

# FORGETTING: A NEW MECHANISM TOWARDS BETTER LARGE LANGUAGE MODEL FINE-TUNING

## Anonymous authors

Paper under double-blind review

## ABSTRACT

Supervised fine-tuning (SFT) plays a critical role for pretrained large language models (LLMs), notably enhancing their capacity to acquire domain-specific knowledge while preserving or potentially augmenting their general-purpose capabilities. However, the efficacy of SFT hinges on data quality as well as data volume, otherwise it may result in limited performance gains or even degradation relative to the associated baselines. To mitigate such reliance, we suggest categorizing tokens within each corpus into two parts—**positive** and **negative** tokens—based on whether they are useful to improve model performance. Positive tokens can be trained in common ways, whereas negative tokens, which may lack essential semantics or be misleading, should be explicitly forgotten. Overall, the token categorization facilitate the model to learn less informative message, and the forgetting process shapes a knowledge boundary to guide the model on what information to learn more precisely. We conduct experiments on well-established benchmarks, finding that this forgetting mechanism not only improves overall model performance and also facilitate more diverse model responses.

## 1 INTRODUCTION

In recent years, we have witnessed emerging advancements in large language models (LLMs) (Brown et al., 2020; Achiam et al., 2023), powered by transformer-based architectures (Vaswani et al., 2017) with billions of parameters and extensive pre-training on trillions of tokens (Zhao et al., 2023). These models have evolved rapidly with continuous improvements in architectural design, training strategies, and scaling techniques (Hoffmann et al., 2022). They exhibit exceptional performance across a wide range of complex linguistic tasks, including reasoning, solving mathematics (Shao et al., 2024), summarization (Nallapati et al., 2016), language understanding, code generation (Chen et al., 2021; Jiang et al., 2023), question answering (Rajpurkar et al., 2016), etc.

Although powerful, LLMs still require SFT to enhance their performance in specialized tasks (Chung et al., 2022b; Aggarwal et al., 2024; Strangmann et al., 2024; Lialin et al., 2023). SFT typically involves adapting the current LLM using conditional maximum likelihood principles on fine-tuning data comprising prompt-response pairs. However, its success heavily relies on the quality and volume of the data: Low quality can mislead the model learning (Dodge et al., 2021; Luccioni & Viviano, 2021; Welbl et al., 2021; Longpre et al., 2023), introducing biases or inaccuracies that degrade performance, and small-scale datasets will hinder the model ability to generalize well (Ghosh et al., 2024). On the other hand, collecting the ideal data needed for SFT can be challenging in practice. Generally speaking, task-specific data are often scarce, particularly in niche or emerging domains (Ghosh et al., 2024; Ma et al., 2024), making it difficult to collect a sufficiently diverse dataset. Additionally, ensuring data quality is a non-trivial task, as it involves curating examples that are both representative and free from noise or errors. Even for humans, identifying whether the data meet high-quality standards can be difficult due to the subtleties of language and context. Consequently, the lack of high-quality, task-specific data becomes a bottleneck for SFT, limiting the potential of LLMs to excel in specialized applications.

**How can we mitigate the impacts of data on fine-tuning?** Data filtering (Albalak et al., 2024) offers a promising solution. Specifically, it involves selecting a subset of data from the whole set that is expected to be more beneficial for the targeted LLM than the original. With proper selection rules, such as gradient behaviors (Albalak et al., 2023), margins, loss, and influence (Beijan et al., 2023),

filtering can refine data quality effectively. However, this comes at the cost of reducing the scale of the dataset, raising open questions about the trade-off between quality and scales and its impact on the generalization of the resulting model. Existing literature has attempted to mitigate this issue by exploring data rephrasing (Eldan et al., 2023; Jin et al., 2024), while this approach heavily depends on manual efforts and/or expensive generators that are task-specific.

In this paper, we explore a new mechanism towards better LLM fine-tuning, referred to as **forgetting**. Following previous wisdom (Yuan et al., 2024; Eldan et al., 2023; Wang et al., 2025; Koh & Liang, 2017), we begin by performing data filtering at the token level, categorizing tokens as either **positive** or **negative** based on their influence to enhancing performance. Note that token-level filtering helps preserve the data scale as much as possible, thus adopting as a default choice. Then, for positive tokens, conditional maximum likelihood is applied as usual, since our selection rules ensure that their learning will benefit the current model. Furthermore, for negative tokens, rather than simply discarding them, we propose applying forgetting (also referred to as unlearning (Li et al., 2025; De Cao et al., 2021; Jang et al., 2022; Maini et al., 2024; Yao et al., 2024b; Wang et al., 2025)) to reduce the likelihood of their generation. Compared to positive ones, negative tokens are more likely to carry uninformative or even misleading knowledge. Explicitly forgetting these tokens not only prevents the model from generating them but also helps avoid overfitting to the current corpus. Moreover, we maintain the same data scale as in conventional fine-tuning, while taking some data (tokens more accurately) as negative samples to help the model establish a clearer knowledge boundary, thereby facilitating model generalization.

Although straightforward to implement, we demonstrate the importance of forgetting in SFT for improved generalization through our extensive experiments. Specifically, we build our training corpus across 5 representative reasoning, knowledge and conversational datasets, and evaluate our forgetting mechanism alongside baseline methods on 5 diverse benchmark datasets, incorporating various LLMs as base models. For example, as shown in Table 1 in Section 5, using LLaMA3.2-1B as the base model, our approach achieved a 2.51% improvement over that without forgetting and a 4.49% improvement over the fine-tuned model on full tokens. Similarly, with LLaMA3.2-3B, we obtained a 3.4% improvement over that without forgetting and 5.28% over fine-tuned model on full tokens. Additionally, with LLaMA3.1-8B, our approach resulted in a 4.21% improvement over the no forgetting approach, and a 8.25% improvement over the fine-tuned model on full tokens. Furthermore, we demonstrate our general effectiveness and robustness across other SFT setups in Section 5.

**Connection with broader literature.** The mechanism of forgetting is closely connected to preference optimization (PO) (Rafailov et al., 2023). Recalling that, many representative PO methods, such as direct preference optimization (DPO) (Rafailov et al., 2023) and proximal policy optimization (PPO) (Schulman et al., 2017), can broadly be reviewed as combining the objectives of learning and forgetting. They aim to increase the likelihood of generating preferred corpora while reducing that of the dispreferred one. However, these methods are derived from the original PO objectives, which are inherently tied to problem setups and rely on manual labeling or reward models for preference annotation. In contrast, we focus on the SFT problems, where the forgetting mechanism acts as an enhancement strategy rather than a indispensable component of the problem formulation. Our method is inspired by PO but more focuses on the mechanism of forgetting as an integral component within learning. This approach helps mitigate the negative effects of low-quality data meanwhile enhancing generalization and diversity. In the long term, we aim to bridge the methodological gap between SFT and PO, striving for a more unified and flexible framework for adapting LLMs.

## 2 RELATED WORKS

### 2.1 DATA SELECTION FOR SFT

SFT is a well-known fine-tuning technique that maximizes the likelihood of generating target tokens under the assumption that all tokens are informative. However, data quality has emerged as a critical bottleneck for this approach (Luo et al., 2024), with errors arising from various sources including human annotators, tool annotators, LLM hallucinations, and data processing inconsistencies (Luo et al., 2024).

LIMA (Zhou et al., 2023a), hypothesized that LLMs primarily learn the style of dataset responses, rather than updating their pre-trained knowledge toward specialized tasks, by showing that fine-tuning

108 on a 10k carefully curated dataset, they can obtain better performance than fine-tuning on a larger  
 109 dataset.

110 To address quality challenges, researchers have investigated the advantages of data quality over  
 111 quantity, proposing selection algorithms based on quality and diversity metrics to filter misleading  
 112 samples and improve instruction-following capabilities (Chen et al., 2023a; Maharana et al., 2024;  
 113 Lu et al., 2024; Wu et al., 2023; Xia et al., 2024). While effective at improving performance, these  
 114 approaches suffer from a fundamental limitation: they operate at the sample level, discarding entire  
 115 examples and thus reducing the overall data scale available for training. This creates an inevitable  
 116 trade-off between quality and quantity that remains unresolved.

117 Several data quality metrics have been introduced, such as gradient matching (Zhou et al., 2023b),  
 118 human feedback (Köpf et al., 2023) and influence function scores (Xia et al., 2024). Moreover, (Dai  
 119 et al., 2025) demonstrated that naturally higher influence scores for certain tasks can introduce bias in  
 120 data selection, and proposed normalizing influence scores across different tasks before iteratively  
 121 selecting samples for underrepresented skills. In (Luo et al., 2024), authors propose a two-stage  
 122 noise-robust framework that performs noise detection using multiple expert systems and then relabels  
 123 the downstream task data by finding similar examples from the clean set to provide context. In  
 124 another approach, researchers showed that selecting training samples aligned with the model’s  
 125 existing knowledge can improve performance by generating multiple instruction-response pairs and  
 126 choosing those with the highest probability according to the target model (Zhang et al., 2025).

127 Recent studies have explored various high-quality data selection algorithms for LLM fine-tuning,  
 128 yet they predominantly overlook a crucial insight: even in noisy samples, some tokens still contain  
 129 valuable information. By discarding entire samples, these methods inadvertently remove useful  
 130 training signals. Furthermore, these approaches fail to utilize the rejected data as a learning signal.

## 132 2.2 LLM UNLEARNING AND PO

133 Several approaches have been proposed to remove specific information from LLM without complete  
 134 retraining them from scratch, including data replacement and relabeling strategies (Eldan et al., 2023;  
 135 Jin et al., 2024), and knowledge editing techniques by predicting targeted parameter updates to change  
 136 specific facts while preserving other knowledge (De Cao et al., 2021). Gradient ascent (GA) based  
 137 methods are usually used for their simplicity, which maximize the negative log-likelihood of specific  
 138 token sequences (Jang et al., 2022; Maini et al., 2024; Yao et al., 2024b; Tian et al., 2024; Cha et al.,  
 139 2024; Chen et al., 2023b). However, some of them lead to degradation in LLM’s outputs globally  
 140 and damage the overall integrity of LLMs when removing targeted knowledge (Chen et al., 2023b;  
 141 Wang et al., 2024a;b; Zhang et al., 2024; Lizzo & Heck, 2024)—called excessive unlearning, which  
 142 some regularization techniques such as minimizing the KL-Div between the output distributions  
 143 of the pre-trained and fine-tuned models (Yao et al., 2024a) is proposed to maintain performance  
 144 on retain dataset. This introduce additional computational overhead and hyperparameter sensitivity.  
 145 Researchers in (Wang et al., 2025) introduced WGA, which applies confidence-based weights to  
 146 mitigate the excessive unlearning on a controlled forgetting manner.

147 In the PO field, DPO has emerged as an alternative to PPO-based alignment methods. However, PPO  
 148 has been successful for its sample efficiency compared to earlier policy gradient methods, it still  
 149 suffers from explicitly modeling a reward model, and complex hyperparameter tuning (Schulman  
 150 et al., 2017). To address these challenges and making it more robust and less computationally  
 151 expensive, DPO formulates the alignment objective into a maximum likelihood formulation on a  
 152 preference-paired data, trying to make preferred responses more likely and dispreferred responses  
 153 less likely. There are extensive studies to address the limitations of DPO (Ethayarajh et al., 2024;  
 154 Azar et al., 2023; Xu et al., 2024; Hong et al., 2024; Meng et al., 2024; Zeng et al., 2024), a new  
 155 approach for preference-based unlearning was proposed by (Maini et al., 2024), which defines the  
 156 forget set as the dispreferred responses, and the preferred response contains the refusal responses like  
 157 "I do not know the answer". Inspired by this research, (Zhang et al., 2024) proposed a new variant of  
 158 DPO, called negative preference optimization (NPO) that uses only negative responses, disregarding  
 159 the positive ones. In the (Wang et al., 2025) further proposed Token-level NPO (TNPO) and Weighted  
 160 TNPO (WTNPO), applying unlearning at the individual token level for more precise control over  
 161 knowledge removal, yet these methods were developed specifically for targeted forgetting rather than  
 as a complement to learning during SFT.

162 

### 3 PRELIMINARY

164 In this section, we present the foundational background essential to our work. We start by introducing  
165 SFT for autoregressive language modeling, followed by discussing the data quality issues within SFT.  
166167 

#### 3.1 SFT

169 Autoregressive language modeling, known as sequential prediction of outputs conditioned on previous  
170 context, plays a dominant role in contemporary LLMs. After pre-training, SFT is typically adopted  
171 to further improve LLMs for specific tasks by optimizing on task-specific instruction-response pairs.  
172 Specifically, representing a training corpus as  $D = \{(X_i, Y_i)\}_{i=1}^N$ , including  $N$  sequence sample  
173 pairs, each pair containing  $X_i$  as an input prompt and  $Y_i$  as a completion response. Each prompt  $X_i$   
174 is denoted as  $X_i = \{x_{i,j}\}_{j=1}^{m_i}$  with  $m_i$  indicating the sequence length of the  $i$ -th prompt. Similarly,  
175 each  $i$ -th completion response with sequence length of  $n_i$  is denoted as  $Y_i = \{y_{i,j}\}_{j=1}^{n_i}$ . In an  
176 autoregressive manner, the model learns to estimate the probability distribution  $P(y_{i,j}|X_i, y_{i,:j}; \theta)$   
177 for each token  $y_{i,j}$  in the response, conditioned on the entire prompt  $X_i$  and all preceding generated  
178 tokens in the response  $y_{i,:j} = \{y_{i,1}, y_{i,2}, \dots, y_{i,j-1}\}$ , where  $\theta$  denotes the model parameters.  
179

180 The standard cross-entropy objective is typically adopted for SFT, following the formulation of

181 
$$\mathcal{L}(\theta) = \frac{1}{\sum_{(i,j) \in \mathcal{I}} w_{i,j}} \sum_{(i,j) \in \mathcal{I}} -\log P(y_{i,j}|X_i, y_{i,:j}; \theta), \quad (1)$$

185 where the index set is defined as:

186 
$$\mathcal{I} := \{(i, j) | i \in \{1, 2, \dots, N\}, j \in \{1, 2, \dots, n_i\}\}, \quad (2)$$

189 and the per-token loss function is defined as:

191 
$$\ell(y_{i,j}|x_{i,:j}; \theta) := -\log P(y_{i,j}|X_i, y_{i,:j}; \theta). \quad (3)$$

193 

#### 3.2 DATA QUALITY OF SFT

195 LLMs acquire diverse capabilities and knowledge representations through pretraining on extensive  
196 corpora. However, for utilizing them in specialized tasks, techniques such as SFT play a remarkable  
197 role in enhancing their performance by fine-tuning the LLM on the training corpus without any  
198 selection or discarding on the dataset's components (Pareja et al., 2024; Albalak et al., 2024).200 However, collecting high-quality data, representing the required specific knowledge, is crucial to  
201 prevent inaccuracies and effectively align the LLM (Albalak et al., 2024). High-quality data collection  
202 can be challenging in practice due to several factors. Generally, task-specific data are often scarce,  
203 particularly in emerging domains. In addition, datasets are collected from various resources, often  
204 leading to inconsistent linguistic styles and quality, and errors due to the use of annotator tools, human  
205 manual annotating (Luo et al., 2024). Therefore, each of them can contribute noisy and misleading  
206 tokens into the dataset thus jeopardizing the optimization process, leading to poor generalization.207 To mitigate the impacts of low-quality and misleading data/tokens, existing methods proposed various  
208 data selection methods to maintain beneficial and high-quality data for fine-tuning (Albalak et al.,  
209 2024). More specifically, existing methods address data filtering at the data level; however, token-level  
210 filtering seems to preserve dataset scale and fine-grained information much more.212 Although progress has been made in previous studies, they discard the low-quality data during  
213 fine-tuning, which significantly reduces the original dataset scale and potentially limits the model  
214 generalization. This remains an open question: how to leverage the full training dataset at its original  
215 scale while improving model performance? Specifically, is it possible to not only learn from high-  
216 quality samples but also utilize misleading data/tokens to establish clearer knowledge boundaries  
217 without overfitting to noise? Such an approach could lead to improvements in model generalization  
218 while maintaining the comprehensive scope of the original dataset.

216 4 METHOD  
217

218 SFT is a well-established approach for aligning extensively knowledge-augmented pretrained LLMs  
219 with specialized tasks. As discussed in Section 3.2, practical datasets make it challenging for SFT to  
220 achieve high performance, as their collection process leads to a noisy dataset that jeopardizes the  
221 optimization process through misleading gradients. While many studies have attempted to address  
222 this issue by selecting high-quality subsets from SFT training data, these approaches sacrifice dataset  
223 scale instead of taking advantage from noisy tokens. This remained an open challenge to mitigate the  
224 effect of misleading tokens in the dataset, while preserving its scale. In this study, we propose a new  
225 approach for better LLM supervised fine-tuning, based on **forgetting** mechanism. Unlike traditional  
226 data selection approaches that treat all tokens uniformly and discard low-quality data, our method  
227 explicitly distinguishes between informative (positive) and uninformative or misleading (negative)  
228 tokens at a granular level. This token level approach preserves training data scale, while utilizing the  
229 tokens’ training signals more effectively.

230 Specifically, actively forgetting negative tokens, rather than merely ignoring them, can significantly  
231 improve model performance by aligning better with target data, freeing up model capacity from  
232 undesired patterns, and preventing overfitting to noisy patterns. This insight particularly valuable  
233 when working with practical datasets that inevitably include noisy tokens that should be forgotten  
234 to preserve the model’s general capabilities. The overall pipeline is outlined in Algorithm 1. In the  
235 following parts, we introduce the components of our pipeline, including the data preprocessing and  
236 training objective function.

237 **Algorithm 1** Forgetting  
238

239 **Require:** Base model  $\theta$ , dataset  $\mathcal{D}$ , proportion  $\rho$ ,  $t_{min}$ ,  $t_{max}$   
240 **Ensure:** Fine-tuned model  $\theta^*$

241 1: // Stage 1: Reference Model Fine-tuning  
242 2:  $\theta' \leftarrow$  fine-tune  $\theta$  on sampled subset  $\mathcal{D}_{ref} \subset \mathcal{D}$   
243 3: // Stage 2: Token Quality Assessment  
244 4:  $\mathcal{I} \leftarrow$  All token indices  $(i, j)$  in  $\mathcal{D}_{train}$   
245 5: **for**  $(i, j) \in \mathcal{I}$  **do**  
246 6:      $Inf(y_{i,j}) \leftarrow \ell(y_{i,j}|x_{i,:j}; \theta') - \ell(y_{i,j}|x_{i,:j}; \theta)$   
247 7:      $\mathcal{Q}(y_{i,j}) \leftarrow -Inf(y_{i,j})$  ▷ Quality score  
248 8: **end for**  
249 9: // Stage 3: Token Selection  
250 10: Sort tokens by  $\mathcal{Q}(y_{i,j})$  to partition into positive and negative subsets  
251 11:  $\mathcal{P} \leftarrow \{(i, j) \in \mathcal{I} : \mathcal{Q}(y_{i,j}|x_{i,:j}; \theta, \theta') \geq \mathcal{F}_S(1 - \rho)\}$  ▷ Positive tokens  
252 12:  $\mathcal{N} \leftarrow \mathcal{I} \setminus \mathcal{P}$  ▷ Negative tokens  
253 13: // Stage 4: Training with Forgetting  
254 14: **for**  $step = 0$  to  $total\_steps$  **do**  
255 15:      $\lambda(step) \leftarrow (t_{max} - t_{min}) \cdot \frac{step}{total\_steps}$   
256 16:      $\mathcal{L}_{\mathcal{P}} \leftarrow$  Mean weighted loss over positive tokens in  $\mathcal{P}$   
257 17:      $\mathcal{L}_{\mathcal{N}} \leftarrow$  Mean weighted loss over negative tokens in  $\mathcal{N}$   
258 18:      $\mathcal{L}(\theta) \leftarrow \mathcal{L}_{\mathcal{P}} - \lambda(step) \cdot \mathcal{L}_{\mathcal{N}}$   
259 19:     Update  $\theta$  using optimizer step on  $\mathcal{L}(\theta)$   
260 20: **end for**  
261 21: **return**  $\theta$

262 4.1 TOKEN QUALITY ASSESSMENT  
263

264 To quantify token quality, we leverage the concept of influence functions (Koh & Liang, 2017),  
265 between the base and reference models. Given a base model with parameters  $\theta$  and a reference model  
266 with parameters  $\theta'$  (introduced in Section 5.1.2), we define the cross-model influence for token  $y_{i,j}$   
267 as follows.

$$268 \quad 269 \quad Inf(y_{i,j}|x_{i,:j}; \theta, \theta') = \ell(y_{i,j}|x_{i,:j}; \theta') - \ell(y_{i,j}|x_{i,:j}; \theta). \quad (4)$$

270 The intuition is that tokens that become more predictable after initial training (resulting in loss  
 271 reduction) represent patterns that the model has successfully learned and are likely to be informative.  
 272

273 The token quality score formulation is as follows:

$$275 \quad \mathcal{Q}(y_{i,j}|x_{i,:j}; \theta, \theta') = -\text{Inf}(y_{i,j}|x_{i,:j}; \theta, \theta'). \quad (5)$$

277 A positive quality score indicates that the token became more predictable on the reference model  
 278 (lower loss in  $\theta'$  than in  $\theta$ ), indicating that it represents a generalizable pattern. In contrast, a negative  
 279 score suggests that the token might represent noise or misleading information.

## 280 4.2 TOKEN SELECTION

282 As a preprocessing step, we partition the tokens into positive and negative sets based on the quality  
 283 scores. We first compute quality scores for all tokens in the training corpus, then sort them in  
 284 descending order to form the set  $\mathcal{S}$ . Given a proportion hyperparameter  $\rho \in (0, 1)$ , we partition the  
 285 tokens as follows:

$$288 \quad \mathcal{P} = \{(i, j) \in \mathcal{I} : \mathcal{Q}(y_{i,j}|x_{i,:j}; \theta, \theta') \geq \mathcal{F}_{\mathcal{S}}(1 - \rho)\} \quad (6)$$

$$289 \quad \mathcal{N} = \mathcal{I} \setminus \mathcal{P} \quad (7)$$

291 where  $\mathcal{F}_{\mathcal{S}}(1 - \rho)$  denotes the  $(1 - \rho)$ -th percentile threshold in  $\mathcal{S}$ . The top  $\rho$  proportion of tokens are  
 292 considered as **positive** tokens form the  $\mathcal{P}$  set, while the remaining tokens form the **negative** set  $\mathcal{N}$ . In  
 293 practice, we found that setting  $\rho$  in the range of 0.7 to 0.8 achieves best results in our experiments.  
 294 Furthermore, our experiments reveal that partitioning tokens by a zero threshold score (i.e.  $\mathcal{Q} > 0$  as  
 295 positive tokens) negatively affects performance. This challenges the intuition that tokens with higher  
 296 confidence improvement are informative and beneficial, while the others are harmful, introducing an  
 297 open challenge for proposing more robust methods to identify high-quality tokens.

## 298 4.3 TRAINING OBJECTIVE

300 While standard SFT algorithms maximize the likelihood over all tokens uniformly (potentially reinforcing  
 301 noisy patterns that mislead optimization) and data selection methods discard the distinguished  
 302 noisy data before training, our approach maintains the benefits of full-scale training while addressing  
 303 quality concerns, which enables the model to establish clearer knowledge boundaries, by minimizing  
 304 the likelihood of generating the noisy tokens and freeing model capacity from misleading noisy  
 305 patterns. As mentioned in the Section 2.2, unlearning techniques proven to be effective to mitigate  
 306 the influence of undesirable data while preserving the model utility. In our context, rather than  
 307 **forgetting** some specified knowledge (e.g., copyrighted content), we forget misleading tokens through  
 308 GA, effectively utilizing both positive and negative tokens. This approach enhances the model  
 309 generalization while maintaining the original data scale with no information loss. We propose a  
 310 training objective for our selective learning and **forgetting** as follows.

$$312 \quad \mathcal{L}(\theta) = \frac{\sum_{(i,j) \in \mathcal{I}} y_{i,j} \cdot \mathbb{I}_{(i,j) \in \mathcal{P}} \cdot \ell(y_{i,j}|x_{i,:j}; \theta)}{\sum_{(i,j) \in \mathcal{I}} y_{i,j} \cdot \mathbb{I}_{(i,j) \in \mathcal{P}}} - \lambda(\text{step}) \cdot \frac{\sum_{(i,j) \in \mathcal{I}} y_{i,j} \cdot \mathbb{I}_{(i,j) \in \mathcal{N}} \cdot \ell(y_{i,j}|x_{i,:j}; \theta)}{\sum_{(i,j) \in \mathcal{I}} y_{i,j} \cdot \mathbb{I}_{(i,j) \in \mathcal{N}}}, \quad (8)$$

315 where the first term represents the average weighted loss over positive tokens, and the second term  
 316 represents the average weighted loss over negative tokens. We use  $\lambda(\text{step}) = (t_{\max} - t_{\min}) \cdot \frac{\text{step}}{\text{total\_steps}}$   
 317 as an adaptive coefficient that scales linearly with training progress, ensuring an effective balancing  
 318 of positive and negative gradients through the optimization process.

320 In this training objective, optimization initially shares goals with generalization, but their objectives  
 321 later diverge. The forgetting mechanism acts as a regularization technique that pulls optimization  
 322 back for generalization when their goals conflict. By using the adaptive balancing coefficient, this  
 323 enables to better capture the underlying preferred data distribution rather than overfitting to the noise  
 or merely following the pattern of low-scale high-quality data.

324 

## 5 EXPERIMENTS

325 

### 5.1 EXPERIMENTAL SETUPS

326 

#### 5.1.1 DATASETS

327 **Training data.** We constructed our training corpus by randomly sampling from five datasets, Flan\_v2  
 328 (Chung et al., 2022a), Dolly (Databricks, 2023), Open Assistant 1 (Köpf et al., 2023), Stanford  
 329 Alpaca (Taori et al., 2023) and WizardLM (Xu et al., 2023). This corpus provides a comprehensive  
 330 coverage of domains and response styles, thereby enhancing the model’s generalization capabilities  
 331 (Wang et al., 2023). Please refer to Appendix A for more datasets details.

332 **Evaluation benchmarks.** For the evaluation part, we have performed comprehensive evaluations on  
 333 five diverse benchmark datasets. They are TruthfulQA (Lin et al., 2022) to evaluate the ability of LLM  
 334 in providing truthful and accurate information, BoolQ (Clark et al., 2019) a binray question-answering  
 335 dataset and evaluates LLM’s ability in making precise boolean judgements, LogiQA (Liu et al., 2020)  
 336 focused on logical reasoning, TydiQA (Clark et al., 2020) to evaluate the LLM on multilingual  
 337 question-answering and ASDiv (Miao et al., 2021) to evaluate the LLM on math word problems.  
 338 Please refer to Appendix A for more datasets details. The evaluation is processed on all benchmark  
 339 samples, by using the lm-eval-harness<sup>1</sup> repository.

340 

#### 5.1.2 MODELS

341 **Base models.** In this paper, we choose 3 open-source LLMs including LLaMA-3.2-1B, LLaMA-3.2-  
 342 3B and LLaMA-3.1-8B (Dubey et al., 2024) in diverse complexity as our base models for fine-tuning.

343 **Reference models.** The reference models are obtained by fine-tuning the base models on a subset  
 344  $\mathcal{D}_{\text{ref}} \subset \mathcal{D}$  with  $\mathcal{D}_{\text{ref}} \cap \mathcal{D}_{\text{train}} = \emptyset$  where  $\mathcal{D}_{\text{train}}$  is the training corpus and  $\mathcal{D}$  is a combination of training  
 345 datasets. The fine-tuned LLM will be used for calculating the influence scores. We also investigate the  
 346 robustness of our approach when the reference dataset contains duplicate samples (see Appendix B.2).

347 **Baselines.** In this study, our baselines include the base model, the supervised fine-tuned version of  
 348 the base model on the whole training dataset with full tokens, and the fine-tuned version of the base  
 349 model on the preprocessed training dataset including only the top k% clean tokens.

350 

#### 5.1.3 TRAINING CONFIGURATIONS

351 For the reported results in Table 1, we employed model-specific hyperparameter pairs  $(t_{\min}, t_{\max})$  as  
 352 follows:  $(10^{-5}, 0.25)$  for LLaMA-3.2-1B and  $(10^{-4}, 0.25)$  for both LLaMA-3.2-3B and LLaMA-  
 353 3.1-8B, for our adaptive balancing coefficient  $\lambda(\text{step})$ . These values were determined through  
 354 ablation studies optimizing for performance across our benchmark tasks. For fine-tuning the LLMs,  
 355 we used LoRA (Hu et al., 2022) for its memory efficiency and stability during training. We set  
 356 rank-size of 64, the scaling factor of 16 and dropout 0.1 for LoRA. We used the AdamW optimizer  
 357 (Loshchilov & Hutter, 2017), with the overall batch size equal to 24 and the fine-tuning process  
 358 is performed for 1 epoch with a learning rate  $10^{-4}$  and a linear learning rate scheduler with 0.03  
 359 warm-up ratio. Moreover, we conducted our experiments on 4 NVIDIA L40S-48GB GPUs with Intel  
 360 Xeon 6338 CPUs, running on Ubuntu 20.04.6 LTS. The systems utilize Transformers version 4.51.3  
 361 and CUDA version 12.5. Training time for 1B, 3B and 8B models approximately takes 2, 3, and 5  
 362 hours, respectively.

363 

## 5.2 EMPIRICAL RESULTS

364 We conducted comprehensive experiments to evaluate our forgetting approach against all baselines.  
 365 Remarkably, our method outperformed all baselines in average performance. The forgetting method  
 366 achieved superior results with  $\rho$  in the range of 70% to 80%, while the ignoring has its best-case  
 367 performance with  $\rho$  in the range of 50% to 60% across all benchmarks. We demonstrate the  
 368 results of our experiments utilizing three different variants of LLaMA in Table 1, comparing the  
 369 method in their best-case performance, specifically, setting  $\rho = 0.7$  for our forgetting approach  
 370 and  $\rho = 0.5$  for the ignoring approach. Notably, compared to the standard SFT our method has  
 371 achieved an average performance improvement of 4.49% on the 1B model, 5.28% on the 3B model

372 <sup>1</sup><https://github.com/EleutherAI/lm-evaluation-harness>

378  
 379 Table 1: Performance comparison of different methods across five different benchmarks using  
 380 LLaMA-3.2-1B, LLaMA-3.2-3B and LLaMA-3.1-8B variants as our base models. We evaluate four  
 381 approaches: Base (unmodified), Full Tokens (standard SFT), Ignoring, and our proposed **Forgetting**.  
 382 The results show accuracy (%) for TruthfulQA, BoolQ, LogiQA, and ASDiV, and one-shot F1 score  
 383 for TydiQA. Bold values demonstrate best performance on each benchmark. Results show mean  
 384 values with standard deviations from 3 independent training runs. Our proposed Forgetting method  
 385 achieves significant improvements across different benchmarks and model scales.

| Method                   | TruthfulQA                       | BoolQ                            | LogiQA                           | TydiQA                           | ASDiV                            | AVG                              |
|--------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| Base model: LLaMA-3.2-1B |                                  |                                  |                                  |                                  |                                  |                                  |
| Base                     | 37.83 $\pm$ 0                    | 63.80 $\pm$ 0                    | 22.17 $\pm$ 0                    | 14.36 $\pm$ 0                    | 0 $\pm$ 0                        | 27.63 $\pm$ 0                    |
| Full Tokens              | 38.74 $\pm$ 0.39                 | 59.84 $\pm$ 0.94                 | 24.60 $\pm$ 0.25                 | 28.10 $\pm$ 0.46                 | 0.55 $\pm$ 0.48                  | 30.37 $\pm$ 0.39                 |
| Ignoring (seq-level)     | 39.56 $\pm$ 0.57                 | 61.47 $\pm$ 0.06                 | 24.03 $\pm$ 0.25                 | 27.90 $\pm$ 0.34                 | 1.46 $\pm$ 0.15                  | 30.88 $\pm$ 0.28                 |
| Forgetting (seq-level)   | 38.93 $\pm$ 0.08                 | 63.13 $\pm$ 0.46                 | 24.80 $\pm$ 0.12                 | 28.75 $\pm$ 0.23                 | 2.50 $\pm$ 0.04                  | 31.62 $\pm$ 0.10                 |
| Ignoring (token-level)   | 42.40 $\pm$ 0.13                 | 60.21 $\pm$ 1.66                 | 24.34 $\pm$ 0.31                 | 33.87 $\pm$ 0.64                 | 0.91 $\pm$ 0.2                   | 32.35 $\pm$ 0.46                 |
| Forgetting (token-level) | <b>44.83<math>\pm</math>0.45</b> | <b>65.39<math>\pm</math>0.39</b> | <b>25.60<math>\pm</math>0.48</b> | <b>36.21<math>\pm</math>0.77</b> | <b>2.28<math>\pm</math>0.04</b>  | <b>34.86<math>\pm</math>0.22</b> |
| Base model: LLaMA-3.2-3B |                                  |                                  |                                  |                                  |                                  |                                  |
| Base                     | 39.45 $\pm$ 0                    | 73.04 $\pm$ 0                    | 22.17 $\pm$ 0                    | 21.12 $\pm$ 0                    | 31.24 $\pm$ 0                    | 37.40 $\pm$ 0                    |
| Full Tokens              | 42.95 $\pm$ 0.47                 | 72.54 $\pm$ 0.59                 | 25.51 $\pm$ 0.21                 | 44.04 $\pm$ 0.27                 | 49.46 $\pm$ 0.14                 | 46.90 $\pm$ 0.16                 |
| Ignoring (seq-level)     | 40.58 $\pm$ 0.54                 | 72.93 $\pm$ 0.28                 | 24.36 $\pm$ 0.47                 | 44.82 $\pm$ 1.03                 | 49.11 $\pm$ 0.29                 | 46.36 $\pm$ 0.41                 |
| Forgetting (seq-level)   | 40.95 $\pm$ 0.30                 | <b>77.80<math>\pm</math>0.38</b> | 25.27 $\pm$ 0.23                 | 47.52 $\pm$ 0.45                 | 49.83 $\pm$ 0.93                 | 48.27 $\pm$ 0.06                 |
| Ignoring (token-level)   | 47.23 $\pm$ 0.86                 | 75.40 $\pm$ 0.37                 | 25.12 $\pm$ 0.31                 | 47.63 $\pm$ 0.42                 | 48.51 $\pm$ 0.74                 | 48.78 $\pm$ 0.19                 |
| Forgetting (token-level) | <b>50.32<math>\pm</math>0.96</b> | 76.66 $\pm$ 0.07                 | <b>27.09<math>\pm</math>0.37</b> | <b>56.36<math>\pm</math>0.06</b> | <b>50.47<math>\pm</math>0.3</b>  | <b>52.18<math>\pm</math>0.12</b> |
| Base model: LLaMA-3.1-8B |                                  |                                  |                                  |                                  |                                  |                                  |
| Base                     | 45.08 $\pm$ 0                    | 82.15 $\pm$ 0                    | 26.51 $\pm$ 0                    | 46.67 $\pm$ 0                    | 12.93 $\pm$ 0                    | 42.67 $\pm$ 0                    |
| Full Tokens              | 44.51 $\pm$ 0.48                 | 81.44 $\pm$ 0.47                 | 25.68 $\pm$ 0.14                 | 52.03 $\pm$ 0.18                 | 51.46 $\pm$ 0.42                 | 51.02 $\pm$ 0.11                 |
| Ignoring (seq-level)     | 47.05 $\pm$ 0.21                 | 85.17 $\pm$ 0.45                 | 24.64 $\pm$ 0.18                 | 52.34 $\pm$ 0.08                 | 51.62 $\pm$ 0.28                 | 52.16 $\pm$ 0.24                 |
| Forgetting (seq-level)   | 47.83 $\pm$ 0.09                 | <b>85.56<math>\pm</math>0.18</b> | 24.85 $\pm$ 0.37                 | 57.56 $\pm$ 0.33                 | 57.76 $\pm$ 0.18                 | 54.71 $\pm$ 0.10                 |
| Ignoring (token-level)   | 52.38 $\pm$ 0.22                 | 82.76 $\pm$ 0.07                 | 25.53 $\pm$ 0.11                 | 56.66 $\pm$ 0.06                 | <b>57.95<math>\pm</math>0.35</b> | 55.06 $\pm$ 0.16                 |
| Forgetting (token-level) | <b>58.39<math>\pm</math>0.65</b> | 83.14 $\pm$ 0.15                 | <b>31.15<math>\pm</math>0.86</b> | <b>66.21<math>\pm</math>0.23</b> | 57.48 $\pm$ 0.12                 | <b>59.27<math>\pm</math>0.35</b> |

410  
 411  
 412  
 413  
 414  
 415 and 8.25% on the 8B model. Furthermore, compared to ignoring baseline, our method has achieved  
 416 performance improvement of 2.51% on the 1B model, 3.4% on the 3B model and 4.21% on the 8B  
 417 model. Additional experiments with LLaMA-2-13B (Touvron et al., 2023) confirms these forgetting  
 418 mechanism’s generalization capability in larger scales, with detailed results provided in Appendix B.1.

419  
 420 **Token-level vs. sequence-level granularity.** A key design choice in our approach is operating at the  
 421 token level rather than the sequence level. This granular approach is motivated by the observation that  
 422 individual sequences often contain a mixture of both informative and misleading tokens. Sequence-  
 423 level selection would classify entire sequences as either positive or negative, potentially discarding  
 424 valuable tokens within otherwise noisy sequences, or conversely, retaining harmful tokens within  
 425 generally useful sequences. Token-level selection allows us to preserve beneficial information while  
 426 selectively forgetting problematic content, maximizing the utility of our training data. The Table 1  
 427 shows a comparison of the different approaches.

428 Table 1 shows that token-level approaches consistently outperform their sequence-level counterparts  
 429 across all model sizes. For example, with LLaMA-3.2-3B, token-level forgetting achieves 52.18%  
 430 average performance compared to 48.27% for sequence-level forgetting. This superiority stems  
 431 from token-level selection’s ability to preserve useful information even in partially noisy sequences,  
 432 while sequence-level selection discards entire sequences that may contain valuable tokens alongside  
 433 problematic ones.

432  
433

## 5.3 ABLATION STUDY

434  
435  
436  
437  
438  
439  
440  
441  
442  
443  
444

**Impact of  $\rho$ .** Our empirical evidence indicates that the forgetting approach demonstrates superior generalization capability when  $\rho$  has a higher value, partitioning a larger subset of tokens as positive tokens and treating all remaining tokens as negative tokens (forget rate of  $1 - \rho$ ). However, forgetting only a subset of the remaining tokens and discarding the others leads to suboptimal performance, indicating the effectiveness of forgetting all the  $1 - \rho$  tokens as negative tokens. Appendix Figure 1(b) illustrates the average performance for different forget rates. Moreover, the choice of the hyperparameter  $\rho$ , directly affects the noise distribution in positive and negative sets. Higher value of  $\rho$  can introduce noisy tokens to the positive set, while lower value of  $\rho$  can add informative tokens to the negative set. Appendix Figure 1(a) shows the comparison between different values of  $\rho$  for the forgetting and ignoring approaches. The average performance of the forgetting method has significantly decreased for the lowest value  $\rho = 0.4$ , due to the higher proportion of informative tokens in the negative set.

445  
446  
447  
448  
449  
450  
451  
452  
453  
454  
455  
456  
457  
458  
459  
460

**Impact of  $\lambda$ (step).** As explained in Section 4, effectively balancing the training and forgetting gradients is crucial for optimization stability. As related studies typically use a constant coefficient in the range  $(0,1)$  to reduce the learning rate of forgetting gradients. However, through empirical investigation, we observed that as training iterations progress, the learning rate reduction leads to the vanishing of the forgetting gradients. Thus, we used an adaptive function  $\lambda(\text{step})$ , as a coefficient on forgetting loss term of our dual objective function, not only to balance the learning and forgetting gradients, but also to efficiently preserve the effects of forgetting gradients during fine-tuning. According to the dual objective function formula, ignoring approach is equivalent to forgetting with a balancing coefficient of zero. In a comparison of balancing coefficient strategies, we evaluated three approaches: static approaches with constant values zero (ignoring) and 0.0001 (optimal value for static strategy), and a dynamic approach using the linear function  $\lambda(\text{step})$  with  $t_{\min} = 0.0001$  and  $t_{\max} = 0.25$ . The corresponding average improvements are 48.78%, 49.59%, and 52.18%, respectively. These results demonstrate that adaptive adjustment via linear function significantly outperforms static coefficient assignment, highlighting the critical role of selecting an appropriate balancing coefficient strategy. By incorporating  $\lambda(\text{step})$ , the forgetting learning rate decreases more gradually with a shallower slope. We investigated the impact of the adaptive parameter  $\lambda(\text{step})$  through a series of experiments. Additional ablation studies have been provided in Appendix C.

461

## 6 LIMITATIONS

462  
463

Despite our method’s improvements, some limitations remain. The approach is sensitive to dataset size and noise ratio, leading to performance degradation for smaller negative token sets. Moreover, it requires careful balancing between learning and forgetting gradients. Although it includes small number of hyperparameters, results heavily depend on hyperparameter selection.

464

## 7 CONCLUSION

468

This paper aims to reduce the reliance of LLM fine-tuning on data quality, an important and on-going topic that has been receiving increasing attentions these days. Unlike previous works that primarily focus on improving data selection, we suggest that exploring new learning paradigms is equally crucial. Specifically, we propose a novel fine-tuning mechanism named forgetting, which explicitly enables the model to forget misleading message carried by those filtered-out tokens. It mitigates the negative impact of noisy or misleading data while preserving the dataset scale, encouraging the model to form clearer knowledge boundaries and improving generalization and overall performance. In the future, we will explore more formal and rigorous ways to defining and enhancing data quality, as well as extend the forgetting mechanism to other related areas within LLMs, such as pre-training, preference optimization, and inference.

481

## 8 REFERENCES

482  
483

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.

486 Disha Aggarwal, Areeb Sathe, Ian Watts, and Sunayana Sitaram. Maple: Multilingual evaluation of  
 487 parameter efficient finetuning of large language models. *arXiv preprint arXiv:2401.07598*, 2024.  
 488

489 Alon Albalak, Colin Raffel, and William Yang Wang. Improving few-shot generalization by exploring  
 490 and exploiting auxiliary data. In *Thirty-seventh Conference on Neural Information Processing  
 491 Systems*, 2023.

492 Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert, Xinyi Wang,  
 493 Niklas Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong, et al. A survey on data selection  
 494 for language models. *arXiv preprint arXiv:2402.16827*, 2024.

495 Mohammad Gheshlaghi Azar, Mark Rowland, Bilal Piot, Daniel Guo, Daniele Calandriello, Michal  
 496 Valko, and Rémi Munos. A general theoretical paradigm to understand learning from human  
 497 preferences. *arXiv preprint arXiv:2310.12036*, 2023.

498

499 Ioana Bejan, Artem Sokolov, and Katja Filippova. Make every example count: On the stability and  
 500 utility of self-influence for learning from noisy nlp datasets. In *Proceedings of the 2023 Conference  
 501 on Empirical Methods in Natural Language Processing*, pp. 10107–10121, 2023.

502 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,  
 503 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models  
 504 are few-shot learners. In *Advances in Neural Information Processing Systems*, volume 33, pp.  
 505 1877–1901, 2020.

506

507 Sungmin Cha, Sungjun Cho, Dasol Hwang, and Moontae Lee. Towards robust and cost-efficient  
 508 knowledge unlearning for large language models. *arXiv preprint arXiv:2408.06621*, 2024.

509 Hao Chen, Yiming Zhang, Qi Zhang, Hantao Yang, Xiaomeng Hu, Xuetao Ma, Yifan YangGong,  
 510 and Junjie Jian Zhao. Maybe only 0.5% data is needed: A preliminary exploration of low training  
 511 data instruction tuning. *arXiv preprint arXiv:2305.09246*, 2023a.

512 Letian Chen, Zhan Wang, Hongyu Zhang, Yaodong Cai, Hongzhi Cai, Hao Liang, and Xudong Wang.  
 513 Unlearning bias in language models by partitioning gradients. *arXiv preprint arXiv:2305.12525*,  
 514 2023b.

515

516 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared  
 517 Kaplan, Harri Edwards, Yura Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large  
 518 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.

519

520 Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhe  
 521 Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language models.  
 522 *arXiv preprint arXiv:2210.11416*, 2022a.

523

524 Hyung Won Chung, Le Hou, Shayne Longpre, et al. Scaling instruction-finetuned language models.  
 525 *arXiv preprint arXiv:2210.11416*, 2022b.

526

527 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina  
 528 Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In *Proceedings  
 529 of the 2019 Conference of the North American Chapter of the Association for Computational  
 530 Linguistics: Human Language Technologies*, pp. 2924–2936, 2019.

531

532 Jonathan H Clark, Eunsol Choi, Michael Collins, Dan Garrette, Tom Kwiatkowski, Vitaly Nikolaev,  
 533 and Jennimaria Palomaki. Tydi qa: A benchmark for information-seeking question answering in  
 534 typologically diverse languages. volume 8, pp. 454–470, 2020.

535

536 Qianyu Dai, Deqing Zhang, James Wei Ma, and Hao Peng. Improving influence-based instruction  
 537 tuning data selection for balanced learning of diverse capabilities. *arXiv preprint arXiv:2501.12147*,  
 538 2025.

539

540 Databricks. Dolly: Democratizing the magic of chatgpt with open models, 2023.

541

542 Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. In  
 543 *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing*, pp.  
 544 6491–6506, 2021.

540 Jesse Dodge, Maarten Sap, Ana Marasović, William Agnew, Gabriel Ilharco, Dirk Groeneveld,  
 541 Margaret Mitchell, and Matt Gardner. Documenting large webtext corpora: A case study on the  
 542 colossal clean crawled corpus. In *Proceedings of the 2021 Conference on Empirical Methods in  
 543 Natural Language Processing*, pp. 1286–1305, 2021.

544 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha  
 545 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.  
 546 *arXiv preprint arXiv:2407.21783*, 2024.

548 Ronen Eldan, Azadeh Mirhoseini, and Mohammad Norouzi. Who’s harry potter? approximate  
 549 unlearning in llms. *arXiv preprint arXiv:2310.02238*, 2023.

550 Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model  
 551 alignment as prospect theoretic optimization. In *International Conference on Learning Representations*, 2024.

553 Sreyan Ghosh, Chandra Kiran Reddy Evuru, Sonal Kumar, Deepali Aneja, Zeyu Jin, Ramani  
 554 Duraiswami, and Dinesh Manocha. A closer look at the limitations of instruction tuning. *arXiv  
 555 preprint arXiv:2402.05119*, 2024.

557 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza  
 558 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.  
 559 Training compute-optimal large language models. In *Advances in Neural Information Processing  
 560 Systems*, volume 35, pp. 30016–30030, 2022.

561 Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without  
 562 reference model. *arXiv preprint arXiv:2403.07691*, 2024.

564 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and  
 565 Weizhu Chen. Lora: Low-rank adaptation of large language models. In *International Conference  
 566 on Learning Representations*, 2022.

567 Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha, Moontae Lee, Lajanugen Logeswaran, and  
 568 Minjoon Seo. Knowledge unlearning for mitigating privacy risks in language models. *arXiv  
 569 preprint arXiv:2210.01504*, 2022.

571 Jie Jiang, Jiayi Xu, Shuai Zhao, Yu Sun, and Nan Duan. A survey on large language models for code  
 572 generation. *arXiv preprint arXiv:2406.00515*, 2023.

573 Zhuoran Jin, Pengfei Cao, Chenhao Wang, Zhitao He, Hongbang Yuan, Jiachun Li, Yubo Chen, Kang  
 574 Liu, and Jun Zhao. Ruku: Benchmarking real-world knowledge unlearning for large language  
 575 models. *arXiv preprint arXiv:2406.10890*, 2024.

577 Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In  
 578 *International conference on machine learning*, pp. 1885–1894, 2017.

579 Andreas Köpf, Yannic Kilcher, Leandro von Werra, Armen Aghajanyan, Gašper Beguš, Lakshmi Sal-  
 580 adi, Chia-Liang Tang, Joachim Krass, Jonathan Tow, Shaohan Li, et al. Openassistant conversations-  
 581 democratizing large language model alignment. *arXiv preprint arXiv:2304.07327*, 2023.

583 Ningyu Li, Chenyang Zhou, Yiming Gao, Hanghang Chen, Zhenguo Zhang, Kun Kuang, and  
 584 Anming Fu. Machine unlearning: Taxonomy, metrics, applications, challenges, and prospects.  
 585 *IEEE Transactions on Neural Networks and Learning Systems*, 2025.

586 Vladislav Lalin, Vijeta Deshpande, Xin Yao, and Anna Rumshisky. Scaling down to scale up: A  
 587 guide to parameter-efficient fine-tuning. *arXiv preprint arXiv:2303.15647*, 2023.

588 Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human  
 589 falsehoods. In *Proceedings of the 60th Annual Meeting of the Association for Computational  
 590 Linguistics*, pp. 3214–3252, 2022.

592 Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: A  
 593 challenge dataset for machine reading comprehension with logical reasoning. In *Proceedings of  
 the Twenty-Ninth International Joint Conference on Artificial Intelligence*, pp. 3622–3628, 2020.

594 Tyler Lizzo and Larry Heck. Unlearn: Efficient removal of knowledge in large language models.  
 595 *arXiv preprint arXiv:2408.04140*, 2024.  
 596

597 Shayne Longpre, Gregory Yauney, Emily Reif, Katherine Lee, Adam Roberts, Barret Zoph, Denny  
 598 Zhou, Jason Wei, Kevin Robinson, David Mimno, et al. A pretrainer’s guide to training  
 599 data: Measuring the effects of data age, domain coverage, quality, & toxicity. *arXiv preprint*  
 600 *arXiv:2305.13169*, 2023.

601 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*  
 602 *arXiv:1711.05101*, 2017.  
 603

604 Keming Lu, Hongyi Yuan, Zheng Yuan, Runji Lin, Junyang Lin, Chuanqi Tan, and Chang Zhou.  
 605 #instag: Instruction tagging for analyzing supervised fine-tuning of large language models. In *The*  
 606 *Twelfth International Conference on Learning Representations*, 2024.

607 Alexandra Luccioni and Joseph Viviano. What’s in the box? an analysis of undesirable content  
 608 in the common crawl corpus. In *Proceedings of the 59th Annual Meeting of the Association for*  
 609 *Computational Linguistics and the 11th International Joint Conference on Natural Language*  
 610 *Processing (Volume 2: Short Papers)*, pp. 182–189, 2021.

611 Junyu Luo, Xiao Luo, Kaize Ding, Jingyang Yuan, Zheng Xiao, and Meng Zhang. Robustft:  
 612 Robust supervised fine-tuning for large language models under noisy response. *arXiv preprint*  
 613 *arXiv:2412.14922*, 2024.  
 614

615 Renshan Ma, Wanlong Li, and Fanshan Shang. Investigating public fine-tuning datasets: A complex  
 616 review of current practices from a construction perspective. *arXiv preprint arXiv:2407.08475*,  
 617 2024.

618 Adyasha Maharana, Prateek Yadav, and Mohit Bansal.  $\mathbb{D}^2$  pruning: Message passing for balancing  
 619 diversity & difficulty in data pruning. In *The Twelfth International Conference on Learning*  
 620 *Representations*, 2024.

621 Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary C Lipton, and J Zico Kolter. Tofu: A task of  
 622 fictitious unlearning for llms. *arXiv preprint arXiv:2401.06121*, 2024.

623 Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a reference-  
 624 free reward. *arXiv preprint arXiv:2403.14512*, 2024.

625 Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su. A diverse corpus for evaluating and developing  
 626 english math word problem solvers. *arXiv preprint arXiv:2106.15772*, 2021.

627 Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, Caglar Gulcehre, and Bing Xiang. Abstractive  
 628 text summarization using sequence-to-sequence rnns and beyond. In *Proceedings of The 20th*  
 629 *SIGNLL Conference on Computational Natural Language Learning*, pp. 280–290, 2016.

630 Artemis Pareja, Nikhil Sarda Nayak, Han Wang, Krishnateja Killamsetty, Srinivasan Sudalairaj, Wei  
 631 Zhao, Shi Han, Abhishek Bhandwaldar, Gengmo Xu, Kai Xu, and Li Han. Unveiling the secret  
 632 recipe: A guide for supervised fine-tuning small llms. *arXiv preprint arXiv:2412.13337*, 2024.

633 Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and Chelsea  
 634 Finn. Direct preference optimization: Your language model is secretly a reward model. In *Advances*  
 635 *in Neural Information Processing Systems*, volume 36, 2023.

636 Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for  
 637 machine comprehension of text. In *Proceedings of the 2016 Conference on Empirical Methods in*  
 638 *Natural Language Processing*, pp. 2383–2392, 2016.

639 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy  
 640 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

641 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haoyang Zhang,  
 642 Mingchuan Zhang, Y K Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical  
 643 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

648 Thilo Strangmann, Lennart Purucker, Joeran Karl Hendrik Franke, et al. Transfer learning for  
 649 finetuning large language models. *arXiv preprint arXiv:2411.01195*, 2024.

650

651 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy  
 652 Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

653

654 Bozhong Tian, Xiaomin Liang, Siyuan Cheng, Qingbin Liu, Mengru Wang, Dianbo Sui, Xipeng  
 655 Chen, Huaizhe Chen, and Ningyu Zhang. To forget or not? towards practical knowledge unlearning  
 656 for large language models. *arXiv preprint arXiv:2407.01920*, 2024.

657

658 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay  
 659 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation  
 660 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

661

662 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz  
 663 Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Information  
 664 Processing Systems*, volume 30, 2017.

665

666 Quanyu Wang, Bo Han, Peizhao Yang, Jiasheng Zhu, Tongliang Liu, and Masashi Sugiyama. Towards  
 667 effective evaluations and comparisons for llm unlearning methods. In *The Thirteenth International  
 668 Conference on Learning Representations*, 2024a.

669

670 Quanyu Wang, Bo Han, Peizhao Yang, Jiasheng Zhu, Tongliang Liu, and Masashi Sugiyama. Unlearning with control: Assessing real-world utility for large language model unlearning. *arXiv  
 671 preprint arXiv:2406.09179*, 2024b.

672

673 Quanyu Wang, Jianpeng Zhou, Zitao Zhou, Sungho Shin, Bo Han, and Kilian Q Weinberger. Rethinking llm unlearning objectives: A gradient perspective and go beyond. *arXiv preprint  
 674 arXiv:2502.19301*, 2025.

675

676 Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Raghavi Chandu,  
 677 David Wadden, Kelsey MacMillan, Noah A Smith, Iz Beltagy, and Hannaneh Hajishirzi. How far  
 678 can camels go? exploring the state of instruction tuning on open resources. In *Advances in Neural  
 679 Information Processing Systems*, volume 36, pp. 74764–74786, 2023.

680

681 Johannes Welbl, Amelia Glaese, Jonathan Uesato, Sumanth Dathathri, John Mellor, Lisa Anne  
 682 Hendricks, Kirsty Anderson, Pushmeet Kohli, Ben Coppin, and Po-Sen Huang. Challenges in  
 683 detoxifying language models. In *Findings of the Association for Computational Linguistics: EMNLP 2021*, pp. 2447–2469, 2021.

684

685 Shentong Wu, Keming Lu, Biao Xu, Junyang Lin, Qi Su, and Chang Zhou. Self-evolved diverse data  
 686 sampling for efficient instruction tuning. *arXiv preprint arXiv:2311.08182*, 2023.

687

688 Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less:  
 689 Selecting influential data for targeted instruction tuning. *arXiv preprint arXiv:2402.04333*, 2024.

690

691 Can Xu, Qingfeng Sun, Sheng Wu, Yiwen Zhang, Xian Yang, Bill Yuchen Lin, Bin Xiao, and Qian  
 692 Wu. Wizardlm: Empowering large language models to follow complex instructions. *arXiv preprint  
 693 arXiv:2304.12244*, 2023.

694

695 Haoran Xu, Amr Sharaf, Yingqiao Chen, Wenhao Tan, Lingfeng Shen, Benjamin Van Durme, Kenton  
 696 Murray, and Young Jin Kim. Contrastive preference optimization: Pushing the boundaries of llm  
 697 performance in machine translation. In *Proceedings of the 62nd Annual Meeting of the Association  
 698 for Computational Linguistics (Volume 1: Long Papers)*, pp. 15077–15105, 2024.

699

700 Jiaxin Yao, Eli Chien, Minxin Du, Xiang Niu, Tianhao Wang, Zheng Cheng, and Xiang Yue. Machine  
 701 unlearning of pre-trained large language models. In *Proceedings of the 62nd Annual Meeting of the Association  
 702 for Computational Linguistics (Volume 1: Long Papers)*, pp. 8403–8419, 2024a.

703

704 Yuanshun Yao, Xiaojun Xu, and Yang Liu. Large language model unlearning. In *Advances in Neural  
 705 Information Processing Systems*, volume 37, pp. 105425–105475, 2024b.

706

707 Xiaojian Yuan, Tianyu Pang, Chao Du, Kejiang Chen, Weiming Zhang, and Min Lin. A closer look  
 708 at machine unlearning for large language models. *arXiv preprint arXiv:2410.08109*, 2024.

702 Yongcheng Zeng, Guoqing Liu, Weiwei Ma, Ning Yang, Haifeng Zhang, and Jun Wang. Token-level  
703 direct preference optimization. *arXiv preprint arXiv:2404.11999*, 2024.  
704

705 Deqing Zhang, Qianyu Dai, and Hao Peng. The best instruction-tuning data are those that fit. *arXiv*  
706 *preprint arXiv:2502.04194*, 2025.  
707

708 Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From catastrophic  
709 collapse to effective unlearning. *arXiv preprint arXiv:2404.05868*, 2024.  
710

711 Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,  
712 Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. *arXiv*  
713 *preprint arXiv:2303.18223*, 2023.  
714

715 Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia  
716 Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. In *Thirty-seventh Conference on*  
717 *Neural Information Processing Systems*, 2023a.  
718

719 Daquan Zhou, Kai Wang, Jiawei Gu, Xiangyu Peng, Dongze Lian, Yifan Zhang, Yang You, and  
720 Jiaoshi Feng. Dataset quantization. In *Proceedings of the IEEE/CVF International Conference on*  
721 *Computer Vision*, pp. 17205–17216, 2023b.  
722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A DATASETS DETAILS**  
757758 Table 2 provides comprehensive information about the datasets used to create training corpus,  
759 including their quality assessment, size, total length of samples, and source.  
760761 **Table 2: Datasets attributes**  
762

| Dataset          | Data Quality | Size   | Length | Resource        |
|------------------|--------------|--------|--------|-----------------|
| Dolly            | High         | 15.01k | Varied | Human-annotated |
| Flan_v2          | High         | 100k   | Varied | Human-annotated |
| Open Assistant 1 | Moderate     | 33.92k | Varied | Human-annotated |
| Stanford Alpaca  | High         | 52k    | Varied | LLM-generated   |
| WizardLM         | High         | 100k   | Longer | LLM-generated   |

771 The dataset distribution presented in detail in Table 3.  
772773 **Table 3: Dataset distribution comparison**  
774

| Dataset          | 50k Sample |            | 10k Sample |            |
|------------------|------------|------------|------------|------------|
|                  | Samples    | Percentage | Samples    | Percentage |
| Dolly            | 2,617      | 5.23%      | 503        | 5.03%      |
| Flan_v2          | 17,803     | 35.61%     | 3,593      | 35.93%     |
| Open Assistant 1 | 5,960      | 11.92%     | 1,135      | 11.35%     |
| Stanford Alpaca  | 9,276      | 18.55%     | 1,834      | 18.34%     |
| WizardLM         | 14,344     | 28.69%     | 2,935      | 29.35%     |

784 The benchmarks' attributes are presented in Table 4.  
785786 **Table 4: Evaluation datasets attributes**  
787

| Dataset    | Focus Area                | Data Size | Question Length |
|------------|---------------------------|-----------|-----------------|
| TruthfulQA | Truthfulness              | 817       | Medium          |
| BoolQ      | Boolean QA                | 15,942    | Short           |
| LogiQA     | Logical reasoning         | 8,678     | Medium          |
| TydiQA     | Multilingual QA           | 204k      | Varied          |
| ASDiv      | Math Word Problem Solving | 2,305     | Varied          |

797 **B ADDITIONAL EXPERIMENTAL RESULTS**  
798800 **B.1 LLAMA-2-13B RESULTS**  
801802 To further validate the robustness and scalability of our forgetting mechanism, we conducted additional  
803 experiments using LLaMA-2-13B as the base model. These results provide additional evidence that  
804 our approach consistently improves performance across different model architectures and scales,  
805 extending beyond the LLaMA-3.x series reported in the main paper.806 The results in Table 5 demonstrate that our forgetting method maintains its effectiveness with larger  
807 models, achieving a 6.16% improvement over standard SFT and a 4.16% improvement over the  
808 ignoring baseline. This consistency across model scales (from 1B to 13B parameters) reinforces the  
809 generalizability of our approach and suggests that the forgetting mechanism provides fundamental  
benefits for supervised fine-tuning regardless of model size or architecture.

810  
 811 Table 5: Performance comparison of different methods across five benchmarks using LLaMA-2-13B  
 812 as the base model. Results show accuracy (%) for TruthfulQA, BoolQ, LogiQA, and ASDiv, and  
 813 one-shot F1 score for TydiQA. Bold values demonstrate best performance on each benchmark. Our  
 814 proposed Forgetting method achieves significant improvements across different benchmarks, with an  
 815 average improvement of 6.16% over standard SFT and 4.16% over the ignoring approach.

| Method                     | Dataset      |              |              |              |              |              |
|----------------------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                            | TruthfulQA   | BoolQ        | LogiQA       | TydiQA       | ASDiV        | AVG          |
| Base model: LLaMA-2-13B    |              |              |              |              |              |              |
| Base                       | 36.73        | 80.67        | 26.05        | 34.27        | 0.35         | 35.61        |
| Full Tokens (standard SFT) | 42.65        | 82.24        | 27.44        | 36.77        | 8.76         | 39.57        |
| Ignoring                   | 43.01        | <b>84.50</b> | 27.29        | 38.39        | 15.34        | 41.71        |
| Forgetting (Ours)          | <b>52.82</b> | 84.13        | <b>27.95</b> | <b>48.71</b> | <b>17.80</b> | <b>46.28</b> |

## B.2 IMPACT OF REFERENCE DATASET DUPLICATES

We conducted additional experiments to investigate the robustness of our approach when the reference dataset contains duplicate samples. However our pipeline’s preprocessing step removes duplicate samples from the both training and references datasets, this analysis is important for understanding how data quality in the reference model training affects the overall forgetting mechanism performance.

Table 6 shows results using LLaMA-3.2-3B when the reference dataset includes duplicate samples. Interestingly, our forgetting method remains effective even under these suboptimal reference conditions, achieving a 4.93% improvement over standard SFT and a 2.05% improvement over the ignoring baseline. This demonstrates the robustness of our influence-based token quality assessment even when the reference model is trained on imperfect data, suggesting that our approach can handle practical scenarios where perfect data curation is not feasible.

Table 6: Performance comparison with duplicate samples in reference dataset using LLaMA-3.2-3B as base model. Results show mean values with standard deviations from 3 independent training runs. Our forgetting method maintains effectiveness even with imperfect reference data quality.

| Method                                               | Dataset                          |                                  |                                  |                                  |                                  |                                  |
|------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
|                                                      | TruthfulQA                       | BoolQ                            | LogiQA                           | TydiQA                           | ASDiV                            | AVG                              |
| Base model: LLaMA-3.2-3B (Reference with Duplicates) |                                  |                                  |                                  |                                  |                                  |                                  |
| Base                                                 | 39.45 $\pm$ 0                    | 73.04 $\pm$ 0                    | 22.17 $\pm$ 0                    | 21.12 $\pm$ 0                    | 31.24 $\pm$ 0                    | 37.40 $\pm$ 0                    |
| Full Tokens (standard SFT)                           | 42.95 $\pm$ 0.47                 | 72.54 $\pm$ 0.59                 | 25.51 $\pm$ 0.21                 | 44.04 $\pm$ 0.27                 | 49.46 $\pm$ 0.14                 | 46.90 $\pm$ 0.16                 |
| Ignoring                                             | 49.91 $\pm$ 0.39                 | 75.60 $\pm$ 0.86                 | 24.99 $\pm$ 0.35                 | 48.61 $\pm$ 0.20                 | <b>49.81<math>\pm</math>0.01</b> | 49.78 $\pm$ 0.22                 |
| Forgetting (Ours)                                    | <b>51.09<math>\pm</math>0.54</b> | <b>77.00<math>\pm</math>0.09</b> | <b>26.57<math>\pm</math>0.08</b> | <b>54.88<math>\pm</math>0.29</b> | 49.60 $\pm$ 0.14                 | <b>51.83<math>\pm</math>0.11</b> |

## C ADDITIONAL ABLATION STUDIES

**Hyperparameter sensitivity analysis.** To evaluate the robustness of our approach to hyperparameter choices, we conducted extensive experiments varying the key parameters  $t_{\min}$  and  $t_{\max}$  while keeping  $\rho = 0.7$  fixed. As shown in Figure 1(a), our method demonstrates impressive robustness to  $\rho$  values across a wide range. For practical selection of  $\rho$ , users can use the ratio of tokens with positive influence scores as an initial estimate—in our experiments, this ratio was 0.67, leading us to select  $\rho = 0.7$  as optimal. Table 7 presents comprehensive results across different combinations of  $t_{\min}$  and  $t_{\max}$  values using LLaMA-3.2-3B. The results demonstrate remarkable stability, with performance variations remaining small across different hyperparameter settings (standard deviation  $< 0.5\%$  across configurations). This robustness ensures that our method maintains superiority over baselines without requiring extensive hyperparameter tuning. The stability is partly attributed to the inherent robustness of large language models and their extensive pre-trained knowledge, which provides a strong foundation that is resilient to moderate changes in fine-tuning parameters.

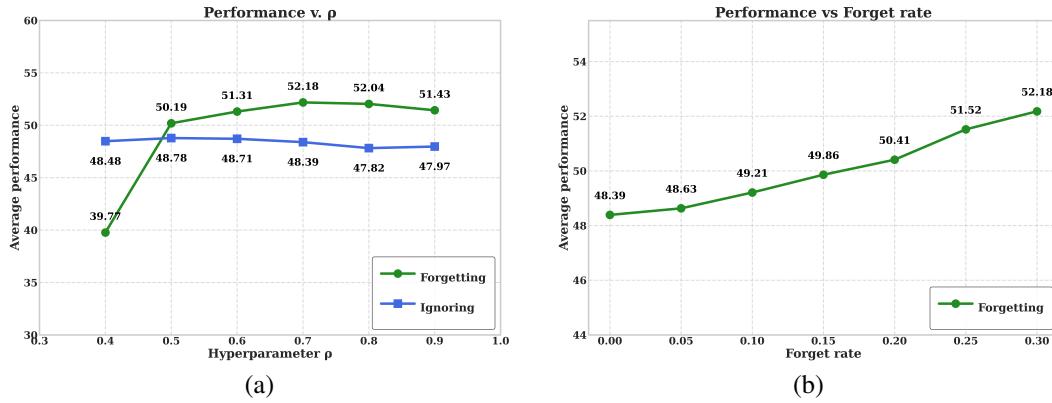


Figure 1: Performance analysis: (a) Average performance of forgetting versus ignoring methods across different  $\rho$  values. (b) Average performance of the forgetting method with different forget rates.

Table 7: Hyperparameter sensitivity analysis for  $t_{\min}$  and  $t_{\max}$  using LLaMA-3.2-3B with fixed  $\rho = 0.7$ . Results demonstrate robustness across different parameter combinations.

| $t_{\min}$ | $t_{\max}$ | TruthfulQA | BoolQ | LogiQA | TydiQA | ASDiV | AVG          |
|------------|------------|------------|-------|--------|--------|-------|--------------|
| 0.00001    | 0.45       | 52.75      | 74.38 | 25.89  | 54.27  | 48.10 | 51.08        |
| 0.00001    | 0.35       | 51.55      | 75.11 | 26.15  | 56.74  | 48.42 | 51.59        |
| 0.00001    | 0.25       | 50.93      | 76.58 | 25.99  | 56.13  | 50.26 | 51.98        |
| 0.00001    | 0.15       | 50.17      | 75.45 | 26.19  | 54.37  | 50.67 | 51.37        |
| 0.0001     | 0.45       | 50.90      | 77.56 | 25.83  | 54.33  | 48.90 | 51.50        |
| 0.0001     | 0.35       | 51.20      | 75.67 | 26.65  | 57.21  | 48.78 | 51.90        |
| 0.0001     | 0.25       | 50.32      | 76.64 | 27.09  | 56.36  | 50.47 | <b>52.18</b> |
| 0.0001     | 0.15       | 50.09      | 74.79 | 25.27  | 55.21  | 51.82 | 51.44        |
| 0.001      | 0.15       | 49.05      | 76.03 | 26.36  | 54.85  | 51.49 | 51.56        |
| 0.001      | 0.25       | 48.96      | 76.50 | 28.68  | 56.35  | 49.66 | 52.03        |
| 0.001      | 0.35       | 51.25      | 74.41 | 26.51  | 56.58  | 50.05 | 51.76        |
| 0.001      | 0.45       | 50.69      | 74.50 | 25.98  | 56.97  | 48.46 | 51.32        |
| 0.01       | 0.15       | 50.46      | 75.24 | 26.12  | 54.17  | 50.95 | 51.39        |
| 0.01       | 0.25       | 51.02      | 76.28 | 27.75  | 55.48  | 49.93 | 52.09        |
| 0.01       | 0.35       | 52.78      | 74.44 | 25.58  | 55.92  | 48.30 | 51.40        |
| 0.01       | 0.45       | 50.09      | 74.87 | 27.60  | 54.69  | 48.68 | 51.19        |

**Impact of forgetting.** As demonstrated in previous sections, the forgetting mechanism significantly improves the performance of fine-tuning with respect to that without forgetting and standard SFT. Specifically, when comparing the forgetting and ignoring approaches with the same selection ratio ( $\rho = 0.7$ ), the forgetting method achieves an accuracy of 52.18%, outperforming the ignoring approach (48.39%). This performance gap indicates that the negative tokens set has a high noise ratio, reinforcing the impact of forgetting misleading tokens, leading to higher performance.