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ABSTRACT

Federated Learning (FL) allows edge devices to collaboratively train machine
learning models without sharing data. Since the data distribution varies across
clients, the performance of the federated model on local data also varies. To solve
this, fair FL approaches attempt to reduce the accuracy disparity between local
partitions by focusing on clients with larger losses; while local adaptation per-
sonalizes the federated model by re-training it on local data—providing a device
participation incentive when a federated model underperforms relatively to one
trained locally. This paper evaluates two Fair Federated Learning (FFL) algo-
rithms in this relative domain and determines if they provide a better starting point
for personalization or supplant it. Contrary to expectation, FFL does not reduce
the number of underperforming clients in a language task while doubling them
in an image recognition task. Furthermore, fairness levels which maintain per-
formance provide no benefit to relative accuracy in federated or adapted models.
We postulate that FFL is unsuitable for our goal since clients with highly accurate
local models require the federated one to have a disproportionate local accuracy
to receive benefits. Instead, we propose Personalization-aware Federated learning
(PaFL) as a paradigm which uses personalization objectives during FL training
and allows them to vary across rounds. Our preliminary results show a 50% reduc-
tion in underperforming clients for the language task with knowledge distillation.
For the image task, PaFL with elastic weight consolidation or knowledge distilla-
tion avoids doubling the number of underperformers. Thus, we argue that PaFL
represents a more promising means of reducing the need for personalization.

1 INTRODUCTION

Edge devices represent a pool of computational power and data for ML tasks. To use such de-
vices while minimizing communication costs, McMahan et al. (2017) introduced Federated Learn-
ing (FL). Federated Learning trains models directly on clients devices without sharing data. As the
data distribution differs across clients, FL must balance average performance and performance on
specific clients. In some cases, a federated model may perform worse than a fully local one—thus
lowering the incentive for FL participation.

The existing body of work on balancing global and local performance focuses on two primary means
of improving the client accuracy distribution. Li et al. (2019a) and Li et al. (2020a) propose two
Fair FL techniques, q-Fair Federated Learning (q-FFL) and Tilted Empirical Risk Minimization
(TERM), which raise the accuracy of the worst-performers by focusing on clients with large losses
during global FL training. Alternatively, using local adaptation (personalization) methods such
as Freezebase (FB), Multi-task Learning (MTL) with Elastic Weight Consolidation (EWC), and
Knowledge Distillation (KD) has been recommended by Yu et al. (2020) and Mansour et al. (2020)
in order to construct effective local models from the global one. Since personalization is local, the
natural baseline of comparison is a local model trained only on the client. In this work, relative
accuracy refers to the accuracy difference between a federated and local model on a client test set.

While the sets of potential use cases for fairness and personalization are not identical—e.g. person-
alization would be inappropriate for very low-data clients—FFL could potentially construct a fairer
relative accuracy distribution without hurting average performance. For FFL to reduce the need for
personalization it would have to lower the number of underperforming clients or improve their av-
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erage relative accuracy enough to require less adaptation. This is not what we observe in practice,
as our experiments show FFL to have either a negative impact on relative accuracy or none at all.

Our contribution is threefold:

1. We construct an initial empirical evaluation of the relative accuracy distribution of models
trained with FFL on the Reddit, CIFAR-10, and FEMNIST datasets for next word pre-
diction and image recognition tasks. We then compare the number of underperforming
clients for fair models to a FedAvg baseline. During our evaluation, we show that FFL
does not significantly reduce the number of underperformers or improve the relative accu-
racy distribution on Reddit and brings little benefit over a combination of FedAvg and local
adaptation. Concerningly, it doubled the number of underperforming clients on FEMNIST.

2. We investigate any potential synergies between FFL and personalization by adapting fair
federated models. Results show that the adapted models do not significantly outperform
those initially trained with FedAvg in average accuracy or number of underperformers.

3. We instead propose Personalization-aware Federated Learning as a paradigm which uses
local adaptation techniques during FL training. Preliminary experimental results on the
language task show a significant reduction in the number of underperforming clients over
FFL when applying KD after model convergence without any downsides to subsequent
local adaptation. PaFL can also avoid the increase in the number of underperforming clients
observed for image recognition on FEMNIST when using EWC or KD. We speculate that
PaFL outperforms the loss-based weighted averaging mechanism of FFL because it can
take advantage of data from atypical clients without greatly harming average performance.

2 BACKGROUND AND RELATED WORK

Statistical (data) heterogeneity Data generation and accrual naturally vary across devices. Fac-
tors such as sensor characteristics, geographic location, time, and user behaviour may influence
the precise deviations in data distribution seen by a client—e.g. feature, label, or quantity skew as
reported by Kairouz et al. (2019, sec.3.1)—, which in turn prevents treating client data as Indepen-
dent and Identically Distributed (IID). Non-IID data has been shown to impact both global accuracy
(Zhao et al., 2018; Hsieh et al., 2020) and theoretical convergence bounds (Li et al., 2019b).

System (hardware) heterogeneity Devices within the federated network may differ in computa-
tional ability, network speed, reliability and data-gathering hardware. System heterogeneity creates
barriers to achieving a fault and straggler-tolerant algorithm. However, Li et al. (2019b) indicate that
it behaves similarly to data heterogeneity during training and benefits from similar solutions.

2.1 FAIR FEDERATED LEARNING

The standard objective function of FL is formulated by Li et al. (2020b) as seen in Eq. (1)

min
w

f(w) =

m∑
k=1

pkFk(w) , (1)

where f is the federated loss, m is the client count, w is the model at the start of a round, and Fk is
the loss of client k weighted by pk. For a total number of training examples n, pk is defined as the
proportion of examples on the client nk

n or as the inverse of the number of clients 1
m . The Federated

Averaging (FedAvg) algorithm introduced by McMahan et al. (2017) optimizes the objective by
training locally on clients and then summing the parameters of each model Gk weighted by pk into
an update to the previous model Gt using an aggregation learning rate η, as seen in Eq. (2)

Gt+1 = Gt + η

(
m∑

k=1

pkG
t
k

)
. (2)

Li et al. (2019a) propose Fair Federated Learning (FFL), which attempts to train a model with a
better accuracy distribution. They define q-FFL as a version of FFL with the objective from Eq. (3)

min
w

f(w) =

m∑
k=1

pk

q + 1
F q+1
k (w) , (3)
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where q controls the degree of desired fairness. A value of q = 0 corresponds to FedAvg while
larger values prioritize clients with higher losses. As q approaches infinity, the objective function
approaches optimizing solely for the highest-loss client.

Li et al. (2020a) develop a more general technique shown in Eq. (4) which behaves similarly to
q-FFL when applied for FL and can be tuned using t. It is important to note that t and q do not scale
fairness at the same rate and need to be optimized independently. While the two objectives show a
comparable accuracy distribution improvements in the evaluations of Li et al. (2020a), it is unclear
how they would affect the relative accuracy distribution.

min
w

f(w) =
1

t
log(

m∑
k=1

pke
tFk(w)) , (4)

The most relevant recent FFL work is Ditto published by Li et al. (2021) as a means of constructing
personalized models while encouraging fairness for the global model. Ditto functions by training a
local personalized model in parallel with the global one. It keeps them in sync by making the local
model minimize the L2 distance to the federated model similarly to the personalization techniques
discussed bellow. Li et al. (2021) show it to be superior to TERM, however it is not fit for our
purposes as it replicates the costs and limitations of local adaptation on every round.

2.2 LOCAL ADAPTATION

The analysis of Yu et al. (2020) established that not only does the federated model perform worse on
heterogeneous clients, as previously noted by Li et al. (2019a); Kairouz et al. (2019), but it may offer
inferior performance to local models. Thus, certain clients may receive no benefit from participating
in the FL process. Yu et al. (2020) recommend addressing this accuracy gap via personalization
methods using the federated model as a starting point for local training.

Multi-task Learning (MTL) The task of the global model is to perform well on the distributions
of all clients while a local one must perform on the distribution of a single client. Equation (5) frames
this as a Multi-task Learning (MTL) problem using the Elastic Weight Consolidation technique
(EWC) introduced by Kirkpatrick et al. (2017) to mitigate Catastrophic forgetting (Goodfellow et al.,
2013)

l(C, x) = L(C, x) +
∑
i

λ
2M [i](C[i]−G[i])2 , (5)

where L is the client loss, λ determines the weighting between the two tasks and M is the Fisher
information matrix.

Fine-tuning (FT) and Freezebase (FB) When a client receives a global model after the FL pro-
cess, it can apply Fine-tuning (see Wang et al. (2019); Paulik et al. (2022) and Mansour et al. (2020,
Section D.2)) to retrain the model on its data. To avoid potential Catastrophic forgetting, Yu et al.
(2020) also opt to apply Freezebase (FB) as a variant of FT which retrains only the top layer.

Knowledge Distillation (KD) As an alternative to EWC and FT, Knowledge Distillation (Hinton
et al., 2015) uses the global model as a teacher for a client model. For the pure logit outputs of the
federated model G(x) and client model C(x), the client minimizes the loss seen in Eq. (6)

l(C, x) = αK2L(C, x) + (1− α)KL(σ(G(x) /K), σ(C(x) /K)) , (6)

where L is the client loss, KL is the Kullback-Leibler divergence (Kullback & Leibler, 1951), σ is
the softmax of the logit output, α is the weighting of the client loss and K is the temperature.

3 METHODS

3.1 PERSONALIZATION-AWARE FEDERATED LEARNING

As an alternative to FFL for reducing personalization costs, we present a method based on modifying
the local loss function during FL training. Federated learning and local adaptation have historically
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been regarded as largely separated phases. One means of combining them is to allow personalization
methods which operate purely by modifying the local client objective function to be used at each
round prior to aggregation. This work uses the term Personalization-aware Federated Learning
(PaFL) to refer to such a paradigm. The FedProx algorithm developed by Li et al. (2018) may be
considered prototypical as it injects the L2 norm of the model weight differences into the loss func-
tion of clients. However, their motivation was to improve convergence rather than local performance
and their loss did not take into account the importance of each model weight.

PaFL extends the principle behind FedProx by allowing the personalization method and its weighting
to vary across rounds. Beyond improved convergence, such a process may bring benefits to the final
locally-trained models by providing continuity in the local objective between FL training and the
final adaptation stage if the same loss function is used. Additionally, there is reason to believe that
PaFL could be more powerful conceptually than q-FFL (Eq. (3)) and TERM (Eq. (4)). Loss-based
weighted averaging has no means beyond averaging of reconciling differences between models re-
quired by clients with equally high losses and highly dissimilar data partitions. Additionally, q-FFL
and TERM do not attempt to take the client’s relation to the global distribution—beyond the current
round—into account. By contrast, PaFL allows clients for whom the global model performs badly
to diverge in a manner which maintains accuracy on the whole federated distribution.

Formally, PaFL can be defined as a type of Federated Learning with a potential additional training
round at the end which allows clients to keep their locally trained model—representing the person-
alization phase in standard FL. Each client has a loss function obeying the following structure:

l(C, x, t) = µ(t)L(C, x) + (1− µ(t))D(t)(C,Gy, x) , (7)

where t is the current round, L(C, x, t) is the training loss and D(t) returns a personalization loss
function for the current round—potentially dependent on the data point x. The weight of each term
is set per round through the weighting function µ(t).

3.2 FFL MODIFICATIONS

Two implementation details of q-FedAvg—the q-FFL implementation proposed by Li et al.
(2019a)—are worth discussing. First, the choice of q impacts the optimal aggregation learning
rate η. Rather than determining η for each q, the authors optimize it for q = 0 and then scale it for
q > 0. Since task training parameters are already optimized for FedAvg (i.e., q-FedAvg with q = 0)
in all tasks, we do not change η. Second, the original publication (Li et al., 2019a) uses weighted
sampling of devices based on their share of the total training examples, followed by uniform averag-
ing. This methodology is untenable in many real-world scenarios, as it would require a server being
aware of the amount of data available in each client a priori. Thus, we use uniform sampling and
weighted averaging. The same considerations are applied to the TERM equivalent of q-FedAvg.

4 EXPERIMENTAL DESIGN

4.1 TASKS

Following the lead of Yu et al. (2020) and McMahan et al. (2017), we train models using FedAvg,
q-FedAvg, TERM, or PaFL for next-word prediction on a version of the Reddit (Caldas et al., 2018)
dataset with 80 000 participants and for image recognition. For image recognition we use CIFAR-10
partitioned into 100 participants as well as the naturally heterogeneous Federated Extended MNIST
(FEMNIST) (Caldas et al., 2018) dataset. For PaFL we choose a simple proof-of-concept training
sequence where we apply KD or EWC with constant weightings and parameters after the model
has converged at the halfway point of training—denoted HEWC and HKD. In order to allow direct
comparison against previous work, the training pipelines and model architectures of Yu et al. (2020)
and Caldas et al. (2018) were adapted. As such, we only note necessary changes from the initial
works and provide the full details necessary for reproducibility in Appendix A.2. For both FFL
methods we tune their fairness hyperparameter and report performance for values which exhibit
relevant behaviour. On FEMNIST we do not tune the value of t for TERM and instead reuse the
t = 1 value chosen by Li et al. (2021). In the case of PaFL, we use the same parameters for the
losses after the halfway point as in the local adaptation setup (Appendix A.2).
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Next word prediction During the FL training process ≈ 5% of the federated test set is used to
track convergence, with the full test set being used for the final evaluation after training. Federated
models are trained for 1 000 rounds using 20 clients per round, rather than the 5 000 rounds of 100
clients used by Yu et al. (2020). This will be shown to be sufficient for the baseline FedAvg model
to reach an accuracy of 17.8%, which is close to the original optimum of 19.29%. Only ∼ 65 500
clients are evaluated and ∼ 18 500 clients adapted due to resource constraints (Appendix A.1).

FEMNIST image classification Rather than subsampling 5% of the data, we keep the first 350
clients with more than 10 data points out of the total 3 597 clients in the FEMINIST dataset. Since
we require both local and federated testing sets, we use 70% of a client’s data for training, 10% for
local testing, and add the remaining 20% to the federated test set. For the FL process, we use an
aggregation learning rate of η = 1.0 with 10 clients per round for 500 rounds, instead of the 3 clients
per round used by Caldas et al. (2018). For each client, we use SGD with a learning rate of 0.1 and a
batch size of 32. During adaptation, we lower the learning rate to 0.01. The CIFAR setup remained
unchanged from Yu et al. (2020).

4.2 PERFORMANCE EVALUATION

Federated and absolute local performance The first set of experiments intends to compare the
accuracy on the federated test and the local accuracy distribution of models trained with FFL meth-
ods or PaFL. Too large of a drop in federated performance may cause a certain fairness level or
PaFL configuration to be considered overall unusable. For a given model to perform well locally, it
must not bring noticeable harm to average local accuracy while reducing variance when compared to
FedAvg. If local training and adaptation are unfeasible on an underperforming client due to lacking
data or computational power, FFL or PaFL could still allow for improvements.

Relative local performance The second set involves assessing the difference in accuracy between
federated or adapted models and purely local ones when evaluated on client data. The most im-
portant factors for the relative utility of such models are the number of clients which receive an
improvement and the average population improvement. For local adaptation, FFL, or PaFL con-
figuration to be worthwhile it must increase the number of clients which benefit while maintaining
or improving the average accuracy difference. If a synergistic existed between FFL or PaFL and
local adaptation, models trained using such techniques would either receive a larger improvement in
average accuracy or result in a lower number of underperforming clients after adaptation.

5 RESULTS

5.1 FFL BASELINE PERFORMANCE
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(a) Language task federated performance, TERM al-
ways harms performance while q-FFL only does so for
q ≥ 1.0 and only substantially at the shown q = 5—
included to demonstrate the impact of increasing fair-
ness. Both HEWC and HKD perform close to the Fe-
dAvg baseline with HKD exceeding it.
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(b) FEMNIST federated performance, q-FFL
causes increased instability in the training process
and outright divergence past a certain round. Our
proposed technique also diverges for both HEWC

and HKD , however it reaches a similar accuracy
to FedAvg (q = 0) prior to doing so. TERM per-
forms acceptably as it does not diverge.

Figure 1: Federated accuracy of models across rounds on Reddit and FEMNIST.

To establish a performance baseline, Fig. 1a provides an overview of the convergence process for
next-word prediction on Reddit while Table 1 showcases summary data for federated performance
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and absolute local performance. From Fig. 1a it can be seen that the impact of q-FFL accuracy
is neutral to negative while that of TERM is highly negative for all t. The fairest q-FedAvg value
(q = 5) shows a noticeable dip in accuracy. Fairness seems to reliably reduce the accuracy variance
for q ≥ 1, however the performance cost is too large. We were unable to find a t-value leading to an
acceptable performance for TERM, as such we excluded it from future Reddit experiments.

Objective ACCfed(%) Avgloc(%) Bloc10%(%) Wloc10%(%) (V arAvg) (V arB) (V arW )

q = 0 17.826 18.645 24.572 14.815 9.177 22.114 1.072
q = 0.1 17.789 18.66 24.843 14.728 9.81 22.914 1.036
q = 5 14.056 14.819 20.208 11.66 7.983 26.769 0.69

t = 0.1 14.299 16.476 28.985 11.806 39.584 176.42 0.369
t = 5 14.373 16.438 28.981 11.766 39.642 175.96 0.382

HEWC 17.322 18.255 24.653 14.226 10.277 23.059 1.185
HKD 18.177 19.179 26.406 14.887 12.438 25.85 1.039

Local NaN 4.456 10.227 1.204 8.777 31.11 0.893

Table 1: Results showing the federated and absolute local performance on Reddit. While fairness
does decrease variance at q ≥ 1.0, the harm to accuracy is too great. The proposed HKD model
improves accuracy across clients but increases variance for everyone except the worst performers.

Figure 1b and Table 2 show FEMNIST image recognition models to be highly sensitive to q when
trained with q-FedAvg or either PaFL version as their performance oscillates repeatedly or diverges.
For such models, we test and adapt its last version prior to divergence. Unlike Reddit, nothing re-
sembling a trend emerges for any metric as fairness increases. Nevertheless, a good balance between
performance and average variance is struck by q = 10—except for the fairly high worst-performer
variance. Unlike the language task, TERM is sufficiently well-behaved on this dataset for models
trained using it to be used in later adaptation experiments.

Objective ACCfed(%) Avgloc(%) Bloc10%(%) Wloc10%(%) (V arAvg) (V arB) (V arW )

q = 0 84.739 75.341 99.435 35.717 432.507 1.151 73.747
q = 10 84.19 76.591 99.013 42.055 320.385 1.714 64.049
q = 15 78.634 69.749 96.681 34.988 374.637 5.177 47.761
t = 1 77.706 69.134 98.628 33.478 417.448 2.771 56.543

HEWC 82.825 73.964 99.321 33.457 465.605 1.376 71.481
HKD 84.51 75.243 99.491 34.34 443.015 1.07 62.91

Local NaN 46.322 92.848 0.0 1006.77 18.144 0.0

Table 2: Results for FEMNIST. Given the much larger variability in performance compared to
Reddit, the only acceptable fair model is the one trained with q = 10. Note that the average accuracy
of the best-performing local clients is close to that of the best-performing partitions for the federated
model. Unlike the language task, using KD during FL seems to primarily help the best performers.

Table 3 indicates the CIFAR-10 image classification task to be more resilient to fairness than pre-
vious tasks, with only a small accuracy decrease being noticeable in models trained using q ≥ 10.
The lower sensitivity of this task to training parameters is consistent with the previous findings of Yu
et al. (2020) on differentialy private FL and robust FL. Due to the similarity in results across fairness
levels, the convergence graph for CIFAR-10 was relegated to the appendix (Fig. 3). Given the lack of
insight, we chose not to expand the CIFAR-10 experiments past q-FedAvg and HKD. Overall these
findings indicate that the dataset heterogeneity must be meaningful rather than artificially imposed
for significant effects to emerge for either FFL or PaFL.

5.2 FFL FAILS TO IMPROVE RELATIVE PERFORMANCE

Having established baselines of accuracy for fair models, we can now evaluate the local relative
performance of FFL, PaFL and their interactions with local adaptation. The CIFAR-10 data (Table 7)
is unsuitable for multiple reasons including its artificial partitioning and the fact that the federated
model does not benefit from local adaptation as it outperforms a local one for all clients.
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Objective ACCfed(%) Avgloc(%) Bloc10%(%) Wloc10%(%) (V arAvg) (V arB) (V arW )

q = 0 81.28 81.37 82.255 79.864 0.568 0.022 1.067
q = 5 81.86 81.221 82.011 79.794 0.446 0.004 0.643
q = 15 78.16 79.935 81.178 77.885 0.945 0.02 1.267

Local NaN 31.718 38.297 24.649 16.3 1.543 0.906

Table 3: Results for CIFAR-10. Unlike the language task (Table 1), q = 5 represents a clear optimum
in terms of variance while maintaining performance. However, differences between all models are
very small and cannot be guaranteed to be significant (see Appendix A.2).

For q-FFL, the results for the language task showcased in Table 4 are less than satisfactory as fair
models fail to provide benefits in terms of the number of underperforming clients, relative accuracy,
or variance on average. Furthermore, fair models do not offer improved accuracy once adapted—this
is directly visible in the Fig. 2a scatter plot of relative accuracy against fully local accuracy.

Objective Adapt Avg(%) % <0 B10%(%) W10%(%) (V arAvg) (V arB) (V arW )

q = 0 q = 0 14.185 53 20.715 9.392 13.323 34.379 20.201
A FB 15.87 0 25.849 11.311 29.216 149.736 3.246
A MTL 16.046 0 27.558 11.304 36.067 178.387 3.337
A KD 15.538 0 24.376 11.209 23.112 115.016 3.183

q = 0.1 q = 0.1 14.208 50 20.907 9.359 13.742 35.005 20.733
A FB 15.827 0 25.964 11.261 29.505 149.011 3.212
A MTL 15.839 0 27.692 11.024 37.108 179.066 3.336
A KD 15.546 0 24.614 11.19 23.95 118.471 3.166

HEWC HEWC 13.807 108 20.723 8.681 14.994 38.119 24.938
A FB 15.423 0 25.709 10.88 29.795 149.308 3.02
A MTL 15.561 0 27.482 10.762 37.251 179.528 3.266
A KD 15.157 0 24.336 10.823 23.996 117.427 3.041

HKD HKD 14.729 27 22.038 9.971 14.969 41.225 18.409
A FB 15.772 0 26.533 11.154 31.068 150.552 3.156
A MTL 15.824 2 28.217 10.966 38.439 178.543 3.469
A KD 15.698 0 25.358 11.214 25.367 119.418 3.241

Table 4: Relative performance on the Reddit dataset of the acceptable fair models and our PaFL
variants. The best value in a column is in bold while the best in a group is underlined. The chosen
optimal fair model does not significantly reduce the number of underperformers. Alternatively,
HKD lowers it to half. Local adaptation provides simillar results regardless of starting point.

The results for image recognition on FEMNIST are more unusual yet similarly discouraging for
both q-FFL and TERM. Table 5 makes it clear that the fair model actually achieves a higher relative
accuracy on average and amongst the top 10% of performers at the cost of obtaining a negative
average accuracy on the relative worst performers. Additionally, it has more than twice as many
clients with negative relative accuracies. We speculate that since the federated model has a lower
absolute accuracy variance, it cannot obtain a good enough level of performance on clients which
are able to train high-quality local models. This is corroborated by the final distribution shown in
Fig. 2b, as nearly all the underperforming clients have high local model accuracy. Another factor to
consider is the atypical behaviour of personalization on FEMNIST and CIFAR-10. Models trained
with FedAvg and then adapted tend to converge to nearly the same relative accuracy regardless of
the specific adaptation technique. Thus, FedAvg is potentially near-optimal for the dataset model.

5.3 PAFL AS AN ALTERNATIVE

Having shown the inability of FFL to replace or enhance local adaptation, we argue that it is not
the right approach for this domain. In principle, for an FL algorithm to provide benefits in terms
of relative accuracy it must achieve two goals. First, it must make sure that the worst-performing
clients receive a sufficient level of accuracy to match or exceed local models. Second, for the clients
with the best local models, it must provide disproportionately high accuracy. While FFL may help
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Objective Adapt Avg(%) % <0 B10%(%) W10%(%) (V arAvg) (V arB) (V arW )

q = 0 q = 0 29.02 16 65.768 2.729 338.387 137.366 12.33
A FB 28.954 17 65.463 2.72 334.754 134.824 11.853
A MTL 28.994 16 65.672 2.802 336.25 137.507 11.325
A KD 28.986 16 65.684 2.788 337.14 137.796 11.594

q = 10 q = 10 30.269 39 79.687 -14.844 673.351 111.144 206.995
A FB 28.613 12 64.818 2.699 320.729 123.679 15.552
A MTL 28.612 14 64.818 2.516 321.3 123.679 15.869
A KD 28.563 14 64.645 2.52 320.957 127.618 15.934

t = 1 t = 1 22.812 56 73.593 -17.069 627.167 215.261 91.294
A FB 21.261 15 50.057 0.806 201.35 127.802 8.417
A MTL 21.362 15 50.218 0.765 201.703 123.192 8.102
A KD 21.202 15 50.1 0.706 202.488 125.153 7.71

HEWC HEWC 27.642 13 62.157 1.522 315.388 123.438 19.225
A FB 27.558 14 62.431 1.404 316.622 124.092 18.888
A MTL 27.603 13 62.588 1.349 315.619 122.717 20.502
A KD 27.611 13 62.588 1.542 314.112 122.717 19.176

HKD HKD 28.921 16 66.178 1.65 353.698 154.217 16.231
A FB 28.916 17 66.605 1.644 350.631 152.111 16.922
A MTL 28.871 16 66.605 1.719 350.742 152.111 16.865
A KD 28.967 15 66.329 1.869 351.991 150.583 17.124

Table 5: FEMNIST performance of the best fair model and our proposed alternative to FFL. Despite
providing the highest average accuracy and accuracy amongst the best 10%, the model trained using
q = 10 has more than double the number of underperformers of FedAvg (q = 0)—as does TERM
with t = 1. For PaFL, HKD is close to FedAvg while HEWC brings a trivial improvement.

(a) Language task results, fairness shows no benefit while HKD reduces the number of underperformers.

(b) FEMNIST results, clients with highly accurate local models are underserved by federated models trained
using q = 10. Alternatively, those trained using FedAvg or HEWC achieve nearly identical performance.

Figure 2: Federated model relative accuracy on a client plotted against local client model accuracy.

fulfil the first requirement, its inability to raise the floor of the worst performers without hurting the
ceiling of those that might have a good local model makes it incapable of fulfilling the second.
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PaFL in the most general case offers an alternative where models can be kept closer to one another
during training and only allowed to diverge in ways which hurt federated performance the least.
Unlike blind regularization based on the norm of the distance between model parameters (e.g. Fed-
Prox), EWC and KD offer the distinct advantage of determining how a parameter may diverge based
on its importance to federated performance. Thus, the model can learn from highly heterogeneous
data and raise its accuracy floor for the worst-performers without hurting the accuracy ceiling of
the best or even improving it. The models trained with either EWC or KD past the halfway point,
HEWC and HKD, have already been included in previous tables and graphs to allow for comparison.

Preliminary results for the language task are promising in the case of HKD, Fig. 1a and Table 1
indicate that it performs better than FedAvg and FFL models in every metric except average and
best-performer variance. Importantly, variance is not increased for the worst performers. While
HEWC is not far below the FedAvg baseline, it fails to provide any obvious improvements. In terms
of relative accuracy, Table 4 shows that HKD halves the number of underperformers and provides the
best average relative accuracy. However, this higher baseline does not translate to improved relative
accuracy for adapted models. Overall, by lowering the number of clients which require adaptation
in order to receive an incentive to participate HKD successfully reduces the need for personalization
on Reddit. On the other hand, HEWC seems to double the number of underperforming clients for
the fixed chosen λ although a different value or scheduling across rounds may change results.

For image recognition on FEMNIST, HKD and HEWC are satisfactory in terms of federated and
average accuracy according to Fig. 1b and Table 2. On the other hand, the results related to relative
accuracy shown in Table 5 are mixed. While they both avoid the doubling in underperforming clients
that fair models suffer, locally adapted models starting from HKD as a baseline do not seem to out-
perform those adapted from FedAvg. Perhaps surprisingly given its failure on the language task,
HEWC brings a very small reduction to the number of underperformers for baseline and adapted
models. While this is not sufficient to draw strong conclusions, it does indicate that PaFL configu-
rations behave differently across domains.

Overall, for both tasks PaFL variants have brought small to medium improvements to the number of
underperforming clients, average relative accuracy and associated metrics without clear downsides.
Nonetheless, more experimentation is required on the specific parameters and on other techniques
originating from Multi-task Learning and its associated fields.

6 CONCLUSION

This paper set out to find a means of reducing the amount of personalization needed to incentivize
FL participation for clients whose local model outperforms a federated one. Such a reduction would
be relevant for federated networks containing devices with limited capabilities for retraining or little
data. Our investigation began with Fair Federated Learning due to the possibility that reducing dis-
parity in the local accuracy distribution would translate to reducing disparity in the relative accuracy
distribution. Our experimental results indicate that FFL is unlikely to provide the desired properties
as it has been shown to maintain the number of underperformers on our language task while increas-
ing it by more than 100% for image recognition on FEMNIST. We speculate that the reason for this
is that although it can help clients for which the global model is highly inaccurate, it cannot help
those for whom relative underperformance is caused by an extremely accurate local model. As an al-
ternative, Personalization-aware Federated Learning allows loss functions historically used for local
adaptation to be applied during FL and to vary across rounds. We tested applying EWC or KD after
the model had partially converged in the hopes that it would allow it to learn from worst-performer
data without sacrificing performance on the federated distribution or best performers. While our
chosen EWC configuration did not bring a meaningful improvement over FedAvg on the language
task, KD showed promising results by reducing the number of underperformers by up to 50%. Both
of them avoided increasing the number of underpeformers on the FEMNIST image recognition
task. Unlike more complex systems which simultaneously train local and federated models during
FL, this approach has little computational overhead. Consequently, we recommend using PaFL to
incentivize FL participation without explicit local adaptation and advise further research adapting
research directions from the field of Multi-task learning to FL.
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A APPENDIX

A.1 HARDWARE

Each node of the cluster that the experiments were run on holds four Nvidia A100 GPUs with 80GiB
VRAM and 2 x AMD EPYC 7763 64-Core processors alongside a 1000GiB shared memory. Given
the quotas and service levels of the cluster, the number of clients on which the federated model
could be tested locally for the language task was limited to ∼ 65 500 while the number that could
be adapted was limited to (∼ 18500)—the entire client set was available during FL training. To
compensate for this fact, all charts and tables comparing local model performance or adaptation
performance only use data from the client-set common to all results. This limitation did not impact
any other sets of experiments.

A.2 FULL EXPERIMENTAL DETAILS

During local adaptation we reuse the parameters recommended by Yu et al. (2020). MTL uses a
weighting of λ = 5000 while KD uses a temperature k = 6 and weighting λ = 0.95,

Next-word prediction A standard LSTM with 2 layers, 200 hidden units and 10 million param-
eters is used to predict the next word in a sentence for each client used during training or testing.
We reuse the dictionary of the 50 000 most frequent words compilled by Yu et al. (2020), all other
words are replaced with a placeholder. The first 90% of a users posts, chronologically, are used as
a training set with the final 10% being reserved for local testing. A separate federated testing set is
maintained for evaluating global task performance, during the FL training process ≈ 5% of it is used
to track convergence with the full test-set being used for the final evaluation after training. Federated
models are trained for 1 000 rounds using 20 clients per round rather than the 5 000 rounds of 1 000
clients used by Yu et al. (2020). On the client side, each model is trained for 2 internal epochs with
a batch size of 20 using Stochastic Gradient Descent with the learning rate set to 40. For adaptation,
we use a learning rate of 1 and batch size of 20 for 100 epochs of retraining. Only ∼ 18 500 clients
are adapted due to resource constraints (Appendix A.1).

CIFAR-10 image classification Since CIFAR-10 is not a naturally federated dataset, a Dirichlet
distribution (α = 0.9) is used to simulate a non-iid partitioning (Hsu et al., 2019; Yu et al., 2020). A
ResNet-18 model is trained over 1, 000 rounds with 10 clients per round. Clients are trained using
a batch size of 32 with 2 internal epochs and a learning rate of 0.1. Test accuracy is computed by
multiplying a client’s per-class accuracy on the CIFAR-10 test set with its proportion of the local
device data. For adaptation, we use a learning rate of 10−3 and batch size of 32 for 200 epochs of
retraining. Training uses SGS with momentum 0.9 and weight decay 0.0005,

FEMNIST image classification We use a similar experimental setup to Caldas et al. (2018) with a
simple two-layer CNN while changing the way the dataset is divided and the FL training parameters.
Rather than subsampling 5% of the data, we keep the first 350 with more than 10 data points out of
the total 3 597 clients in the FEMINIST dataset. Since we require both local and federated testing
sets we keep 70% of a clients’ data for training, 10% for local testing and add the remaining 20%
to the federated test set. For the FL process, we use an aggregation learning rate of η = 1.0 with
10 clients per round for 1 000 rounds instead of the 3 clients per round used by Caldas et al. (2018).
For each client, we use SGD with a learning rate of 0.1 and a batch size of 32.

A.3 FULL Q-FEDAVG RESULTS
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Objective Adapt Avg(%) Acc < 0 B10%(%) W10%(%) (V arAvg) (V arB) (V arW )

q = 0 q = 0 14.185 53 20.715 9.392 13.323 34.379 20.201
A FB 15.87 0 25.849 11.311 29.216 149.736 3.246
A MTL 16.046 0 27.558 11.304 36.067 178.387 3.337
A KD 15.538 0 24.376 11.209 23.112 115.016 3.183

q = 0.01 q = 0.01 13.989 106 20.458 8.793 14.421 33.874 28.638
A FB 15.799 0 25.7 11.238 29.093 149.929 3.228
A MTL 15.833 1 27.419 11.057 36.547 180.574 3.326
A KD 15.495 0 24.308 11.175 23.343 117.768 3.173

q = 0.1 q = 0.1 14.208 50 20.907 9.359 13.742 35.005 20.733
A FB 15.827 0 25.964 11.261 29.505 149.011 3.212
A MTL 15.839 0 27.692 11.024 37.108 179.066 3.336
A KD 15.546 0 24.614 11.19 23.95 118.471 3.166

q = 0.5 q = 0.5 14.097 53 20.705 9.287 13.514 34.546 20.655
A FB 15.837 0 25.838 11.285 29.2 148.925 3.232
A MTL 15.892 0 27.555 11.133 36.531 179.11 3.26
A KD 15.52 0 24.42 11.186 23.402 116.556 3.199

q = 1 q = 1 11.397 70 17.618 7.047 12.546 37.951 19.031
A FB 13.463 0 22.632 9.256 25.775 136.853 1.987
A MTL 13.364 4 24.519 8.993 35.506 187.701 2.376
A KD 13.238 0 21.567 9.245 20.821 105.756 2.016

q = 5 q = 5 10.384 121 16.583 5.904 12.952 39.358 21.502
A FB 12.771 0 21.703 8.678 24.874 133.58 1.694
A MTL 12.838 6 23.37 8.548 33.262 181.204 2.146
A KD 12.492 0 20.608 8.614 19.704 99.431 1.695

Table 6: Reddit full q-FedAvg results.

Objective Adapt Avg(%) Acc < 0 B10%(%) W10%(%) (V arAvg) (V arB) (V arW )

q = 0 q = 0 49.652 0 56.54 43.045 15.557 0.79 2.563
A FB 49.669 0 56.522 43.145 15.364 0.839 2.165
A MTL 49.647 0 56.489 43.064 15.468 0.829 2.267
A KD 49.647 0 56.527 43.066 15.545 0.789 2.076

q = 0.1 q = 0.1 49.254 0 56.078 42.839 15.408 0.858 1.94
A FB 49.23 0 55.997 42.758 15.492 0.987 1.923
A MTL 49.257 0 55.925 42.933 15.569 1.129 2.077
A KD 49.248 0 56.047 42.82 15.486 0.996 1.973

q = 1 q = 1 49.442 0 56.297 42.865 15.614 1.053 1.991
A FB 49.448 0 56.308 42.812 15.729 0.98 2.423
A MTL 49.425 0 56.352 42.786 15.728 0.966 2.287
A KD 49.439 0 56.314 42.78 15.742 0.981 2.307

q = 5 q = 5 49.503 0 56.25 42.864 15.583 0.755 2.07
A FB 49.517 0 56.315 42.974 15.617 0.77 2.091
A MTL 49.522 0 56.404 42.909 15.651 0.603 1.874
A KD 49.548 0 56.416 42.991 15.531 0.678 1.902

q = 10 q = 10 48.286 0 54.949 42.033 14.417 0.608 1.956
A FB 48.3 0 54.948 42.096 14.275 0.424 1.847
A MTL 48.306 0 55.025 42.087 14.468 0.565 1.71
A KD 48.297 0 54.987 42.021 14.504 0.507 1.873

q = 15 q = 15 48.217 0 54.745 41.842 14.449 0.585 2.434
A FB 48.22 0 54.718 41.883 14.482 0.619 1.859
A MTL 48.202 0 54.761 41.824 14.444 0.614 2.191
A KD 48.193 0 54.779 41.713 14.763 0.564 2.473

Table 7: CIFAR-10 full q-FedAvg results.
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Figure 3: Federated performance of fair models on CIFAR-10. q-FedAvg performs marginally worse
for q ≥ 10.0, however, it must be concluded that the accuracy of the given task is not sensitive
enough to fairness to draw strong conclusions.

Objective Adapt Avg(%) Acc < 0 B10%(%) W10%(%) (V arAvg) (V arB) (V arW )

q = 0 q = 0 29.02 16 65.768 2.729 338.387 137.366 12.33
A FB 28.954 17 65.463 2.72 334.754 134.824 11.853
A MTL 28.994 16 65.672 2.802 336.25 137.507 11.325
A KD 28.986 16 65.684 2.788 337.14 137.796 11.594

q = 0.1 q = 0.1 27.427 45 80.262 -23.681 761.163 117.165 165.003
A FB 26.174 14 59.483 2.09 282.14 128.526 14.212
A MTL 26.205 14 59.567 2.345 281.689 128.659 15.377
A KD 26.18 15 59.613 1.997 282.946 127.796 14.284

q = 1 q = 1 27.011 48 78.722 -18.92 699.58 131.927 150.33
A FB 24.999 19 57.014 0.513 270.651 140.273 24.641
A MTL 25.022 17 57.179 0.76 271.681 136.18 23.188
A KD 25.053 17 57.165 0.859 270.926 135.297 22.658

q = 5 q = 5 25.048 46 73.939 -23.702 683.322 129.091 177.272
A FB 25.385 18 56.625 1.758 264.374 97.084 8.057
A MTL 25.468 16 56.64 2.031 261.138 96.776 8.409
A KD 25.437 17 57.116 1.695 267.606 91.34 10.717

q = 10 q = 10 30.269 39 79.687 -14.844 673.351 111.144 206.995
A FB 28.613 12 64.818 2.699 320.729 123.679 15.552
A MTL 28.612 14 64.818 2.516 321.3 123.679 15.869
A KD 28.563 14 64.645 2.52 320.957 127.618 15.934

q = 15 q = 15 23.427 56 74.969 -23.34 699.404 145.773 170.676
A FB 22.008 17 51.138 1.039 214.214 115.322 7.717
A MTL 21.848 21 51.167 0.149 222.45 115.582 9.945
A KD 21.935 17 51.467 0.84 216.567 112.101 8.538

Table 8: FEMNIST full q-FedAvg results.
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