- 882

based methods perform poorly. The low accu- 883

racy of translation-en suggests that existing trans- 884

lators struggle with entity translation, especially 885

for languages that are highly dissimilar to En- 886

glish. The poor performance of translation-early- 887

exit stems from the inherent unreliability of token- 888

level translations. Overall, these results indicate 889

that translation-based approaches are not a viable 890

solution for cross-lingual factual prediction. In 891

contrast, by directly adapting latent representa- 892

tions from earlier layers, the shortcut method op- 893

erates at the representation level, capturing richer 894

contextual information. This enables significantly 895

higher prediction accuracy and offers a promising 896

solution for mitigating cross-lingual factual incon- 897

sistency. 898

LLaMA2 original shortcut trans-en trans-exit

ca 76.96 80.54 44.95 24.52
en 81.41 85.06 81.41 43.05
es 78.44 81.16 47.77 28.42
fr 78.14 82.46 53.27 24.85
hu 75.69 79.04 64.60 6.91
ja 63.05 70.45 59.59 0.13
ko 62.14 66.98 49.30 0.28
nl 77.22 80.77 62.07 15.24
ru 67.02 72.71 47.58 2.72
uk 70.46 74.78 46.59 5.62
vi 73.26 77.56 39.07 12.70
zh 53.88 61.40 60.38 1.67

Table 7: Comparison of the prediction accuracy (%)
for LLaMA2 across different languages using the orig-
inal model, the proposed shortcut method, and the
translation-based baselines.

BLOOM original shortcut trans-en trans-exit

ar 31.58 37.93 21.87 0.97
ca 41.50 48.40 22.58 15.88
en 46.81 58.24 46.81 26.85
es 43.56 54.84 25.53 11.26
fr 46.88 56.03 26.15 17.97
vi 56.82 62.38 21.98 25.85
zh 35.54 43.89 31.26 10.96

Table 8: Comparison of the prediction accuracy (%)
for BLOOM across different languages using the orig-
inal model, the proposed shortcut method, and the
translation-based baselines.
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(a) Language composition aggregated across all languages
(b) Language composition with Catalan as the input lan-
guage.

(c) Language composition with English as the input lan-
guage.

(d) Language composition with Spanish as the input lan-
guage.
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(e) Language composition with French as the input language. (f) Language composition with Vietnamese as the input lan-
guage.

Figure 10: Language composition for languages shared between LLaMA2 and BLOOM.

(a) Language composition in LLaMA2 with Hungarian as the
input language.

(b) Language composition in LLaMA2 with Japanese as the
input language.
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(c) Language composition in LLaMA2 with Korean as the
input language.

(d) Language composition in LLaMA2 with Dutch as the in-
put language.

(e) Language composition in LLaMA2 with Russian as the
input language.

(f) Language composition in LLaMA2 with Ukrainian as the
input language.

(g) Language composition in BLOOM with Arabic as the input language.

Figure 11: Language composition for unique languages in LLaMA2 and BLOOM, respectively.
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Correct answer: Magúncia (Mainz)
Wrong answer: Trèveris (Trier)

"On es localitza la capital de Renània-Palatinat? La resposta és:"

rank_target_correct
rank_en_correct
rank_target_wrong

(a) Prompt in Catalan; English translation: “What is the capi-
tal of Rhineland-Palatinate? The answer is:”.
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Correct answer: Médine (Medina)
Wrong answer: La Mecque (Mecca)

"Où se trouve la capitale du Médine? La réponse est:"

rank_target_correct
rank_en_correct
rank_target_wrong

(b) Prompt in French; English translation: “What is the capi-
tal of Medina? The answer is:”.
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Correct answer: Konstantinápoly (Constantinople)
Wrong answer: Bizánc (Byzantium)

"Hol található Bizánci Birodalom f városa? A válasz:"

rank_target_correct
rank_en_correct
rank_target_wrong

(c) Prompt in Hungarian; English translation: “What is the
capital of Byzantine Empire? The answer is:”.
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Correct answer:  (Phoenix)Wrong answer:  (Petersburg)

" "

rank_target_correct
rank_en_correct
rank_target_wrong

(d) Prompt in Japanese; English translation: “What is the cap-
ital of Arizona? The answer is:”.
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Correct answer:  (Austin)Wrong answer:  (Cambridge)

"    ? :"

rank_target_correct
rank_en_correct
rank_target_wrong

(e) Prompt in Korean; English translation: “What is the capi-
tal of Texas? The answer is:”.
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Correct answer: Parijs (Paris)
Wrong answer: Vichy (Vichy)

"Waar is de hoofdstad van Vichy-Frankrijk gelegen? Het antwoord is:"

rank_target_correct
rank_en_correct
rank_target_wrong

(f) Prompt in Dutch; English translation: “What is the capital
of Vichy France? The answer is:”.
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Correct answer:  (Seville)
Wrong answer:  (Madrid)

"    ? :"

rank_target_correct
rank_en_correct
rank_target_wrong

(g) Prompt in Russian; English translation: “What is the cap-
ital of Andalusia? The answer is:”.
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Correct answer:  (Georgetown)
Wrong answer:  (Gibraltar)

"    ? :"

rank_target_correct
rank_en_correct
rank_target_wrong

(h) Prompt in Ukrainian; English translation: “What is the
capital of Guyana? The answer is:”.
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Correct answer: Luân ôn (London)
Wrong answer: Belfast

"N m  âu c a th  ô V ng qu c Liên hi p Anh và Ireland? Câu tr  l i là:"

rank_target_correct
rank_en_correct
rank_target_wrong

(i) Prompt in Ukrainian; English translation: “What is the
capital of United Kingdom of Great Britain and Ireland? The
answer is:”.

Figure 12: Rank evolution for prompts in different languages. rank_target_wrong represents the rank of the
model’s final incorrect prediction across layers, while rank_target_correct and rank_en_correct denote the
ranks of the correct answer in the target language and the English equivalent, respectively. The plots show the
impact of errors during language transition, where the rank of the incorrect answer surpasses the correct answer in
the final layers.
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