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Abstract

Recent work on large language models (LLMs) has increasingly focused on post-
training and alignment with datasets curated to enhance instruction following,
world knowledge, and specialized skills. However, most post-training datasets used
in leading open- and closed-source LLMs remain inaccessible to the public, with
limited information about their construction process. This lack of transparency
has motivated the recent development of open-source post-training corpora. While
training on these open alternatives can yield performance comparable to that of
leading models, systematic comparisons remain challenging due to the significant
computational cost of conducting them rigorously at scale, and are therefore largely
absent. As a result, it remains unclear how specific samples, task types, or curation
strategies influence downstream performance when assessing data quality. In this
work, we conduct the first comprehensive side-by-side analysis of two prominent
open post-training datasets: Tulu-3-SFT-Mix and SmolTalk. Using the Magpie
framework, we annotate each sample with detailed quality metrics, including turn
structure (single-turn vs. multi-turn), task category, input quality, and response
quality, and we derive statistics that reveal structural and qualitative similarities
and differences between the two datasets. Based on these insights, we design
a principled curation recipe that produces a new data mixture, TuluTalk, which
contains 14% fewer samples than either source dataset while matching or exceeding
their performance on key benchmarks. Our findings offer actionable insights for
constructing more effective post-training datasets that improve model performance
within practical resource limits. To support future research, we publicly release
both the annotated source datasets and our curated TuluTalk mixture.

1 Introduction

As large language models (LLMs) models continue to grow in complexity, so do their training re-
quirements, necessitating ever-larger datasets with each new model iteration [1–3]. While pretraining
LLMs on large, general-purpose corpora is now well understood [1–6], recent work has shifted
toward post-training, which includes supervised fine-tuning (SFT), reinforcement learning (RL), and
task-specific fine-tuning such as domain adaptation [7–10].

Carefully curated post-training datasets play a critical role in ensuring high downstream task perfor-
mance, instruction following, and advanced reasoning. Nevertheless, the majority of post-training
corpora remain proprietary, restricted by commercial licensing or intellectual-property concerns, and
are therefore unavailable for public scrutiny and reuse. This has motivated state-of-the-art research

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Track on Datasets and Benchmarks.



Post-Training Datasets

Instruction
Following

ReasoningAlignment Math

Secret 

Sauce

Closed-Source

Most Model
Providers

Open-Source Datasets

Synthetic Data

inaccessible

Public Data

Select SFT Datasets

Quality Assessment & Statistics

Lean, Annotated & Performant Data Mixture with Insights!

Fixing it in Post:
Quality- and Task-Aware Data Curation

Quality- and Task-Aware Filtering
TuluTalk

Lack of Quality Assessment

No Side-by-Side Comparisons

Very Large Datasets

Perform Annotations

TuluTalk: 23% (14%) smaller than SmolTalk (Tulu) + higher performance
How do they compare?

Figure 1: More effective post-training datasets through quality- and task-aware curation. We annotate
and filter open-source SFT datasets (Tulu, SmolTalk) using Magpie to create TuluTalk, a leaner SFT
data mixture (-23% vs. SmolTalk and -14% vs. Tulu) with improved benchmark performance.

on synthetic data generation, the development of open-source large-scale post-training datasets, and
the design of effective post-training recipes [7, 11–16].

Yet, a major barrier to fully leveraging these datasets lies in the lack of systematic comparisons
between them. Further, current literature employs a wide variety of model architectures, training
hyperparameters, and data mixtures, resulting in considerable methodological heterogeneity across
studies. Without a standardized frame of reference, it remains unclear which post-training datasets
provide substantial benefits, and in what specific contexts. This lack of clarity hampers progress by
obscuring the optimal direction for future research.

Another challenge with these datasets is the lack of transparent documentation regarding their
curation processes. General steps are typically addressed briefly and critical details, particularly
those concerning the creation of dataset mixtures, are often vaguely described. While recent works
[7, 13] take giant strides in enhancing the transparency of post-training datasets and recipes, obscurity
still remains for several crucial aspects. For instance, there is often a lack of details on which exact
ablations were conducted to design mixture ratios, rendering the approach neither fully replicable nor
sufficiently insightful to guide future dataset curation efforts.

Thus, in this paper, we adopt a principled and openly insightful approach to developing and evaluating
post-training datasets, an effort that, to the best of our knowledge, is the first of its kind. To this end,
we focus on two of the largest openly available SFT mixtures1 from recent works: Tulu-3-SFT-Mix [7]
(referred to as Tulu) and SmolTalk [9]. Our key contributions (see Fig. 1) are as follows:

• Performance Evaluation: We conduct the first side-by-side comparison of recent open-source
SFT data mixtures: Tulu [7], SmolTalk [13], and Orca-AgentInstruct [16]. By fixing the model
architecture and training hyperparameters, we enable a clean comparison of dataset performance
across 14 LLM benchmarks, including those from popular Open LLM Leaderboards [17, 18]. We
identify key differences and performance gaps for specialized skills such as coding, math, and
instruction following, illuminating strengths and weaknesses of each mixture.

• Quality Annotations: To systematically drive data mixture decisions, we require detailed and
standardized annotations of samples, a practice currently uncommon among the open-source post-
training community. To this end, we leverage the Magpie framework [14] and annotate each Tulu
and SmolTalk data sample along multiple dimensions, including conversational structure, prompt
and response quality, and task categorization. These annotations provide concrete insights into
dataset composition and support informed decision making for performant data mixtures.

• Quality-Based and Task-Aware Data Curation: Leveraging our extensive annotations, we design
a simple yet principled curation recipe that selects high-quality and task-diverse samples from Tulu

1While post-training typically includes both SFT and RL, we restrict our attention to SFT in this paper.
See App. A for more details.
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and SmolTalk. The resulting mixture, TuluTalk, contains 14% fewer samples than Tulu and 23%
fewer samples than SmolTalk, offering a leaner post-training corpus while achieving comparable or
better performance on key benchmarks.

Our analysis provides actionable insights for curating effective post-training datasets from open-
source corpora. We publicly release our annotation code2, the corresponding annotated versions of
Tulu3 and SmolTalk4, as well as our curated data mixture TuluTalk5, to facilitate further research
and enable reproducible studies on LLM post-training and data quality.

2 Background and Motivation

To the best of our knowledge, a direct side-by-side dissection of two flagship post-training datasets
such as Tulu and SmolTalk has not been previously conducted, primarily due to significant compute
requirements, particularly for large-scale SFT and extensive data annotations. We specifically select
Tulu and SmolTalk (see App. B for more details on dataset compositions) due to their widespread
adoption and the strong empirical performance demonstrated by their respective post-trained LLMs
in recent benchmarks [7, 9].

Tulu. Lambert et al. [7] designed Tulu to advance broad-spectrum reasoning in medium-sized Llama
models. They begin by filtering existing instruction corpora for (i) diverse real-user requests (e.g.,
WildChat [8], OpenAssistant [19]), and (ii) specialized skills (e.g., OpenMath-Instruct [10]). Residual
gaps in instruction following, math, coding, and safety are filled with GPT-4o [20] generated prompts
produced through persona-based prompting [21]. After n-gram decontamination and heuristic quality
filtering, the final release contains 0.94 million high-quality pairs spanning seven broad domains
(knowledge, math, reasoning, coding, safety, instruction following, and multilingual).

SmolTalk. Allal et al. [9] pursue a complementary objective to Tulu by building small models
that deliver rich, multi-turn conversations without requiring large compute budgets. Their SFT
mixture therefore focuses on conversational depth and pragmatic rewriting, and comprises roughly
1.04 million examples. In their curation process, they first mix Magpie-Ultra [14] which provides
high-quality multi-turn prompts generated via an enhanced two-step Magpie procedure on a stronger
teacher model. Second, three synthetic task-oriented subsets (Smol-Constraint, Smol-Summarization,
and Smol-Rewrite [9]) are produced with targeted system prompts on Qwen2.5-72B-Instruct [22].
Third, equation-heavy math corpora [23, 24] are added. Finally, they add code-alignment and long-
context resources [12, 25, 26] to the mixture. All subsets undergo a similar deduplication, quality
filtering, and n-gram decontamination as in Tulu.

In addition to Tulu and SmolTalk, we also acknowledge earlier, similar-sized influential post-training
mixtures such as Orca [15], which similarly covers tasks ranging from creative writing and text
editing to coding and reading comprehension. However, initial results indicate that the more recent
Tulu and SmolTalk datasets consistently outperform Orca across all evaluated tasks. Thus, we omit
further investigation into Orca.

We present the corresponding SFT results in Table 1, where we fine-tune Llama-3.1-8B [27] and
SmolLM2-1.7B [9] on Tulu, SmolTalk, and Orca, respectively, and evaluate both models on popular
OpenLLM Leaderboard benchmarks (see App. E for the detailed fine-tuning and evaluation setup).
We select these two models because they were used by Lambert et al. [7] to train the Llama-3.1-Tulu-
3-8B model on the Tulu dataset and by Allal et al. [9] to train the SmolLM2-1.7B-Instruct model on
SmolTalk. This choice allows us to validate our pipelines and ensure parity with prior work.

We evaluate performance across 12 tasks drawn from Open LLM Leaderboard V1 and Leaderboard
V2, as well as two code generation tasks (HumanEval and HumanEval+), using the LM Evaluation
Harness framework [28]. We report the average scores for Leaderboard V1 and Leaderboard V2 along
with the overall average score across all 14 benchmarks. For Llama, SFT on SmolTalk outperforms
Tulu on both LLM leaderboard benchmarks, however, falls behind in code benchmarks, where Tulu
slightly pulls ahead on both benchmarks. Overall, fine-tuning with either dataset yields substantial

2Annotation code available at: github.com/aladinD/Magpie-single-and-multi-turn
3Annotated Tulu dataset: huggingface.co/datasets/aladinDJ/tulu-3-sft-mix-annotated
4Annotated SmolTalk dataset: huggingface.co/datasets/aladinDJ/smoltalk-annotated
5Annotated TuluTalk dataset: huggingface.co/datasets/aladinDJ/tulutalk-annotated
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Table 1: SFT results for Llama-3.1-8B and SmolLM2-1.7B base models fine-tuned on Tulu, SmolTalk,
and Orca, and evaluated on the Open LLM Leaderboards (averaged) and code benchmarks. The
overall average is across all benchmarks. Best scores (row-wise) are in bold.

Llama-3.1-8B SmolLM2-1.7B
Benchmark Base Tulu SmolTalk Orca Base Tulu SmolTalk Orca

Leaderboards
Open LLM Leaderboard 1 58.98 62.63 65.19 60.03 48.29 50.77 51.82 47.78
Open LLM Leaderboard 2 27.84 37.47 38.24 36.05 24.14 30.66 30.39 27.67
Code
HumanEval (pass@1) 34.76 58.54 54.51 51.37 0.61 1.83 1.83 0.61
HumanEval+ (pass@1) 28.66 45.37 44.27 40.29 0.61 1.83 1.83 0.61

Overall 41.74 50.32 51.38 47.72 31.13 35.16 35.49 32.42

improvements compared to the baseline. For SmolLM, both SmolTalk and Tulu achieve similar
performance on the OpenLLM Leaderboard benchmarks. However, performance is equally low on
both code benchmarks, reflecting SmolLM’s smaller size and its design focus on conversational rather
than coding tasks. As noted earlier, both Tulu and SmolTalk consistently outperform Orca across all
benchmarks, reflecting stronger data curation and higher corresponding task coverage.

These results prompt several initial research questions: Considering their distinct dataset compositions,
what is the precise impact of SmolTalk’s conversation-centric approach on fact-based benchmarks,
such as math, reasoning, and code? To what extent do multi-turn conversations influence performance
in these specific task categories? Lastly, how can we optimally combine Tulu and SmolTalk into a
dataset mixture that enhances performance both in coding tasks and across benchmarks more broadly?

To address these questions, we conduct a detailed analysis of both post-training datasets in the
following section, allowing us to make informed decisions about effective dataset combinations.

3 Quality Analysis of Tulu and SmolTalk via Magpie Annotations

We perform a unified diagnostic of the Tulu and SmolTalk datasets. Using the Magpie framework, a
customizable self-synthesis annotation pipeline that leverages an LLM as a judge and specialized
prompt templates, each data sample is systematically labeled for task category, conversation depth,
instruction quality, response reward, and safety. These fine-grained annotations enable us to quantify
both instruction fidelity and response adequacy, revealing precisely where these flagship corpora
overlap, diverge, and, crucially, complement each other. Furthermore, this detailed characterization
provides a principled basis for informed decision making regarding optimal dataset mixtures.

3.1 Unified Magpie Annotations

To enable direct comparability between Tulu and SmolTalk, we annotate (tag) every data sample using
Magpie with Llama-3.3-70B-Instruct [27] as the judge model (see App. C.1). We find that Llama-
generated annotations are reliable and align with human judgment (see App. C.1.3 and App. C.1.4).
Magpie annotates each sample with structured tags for Task Category (12 classes), Input Quality
(rated from very poor to excellent), Response Quality (termed Instruct Reward, rated from 0 to 5 for
multi-turn and as a real number for single-turn), Safety (assessed via Llama-Guard 2 [29]), Language,
and query Difficulty. We further extend Magpie’s original annotation set by explicitly capturing the
conversation structure (single-turn vs. multi-turn) and retain important metadata from the original
datasets (e.g., unique sample identifiers), making our annotated versions reusable for future research.

In addition, we introduce two essential extensions to Magpie (see App. C.1.2): (1) To account for
inconsistent or free-form outputs, we employ an error-tolerant JSON parser and include in-context
examples in each prompt, resulting in up to 15% lower post-processing errors. (2) Further, as
Magpie originally evaluates only the initial user-assistant interaction, we adapt its prompts to ingest
entire conversation histories for multi-turn dialogues and utilize a larger context window to prevent
truncation issues and tagging failures for longer conversations. With these adaptations, we limit the
annotation failure rate, i.e., samples that could not be parsed or tagged due to inconsistent formatting
or residual errors, to below 3%, ensuring that at least 97% of the original dataset is reliably tagged.
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Figure 2: Task diversity in Tulu and SmolTalk as annotated by Magpie. Bars show the fraction
of each dataset devoted to different tasks (e.g., math, coding/debugging). Tulu is dominated by
structured, code-centric, and mathematical prompts, whereas SmolTalk features a substantial amount
of conversational tasks such as editing, information seeking, and brainstorming, alongside math.
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Figure 3: Analysis of conversational turn structure: (a) Distribution of conversation lengths (single-
turn vs. multi-turn). (b) Breakdown of multi-turn samples by task category.

3.2 Task Categories and Turn Structure

Our task annotations in Fig. 2 reveal clear contrasts between Tulu and SmolTalk. In particular, Tulu
demonstrates a strong STEM-oriented bias. Over one-third (36%) of its samples focus on math, a
quarter (25%) addresses information seeking (e.g., scientific fact checking), and coding covers 15%.
In contrast, conversational and creative tasks, such as editing, creative writing, brainstorming, and
advice seeking, are notably underrepresented, collectively accounting for only about 10% of the data.
This composition directly aligns with Tulu’s primary design objective of maximizing instruction
following and structured reasoning, particularly in math and code.

Conversely, SmolTalk exhibits a more conversation-centric distribution. Editing, creative writing,
brainstorming, and advice seeking constitute around 30% of the dataset, significantly more than in
Tulu. Although SmolTalk maintains substantial math (23%) and coding (13%) segments, its overall
emphasis clearly lies in open-domain interactions, aligning with its goal of training conversationally
fluent yet compact (“smol") chat models.

These differences are also reflected in the conversational turn structures shown in Fig. 3a. Tulu is
predominantly single-turn (95%), while SmolTalk primarily comprises multi-turn interactions (70%).
A corresponding breakdown of multi-turn samples by task category is provided in Fig. 3b. Notably,
Tulu almost entirely lacks multi-turn math samples and contains only a small fraction of multi-turn
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coding and information seeking samples. In contrast, SmolTalk contains multi-turn samples even for
math and coding (e.g., iterative rewriting of formulas and follow-up questions), mostly sourced from
Magpie-Ultra which contains 3-turn samples for coding, math, and creative tasks. We provide a more
detailed analysis of turn types and conversation lengths by task category in App. C.3.

These annotation insights show that the two datasets occupy complementary regions of the instruction
space: Tulu specializes in rigorous, structured problem-solving tasks, whereas SmolTalk broadens
coverage through richer, more interactive conversational samples.

3.3 Input Quality and Instruction Reward
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Figure 4: Distribution of input qualities: Both
datasets contain over 80% good or excellent user
inputs, indicating well-formulated prompts.

Fig. 4 shows the distribution of input-quality an-
notations for both Tulu and SmolTalk. Over-
all, both datasets exhibit high-quality user in-
puts, with more than 80% rated as either “good"
or “excellent". This favorable distribution re-
flects the rigorous quality control measures em-
ployed during dataset curation, as both Tulu and
SmolTalk use capable LLMs for data generation
and employ quality checks. Nevertheless, a non-
negligible minority (10%) is rated as “poor" or

“very poor", indicating either lack of context or
unclear instructions (see App. C.4 for details).

Additionally, we observe that LLMs face challenges in providing high-quality responses to poorly
formulated user queries, which is directly reflected in their response quality. Fig. 5a and Fig. 5b
show the instruct reward distribution for single-turn examples for Tulu and SmolTalk, highlighting
the dependence of response quality on input quality. For both datasets, higher-quality instructions
generally result in substantially better instruct rewards, indicating more helpful and contextually
relevant responses from the corresponding LLMs. Examples are provided in App. C.5.3.

In contrast, multi-turn interactions follow a different trend, having “good" or “excellent" responses
even if the input quality is subpar. In particular, most multi-turn samples either already have clear
initial user queries, or, when ambiguity occurs, it tends to be explicitly resolved or clarified in
subsequent turns. We provide concrete examples illustrating this pattern in App. C.5.3.
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Figure 5: Relationship between input quality and instruct reward for single-turn samples in Tulu and
SmolTalk. Higher-quality instructions consistently yield higher instruct rewards (better responses).

3.4 Difficulty, Language, and Safety

Magpie categorizes prompts as "hard" if they involve complex reasoning or specialized domain
knowledge. For instance, approximately half (50%) of the Tulu samples are labeled as "hard",
followed by "easy" (21%) and "medium" (18%). The rare instances tagged as "very hard" (8%)
typically involve intricate judgments, such as those concerning current political contexts. Nonetheless,
difficulty annotations show minimal correlation with primary data quality indicators such as instruct
reward or input quality (see App. C.6). We thus omit further investigation of difficulty tags. Similarly,
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language (see App. C.7) and safety (see App. C.8) annotations exhibit negligible correlation with
data quality metrics. Both datasets are overwhelmingly English (Tulu: 95%; SmolTalk: 99%) and
safe (Tulu: 97%; SmolTalk: 99%).

4 Leveraging Annotations to Design Data Curation Recipes

In this section, we leverage our Magpie annotations to curate the Tulu and SmolTalk datasets based
on the quality of inputs and responses. Specifically, our goal is to create a quality-aware SFT mixture
by selectively combining high-quality samples from Tulu and SmolTalk.

Ablation Setup. We evaluate our curation recipes through ablation experiments. We use stratified
sampling to extract a representative subsample of approximately 10% (about 100k examples) from
each of the original Tulu and SmolTalk datasets, resulting in subsets Tulu-100k and SmolTalk-100k.
A subsample size of 10% is chosen to make training more computationally efficient while preserving
performance trends, as similarly demonstrated in the original Tulu experiments [7]. We apply our
curation criteria to these subsamples, selecting high-quality instances to form a new data mixture.

4.1 Quality-Based Curation Recipe

Recipe. We begin with a straightforward yet intuitive curation approach. From both Tulu and
SmolTalk, we first select multi-turn samples with the highest input quality (excellent) and the highest
reward score (5). We also select single-turn samples with the highest input quality and reward
score above the median (i.e., second quantile). Applying this curation recipe to Tulu-100k and
SmolTalk-100k produces a mixture of ∼ 80k samples. We refer to this curated mix as TuluTalk-80k.

Performance Analysis. Table 2 compares evaluation results for TuluTalk-80k against the stratified
Tulu-100k and SmolTalk-100k subsamples when fine-tuned on Llama and SmolLM models. For
Llama, TuluTalk-80k generally outperforms Tulu-100k, though it remains behind SmolTalk-100k
overall. TuluTalk-80k achieves the highest performance on reasoning and commonsense benchmarks.
Notably, while it slightly surpasses Tulu-100k on GSM8K (66.64% vs. 65.88%), TuluTalk-80k
trails in instruction following tasks (IF-Eval) by over 2%, and significantly underperforms on code
benchmarks (HumanEval). For SmolLM, the trend is slightly different: Instruction following
performance improves alongside GSM8K scores, but the coding tasks again tend to lag behind.

Given that LLM benchmarks predominantly emphasize coding, math, and instruction following
tasks, our initial quality-based curation approach might appear overly simplistic. In particular, strict
quality filtering may have skewed task diversity and inadvertently removed examples crucial for
instruction following and coding, thereby negatively impacting performance on related benchmarks.
We investigate this by performing a diversity analysis on Magpie’s task category tags.

Diversity Analysis. In our preliminary analysis, instruction following emerged as a critical capability
influencing performance on other benchmarks (similar observations are also reported in [7, 30]).
By filtering the annotated Tulu and SmolTalk datasets for sources explicitly containing instruction
following tasks, we observe that many such examples fall into the categories advice seeking, informa-
tion seeking, creative writing, and reasoning. Fig. 6 illustrates the resulting task diversity across the
considered datasets, highlighting significant reductions in these instruction-rich categories within
TuluTalk-80k. Notably, the proportion of information seeking samples drops to 12% compared to
20% in SmolTalk and 25% in Tulu. This confirms that our quality-based curation recipe requires
additional task-aware adaptation to include more instruction following examples.

4.2 Quality-Based and Task-Aware Curation Recipe

To balance quality and task diversity, we extend our quality-based recipe by adding samples from
underrepresented task categories, albeit with slightly lower quality thresholds. Specifically, we
augment the previous selection with: (1) Multi-turn samples with excellent input quality and reward
score of 5, (2) Multi-turn samples with good input quality and reward score of 5, (3) Single-turn
samples with excellent input quality and reward scores above the first quantile, and (4) Single-turn
samples with good input quality and reward scores above the third quantile. Overall, this approach
captures high-quality samples along with strategically selected samples that maintain diversity
by slightly relaxing either input or output quality, resulting in 3k additional samples yielding the
TuluTalk-83k subset. The detailed curation recipe is presented in App. D.

7



Table 2: SFT results for Llama-3.1-8B and SmolLM2-1.7B models fine-tuned on stratified subsets of
Tulu, SmolTalk, and TuluTalk mixtures, evaluated on the Open LLM Leaderboards (averaged) and
code benchmarks. The overall average is across all benchmarks. Best scores are in bold.

Llama-3.1-8B SmolLM2-1.7B

Benchmark Tulu
(100k)

SmolTalk
(100k)

TuluTalk
(80k)

TuluTalk
(83k)

Tulu
(100k)

SmolTalk
(100k)

TuluTalk
(80k)

TuluTalk
(83k)

Knowledge
MMLU (5-shot) 63.27 62.61 63.09 62.90 48.27 49.88 49.95 49.53
MMLU-Pro (5-shot) 28.61 29.85 31.52 31.67 19.06 21.41 21.41 20.91
TruthfulQA (0-shot) 50.75 53.77 52.35 54.37 43.03 41.97 39.17 40.37
GPQA (0-shot) 30.12 29.70 28.78 28.02 29.28 27.43 26.09 27.10
Reasoning
ARC-C (25-shot) 54.44 58.79 59.64 58.45 47.10 49.91 48.89 48.67
BBH (3-shot) 42.32 42.39 42.77 41.82 36.82 35.91 36.14 36.74
MuSR (0-shot) 42.33 39.15 37.30 37.83 34.26 35.19 33.60 34.26
Commonsense
HellaSwag (10-shot) 60.52 62.21 62.70 62.54 40.33 42.91 44.66 42.99
WinoGrande (5-shot) 76.95 77.66 77.90 76.80 65.35 67.48 67.09 66.51
Instruction Following
IF-Eval (0-shot) 66.03 65.66 64.38 63.94 49.13 47.90 49.19 52.50
Math
GSM8K (5-shot) 65.88 67.70 66.64 69.45 40.33 42.91 44.66 42.99
MATH (4-shot) 10.50 7.93 8.31 8.31 3.85 3.85 3.25 3.32
Code
HumanEval (pass@1) 50.61 52.44 48.76 51.22 1.83 1.83 1.22 1.83
HumanEval+ (pass@1) 30.61 34.51 32.43 32.44 0.61 1.22 0.61 1.22
Leaderboards
Open LLM Leaderboard 1 61.97 63.79 63.72 64.09 49.57 50.96 50.59 50.13
Open LLM Leaderboard 2 36.65 35.78 35.51 35.26 28.73 28.62 28.28 29.14

Overall 48.07 48.88 48.33 48.55 33.73 34.32 33.93 34.19
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Figure 6: Task diversity distribution for stratified Tulu-100/SmolTalk-100 datasets and curated
TuluTalk-80k/TuluTalk-83k mixtures. Our task-aware adaptation in TuluTalk-83k brings back 3k
samples from underrepresented categories in TuluTalk, improving downstream task performance.
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Table 3: SFT results for Llama-3.1-8B and SmolLM2-1.7B base models fine-tuned on Tulu, SmolTalk,
Orca, and TuluTalk, evaluated on the Open LLM Leaderboards (averaged) and code benchmarks. The
overall average is across all benchmarks. Best scores (row-wise) are in bold. Color-shaded columns
highlight the TuluTalk models.

Llama-3.1-8B SmolLM2-1.7B
Benchmark Base Tulu SmolTalk Orca TuluTalk Base Tulu SmolTalk Orca TuluTalk

Knowledge
MMLU (5-shot) 65.03 62.90 62.88 62.64 63.91 50.09 49.71 47.88 51.65 49.34
MMLU-Pro (5-shot) 32.71 28.73 31.76 31.89 30.17 21.26 19.61 20.37 23.40 20.67
TruthfulQA (0-shot) 45.22 46.41 55.74 52.08 53.16 36.61 44.04 44.74 42.84 43.65
GPQA (0-shot) 37.96 42.86 38.49 40.21 40.62 34.66 33.33 33.86 33.20 33.28
Reasoning
ARC-C (25-shot) 54.69 54.61 59.04 53.07 57.42 51.54 44.54 48.46 46.25 47.27
BBH (3-shot) 46.48 39.06 45.50 45.74 43.50 34.04 36.66 37.81 38.05 38.33
MuSR (0-shot) 37.96 42.86 38.49 40.21 40.62 34.66 33.33 33.86 33.20 33.28
Commonsense
HellaSwag (10-shot) 61.44 60.87 61.54 60.60 62.98 53.65 51.01 52.10 51.61 51.36
WinoGrande (5-shot) 76.87 76.64 77.19 71.19 79.22 68.19 65.90 65.27 64.96 66.06
Instruction Following
IF-Eval (0-shot) 12.45 74.09 74.51 57.73 74.84 23.91 60.25 56.83 35.17 60.85
Math
GSM8K (5-shot) 50.64 74.37 74.75 60.58 74.84 29.64 49.43 52.46 29.34 54.13
MATH (4-shot) 5.97 12.31 10.42 11.86 11.96 2.64 6.27 5.89 5.82 6.16
Code
HumanEval (pass@1) 34.76 58.54 54.51 51.37 56.49 0.61 1.83 1.83 0.61 1.83
HumanEval+ (pass@1) 28.66 45.37 44.27 40.29 44.33 0.61 1.83 1.83 0.61 1.83
Leaderboards
Open LLM Leaderboard 1 58.98 62.63 65.19 60.03 65.26 48.29 50.77 51.82 47.78 51.97
Open LLM Leaderboard 2 27.84 37.47 38.24 36.05 38.40 24.14 30.66 30.39 27.67 31.16

Overall 41.74 50.32 51.38 47.72 51.62 31.13 35.16 35.49 32.42 35.89

Performance Analysis. Table 2 compares TuluTalk-83k to previous mixtures, showing clear improve-
ments on benchmarks where earlier versions underperformed. For the Llama model, TuluTalk-83k
surpasses TuluTalk-80k by 2.8% on GSM8K (69.45% vs. 66.64%) and by 2.46% on HumanEval
(51.22% vs. 48.76%). Overall, it performs slightly better than TuluTalk-80k. For the SmolLM model,
TuluTalk-83k also yields higher overall performance, with the largest gain observed on IF-Eval with
an improvement of 2.6%, rising from 49.19% to 52.5%. These results confirm the effectiveness of
our adapted task-aware curation strategy and motivate applying our recipe to the full datasets.

5 Results on Full Datasets and Discussion

Building on insights from our ablations and prior analysis with smaller subsets, we apply our quality-
based and task-aware data-curation recipe to the entire (annotated) SmolTalk and Tulu datasets,
resulting in TuluTalk, a leaner SFT mixture comprising 808k samples. This represents a reduction of
approximately 23% compared to SmolTalk and 14% compared to Tulu.

In Table 3, we report the SFT results for Llama and SmolLM models fine-tuned on the full Tulu,
SmolTalk, Orca, and TuluTalk datasets, using the same experimental setup as before (see App. E.1
for details). On average, TuluTalk outperforms all other SFT datasets for both models.

For the Llama model, TuluTalk achieves an overall average of 51.62%, outperforming SmolTalk
(51.38%), Tulu (50.32%), and significantly surpassing Orca (47.72%). In knowledge benchmarks,
TuluTalk leads on MMLU at 63.91%, surpassing both Tulu and SmolTalk by 1%. While slightly
behind SmolTalk on TruthfulQA, it remains competitive and outperforms SmolTalk on GPQA. On
reasoning tasks, TuluTalk notably improves performance on ARC-C, achieving 57.42% (2.8% higher
than Tulu), and on BBH, reaching 43.50% (4.4% higher than Tulu). Commonsense benchmarks
also show clear improvements: HellaSwag at 62.98% (2.1% gain over Tulu) and WinoGrande at
79.22% (2.6% improvement over Tulu). TuluTalk further achieves the highest instruction following
performance across datasets on IF-Eval, reaching 74.84%. It also demonstrates strong capabilities on
math tasks, with 74.84% on GSM8K and 11.96% on the challenging MATH benchmark. Coding
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Table 4: SFT results for Qwen2.5-0.5B, Qwen2.5-3B, and SmolLM3-3B base models fine-tuned
on Tulu, SmolTalk, and TuluTalk, and evaluated on the Open LLM Leaderboards (averaged). The
overall average is across all benchmarks. Best scores (row-wise) are in bold.

Qwen2.5-0.5B Qwen2.5-3B SmolLM3-3B
Benchmark Base Tulu SmolTalk TuluTalk Base Tulu SmolTalk TuluTalk Base Tulu SmolTalk TuluTalk

Leaderboards
Open LLM Leaderboard 1 41.62 42.04 42.26 42.53 60.73 61.36 61.73 61.95 60.08 59.97 61.72 62.07
Open LLM Leaderboard 2 22.01 24.73 23.58 25.09 32.13 38.29 36.77 38.99 31.18 37.98 37.21 38.18

Overall 31.19 32.45 31.92 32.68 44.89 48.67 47.61 48.94 43.90 47.68 47.85 48.34

performance remains robust, with scores of 56.49% on HumanEval and 44.33% on HumanEval+. On
both Open LLM Leaderboards, TuluTalk achieves top scores, surpassing both SmolTalk and Tulu.

Similarly, for the SmolLM model, TuluTalk achieves an overall average of 35.89%, exceeding
SmolTalk (35.49%), Tulu (35.16%), and Orca (32.42%). TuluTalk improves notably on instruction
following benchmarks (IF-Eval at 60.85%) and math tasks (e.g., GSM8K at 54.13%). Its performance
in knowledge benchmarks remains competitive, though slightly behind Orca in MMLU. Reasoning
benchmarks show improvements, particularly for BBH at 38.33%, leading across all other datasets.
Aggregated results on the OpenLLM Leaderboards further confirm TuluTalk’s leading position,
surpassing all compared datasets.

Collectively, our results show that TuluTalk consistently achieves top-tier performance across diverse
tasks and two models, offering significant efficiency advantages with fewer yet higher-quality samples.
A detailed analysis of the corresponding training efficiency is provided in App. E.3.3.

Furthermore, to assess generalizability across model scales and architectures, we conduct additional
experiments using Qwen2.5-0.5B and Qwen2.5-3B [22], as well as SmolLM3-3B [31]. Table 4
reports the Open LLM Leaderboard and overall average scores across all benchmarks for each
model. The results show that TuluTalk consistently outperforms Tulu and SmolTalk across all models,
confirming our prior analysis and demonstrating robust cross-model generalization. Comprehensive
evaluations for each model are provided in App. E.3.4. In addition, App. E.3.5 presents results for
the Llama model fine-tuned with Direct Preference Optimization (DPO) [32], further demonstrating
that the performance gains observed under SFT carry over to the DPO setting.

6 Conclusion

In this work, we annotated and systematically dissected the Tulu and SmolTalk post-training datasets,
thoroughly quantifying their composition across multiple quality and task dimensions. Leveraging
these detailed annotations, we developed a principled, quality-based, and task-aware data-curation
recipe based on insights through ablations. This approach allowed us to construct TuluTalk, a new
dataset mixture which not only significantly reduces dataset size (23% smaller than SmolTalk and
14% smaller than Tulu), but also consistently outperforms existing datasets across a comprehensive
suite of benchmarks. Our results show that (1) high-quality samples, rather than sheer quantity, drive
substantial performance gains, (2) differentiating single-turn from multi-turn interactions is essential
for nuanced dataset curation, and (3) optimal data mixture ratios are inherently task-dependent,
requiring careful balancing of quality, diversity, and representativeness. Robust evaluations conducted
across multiple benchmarks and different LLM architectures ensure broad applicability of both our
curation recipe and our TuluTalk mixture. By demonstrating how targeted, quality-aware curation
can substantially enhance model capabilities while reducing resource demands, our work sets clear
directions for future dataset curation efforts. We discuss limitations and broader impact in App. F.
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Baker-Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex
Nichol, Alex Paino, Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis,
Alexis Conneau, Ali Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin
Tootoochian, Amin Tootoonchian, Ananya Kumar, Andrea Vallone, Andrej Karpathy, Andrew

12

https://arxiv.org/abs/2411.15124
https://openreview.net/forum?id=Bl8u7ZRlbM
https://arxiv.org/abs/2502.02737
https://openreview.net/forum?id=mTCbq2QssD
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://openreview.net/forum?id=Pnk7vMbznK
https://arxiv.org/abs/2306.02707
https://arxiv.org/abs/2407.03502
https://huggingface.co/docs/leaderboards/en/open_llm_leaderboard/archive
https://huggingface.co/docs/leaderboards/en/open_llm_leaderboard/archive
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard


Braunstein, Andrew Cann, Andrew Codispoti, Andrew Galu, Andrew Kondrich, Andrew Tul-
loch, Andrey Mishchenko, Angela Baek, Angela Jiang, Antoine Pelisse, Antonia Woodford,
Anuj Gosalia, Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver, Barret Zoph, Behrooz
Ghorbani, Ben Leimberger, Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin Zweig, Beth
Hoover, Blake Samic, Bob McGrew, Bobby Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap,
Brandon Walkin, Brendan Quinn, Brian Guarraci, Brian Hsu, Bright Kellogg, Brydon Eastman,
Camillo Lugaresi, Carroll Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson,
Chak Li, Chan Jun Shern, Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng
Lu, Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christina
Kim, Christine Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer, Clemens Winter,
Coley Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, Dane Sherburn, Daniel
Kappler, Daniel Levin, Daniel Levy, David Carr, David Farhi, David Mely, David Robinson,
David Sasaki, Denny Jin, Dev Valladares, Dimitris Tsipras, Doug Li, Duc Phong Nguyen,
Duncan Findlay, Edede Oiwoh, Edmund Wong, Ehsan Asdar, Elizabeth Proehl, Elizabeth Yang,
Eric Antonow, Eric Kramer, Eric Peterson, Eric Sigler, Eric Wallace, Eugene Brevdo, Evan
Mays, Farzad Khorasani, Felipe Petroski Such, Filippo Raso, Francis Zhang, Fred von Lohmann,
Freddie Sulit, Gabriel Goh, Gene Oden, Geoff Salmon, Giulio Starace, Greg Brockman, Hadi
Salman, Haiming Bao, Haitang Hu, Hannah Wong, Haoyu Wang, Heather Schmidt, Heather
Whitney, Heewoo Jun, Hendrik Kirchner, Henrique Ponde de Oliveira Pinto, Hongyu Ren, Hui-
wen Chang, Hyung Won Chung, Ian Kivlichan, Ian O’Connell, Ian O’Connell, Ian Osband, Ian
Silber, Ian Sohl, Ibrahim Okuyucu, Ikai Lan, Ilya Kostrikov, Ilya Sutskever, Ingmar Kanitschei-
der, Ishaan Gulrajani, Jacob Coxon, Jacob Menick, Jakub Pachocki, James Aung, James Betker,
James Crooks, James Lennon, Jamie Kiros, Jan Leike, Jane Park, Jason Kwon, Jason Phang,
Jason Teplitz, Jason Wei, Jason Wolfe, Jay Chen, Jeff Harris, Jenia Varavva, Jessica Gan Lee,
Jessica Shieh, Ji Lin, Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joanne Jang, Joaquin Quinonero
Candela, Joe Beutler, Joe Landers, Joel Parish, Johannes Heidecke, John Schulman, Jonathan
Lachman, Jonathan McKay, Jonathan Uesato, Jonathan Ward, Jong Wook Kim, Joost Huizinga,
Jordan Sitkin, Jos Kraaijeveld, Josh Gross, Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao,
Joyce Lee, Juntang Zhuang, Justyn Harriman, Kai Fricke, Kai Hayashi, Karan Singhal, Katy Shi,
Kavin Karthik, Kayla Wood, Kendra Rimbach, Kenny Hsu, Kenny Nguyen, Keren Gu-Lemberg,
Kevin Button, Kevin Liu, Kiel Howe, Krithika Muthukumar, Kyle Luther, Lama Ahmad, Larry
Kai, Lauren Itow, Lauren Workman, Leher Pathak, Leo Chen, Li Jing, Lia Guy, Liam Fedus,
Liang Zhou, Lien Mamitsuka, Lilian Weng, Lindsay McCallum, Lindsey Held, Long Ouyang,
Louis Feuvrier, Lu Zhang, Lukas Kondraciuk, Lukasz Kaiser, Luke Hewitt, Luke Metz, Lyric
Doshi, Mada Aflak, Maddie Simens, Madelaine Boyd, Madeleine Thompson, Marat Dukhan,
Mark Chen, Mark Gray, Mark Hudnall, Marvin Zhang, Marwan Aljubeh, Mateusz Litwin,
Matthew Zeng, Max Johnson, Maya Shetty, Mayank Gupta, Meghan Shah, Mehmet Yatbaz,
Meng Jia Yang, Mengchao Zhong, Mia Glaese, Mianna Chen, Michael Janner, Michael Lampe,
Michael Petrov, Michael Wu, Michele Wang, Michelle Fradin, Michelle Pokrass, Miguel Castro,
Miguel Oom Temudo de Castro, Mikhail Pavlov, Miles Brundage, Miles Wang, Minal Khan,
Mira Murati, Mo Bavarian, Molly Lin, Murat Yesildal, Nacho Soto, Natalia Gimelshein, Natalie
Cone, Natalie Staudacher, Natalie Summers, Natan LaFontaine, Neil Chowdhury, Nick Ryder,
Nick Stathas, Nick Turley, Nik Tezak, Niko Felix, Nithanth Kudige, Nitish Keskar, Noah
Deutsch, Noel Bundick, Nora Puckett, Ofir Nachum, Ola Okelola, Oleg Boiko, Oleg Murk,
Oliver Jaffe, Olivia Watkins, Olivier Godement, Owen Campbell-Moore, Patrick Chao, Paul
McMillan, Pavel Belov, Peng Su, Peter Bak, Peter Bakkum, Peter Deng, Peter Dolan, Peter
Hoeschele, Peter Welinder, Phil Tillet, Philip Pronin, Philippe Tillet, Prafulla Dhariwal, Qiming
Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Rajan Troll, Randall Lin, Rapha Gontijo Lopes,
Raul Puri, Reah Miyara, Reimar Leike, Renaud Gaubert, Reza Zamani, Ricky Wang, Rob
Donnelly, Rob Honsby, Rocky Smith, Rohan Sahai, Rohit Ramchandani, Romain Huet, Rory
Carmichael, Rowan Zellers, Roy Chen, Ruby Chen, Ruslan Nigmatullin, Ryan Cheu, Saachi
Jain, Sam Altman, Sam Schoenholz, Sam Toizer, Samuel Miserendino, Sandhini Agarwal, Sara
Culver, Scott Ethersmith, Scott Gray, Sean Grove, Sean Metzger, Shamez Hermani, Shantanu
Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shirong Wu, Shuaiqi, Xia, Sonia Phene,
Spencer Papay, Srinivas Narayanan, Steve Coffey, Steve Lee, Stewart Hall, Suchir Balaji, Tal
Broda, Tal Stramer, Tao Xu, Tarun Gogineni, Taya Christianson, Ted Sanders, Tejal Patwardhan,
Thomas Cunninghman, Thomas Degry, Thomas Dimson, Thomas Raoux, Thomas Shadwell,
Tianhao Zheng, Todd Underwood, Todor Markov, Toki Sherbakov, Tom Rubin, Tom Stasi,
Tomer Kaftan, Tristan Heywood, Troy Peterson, Tyce Walters, Tyna Eloundou, Valerie Qi, Veit

13



Moeller, Vinnie Monaco, Vishal Kuo, Vlad Fomenko, Wayne Chang, Weiyi Zheng, Wenda
Zhou, Wesam Manassra, Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian, Yongjik Kim,
Youlong Cheng, Yu Zhang, Yuchen He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and Yury
Malkov. GPT-4o System Card, 2024. URL https://arxiv.org/abs/2410.21276.

[21] Tao Ge, Xin Chan, Xiaoyang Wang, Dian Yu, Haitao Mi, and Dong Yu. Scaling Synthetic Data
Creation with 1,000,000,000 Personas. arXiv preprint arXiv:2406.20094, 2024.

[22] Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu,
Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,
Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang
Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5
Technical Report, 2025. URL https://arxiv.org/abs/2412.15115.

[23] Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa
Huang, Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin
Dong, Li Zhou, Yann Fleureau, Guillaume Lample, and Stanislas Polu. Numina-
Math. https://github.com/project-numina/aimo-progress-prize/blob/main/
report/numina_dataset.pdf, 2024.

[24] Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU, Zhengying Liu, Yu Zhang, James Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. MetaMath: Bootstrap Your Own Mathematical
Questions for Large Language Models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=N8N0hgNDRt.

[25] Yuxiang Wei, Federico Cassano, Jiawei Liu, Yifeng Ding, Naman Jain, Zachary Mueller, Harm
de Vries, Leandro Von Werra, Arjun Guha, and Linming Zhang. SelfCodeAlign: Self-Alignment
for Code Generation. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=xXRnUU7xTL.

[26] Zuxin Liu, Thai Quoc Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Shirley Kokane, Juntao
Tan, Weiran Yao, Zhiwei Liu, Yihao Feng, Rithesh R N, Liangwei Yang, Silvio Savarese,
Juan Carlos Niebles, Huan Wang, Shelby Heinecke, and Caiming Xiong. APIGen: Automated
PIpeline for Generating Verifiable and Diverse Function-Calling Datasets. In The Thirty-eight
Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2024.
URL https://openreview.net/forum?id=Jfg3vw2bjx.

[27] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ah-
mad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem
Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson,
Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind
Thattai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah
Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
Misra, Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason
Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya
Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton,
Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Va-
suden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield,
Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal
Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz
Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke
de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin

14

https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2412.15115
https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf
https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=xXRnUU7xTL
https://openreview.net/forum?id=Jfg3vw2bjx


Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kam-
badur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi,
Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne,
Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal
Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao
Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert
Stojnic, Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre,
Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hos-
seini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov,
Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale,
Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane
Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha,
Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal
Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet,
Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin
Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan,
Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine
Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert,
Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain,
Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay
Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit
Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu,
Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie Franco,
Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe,
Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang,
Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock,
Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker,
Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao Zhou, Chester
Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon
Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide Testuggine,
Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin
Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn,
Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers,
Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank
Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee,
Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan
Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison
Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman,
James Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff
Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin,
Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh
Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun
Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh,
Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro
Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt,
Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew
Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao
Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel
Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat,
Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White,
Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich
Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem
Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager,
Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang,
Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra,
Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ
Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh,
Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma,

15



Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao
Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang,
Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen
Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng,
Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez,
Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim
Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez,
Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu
Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Con-
stable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman,
Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin
Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary
DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The Llama
3 Herd of Models, 2024. URL https://arxiv.org/abs/2407.21783.

[28] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles
Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas
Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron,
Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The
Language Model Evaluation Harness, 07 2024. URL https://zenodo.org/records/
12608602.

[29] Llama Team. Meta Llama Guard 2. https://github.com/meta-llama/PurpleLlama/
blob/main/Llama-Guard2/MODEL_CARD.md, 2024.

[30] Team Cohere, :, Aakanksha, Arash Ahmadian, Marwan Ahmed, Jay Alammar, Milad Alizadeh,
Yazeed Alnumay, Sophia Althammer, Arkady Arkhangorodsky, Viraat Aryabumi, Dennis Au-
miller, Raphaël Avalos, Zahara Aviv, Sammie Bae, Saurabh Baji, Alexandre Barbet, Max
Bartolo, Björn Bebensee, Neeral Beladia, Walter Beller-Morales, Alexandre Bérard, Andrew
Berneshawi, Anna Bialas, Phil Blunsom, Matt Bobkin, Adi Bongale, Sam Braun, Maxime
Brunet, Samuel Cahyawijaya, David Cairuz, Jon Ander Campos, Cassie Cao, Kris Cao, Ro-
man Castagné, Julián Cendrero, Leila Chan Currie, Yash Chandak, Diane Chang, Giannis
Chatziveroglou, Hongyu Chen, Claire Cheng, Alexis Chevalier, Justin T. Chiu, Eugene Cho,
Eugene Choi, Eujeong Choi, Tim Chung, Volkan Cirik, Ana Cismaru, Pierre Clavier, Henry
Conklin, Lucas Crawhall-Stein, Devon Crouse, Andres Felipe Cruz-Salinas, Ben Cyrus, Daniel
D’souza, Hugo Dalla-Torre, John Dang, William Darling, Omar Darwiche Domingues, Saurabh
Dash, Antoine Debugne, Théo Dehaze, Shaan Desai, Joan Devassy, Rishit Dholakia, Kyle Duffy,
Ali Edalati, Ace Eldeib, Abdullah Elkady, Sarah Elsharkawy, Irem Ergün, Beyza Ermis, Marzieh
Fadaee, Boyu Fan, Lucas Fayoux, Yannis Flet-Berliac, Nick Frosst, Matthias Gallé, Wojciech
Galuba, Utsav Garg, Matthieu Geist, Mohammad Gheshlaghi Azar, Ellen Gilsenan-McMahon,
Seraphina Goldfarb-Tarrant, Tomas Goldsack, Aidan Gomez, Victor Machado Gonzaga, Nithya
Govindarajan, Manoj Govindassamy, Nathan Grinsztajn, Nikolas Gritsch, Patrick Gu, Shang-
min Guo, Kilian Haefeli, Rod Hajjar, Tim Hawes, Jingyi He, Sebastian Hofstätter, Sungjin
Hong, Sara Hooker, Tom Hosking, Stephanie Howe, Eric Hu, Renjie Huang, Hemant Jain,
Ritika Jain, Nick Jakobi, Madeline Jenkins, JJ Jordan, Dhruti Joshi, Jason Jung, Trushant
Kalyanpur, Siddhartha Rao Kamalakara, Julia Kedrzycki, Gokce Keskin, Edward Kim, Joon
Kim, Wei-Yin Ko, Tom Kocmi, Michael Kozakov, Wojciech Kryściński, Arnav Kumar Jain,
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We explain our methodology and recipe in chapters 3 and 4, and provide
detailed results with discussions in Sections 4, 5 and Appendices.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section 6 and Appendices.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper focuses systematic recipe design and its empirical evaluation.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Detailed information on the experiments is provided in Sections 3, 4, 5 and
Appendices. Code and datasets used for the analysis and results has been open sourced.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Code to create the annotations and training has been provided. Annotated data
and curated mixtures have also been made publicly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Details of the experimental setup are included in Section 4 and Appendices.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: LLM training and evaluations are computationally expensive, therefore experi-
ments are all run once and error bars are not available.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Details on the resources used and compute infrastructure are provided in the
Appendices.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and conform to it to the best of
our knowledge.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Discussed in Section 6 and Appendices.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: TulüTalk and annotated SmolTalk and Tulü3 datasets are derived from other
publicly available datasets, and we do not apply specific safeguards to our released models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Details are provided in Sections 3, Appendices, and the datasets’ HuggingFace
pages.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: HuggingFace page containing new datasets provides documentation. Code
assets also contain inline documentation.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: There are no crowdsourcing experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our recipe development does not involve LLMs as any important, original, or
non-standard components
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Large Language Model Post-Training

While pre-training equips models with general linguistic and world knowledge, post-training refines
this capability to follow user instructions, align with human preferences, and exhibit safe and helpful
behavior across downstream tasks.

A.1 Post-Training Workflow

Post-training typically consists of instruction tuning via supervised fine-tuning (SFT), followed by
preference fine-tuning and reasoning alignment, often involving reinforcement learning (RL).

Supervised Fine-Tuning (SFT). The goal of SFT is to adapt a pre-trained model to generate
helpful and relevant outputs in response to natural language instructions. This is typically achieved
by training on high-quality instruction-response pairs and multi-turn conversations, sourced from
either human-written or synthetic datasets. During SFT, the model learns to generalize instruction
formats, task types, and conversational patterns via next-token prediction. While SFT substantially
improves instruction following and task performance, it does not guarantee alignment with human
preferences, especially in cases where multiple plausible responses exist. To further refine the model,
preference fine-tuning (also referred to as alignment) is applied.

Preference Fine-Tuning. The goal of preference fine-tuning is is to align the model’s output
distribution with human preferences or task-specific objectives. This is typically done by guiding the
model using a reward model or preference signal to prefer helpful, harmless, and honest completions.
Popular algorithms for preference tuning include Proximal Policy Optimization (PPO) [33], Group
Relative Policy Optimization (GRPO) [34], and Direct Preference Optimization (DPO) [32].

Deep Thinking and Reasoning Alignment. Recent work has explored reinforcement learning
and preference-based methods to enhance deep thinking capabilities in LLMs, such as multi-hop
reasoning [35], chain-of-thought generation [36], tool use [37], and debate-style deliberation [38].
These methods typically rely on reward models or heuristic scoring to reward structured reasoning
behavior that extends beyond surface-level fluency. Corresponding reasoning-centric datasets have
emerged as well [39–43], which introduce task formats that elicit step-by-step thought processes.

A.2 Focus on SFT

The primary goal of this paper is to analyze the quality and composition of training datasets while
keeping the training procedure fixed. In particular, we focus on SFT because the performance of
SFT-tuned models is largely governed by the structure and quality of the data mixture rather than by
training algorithmic nuances. Furthermore, most open-source SFT pipelines follow similar training
setups, whereas preference fine-tuning introduces additional complexity: the training algorithm
(e.g., PPO, DPO, RLVR) directly determines the type and structure of data it can effectively utilize.
For example, PPO requires preference pairs to train a reward model, followed by policy rollouts
for fine-tuning [33]. DPO, by contrast, directly trains on preference pairs without requiring policy
rollouts or a reward model [32]. Other methods like Reinforcement Learning with Verifiable Rewards
(RLVR) require examples with verifiable numeric rewards [7].

The diversity of preference tuning recipes and their data format dependencies thus makes clean
cross-method comparisons challenging. Indeed, designing and evaluating preference-based training
pipelines is itself an active research area [7, 44, 45]. We leave the analysis of data quality under
different alignment strategies to future work (see App. F).

Nevertheless, to assess whether our SFT curation insights transfer to preference-tuned models, we also
apply DPO on Llama models fine-tuned on Tulu, SmolTalk, and our proposed TuluTalk mixture (see
App. E). As shown in Table 19, the TuluTalk dataset consistently outperforms both Tulu and SmolTalk
under DPO, just as it does under SFT, confirming that careful data mixture design offers robust gains
across post-training stages. These results further validate our focus on dataset composition as a
critical axis of post-training quality.
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A.3 Related SFT Datasets

Tulu [7] and SmolTalk [9], investigated in this paper, are two of the most recent and widely used
open-source datasets for SFT post-training of LLMs. We focus on these two datasets due to their
strong reported performance over prior SFT datasets across a broad range of benchmarks when used
to train the respective models introduced in their original papers.

Several other SFT datasets have been proposed in recent years, including Orca [16], OpenHermes [12],
LongAlign [46], UltraFeedback [47], MAmmoTH2 [48], DaringAntEater [49] Magpie-Pro [14]
RLHFlow-SFT-V2 [50]. While many of these datasets provide valuable capabilities, such as long-
context support, synthetic feedback signals, or broad coverage across domains, Tulu and SmolTalk
remain highly competitive, achieving significantly stronger performance across instruction following,
reasoning, and code tasks [7, 9].

In our main paper, we compare Tulu and SmolTalk directly against Orca, demonstrating that Orca
lags notably behind, particularly in code generation performance.

Furthermore, as shown in App. B, both Tulu and SmolTalk include carefully curated subsets drawn
from several of the datasets mentioned above, particularly from OpenHermes2.5 [12], Smol-Magpie-
Ultra [9], OpenAssistant [19], and UltraFeedback [47].
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B Dataset Composition of Tulu and SmolTalk

In this section, we provide a brief overview and composition summary of Tulu6 and SmolTalk7

post-training datasets.

B.1 Tulu

The Tulu dataset was created to bridge proprietary and open-source post-training data by leveraging
publicly available datasets, persona-driven synthetic prompts, and rigorous decontamination proce-
dures to mitigate test set leakage. Specifically, Lambert et al. [7] collected 23,327,961 candidate
prompts from over 20 distinct sources, curating a multi-skill SFT corpus that comprises 939,344
samples, forming the original Tulu-3-SFT-Mix data mixture. The Tulu subsets and their respective
samples can be broadly categorized into nine high-level groups:

• General: OpenAssistant (OASST1) [19], No Robots [51], WildChat [8], UltraFeedback
(Tülu HC-10) [47]

• Knowledge Recall: FLAN v2 [52], SciRIFF [53], TableGPT [54]
• Math: Persona MATH, Persona MATH (Grade) [55]
• Reasoning: Persona Algebra [56], OpenMathInstruct2 [10], NuminaMath-TIR [23]
• Coding: Persona Code [57], Evol CodeAlpaca [58]
• Safety & Non-Compliance: CoCoNot [59], WildJailbreak [60], WildGuardMix [61]
• Multilingual: Aya [62]
• Precise Instruction Following: Persona IF [63]
• Other: <1,000 examples from miscellaneous small sources

B.2 SmolTalk

The SmolTalk dataset was developed to address the lower instruction-tuned performance of the
SmolLM2 base model [9]. Specifically, Allal et al. [9] blend high-quality conversational, task-
specific, math, and code datasets, filtered and generated via Distilabel [64] annotations, to cover a
wide range of instruction-following capabilities. This results in a multi-domain post-training corpus
of 1,043,917 training samples which is used for SFT of SmolLM2 to boost instruction following,
reasoning, and conversational skills in a reproducible, open-source pipeline. The SmolTalk subsets
can be similarly grouped into seven high-level categories:

• General: Everyday-Conversations [65], LongAlign [46], OpenHermes2.5 [12], Smol-
Magpie-Ultra [9], Self-OSS-Starcoder-2-Instruct (Self-OSS-2) [66], SystemChats2.0 [67]

• Knowledge Recall: Smol-Summarization [9]
• Math: MetaMathQA-50k [24]
• Reasoning: NuminaMath-CoT [23]
• Coding: APIGen-80k [26]
• Safety & Non-Compliance: Smol-Constraints [9]
• Precise Instruction Following: Explore-Instruct-Rewriting [68], Smol-Rewrite [9]

We provide a detailed dataset- and sample-level breakdown of the annotated Tulu and SmolTalk
datasets in Section C.

6https://huggingface.co/datasets/allenai/tulu-3-sft-mixture
7https://huggingface.co/datasets/HuggingFaceTB/smoltalk

31

https://huggingface.co/datasets/allenai/tulu-3-sft-mixture
https://huggingface.co/datasets/HuggingFaceTB/smoltalk


C Extended Quality Analysis

We present detailed insights and extended analyses of our annotated Tulu and SmolTalk post-training
datasets, covering dataset composition, task distribution, and quality metrics.

C.1 Magpie Annotations

This section introduces the Magpie annotation framework and outlines our extensions to support the
tagging of multi-turn conversation samples.

C.1.1 General Overview

Magpie [14] is a self-synthesis pipeline that extracts alignment annotations from open-weight,
instruction-tuned LLMs without relying on seed prompts or human supervision. While Magpie
can generate synthetic instruction-response pairs, we focus in this work on its annotation capabilities.

In particular, Magpie uses specialist judge models to annotate data samples along multiple dimensions
(e.g., input quality, task category, safety), enabling scalable, automated labeling of large datasets that
would be infeasible to annotate manually. This metadata can be used for filtering, stratification, or
targeted analysis of the corpus.

Magpie supports the following annotation tags:

• Input Quality (very poor – excellent): Measures the clarity, specificity, and structure of the
prompt. Includes a textual justification.

• Task Category: Assigns each sample to one of 12 categories, including Coding & Debug-
ging, Reasoning, Information Seeking, Brainstorming, Creative Writing, Advice Seeking,
Math, Planning, Editing, Role Playing, Data Analysis, and Others.

• Input Difficulty (very easy – very hard): Captures reasoning complexity and knowledge
demands. Also tags intent (user goal) and knowledge (required model competence).

• Safety: Evaluated using a dedicated safety guard model.
• Response Quality (Instruct Reward): Scored by a reward model based on the overall

quality of the assistant’s response.
• Language: Detects the language of the user input.

Magpie is fully modular such that the judge model can be substituted by any LLM in principle. By
default, Magpie uses Llama-3-8B-Instruct [27] for most annotation tasks, FsfairX-LLaMA3-RM-v0.1
[14] for instruct reward scoring, and Llama-Guard 2 [29] for safety classification.

C.1.2 Extensions to Magpie

In its original form, Magpie does not support tagging of multi-turn conversation samples and is
limited by short context windows and frequent inconsistencies in LLM outputs. To address these
limitations, we extend the framework to support more robust annotation of realistic, multi-turn data.

1) Multi-Turn Adaptation. Magpie was originally designed for single-turn samples, where most
annotations, such as instruct reward or input quality, are computed using only the first user-assistant
exchange. However, as shown in later analysis, many multi-turn conversations undergo clarification
or iterative refinement before resulting in a high-quality response. Thus, the original pipeline is
insufficient for evaluating such interactions.

To support multi-turn conversations, we modify Magpie’s prompts to incorporate the entire conver-
sation history, rather than just the initial turn, and adapt reward scoring accordingly. Additionally,
we raise the context window to the maximum length supported by the chosen LLM, as the default
Magpie configuration sets this value conservatively low. We provide all modifications as part of our
code repository8.

8Code available at: github.com/aladinD/magpie-single-and-multi-turn
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Multi-Turn Prompt Template: In most cases, adapting Magpie for multi-turn use simply involves
replacing the single-turn user input with the full conversation history in the prompt template. Further-
more. to improve robustness under increased context length, we enforce stricter formatting by adding
an in-context example and explicitly specifying the expected JSON output format. An example of
these adaptations for Magpie’s multi-turn task classification prompt is shown in Fig. 7.

Together with the increased context window length, this adaptation ensures that the judge model can
process the full conversation history reliably.

Multi-Turn Instruct Reward: While adapting most annotation tags is straightforward, computing
instruct rewards for MT conversations is more complex. Magpie uses FsfairX-LLaMA3-RM-v0.1
[14], a reward model that assigns a continuous reward score r∗ to each instruction-response pair. To
contextualize this score, it also computes a baseline reward rbase using a reference model (typically
the main LLM judge) on the same instruction. The difference ∆r = r∗ − rbase reflects the relative
improvement in response quality and is reported as the instruct reward.

This reward mechanism was originally developed for single-turn filtering and for supporting prefer-
ence optimization via Magpie’s DPO implementation. However, it does not generalize cleanly to
MT settings, where generating a comparable baseline response for the entire conversation becomes
infeasible, particularly when the number of samples in the dataset is large.

To address this, we treat ST and MT samples separately: For ST samples, we retain Magpie’s original
reward scoring pipeline based on the reference reward model, which is generally fast and reliable
with low tagging error rates. For MT samples, we choose to avoid computing reference model-based
rewards and instead use a dedicated LLM-as-a-Judge (typically the main LLM judge) to evaluate the
entire conversation on a discrete scale from 0 to 5.

A unified reward annotation pipeline that applies such a judge-based scoring to both ST and MT
samples is certainly feasible, but we leave its development to future work.

2) Reliable and Error Tolerant Prompts. Due to the LLM-as-a-judge nature of Magpie’s an-
notation framework, inconsistent or free-form outputs are frequently observed. This occurs par-
ticularly when the LLM fails to follow strict formatting instructions for producing structured an-
notations. For example, many Magpie prompts require the model to output a score or label in a
JSON-formatted response (see Fig. 7). Depending on the chosen LLM judge, inconsistencies such as
<Information seeking, <INFORMATION SEEKING>, or ["information seeking"], i.e., out-
puts with malformed brackets and inconsistent formatting, are common. While typically benign, the
original Magpie JSON parser is brittle and fails on such responses.

In addition to including in-context examples in Magpie prompts, we introduce a lightweight forgiving
parser that replaces the original json.loads() call with a more tolerant multi-stage pipeline.
Specifically, the parser performs the following:

• Brace normalization: Collapses nested braces and extracts only the first JSON block.
• Regex-based sanitization: Fixes unbalanced quotes, braces or backslashes, inserts missing

commas, and lowercases keys via targeted regular expressions.
• Wrapper stripping: Removes Markdown fences, discards any text outside the first and last

braces, and truncates after the final closing brace.
• Special-case fallback: Supports bare-number shorthands for instruct reward scoring by

mapping single digits to a default score schema.
• Graceful degradation: Wraps parsing in try/except blocks, logs failed cases, and resets

only task-specific fields without discarding the full batch.

This improved parser reliably extracts valid JSON fragments from noisy outputs, tolerating extra
braces, formatting artifacts, and minor syntax violations where the original parser would simply fail.
Remaining inconsistencies are rare and can be resolved through lightweight post-processing. Overall,
this enhancement reduces tagging errors by up to 15%.
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Multi-Turn Magpie Prompt for Task Classification Tagging.

# Instruction

You will be given a conversation between a User and an AI assistant.

## Conversation
‘‘‘
\{CONVERSATION_HISTORY\}
‘‘‘

## Tagging the Conversation
Please analyze the conversation and select the most relevant task tag
from the list below:

all_task_tags = [
"Information seeking", # Specific information or facts
"Reasoning", # Requires logical thinking
"Planning", # Assistance in creating plans/strategies
"Editing", # Editing, rephrasing, proofreading
"Coding & Debugging", # Writing, reviewing, or fixing code
"Math", # Math concepts, problems, and equations
"Role playing", # ChatGPT is asked to adopt a persona
"Data analysis", # Analyzing data and statistics
"Creative writing", # Writing stories, poems, or texts
"Advice seeking", # Guidance on personal/professional issues
"Brainstorming", # Generating ideas and creative thinking
"Others" # Queries that don’t fit above categories

]

## Output Format:
You can only select a single primary tag. Other tags can go into
‘"other_tags"‘.

{
"primary_tag": "<primary tag>",
"other_tags": ["<tag 1>", "<tag 2>", ...]

}

For instance:
‘‘‘json
{{

"primary_tag": "Information seeking",
"other_tags": ["Advice seeking", "Others"]

}}
‘‘‘
Make sure to adhere to this formatting.

Figure 7: Multi-turn Magpie prompt for task classification tagging. The original prompt is extended
to include the full conversation history, ensuring that all user-assistant turns are evaluated by the
judge model. To improve robustness under longer context windows, the template also includes an
in-context example and an explicitly specified JSON output format.
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C.1.3 Choice of Judge Model

Magpie supports the use of any LLM as a potential annotation judge. In our experiments, we use
Llama-3.3-70B-Instruct [27] as the primary judge model, based on two key considerations.

First, preliminary experiments with Qwen-based annotators revealed systematic biases. Fig. 8a
and Fig. 8b show input quality distributions on 30k stratified subsets of Tulu and SmolTalk when
annotated with Llama-3.3-70B-Instruct [27] versus Qwen2-72B-Instruct [69]. In both cases, Qwen
strongly over-predicts the excellent label, while Llama produces more balanced annotations. In fact,
our later analysis reveals a broader spread of input quality, with samples labeled as good, excellent,
and even some rated as average or poor. Qwen tends to ignore these lower bands, particularly for
SmolTalk, resulting in a less nuanced and potentially biased annotation profile.

Second, Magpie’s default configuration uses Llama-3.1-8B-Instruct, such that much of the open-
source pipeline has been tested and optimized for this model. Remaining within the same model
family reduces integration friction and improves reproducibility, making the workflow more robust
and accessible for the broader research community.

Based on these observations, particularly the qualitative differences in annotation quality revealed
by our preliminary analysis, we select Llama-3.3-70B-Instruct as the default judge model for all
annotation tasks in this study.
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(a) Input quality distribution for a 30k stratified subset
of Tulu using Llama and Qwen as Magpie annotators.
Qwen strongly favors the excellent label, while Llama
offers a more realistic spread.
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(b) Input quality distribution for a 30k stratified subset
of SmolTalk using Llama and Qwen. Again, Qwen
exhibits a strong upward bias toward excellent input
quality labels, unlike Llama which is more balanced.

Figure 8: Comparison of input quality annotations produced by Llama-3.3-70B-Instruct and Qwen2-
72B-Instruct judge models on 30k stratified subsets of Tulu and SmolTalk. Qwen consistently
over-predicts high-quality labels, while Llama provides a more balanced distribution.

C.1.4 Human Evaluation of Annotation Quality

In addition to comparing different judge models, we perform a systematic manual inspection of a
small subset of annotated samples to assess alignment between LLM-generated annotations and
human judgment. To this end, we stratify 100 TuluTalk samples by task category and have four
authors independently review 25 samples each for input quality and instruct reward. We then compute
exact-match agreement and Spearman’s rank correlation (ρ) between the LLM annotations and the
human consensus. Table 5 shows that both input quality and instruct reward exhibit high categorical
agreement (≥ 90%) and strong positive rank correlation, indicating that the LLM’s annotations
closely align with human judgments. Most disagreements involve one-step differences (e.g., rating
input quality as excellent versus good), likely reflecting subjective variation. Overall, these results
confirm that a capable judge model, specifically the Llama-3.3-70B-Instruct used in our study, can
reliably approximate expert annotations for both fine- and coarse-grained annotation tasks.

Table 5: Evaluation of annotation quality for 100 stratified TuluTalk samples: Exact-match agreement
and Spearman’s rank correlation (ρ) indicate strong alignment between LLM and human judgment.

Annotation Category Agreement (%) Spearman (ρ)
Input Quality 91 0.85
Instruct Reward 93 0.87
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C.2 Annotated Dataset Composition

Tables 6 and 7 provide an overview of the dataset-level composition by category and source subset
after performing Magpie annotations.

Tulu. After tagging, the annotated Tulu dataset comprises 911,782 samples, resulting in a loss of
only 3% samples due to tagging errors. In general, the dominant categories are Math, Coding, and
Reasoning, where Math is notably overrepresented with 21.5% of samples. Other categories are
more evenly distributed, with category shares ranging between 10-12%. Further, Precise Instruction
Following appears surprisingly limited, making up only 3.3% of the dataset. Other samples are
negligible, constituting just 0.1% of the total samples.

SmolTalk. After tagging, the annotated SmolTalk dataset comprises 1,024,791 samples, with a
tagging failure rate of only 2%, resulting in minimal data loss. For SmolTalk, the dominant category
is General, accounting for 57.6% of all samples. Within this category, the majority of samples
stem from the Smol-Magpie-Ultra subset (39.8%), which contains multi-turn synthetic conversations
designed to enhance open-domain fluency and context handling. This emphasis on general-purpose
data is a deliberate curation choice aimed at bootstrapping conversational fluency, tone control,
and context length generalization in Smol models. Notably, the Math and Coding categories are
significantly underrepresented, comprising only 4.6% and 7.1% of the dataset, respectively, thus
suggesting potential limitations in STEM-related reasoning coverage.

Magpie annotations allow us to build on this high-level dataset categorization with a more rigorous,
fine-grained sample-level analysis in the following sections.

Table 6: Dataset-level composition of the annotated Tulu dataset after Magpie tagging, showing the
number of samples, dataset share, and share within each task category.

Category Prompt Dataset # Samples Dataset % Category %

General

No Robots 8 703 1.0%

12.2%OASST1 7 117 0.8%
Tülu HC-10 210 0.0%
WildChat 94 470 10.4%

Knowledge Recall
FLAN v2 89 828 9.9%

11.5%SciRIFF 9 719 1.1%
TableGPT 4 962 0.5%

Math Persona MATH 145 895 16.0% 21.5%Persona MATH (Grade) 49 973 5.5%

Reasoning
NuminaMath-TIR 56 699 6.2%

13.8%OpenMathInstruct2 49 997 5.5%
Persona Algebra 19 439 2.1%

Coding Evol CodeAlpaca 106 882 11.7% 15.5%Persona Code 34 987 3.8%

Safety & Non-Compliance
CoCoNot 10 977 1.2%

12.2%Synth+WildGuardMix 50 190 5.5%
WildJailbreak 49 998 5.5%

Multilingual Aya 91 003 10.0% 10.0%

Precise Instruction Following Persona IF 29 938 3.3% 3.3%

Other Other 795 0.1% 0.1%

Total 20 datasets 911 782 100.0% 100.0%

36



Table 7: Dataset-level composition of the annotated SmolTalk dataset after Magpie tagging, showing
the number of samples, dataset share, and share within each task category.

Category Prompt Dataset # Samples Dataset % Category %

General

Everyday-Conversations 2 249 0.2%

57.6%

LongAlign 3 511 0.3%
OpenHermes2.5 94 439 9.2%
Smol-Magpie-Ultra 407 971 39.8%
Self-OSS-2 48 085 4.7%
SystemChats2.0 34 120 3.3%

Knowledge Recall Smol-Summarization 96 322 9.4% 9.4%

Math MetaMathQA-50k 46 728 4.6% 4.6%

Reasoning Numina-CoT 100 982 9.9% 9.9%

Coding APIGen-80k 72 522 7.1% 7.1%

Safety & Non-Compliance Smol-Constraints 34 175 3.3% 3.3%

Precise Instruction Following Explore-Instruct-Rewriting 30 384 3.0% 8.2%Smol-Rewrite 53 303 5.2%

Total 13 datasets 1 024 791 100.0% 100.0%

C.2.1 Token Length Distribution

To examine the token length distribution across the post-training datasets, we binned the per-sample
token counts for both Tulu and SmolTalk (fine-tuned with Llama models) into 40 logarithmically
spaced intervals ranging from 24 (16) to 213 (8,192) tokens. Fig. 9 and Fig. 10 show the resulting token
length distributions across source subsets for Tulu and SmolTalk, respectively. Notably, different
prompt sources exhibit distinct token length profiles, which can influence batch size, memory
requirements, and learning dynamics when mixed during training. This variation in token lengths
motivates our use of a sum-reduction over token-level losses, rather than the more commonly used
mean-reduction (see App. E). A more in-depth discussion of this analysis is provided in Lambert
et al. [7]. In our subsequent analysis, we do not further investigate token length characteristics, but
include this section here for completeness.
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Figure 9: Token length distribution per post-training subset for Tulu. Synth+WildGuardMix and
WildChat subsets feature the longest token lengths.
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Figure 10: Token length distribution per post-training subset for SmolTalk. Smol-Magpie-Ultra
features longer conversations and thus increased token lengths.
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C.3 Turn Types and Conversation Lengths

C.3.1 Single-Turn vs. Multi-Turn Samples

Tulu and SmolTalk differ substantially in the distribution of single-turn (ST) and multi-turn (MT)
samples. Fig. 11 shows the corresponding top-5 conversation lengths for both datasets.

Tulu. ST samples (i.e., 2 message exchanges in total between user and assistant) dominate the Tulu
dataset, comprising 870,819 examples (95.5% of the data), compared to only 40,963 MT examples
(4.5% of the data). Among MT samples, 4-turn conversations (i.e., a single follow-up) represent
approximately 1.8% of the dataset. All higher-turn conversations individually account for less than
0.8% (see Fig. 11a). Thus, Tulu is an overwhelmingly single-turn dataset.

SmolTalk. In contrast, MT samples constitute the majority of SmolTalk, with 718,164 examples
(70% of the data), while ST samples make up the remaining 306,627 (30% of the data). Within MT
examples, 6-turn conversations dominate, accounting for approximately 39.8% of samples, followed
by 3-turn conversations (mostly sourced from the Smol-Magpie-Ultra subset) at 28% of the data. All
other turn counts are negligible, each contributing less than 0.5%. Consequently, SmolTalk is an
overwhelmingly multi-turn dataset.
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Figure 11: Distribution of the top-5 conversation lengths. Tulu is overwhelmingly single-turn,
whereas SmolTalk is predominantly multi-turn, albeit with a substantial single-turn segment.
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C.3.2 Turn Type per Task Category

Tables 8 and 9 compare the distribution of ST and MT samples across Magpie task categories for Tulu
and SmolTalk. This constitutes a sample-level view of how different task categories are distributed
across single-turn and multi-turn interactions.

Tulu. All Magpie task categories in Tulu are heavily skewed toward single-turn interactions, with
Math, Information Seeking, and Coding contributing the largest shares of ST samples. The highest
multi-turn proportion is found in the Information Seeking category, where samples often reflect users
iteratively refining or clarifying their queries to guide the LLM’s response. Fig. 12 visualizes the
relative ST and MT proportions across task categories for Tulu.

Table 8: Sample-level distribution of Single-turn (ST) vs. multi-turn (MT) examples in the annotated
Tulu dataset by Magpie task category: (a) shows the relative proportion of ST/MT samples within
each category, while (b) shows the category-wise share among all ST and MT samples, respectively.

(a) Relative composition within each task category
(row-wise).

Category ST % MT % Total %

Advice seeking 92.4 7.6 100.0
Brainstorming 90.7 9.3 100.0
Coding & Debugging 95.7 4.3 100.0
Creative writing 88.6 11.4 100.0
Data analysis 97.3 2.7 100.0
Editing 76.6 23.4 100.0
Information seeking 92.9 7.1 100.0
Math 99.5 0.5 100.0
Other 97.5 2.5 100.0
Planning 92.4 7.6 100.0
Reasoning 97.6 2.4 100.0
Role playing 82.7 17.3 100.0

(b) Distribution across ST and MT splits (column-
wise).

Category ST % MT %

Advice seeking 3.1 5.5
Brainstorming 1.2 2.6
Coding & Debugging 14.8 14.2
Creative writing 5.9 16.1
Data analysis 2.3 1.4
Editing 0.9 5.6
Information seeking 24.2 39.5
Math 37.7 3.7
Others 2.9 1.6
Planning 0.8 1.4
Reasoning 4.9 2.6
Role playing 1.4 6.0

Total 100.0 100.0

SmolTalk. All Magpie task categories in SmolTalk exhibit a strong skew toward multi-turn in-
teractions. Notably, Brainstorming, Role Playing, and Creative Writing exceed 90% MT samples,
reflecting their inherently conversational nature. Coding & Debugging and Math show the highest
relative single-turn proportions (53.6% and 68.0%) of their respective categories (see Table 9a),
indicating a prevalence of one-shot problem-solution pairs. When viewed within each turn-type split
(see Table 9b), Math dominates the single-turn subset (51.7% of all ST samples), while Informa-
tion Seeking leads among multi-turn samples (23.4% of MT samples). These patterns suggest that
well-defined tasks often occur in single interactions, whereas more exploratory or research-oriented
queries tend to span multiple turns. Fig. 13 visualizes the ST/MT distribution across task categories
in SmolTalk.
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Table 9: Sample-level distribution of Single-turn (ST) vs. multi-turn (MT) examples in the annotated
SmolTalk dataset by Magpie task category: (a) shows the relative proportion of ST/MT samples within
each category, while (b) shows the category-wise share among all ST and MT samples, respectively.

(a) Relative composition within each task category
(row-wise).

Category ST % MT % Total %

Advice seeking 8.3 91.7 100.0
Brainstorming 3.4 96.6 100.0
Coding & Debugging 53.6 46.4 100.0
Creative writing 7.0 93.0 100.0
Data analysis 4.2 95.8 100.0
Editing 12.3 87.7 100.0
Information seeking 20.3 79.7 100.0
Math 68.0 32.0 100.0
Others 6.0 94.0 100.0
Planning 4.7 95.3 100.0
Reasoning 12.9 87.1 100.0
Role playing 2.8 97.2 100.0

(b) Distribution across ST and MT splits (column-
wise).

Category ST % MT %

Advice seeking 1.7 8.1
Brainstorming 0.7 8.4
Coding & Debugging 23.0 8.4
Creative writing 1.4 7.7
Data analysis 0.6 5.4
Editing 4.5 13.6
Information seeking 14.0 23.4
Math 51.7 10.3
Others 0.0 0.2
Planning 0.7 5.9
Reasoning 1.4 4.1
Role playing 0.3 4.6

Total 100.0 100.0
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Figure 12: Turn type distribution in Tulu by Magpie task category. Most categories are dominated by
single-turn (ST) samples, reflecting the dataset’s focus on concise, one-shot interactions.

41



M
ath

In
for

mati
on

see
kin

g

Cod
ing

&
Deb

ug
gin

g

Edit
ing

Brai
ns

tor
ming

Adv
ice

see
kin

g

Crea
tiv

e writ
ing

Plan
nin

g

Data
an

aly
sis

Role
pla

yin
g

Rea
son

ing

Oth
ers

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
Sa

m
pl

es
(%

)

Single- vs. Multi-Turn by Task Category (SmolTalk)
Single-Turn
Multi-Turn

Figure 13: Turn type distribution in SmolTalk by Magpie task category. Most categories are dominated
by multi-turn (MT) samples, consistent with the dataset’s emphasis on dialogic interaction. Math
stands out with a higher proportion of single-turn, one-shot problem-solution exchanges.

C.4 Input Quality Analysis

Magpie rates the input quality, i.e., the quality of the initial user prompt in a user–assistant exchange,
on a five-point scale ranging from “very poor" to “excellent". Specifically, it assesses whether
the user query is clearly formulated such that a language model can understand it and generate an
appropriate, high-quality response.

C.4.1 Overall Input Quality Distribution

Overall, both Tulu and SmolTalk consist primarily of high-quality instructions, reflecting the use of
capable LLMs during data generation and the application of rigorous quality control procedures.

Tulu. Fig. 14a shows the overall distribution of input quality labels across all Tulu samples, while
Fig. 14b breaks down the distribution by ST and MT samples. In addition, Table 10 reports the
supporting statistics. Tulu is predominantly composed of high-quality inputs, with over 80% of
samples rated as either “excellent” or “good”. This aligns with the strict curation and quality filtering
practices described in Lambert et al. [7]. A similar trend holds for ST samples, which make up 95%
of the dataset. For MT samples, the distribution is more balanced, with most samples rated as “good”,
followed by “excellent”. However, a non-negligible portion of MT samples (26.5%) fall into the

“poor” or “very poor” categories. As discussed in the main paper, this motivates a rigorous quality
filtering step when constructing new data mixtures. This is further supported by our later analysis of
instruct reward scores, which reveals a clear correlation between poor input quality and poor response
quality.

Table 10: Input quality distribution for the Tulu dataset, shown overall and broken down by single-turn
(ST) and multi-turn (MT) samples.

Input Quality Total
Count

% of
All Samples

ST Sample
Count

% of
ST Samples

MT Sample
Count

% of
MT Samples

excellent 572343 62.77% 563307 64.69% 9036 22.06%
good 185502 20.34% 171465 19.69% 14037 34.27%
average 52925 5.80% 45900 5.27% 7025 17.15%
poor 55027 6.04% 48842 5.61% 6185 15.10%
very poor 45985 5.04% 41305 4.74% 4680 11.42%
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(a) Overall input quality distribution for Tulu: most
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(b) Input quality distribution by turn type for Tulu: most
ST samples are of “excellent" quality while most MT
samples are of “good" quality, followed by “excellent".

Figure 14: Distribution of Magpie input quality labels for Tulu: (a) overall input quality distribution,
(b) distribution by turn type (single-turn vs. multi-turn).

SmolTalk. Similarly, Fig. 15a shows the overall distribution of input quality labels across all
SmolTalk samples and Fig. 15b breaks down the distribution by ST and MT samples, with Table
11 reporting the statistics. SmolTalk also contains predominantly high-quality inputs, with 85% of
samples rated as either “excellent” or “good”. In contrast to Tulu, significantly fewer samples fall
into the “poor” or “very poor” categories, suggesting that Allal et al. [9] applied stricter quality
control measures during curation. This trend holds across both ST and MT samples. In particular,
the ST subset is even more skewed toward high-quality inputs, with over 95% of ST samples rated
as “excellent” or “good”. These findings indicate that the SmolTalk data curation process results in
consistently high-quality samples, across both turn types.
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(a) Overall input quality distribution for SmolTalk:
most samples (over 85%) are of “excellent" or “good"
quality, indicating even stricter quality controls during
dataset curation.
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(b) Input quality distribution by turn type for SmolTalk:
most ST and MT samples are of “excellent" or “good"
quality, with significantly smaller portions for “aver-
age", “poor", and “very poor".

Figure 15: Distribution of Magpie input quality labels for SmolTalk: (a) overall input quality
distribution, (b) distribution by turn type (single-turn vs. multi-turn).

Table 11: Input quality distribution for the SmolTalk dataset, shown overall and broken down by
single-turn (ST) and multi-turn (MT) samples.

Input Quality Total
Count

% of
All Samples

ST Sample
Count

% of
ST Samples

MT Sample
Count

% of
MT Samples

excellent 187 624 61.18% 72 487 79.40% 115 137 53.46%
good 73 108 23.84% 14 370 15.74% 58 738 27.27%
average 19 713 6.43% 2 885 3.16% 16 828 7.81%
poor 12 049 3.93% 1 133 1.24% 10 916 5.07%
very poor 14 166 4.62% 415 0.45% 13 751 6.38%
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C.4.2 Input Quality by Task Category

In addition to the overall input quality analysis, we examine quality distributions across individual
Magpie task categories.

Tulu. Table 12 presents the input quality breakdown for each task category, and Fig. 16 visualizes
the corresponding fractional shares. Coding & Debugging (71.2% “excellent”), Data Analysis
(79.3% “excellent”), and Math (96.0% “excellent”) are heavily concentrated in the top quality bin,
with negligible low-quality tails. Editing (45.1% “good”) and Reasoning (46.3% “good”) skew
toward the second-highest bin, yet together still reach close to 80% when combining “excellent”
and “good” labels. Role Playing (48.2% “excellent”), Planning (66.9% “excellent”), and Creative
Writing (46.1% “excellent”) show a more balanced distribution: although they lead in combined

“excellent”+“good” ratings, 10–20% of samples fall into “average” or worse. Advice Seeking peaks in
the “good” category (29.1%) but also has a sizeable lower-quality tail, with 27.9% of samples rated as

“poor” or “very poor”. Brainstorming (26.9% “very poor”) and Others (41.6% “very poor”) exhibit
the highest noise levels, with over a quarter of samples rated at the lowest quality tier. These results
suggest that open-ended or generative tasks tend to be noisier in Tulu. For downstream modeling
and evaluation, filtering to the “excellent”+“good” subset may improve stability and reduce noise.
Consequently, we applied a similar strategy in our data mixture curation recipe.

Table 12: Input quality by Magpie task category for Tulu. Each row reports the proportion of samples
rated as excellent, good, average, poor, or very poor within each task category.

Task Category Excellent Good Average Poor Very Poor

Advice seeking 26.1 29.1 16.9 20.3 7.6
Brainstorming 24.2 26.8 10.2 11.9 26.9
Coding & Debugging 71.2 21.8 3.6 2.3 1.1
Creative writing 46.1 31.8 10.8 8.0 3.3
Data analysis 79.3 16.3 2.8 1.3 0.4
Editing 35.4 45.1 8.7 7.1 3.8
Information seeking 33.9 36.2 10.6 9.9 9.4
Math 96.0 2.8 0.7 0.4 0.2
Others 5.3 6.4 6.7 40.0 41.6
Planning 66.9 20.0 6.8 4.8 1.6
Reasoning 30.0 46.3 10.4 7.2 6.0
Role playing 48.2 24.8 9.3 9.9 7.7
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Figure 16: Input quality distribution by Magpie task category for Tulu. STEM-oriented tasks (e.g.,
Math, Coding) exhibit predominantly high-quality inputs, while open-ended or generative tasks (e.g.,
Brainstorming, Advice Seeking) show greater variability and more frequent low-quality samples.
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SmolTalk. Table 13 presents the input quality breakdown for each task category, and Fig. 17
visualizes the corresponding fractional shares. Coding & Debugging (81.7% “excellent”), Math
(88.2% “excellent”), and Data Analysis / Reasoning (both around 67% “excellent”) are heavily
concentrated in the top quality bin, with combined “excellent”+“good” shares of 98.0%, 98.0%,
and 94.8%, respectively. Editing and Brainstorming peak in the “excellent” bin (39.4% and 51.3%),
but also include substantial “good” proportions (33.3% and 28.4%), resulting in a combined “ex-
cellent”+“good” share of 70–80%. Creative Writing (44.7% “excellent”, 36.3% “good”) and Role
Playing (61.4% “excellent”, 21.0% “good”) show greater variability, with 15–20% of samples rated
as “average” or worse. Advice Seeking includes 48.3% “excellent” and 28.7% “good”, but also a
non-negligible “very poor” fraction (12.5%), indicating some noisy or ill-formed queries. Planning
shows the largest “very poor” tail (13.6%), while Editing and Information Seeking have the highest
combined share of “poor”+“very poor” ratings (17.0%), suggesting these categories include more
problematic inputs. Overall, these results indicate that closed-form and structured tasks (e.g., Math,
Coding, Data analysis) yield the highest input quality, whereas open-ended or generative tasks remain
more prone to noise, even in SmolTalk. As with Tulu, filtering for the combined “excellent”+“good”
subset may improve downstream model stability.

Table 13: Input quality percentages by Magpie task category for SmolTalk. Each row reports the
proportion of samples rated as excellent, good, average, poor, or very poor within each task category.

Task Category Excellent Good Average Poor Very Poor

Advice seeking 48.3 28.7 7.5 3.0 12.5
Brainstorming 51.3 28.4 9.8 3.7 6.8
Coding & Debugging 81.7 16.4 1.4 0.4 0.1
Creative writing 44.7 36.3 16.1 2.3 0.6
Data analysis 66.6 28.0 4.3 0.8 0.3
Editing 39.4 33.3 10.3 13.2 3.8
Information seeking 43.4 31.2 8.7 6.1 10.6
Math 88.2 9.9 1.2 0.5 0.2
Others 56.3 29.9 6.6 2.4 4.9
Planning 43.8 26.8 11.6 4.3 13.6
Reasoning 67.0 25.2 4.6 2.1 1.1
Role playing 61.4 21.0 7.8 7.4 2.4
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Figure 17: Input quality distribution by Magpie task category for SmolTalk. STEM-oriented tasks
(e.g., Math, Coding) exhibit predominantly high-quality inputs, while open-ended or generative tasks
(e.g., Brainstorming, Advice Seeking) show greater variability and more frequent low-quality samples.
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C.5 Response Quality Analysis

Magpie rates the response quality, i.e., the quality of the assistant’s response to a user prompt, as the
instruct reward via a language model-based reward model. Specifically, it employs FsfairX-LLaMA3-
RM-v0.1 [70–72], a Llama-3-8B-Instruct-based reward model that assigns a continuous-valued score
to each response. Since the original implementation supports only single-turn conversations, we
extend the reward annotation pipeline to handle multi-turn samples by using a separate Llama-3.3-
70B-Instruct-based LLM-as-a-Judge to evaluate MT responses on a scale between 0-5. We refer to
more details in App. C.

C.5.1 Single-Turn Reward Distributions

Tulu. Fig. 18 shows the distribution of instruct reward scores by task category for Tulu’s ST samples.
The distribution is roughly bell-shaped, with most scores falling in the range of [–6, +6] and a peak
density between +1 and +2. Notably, Math and Coding & Debugging receive almost exclusively
non-negative scores, peaking around +1 to +3, reflecting clear, well-structured prompts with high
response quality. Information Seeking, Reasoning, and Data Analysis are centered closer to zero,
with modest tails extending into negative reward regions. In contrast, Advice Seeking, Brainstorming,
Creative Writing, and Others exhibit heavy left tails (extending to –12), indicating many low-quality
or poorly answered prompts. These observations suggest that filtering samples by a reward threshold
(e.g., ≥ 0 or≥ 1) may yield a cleaner, high-quality single-turn subset dominated by Math and Coding
tasks, while low-reward examples (e.g.,≤ −3) can help identify problematic, open-ended prompts for
further curation. We directly incorporate these insights into our dataset curation recipe (see App. D).
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Figure 18: Distribution of single-turn instruct reward scores in the Tulu dataset, broken down by
Magpie task category. STEM-oriented tasks (e.g., Math, Coding & Debugging) receive predominantly
non-negative scores, reflecting high-quality, well-answered prompts. In contrast, open-ended and
creative tasks (e.g., Creative Writing, Advice Seeking) exhibit heavier negative tails, indicating a
higher prevalence of low-quality or poorly answered examples.
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SmolTalk. Fig. 19 shows the distribution of instruct reward scores by task category for SmolTalk’s
ST samples. The distribution is approximately bell-shaped, spanning the range [–9, +7], with the
highest density around +1. Coding & Debugging receives almost exclusively non-negative scores,
peaking between +1 and +3, indicating well-posed prompts that the model handles reliably. Math is
more evenly distributed around zero, suggesting greater variation in prompt clarity or complexity.
Information Seeking, Reasoning, and Data Analysis are similarly centered near zero, with modest
negative tails extending to –5, reflecting mixed response quality across these domains. Advice Seeking,
Brainstorming, Creative Writing, and Others exhibit heavier left tails reaching down to –7, suggesting
a greater fraction of underspecified or incoherent prompts. These trends again suggest that filtering
samples by reward thresholds (e.g., ≥ 0 or ≥ 1) can yield a high-quality subset dominated by Math
and Coding tasks, while low-reward samples (e.g., ≤ −3) highlight problematic open-ended prompts
that may benefit from further curation. We elaborate on these filtering strategies in App. D.
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Figure 19: Distribution of single-turn instruct reward scores in the SmolTalk dataset, broken down by
Magpie task category. STEM-oriented tasks (e.g., Math, Coding & Debugging) receive predominantly
non-negative scores, indicating reliable and well-structured prompts. Open-ended and creative tasks
(e.g., Creative Writing, Advice Seeking) exhibit similar distributions with slightly broader negative
tails, suggesting a slightly higher prevalence of underspecified or incoherent prompts.
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C.5.2 Multi-Turn Reward Distributions

Tulu. Fig. 20 shows the distribution of instruct reward scores by task category for Tulu’s MT
samples. Nearly 90% of MT samples receive the maximum reward score of 5, approximately 8%
land at 4, and the remaining 2% are scattered across scores 0–3. Information Seeking alone accounts
for roughly 35% of the reward-5 bin, followed by Creative Writing at around 15% and Coding
& Debugging at 12–13%. All other categories (e.g., Advice Seeking, Role Playing, Math) each
contribute between 2–8% of that top bin. The ∼8% of samples rated at reward 4 exhibit a similar task
distribution, with Information Seeking, Coding & Debugging, and Creative Writing again leading,
though categories such as Advice Seeking and Role Playing are relatively over-represented compared
to the reward-5 group. Scores ≤ 3 are vanishingly rare. When they do occur, they disproportionately
stem from open-ended categories such as Advice Seeking, Creative Writing, and Role Playing,
likely reflecting occasional multi-turn drift or incoherence. These observations indicate that MT
conversations are overwhelmingly rated “excellent” by the reward model, especially for structured
tasks like Information Seeking, Coding, and Math. Creative and advisory interactions, while still
high-quality on average, account for the largest share of samples in the reward-4 bin and the only
non-zero mass below 4, suggesting that these task types may benefit from additional filtering.
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Figure 20: Distribution of multi-turn instruct reward scores in the Tulu dataset, broken down by
Magpie task category. The vast majority of samples receive the maximum score of 5, with structured
tasks such as Information Seeking, Coding & Debugging, and Math dominating this top bin. Creative
and open-ended tasks (e.g., Creative Writing, Advice Seeking, Role Playing) are over-represented in
the small mass at score 4 and account for nearly all samples scoring below 4, highlighting them as
key targets for further quality filtering.

SmolTalk. Fig. 21 shows the distribution of instruct reward scores by task category for SmolTalk’s
MT samples. As with Tulu, nearly 90% of MT samples receive the maximum reward score of 5,
approximately 8% score 4, and the remaining 2% fall into bins 0–3. Information Seeking contributes
the largest share, accounting for roughly 22–23% of the reward-5 bin. Editing follows with around
14%, and Math with approximately 10%. Advice Seeking, Coding & Debugging, and Brainstorming
each make up about 8–9%. Creative Writing, Planning, and Data Analysis contribute mid-single-digit
proportions (5–7%), while Reasoning and Role Playing round out the top bin with around 4–5%
each. The samples scoring 4 (roughly 8% of total) broadly mirror the top-bin rankings, though
open-ended tasks such as Advice Seeking and Creative Writing are slightly more prominent. Scores
≤ 3 are extremely rare (fewer than 2% overall), and when present, are disproportionately drawn
from open-ended categories such as Advice Seeking, Creative Writing, and Role Playing, smilarly
reflecting occasional context drift or incoherence. These findings indicate that MT conversations in
SmolTalk, as in Tulu, are overwhelmingly rated “excellent” by the reward model, particularly for
structured tasks such as Information Seeking and Math. Open-ended interactions, while still achieving
high scores on average, represent the only meaningful mass below 4, suggesting these categories may
benefit from further quality filtering as well.
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Figure 21: Distribution of multi-turn instruct reward scores in the SmolTalk dataset, broken down
by Magpie task category. Most samples receive the maximum score of 5, with structured tasks such
as Information Seeking and Math, but also Editing dominating the top bin. Open-ended tasks (e.g.,
Advice Seeking, Creative Writing, Role Playing) contribute more substantially to lower reward scores,
including the small but non-zero mass in the 0–3 range, suggesting they may benefit from further
curation or quality filtering.

C.5.3 Instruct Reward vs. Input Quality

In this section, we investigate the relationship between input quality and instruct reward to validate
the intuition that poorly formulated user prompts often lead to suboptimal assistant responses.

Single-Turn Case. Fig. 22 and Fig. 23 show the distribution of single-turn reward scores across
task categories, grouped by input quality label, for both Tulu and SmolTalk datasets. In general,
single-turn instruct rewards exhibit a strong correlation with input quality. Excellent prompts yield
reward scores mostly in the +1 to +5 range, peaking around +2. Good prompts are centered between
–5 and +1. Average inputs result in rewards concentrated around –7 to –3, while Very Poor prompts
are heavily skewed toward –11 to –7. These patterns confirm that input quality is a strong predictor
of response quality for the majority of single-turn samples for both datasets.

Multi-Turn Case. Fig. 24 and Fig. 25 show the distribution of multi-turn reward scores across task
categories, grouped by input quality label, for both Tulu and SmolTalk datasets. While single-turn
rewards provide a clear, continuous signal of prompt quality, multi-turn reward scores are heavily
saturated at the maximum value (5) for both Tulu and SmolTalk, resulting in a loss of discriminative
power across input quality strata. A closer inspection of our annotated data samples reveals why this
occurs. Below are two illustrative cases where the input quality is rated as “poor”, yet the overall
multi-turn conversation still receives a perfect instruct reward of 5.

Example 1: Assistant starts first and initial prompt has typos.

’conversations’: [
{’from’: ’gpt’, ’value’: ’Jhonny is a chatbot that flirts with the user

using Johnny Bravo quotes’},
{’from’: ’human’, ’value’: "How’s you’re day going?"},
{’from’: ’gpt’, ’value’: ’Great, But enough about me... Let’s talk about

me. What do you think of me?’},
{’from’: ’human’, ’value’: "I think you’re pretty neat!"},
{’from’: ’gpt’, ’value’: ’...’},
...

]
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In this example, two factors contribute to the low input quality rating: (1) The conversation begins
with the assistant rather than the user, due to the inclusion of a system-style prompt, something that
the Magpie input-quality rater penalizes. (2) The initial prompt includes a typo (“Jhonny” instead of

“Johnny”), which also contributes to a lower input quality score. Despite these, the assistant’s behavior
remains consistent and coherent, resulting in a perfect reward by imitating Johnny Bravo.

Example 2: Vague user query is clarified later.

’conversations’: [
{’from’: ’human’, ’value’: ’Can you explain me how cheats are working?’},
{’from’: ’gpt’, ’value’: ’Cheating can be of various types. I will need

more information on what type of cheating you
are referring to before I can provide you with
any information.’},

{’from’: ’human’, ’value’: ’How do cheats in games like COD and CS:GO
work? What goes into them? Please discuss
the ethics of cheats as well.’},

{’from’: ’gpt’, ’value’: ’Cheats in games like Call of Duty (COD) and
Counter-Strike: Global Offensive (CS:GO)
typically work by manipulating the game\’s
code to gain an unfair advantage...’}

]

In this case, the first user input is vague and could improve from better grammar, leading to a low
input quality rating by Magpie. However, the user clarifies their request in the following turns. The
assistant responds appropriately and in detail, producing a coherent and informative answer by the
end of the conversation. This illustrates how multi-turn interactions can recover from poor initial
queries, yielding high-quality final responses despite the low initial rating.

Together, these examples highlight a key distinction: multi-turn conversations may achieve high
reward scores even when the initial input is of poor quality, particularly when clarification or intent
refinement occurs across turns. As a result, input quality is less predictive of instruct reward in the
multi-turn case than in the single-turn setting. This observation initially motivated the development of
a dedicated multi-turn annotation pipeline for Magpie, ensuring that reward labels reflect the quality
of the entire conversation rather than just the initial prompt.
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Figure 22: Distribution of single-turn instruct reward scores by input quality label in the Tulu dataset.
Higher-quality prompts (excellent, good) correspond to significantly higher reward scores, while
lower-quality inputs (average, poor, very poor) are associated with markedly lower rewards. This
confirms a strong correlation between input quality and response quality in the single-turn setting.
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Figure 23: Distribution of single-turn instruct reward scores by input quality label in the SmolTalk
dataset. As with Tulu, higher input quality is strongly correlated with higher instruct reward,
demonstrating that prompt clarity and specificity are key drivers of response quality in the single-turn
setting.

52



0 1 2 3 4 5
Instruct Reward

0

20

40

60

80
P

er
ce

nt
ag

es
of

Sa
m

pl
es

(%
) Input Quality: Good

0 1 2 3 4 5
Instruct Reward

0

20

40

60

80

P
er

ce
nt

ag
es

of
Sa

m
pl

es
(%

) Input Quality: Excellent

0 1 2 3 4 5
Instruct Reward

0

20

40

60

80

P
er

ce
nt

ag
es

of
Sa

m
pl

es
(%

) Input Quality: Average

0 1 2 3 4 5
Instruct Reward

0

20

40

60

80

P
er

ce
nt

ag
es

of
Sa

m
pl

es
(%

) Input Quality: Poor

0 1 2 3 4 5
Instruct Reward

0

20

40

60

80

P
er

ce
nt

ag
es

of
Sa

m
pl

es
(%

) Input Quality: Very poor

Multi-Turn Instruct Reward by Input Quality (Tulu)

Task Category
Information seeking
Creative writing
Coding & Debugging
Role playing
Editing
Advice seeking

Math
Reasoning
Brainstorming
Others
Data analysis
Planning

Figure 24: Distribution of multi-turn instruct reward scores by input quality label in the Tulu dataset.
Most samples, regardless of input quality, receive the maximum reward score of 5, suggesting that
clarification across turns often compensates for initially vague or low-quality prompts.
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Figure 25: Distribution of multi-turn instruct reward scores by input quality label in the SmolTalk
dataset. Similar to Tulu, the reward model heavily favors MT conversations with perfect scores, even
for lower-rated prompts, reflecting the tendency of multi-turn dialogues to recover from poor initial
queries through user clarification.
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C.6 Difficulty Analysis

In this section, we analyze how Magpie’s difficulty labels are distributed across task categories for
the Tulu and SmolTalk datasets. We include both overall and turn-type-specific analyses.

C.6.1 Overall Distribution

Fig. 26 and Fig. 27 show the relative difficulty distribution per task category for Tulu and SmolTalk.
Each bar reflects the percentage of a task’s samples that fall into each difficulty bin.

Tulu. Math dominates the easy, hard, and very hard bins, accounting for 45%, 37%, and 36% of
the samples in those categories, respectively. Information Seeking peaks at very easy (44%), and
remains substantial in both easy (28%) and medium (32%). Coding & Debugging is spread across all
difficulty levels: approximately 17% in easy, 22% in medium, 12% in hard, and 14% in very hard. It
is broadly represented but does not dominate any particular bin. Other categories, including Creative
Writing, Role Playing, and Advice Seeking, each account for no more than 10% of any difficulty bin.
This distribution suggests that fact-based tasks (e.g., Math, Information Seeking, Coding) dominate
mid-to-lower difficulty levels, while creative and advisory tasks remain relatively underrepresented
across all levels.

SmolTalk. Math similarly dominates the hard and very hard bins, contributing approximately
28% and 47% of the samples, respectively. Information Seeking peaks at very easy (35%) and
remains substantial in easy (25%), while being evenly represented across other bins as well. Coding
& Debugging is fairly balanced across difficulty levels, showing no strong concentration at either
extreme. All other task categories, including Creative Writing, Role Playing, and Advice Seeking,
remain minor contributors with ≤10% in any bin. These patterns suggest that again fact-based
tasks, especially Math, skew toward mid-to-high difficulty, whereas creative and advisory tasks occur
infrequently and are less likely to be rated as difficult.
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Figure 26: Distribution of difficulty ratings by task category for Tulu. Each bar shows the relative
difficulty composition within a task.
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Figure 27: Distribution of difficulty ratings by task category for SmolTalk. Each bar shows the
relative difficulty composition within a task.

C.6.2 Single-Turn

Fig. 28 and Fig. 29 show the relative difficulty distribution per task category for single-turn samples
in Tulu and SmolTalk. Each bar reflects the percentage of a task’s single-turn samples that fall into
each difficulty bin.

Tulu. In the single-turn setting, Math continues to dominate the easy (approximately 46%) and
hard (38%) bins, while Information Seeking peaks in the very easy bin (44%) and also contributes
around 13% to very hard. Coding & Debugging is distributed across easy (18%), medium (22%), and
hard (12%), maintaining a consistent presence across difficulty levels. Creative Writing and Role
Playing remain underrepresented in the lower difficulty bins but rise to 10–12% in the very hard
bin. Given Tulu’s predominantly single-turn nature, it is unsurprising that fact-based tasks dominate
the lower difficulty levels, while creative and open-ended tasks contribute disproportionately to the
hardest examples.

SmolTalk. In SmolTalk, Math shows strong representation across all difficulty levels, from very
easy to very hard, highlighting its prominence in single-turn problem–solution prompts. Coding
& Debugging is also evenly distributed across the difficulty bins, showing no strong skew. Other
categories such as Information Seeking and Editing appear broadly stratified as well, without any
pronounced concentration, suggesting a relatively uniform difficulty distribution across task types.
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Figure 28: Difficulty distribution by task category for single-turn samples in Tulu. Each bar shows
the relative proportion of difficulty labels within each task. Fact-based tasks dominate lower difficulty
levels, while creative and role-based prompts appear more frequently in the hardest bins.
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Figure 29: Difficulty distribution by task category for single-turn samples in SmolTalk. Math and
Coding & Debugging are consistently present across all difficulty bins, while other task types remain
evenly stratified with no strong concentration.
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C.6.3 Multi-Turn

Fig. 30 and Fig. 31 show the relative difficulty distribution per task category for multi-turn samples
in Tulu and SmolTalk. Each bar reflects the percentage of a task’s multi-turn samples that fall into
each difficulty bin.

Tulu. In the multi-turn setting, Information Seeking becomes even more dominant, comprising
approximately 53% of easy, 47% of medium, and 48% of very easy samples. Coding & Debugging
and Math together account for 25–35% of samples across all difficulty bins, with Math slightly
more prevalent in the hard and very hard categories. Creative Writing and Role Playing each
contribute around 18% to the very hard bin, indicating that these open-ended multi-turn dialogues
pose significant challenges. Overall, multi-turn conversations in Tulu are heavily concentrated on
information-seeking tasks, while creative and role-based categories contribute more prominently to
the high-difficulty tail than in the single-turn or overall distributions.

SmolTalk. Information Seeking is again highly prevalent, contributing approximately 43% of very
easy, 30% of easy, and 24% of very hard multi-turn samples. Math continues to dominate the very
hard category. Coding & Debugging is evenly distributed across the lower difficulty bins (very easy
to hard), but has almost no presence in the very hard bin. Brainstorming is fairly evenly represented
across all difficulty levels, likely due to its inherently interactive and exploratory nature in multi-turn
settings. Overall, SmolTalk’s multi-turn conversations remain focused on fact-based tasks, especially
Math, while open-ended tasks contribute more sparsely and with a wider difficulty spread.
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Figure 30: Difficulty distribution by task category for multi-turn samples in Tulu. Information
Seeking dominates the easier bins, while open-ended tasks such as Creative Writing and Role Playing
contribute substantially to the very hard bin.
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Figure 31: Difficulty distribution by task category for multi-turn samples in SmolTalk. Math and
Information Seeking are prominent across all bins, while categories like Brainstorming and Coding &
Debugging are more evenly spread across difficulty levels.

C.6.4 Instruction Reward vs. Difficulty

To assess the relationship between task difficulty and response quality, Fig. 32, Fig. 33, Fig. 34, and
Fig. 35 show instruct reward distributions for single-turn and multi-turn samples in the Tulu and
SmolTalk datasets, respectively. Overall, we observe that difficulty has only a negligible effect on
reward distribution, altering the spread and shape only marginally. As such, we do not consider
difficulty a key optimization lever in our dataset curation recipe.

Tulu. For Tulu, the instruct reward distribution remains largely stable across difficulty levels in both
single-turn and multi-turn settings. In the single-turn case, the overall reward distribution is consistent
across difficulties, ranging from approximately –14 to +7, with only slightly clearer separation
between low- and high-reward samples in the very hard bin (see Fig. 32b). In the multi-turn case,
the reward values themselves remain unchanged and only the distribution of task categories within
difficulty bins varies slightly (see Fig. 33a and Fig. 33b). Thus, unlike input quality, difficulty shows
minimal predictive power over response quality for Tulu.

SmolTalk. Similarly, for SmolTalk, the reward distributions are largely invariant to difficulty levels.
In the single-turn case, the overall reward range stays consistent, though for very hard samples,
the peak shifts slightly from around +1 to 0 (see Fig. 34a and Fig. 34b). In the multi-turn case, as
with Tulu, reward scores remain constant, with changes only in the composition of underlying task
categories (see Fig. 35a and Fig. 35b). In summary, difficulty annotations do not significantly impact
the reward model’s output, and thus play only a minor role in shaping response quality in SmolTalk.
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(a) Single-turn instruct reward distribution for very easy samples in Tulu.
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(b) Single-turn instruct reward distribution for very hard samples in Tulu.

Figure 32: Instruct reward distribution by difficulty level for single-turn samples in Tulu. The overall
shape remains consistent, with slightly clearer separation of low and high rewards in very hard
samples.
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(a) Multi-turn instruct reward distribution for very easy samples in Tulu.
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(b) Multi-turn instruct reward distribution for very hard samples in Tulu.

Figure 33: Instruct reward distribution by difficulty level for multi-turn samples in Tulu. Reward
values remain saturated at 5 and only task composition within bins changes.

61



-13 -11 -9 -7 -5 -3 -1 1 3 5
Instruct Reward

0

2

4

6

8

10

12

P
er

ce
nt

ag
e

of
Sa

m
pl

es
(%

)

Single-Turn Instruct Reward for Difficulty: Very Easy (SmolTalk)

Task Category
Math
Information seeking
Coding & Debugging

Editing
Brainstorming
Reasoning

Creative writing
Advice seeking

Others
Planning

Data analysis
Role playing

(a) Single-turn instruct reward distribution for very easy samples in SmolTalk.

-17 -15 -13 -11 -9 -7 -5 -3 -1 1 3 5 7
Instruct Reward

0

2

5

8

10

12

15

18

P
er

ce
nt

ag
e

of
Sa

m
pl

es
(%

)

Single-Turn Instruct Reward for Difficulty: Very Hard (SmolTalk)

Task Category
Math
Coding & Debugging
Information seeking

Creative writing
Reasoning
Planning

Data analysis
Brainstorming

Role playing
Advice seeking

Editing
Others

(b) Single-turn instruct reward distribution for very hard samples in SmolTalk.

Figure 34: Instruct reward distribution by difficulty level for single-turn samples in SmolTalk. Reward
ranges remain stable, with a slight leftward shift for very hard prompts.
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(a) Multi-turn instruct reward distribution for very easy samples in SmolTalk.
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(b) Multi-turn instruct reward distribution for very hard samples in SmolTalk.

Figure 35: Instruct reward distribution by difficulty level for multi-turn samples in SmolTalk. Reward
saturation at score 5 persists across difficulty levels, with only minor shifts in task composition.
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C.7 Language Analysis

In this section, we provide an overview of the language distribution in the Tulu and SmolTalk datasets.

C.7.1 Overall Language Distributions

Both Tulu and SmolTalk are predominantly English datasets. Fig. 36a shows the top five languages
represented in Tulu, with English (EN) accounting for 95.4% of all samples, followed by Russian
(RU) at 1.5% and Simplified Chinese (ZH) at 1.1%. Fig. 36b presents the same analysis for SmolTalk,
where English dominates even more strongly, comprising 99.3% of all samples. These results indicate
that both datasets are almost exclusively focused on English conversations, with only marginal
inclusion of multilingual content.
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(a) Top 5 languages in the Tulu dataset.
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(b) Top 5 languages in the SmolTalk dataset.

Figure 36: Overall language distribution in the Tulu and SmolTalk datasets. Both are overwhelmingly
English-centric, with only a small fraction of samples in other languages such as Russian and Chinese.

C.7.2 Language by Task Category

Fig. 37 Fig. 38 show the top three languages by task category for the Tulu and SmolTalk datasets.

For Tulu, Math accounts for the largest share of English samples (42%), followed by Information
Seeking and Coding, each contributing around 17%. Russian and Chinese samples are predominantly
associated with Information Seeking tasks, an intuitive result, as users often query factual information
in their native language during chat interactions.

In SmolTalk, the distribution of English samples is more balanced, with Math and Information
Seeking comprising 22% and 20%, respectively. Interestingly, in the Latin American language group
(LA), the vast majority of samples (75%) correspond to Math tasks. Upon inspection, we find that
many of these are simple mathematical expressions, e.g., “24 x 17 + 673 - 36.7 = ?”, containing no
natural language text. Magpie does not misclassify these samples per se, but rather assigns them to
the LA language group, likely due to a lack of sufficient linguistic signal to support a more accurate
classification. While this behavior is notable, the overall size of the LA subset is only 0.4% of the
dataset, making this an inconsequential artifact in practice.
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Figure 37: Top 3 languages by task category for the Tulu dataset. English samples are dominated by
Math, Information Seeking, and Coding, while Russian and Chinese samples primarily cluster around
Information seeking queries.
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Figure 38: Top 3 languages by task category for the SmolTalk dataset. English samples are largely
split between Math and Information Seeking. Latin American samples are mostly simple mathematical
expressions, leading to their classification under Math despite minimal linguistic content.
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C.8 Safety

Safety is a crucial aspect of post-training datasets. In this section, we examine the safety characteristics
of the Tulu and SmolTalk corpora.

C.8.1 Overall Safety Distribution
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Figure 39: Safety distribution for Tulu and
SmolTalk. Both datasets are predominantly safe.

Fig. 39 shows the overall safety distribution for
the Tulu and SmolTalk datasets. In general, both
datasets are predominantly safe, with 97.4% of
Tulu samples and 99.1% of SmolTalk samples
flagged as safe. This reflects the rigorous quality
control applied by Lambert et al. [7] and Allal
et al. [9], which includes an explicit focus on
safety during data collection and filtering. Nev-
ertheless, a small fraction of samples are labeled
as unsafe. Below, we provide two representative
examples from Tulu and SmolTalk.

Example 1 from Tulu: Medical advice.

’conversations’: [
{’from’: ’human’, ’value’: "Pretend you are a doctor. I’m feeling

a subtle pain in my chest and my sternum
feels like I need to stretch it until
it pops. Am I having a heart attack? Is
there anything I need to be worried
about?"},

{’from’: ’gpt’, ’value’: "No, this is unlikely to be a heart attack,
but you should still take care of it.
I’d suggest you get up and move around a bit.
Mild pain and tightness of the sternum can be
caused by spasms in the muscles surrounding
the chest, back, and shoulders. Such spasms
may cause ...},

]

In this example, the assistant provides specialized advice, which is flagged by Llama-Guard 2 [29]
as inappropriate, particularly due to its medical context. Even if the content appears benign or
well-intentioned, Llama-Guard still classifies it under one of its 11 unsafe categories.

Example 2 from SmolTalk: Casino game.

’conversations’: [
{’from’: ’human’, ’value’: "How can we design and develop a cutting-

edge online casino platform with a unique
and innovative crash game that surpasses
competitors, boasting visually stunning
graphics and captivating features? The
crash game should be built using PHP
and JS ...},

{’from’: ’gpt’, ’value’: "To design and develop a cutting-edge online
casino platform with a unique and innovative
crash game, we need to follow these steps:
1. Conduct thorough ...},

]

In this case, the user is asking for technical guidance on building a casino-style game. Although the
query and response are not overtly harmful, Llama-Guard flags the conversation as unsafe due to its
association with gambling, assigning it to the non-violent crime category.
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These examples illustrate that most unsafe samples are benign in appearance but contain elements,
such as medical or gambling-related content that trigger conservative safety filters. Nonetheless,
the proportion of such flagged instances is negligible in both datasets. However, safety in LLM
fine-tuning remains an active area of research [73], with various mechanisms available to instill
safety both during and after training [74–76]. We leave a more comprehensive safety analysis of
post-training datasets to future work.

C.8.2 Safety by Task Category

Fig. 40 and Fig. 41 show the distribution of safe and unsafe samples across task categories in the
Tulu and SmolTalk datasets.

Overall, both datasets exhibit no meaningful concentration of unsafe samples in any specific task
category. In SmolTalk, for example, the highest proportion of unsafe samples appears in Information
Seeking, but even here the rate remains extremely low at just 2.6%. This analysis supports our
earlier observations: unsafe labels are rare, broadly and uniformly distributed, and not linked to
any anomalous or harmful behavior within specific task types. Instead, most flagged cases reflect
conservative or overly sensitive filtering (see previous examples). As such, the safety risks at the
task-category level are negligible and likely represent noise or edge-case overflagging by Magpie’s
Llama Guard safety classifier.
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Figure 40: Distribution of safe and unsafe samples by task category in the Tulu dataset. Unsafe
samples are rare and show no meaningful concentration in any specific category.
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Figure 41: Distribution of safe and unsafe samples by task category in the SmolTalk dataset. Unsafe
samples are rare and show no meaningful concentration in any specific category.
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D Data Curation Recipe Details

This section provides a detailed overview of our quality-based and task-aware data curation recipe
used to construct our TuluTalk data mixture. The steps of the algorithm are outlined in Fig. 42.

In Step 1, we compute quantiles over reward scores to guide subsequent selection thresholds.
Specifically, we compute:

• First and second quantiles of single-turn samples with input quality labeled as excellent
• Third quantile of single-turn samples with input quality good

These thresholds serve as principled cutoffs for isolating top-tier completions, allowing us to distin-
guish high-reward responses from more average ones within higher-quality prompt strata.

Step 2 constitutes our initial quality-based curation stage. Here, we select only samples with the
highest input quality and highest response reward. This includes all multi-turn samples labeled
excellent with a reward score of 5, and all single-turn samples labeled excellent with a reward
score above the second quantile.

Step 3 identifies task categories whose representation in the selected set Dc drops by more than
a threshold τ relative to the original dataset. This step ensures that quality filtering does not
disproportionately exclude certain task types.

In Step 4, we reintroduce high-quality fallback samples from underrepresented task categories to
restore diversity. Specifically, we add:

• Multi-turn samples with input quality excellent and response reward of 4
• Single-turn samples with input quality excellent and response reward between the first

and second quantiles

These samples are labeled as “high-quality fallback" in Fig. 42.

We further boost task diversity by introducing “diversity boost" samples. Specifically, these are:

• Multi-turn samples with input quality good and response reward of 5
• Single-turn samples with input quality good and reward above the third quantile

As discussed in the main paper, we found that applying only the quality-based filtering initially led to
suboptimal performance due to a shortage of instruction following samples, an issue successfully
addressed by the diversity-enhancing additions in Step 4.

Together, these refinements ensure that the curated dataset maintains both high overall quality and
balanced coverage across task categories.

We apply this curation pipeline independently to the annotated Tulu and SmolTalk datasets and merge
the resulting subsets to form our TuluTalk mixture.

We select the quantiles as an intuitive and natural choice for the thresholds on single-turn reward
scores, and do not perform additional ablations due to limited compute budget. We leave a thorough
ablation study to find optimum thresholds as a future work.
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Quality- and Task-Aware Data Curation Recipe

Input: Annotated dataset D with Magpie tags for input quality (input_quality),
single-turn/multi-turn response quality (st_reward/mt_reward), and task category
(task_category); task diversity threshold τ .
Output: Curated subset Dc that is both high-quality and task-diverse.

Recipe:
1. Compute quantiles:

Qe
1, Q

e
2 ← 1st/2nd quantiles of

{
S[st_reward] | S[input_quality] = excellent,

S[turn] = single_turn
}
,

Qg
3 ← 3rd quantile of

{
S[st_reward] | S[input_quality] = good,

S[turn] = single_turn
}
.

2. For each S ∈ D, add S to Dc if

S[input_quality] = excellent ∧(
(S[turn] = multi_turn ∧ S[mt_reward] = 5)

∨ (S[turn] = single_turn ∧ S[st_reward] > Qe
2)
)
.

3. Let C be the set of task categories whose coverage in Dc drops by more than τ% relative to D.

4. For each S ∈ D \ Dc, add S to Dc if

S[task_category] ∈ C ∧(
S[input_quality] = excellent ∧

(
(S[turn] = multi_turn ∧ S[mt_reward] = 4)

∨ (S[turn] = single_turn ∧Qe
1 < S[st_reward] < Qe

2)
)

︸ ︷︷ ︸
high-quality fallback

∨(
S[input_quality] = good ∧

(
(S[turn] = multi_turn ∧ S[mt_reward] = 5)

∨ (S[turn] = single_turn ∧ S[st_reward] > Qg
3)
)))

︸ ︷︷ ︸
diversity boost

Figure 42: Quality- and task-aware curation recipe used to construct the TuluTalk data mixture.
Steps 1-4 sequentially select high-quality examples (Step 2), identify underrepresented task categories
(Step 3), and reintroduce fallback samples (Step 4) to restore task diversity without compromising
input or output quality.

60

Figure 42: Quality- and task-aware curation recipe used to construct the TuluTalk data mixture.
Steps 1-4 sequentially select high-quality examples (Step 2), identify underrepresented task categories
(Step 3), and reintroduce fallback samples (Step 4) to restore task diversity without compromising
input or output quality.
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E Details on Experimental Setup and Additional Results

This section presents supplementary results, including those from SFT and DPO, and provides details
on the fine-tuning and evaluation configurations used throughout our experiments.

E.1 Fine-Tuning Configurations

To ensure reproducibility and comparability, we fine-tune all models using AllenAI’s Open-Instruct
framework9, covering both SFT and DPO. By default, Open-Instruct applies a sum-reduction over
token-level losses, rather than the more commonly used mean-reduction. This design choice ensures
length-equitable weighting, where short and long sequences contribute proportionally to the total loss,
preventing shorter examples from disproportionately influencing the gradient due to having fewer
tokens. Moreover, summing losses leads to more stable optimization by avoiding fluctuations in loss
scale caused by variation in batch composition or sequence length distributions. We refer to a more
detailed analysis and discussion in [7].

E.1.1 Supervised Fine-Tuning (SFT)

We fine-tune Llama-3.1-8B [27] and SmolLM2-1.7B [9] models on the Tulu [7], SmolTalk [9], Orca
[16], and our proposed TuluTalk dataset. These two models are selected for consistency with prior
work, being the default backbones in the respective dataset papers for Tulu and SmolTalk.

Fine-tuning is performed using BF16 mixed precision with Fully Sharded Data Parallelism (FSDP)
on 8 × NVIDIA A100 80GB GPUs. To isolate dataset effects, we fix SFT hyperparameters per
model across all experiments. For Llama-3.1-8B, we adopt the same hyperparameters as in Lambert
et al. [7], and for SmolLM2-1.7B, we follow Allal et al. [13]. Table 14 provides the SFT training
configurations for both models.

E.1.2 Direct Preference Optimization (DPO)

For DPO, we choose the preference mixture10 created by Lambert et al. [7], which is a curated blend of
on-policy and off-policy preference data, synthetic instruction following augmentations, WildChat [8]
conversational pairs, cleaned UltraFeedback [47] data, and a small Persona IF [63] subset, designed
to balance broad performance and targeted instruction following under the DPO objective. We use
the same hyperparameters from [7]. We set the KL-penalty coefficient (referred to as dpo_beta in
Open-Instruct) to 5 and use the length-normalized DPO loss (dpo_loss_type=norm), following the
recommendation in Lambert et al. [7]. We apply DPO on models that have already been fine-tuned
via SFT using the Tulu, SmolTalk, and TuluTalk datasets. The full set of DPO hyperparameters is
provided in Table 14.

E.2 Evaluation Setup

We assess model performance using the LM Evaluation Harness framework [28], a widely adopted
standard for evaluating language models across diverse benchmark suites. To ensure a compre-
hensive and task-diverse evaluation, we include benchmarks spanning Knowledge (e.g., MMLU
[77], TruthfulQA [78]), Reasoning (e.g., BBH [79], ARC-C [80]), Commonsense Understanding
(e.g., HellaSwag [81], WinoGrande [82]), Instruction Following (e.g., IF-Eval [83]), Mathematical
Reasoning (e.g., GSM8K [84], MATH [85]), and Coding (e.g., HumanEval, HumanEval+ [86]). We
further include benchmarks from Open LLM Leaderboards [17, 18] to gauge general instruction
performance under competitive public standards. This setup ensures a fair, fine-grained comparison
between models and data mixtures, highlighting both strengths and failure modes across capabilities.

9https://github.com/allenai/open-instruct
10https://huggingface.co/datasets/allenai/llama-3.1-tulu-3-8b-preference-mixture
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Table 14: Training hyperparameters for SFT and DPO on Llama-3.1-8B and SmolLM2-1.7B.
SFT DPO

Parameter Llama-3.1-8B SmolLM2-1.7B Llama-3.1-8B SmolLM2-1.7B

Total Batch Size 128 128 128 128
Per-Device Batch Size 1 1 1 1
Gradient Accumulation Steps 16 16 16 16
Max Sequence Length 4096 8192 2048 2048
Number of Epochs 2 2 1 1
Learning Rate 5× 10−6 3× 10−4 5× 10−7 5× 10−7

LR Scheduler Linear Cosine Linear Linear
Warmup Ratio 0.03 0.10 0.10 0.10
Weight Decay 0.0 0.0 0.0 0.0

E.3 Additional Results

E.3.1 SFT with Tulu+SmolTalk Mixture

Table 15 presents additional experiments using a naïve data mixture formed by directly concatenating
the full Tulu and SmolTalk datasets (denoted as Tulu+SmolTalk). This results in an (uncurated)
corpus of approximately 1.979 million samples.

For the Llama model, the naïve mixture performs slightly better than Tulu but worse than SmolTalk. It
achieves the best scores on IF-Eval (74.94%) and GSM8K (77.03%) but underperforms on reasoning
tasks (ARC, BBH, MuSR), commonsense tasks (HellaSwag, WinoGrande), and MMLU. In coding
benchmarks, it offers no meaningful gains over Tulu and remains significantly behind SmolTalk.

For the SmolLM model, Tulu+SmolTalk slightly outperforms both Tulu and SmolTalk, with the most
notable improvement on GSM8K (56.07%). However, the overall performance gain is marginal, only
0.24% higher than SmolTalk and thus indicating that this naïve mixture, despite doubling the dataset
size, lacks the benefit of thoughtful curation.

These results underscore that simply merging two strong datasets does not guarantee performance
improvements. In contrast, our systematic and principled curation based on quality and diversity
yields the size-efficient TuluTalk mixture which outperforms both Tulu and SmolTalk, as well as the
naïve Tulu+SmolTalk combination, in overall average and across many benchmarks for both models.

E.3.2 SmolLM Performance on Code Benchmarks

In Tables 1 and 3 of the main paper, as well as the supplemental results in Table 15, the SmolLM model
shows identical, low scores across all dataset variants on the HumanEval and HumanEval+ coding
tasks. This suggests that the model fails to generalize meaningfully to code-related benchmarks and
likely resorts to template-based or fallback completions. Examples of such behavior include emitting
empty function stubs or default print statements. These outputs rarely match the required semantics of
the prompt, leading to consistently low pass@1 scores, which measure exact functional correctness on
the first attempt. These results highlight the capacity limitations of the smaller SmolLM architecture,
which was explicitly designed to prioritize conversational fluency over structured reasoning. This
limitation becomes especially apparent given that the same SmolTalk dataset improves coding
performance when used to train the larger Llama model. Furthermore, the same pattern holds for the
Tulu and Orca datasets: while SmolLM continues to underperform on code benchmarks, the same
datasets yield clear improvements when used to train the larger Llama model.
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Table 15: SFT results for Llama-3.1-8B and SmolLM2-1.7B base models fine-tuned on Tulu (939k
samples), SmolTalk (1.04m samples), a naïve concatenation of the two (Tulu+SmolTalk; 1.979m
samples), and our curated TuluTalk (808k samples), evaluated on the Open LLM Leaderboards
(averaged) and code benchmarks. The overall average is across all benchmarks. Bold marks the
row-wise best score. Color-shaded columns highlight the superior TuluTalk model.

Llama-3.1-8B SmolLM2-1.7B

Benchmark Tulu SmolTalk Tulu +
SmolTalk TuluTalk Tulu SmolTalk Tulu +

SmolTalk TuluTalk

Knowledge
MMLU (5-shot) 62.90 62.88 62.68 63.91 49.71 47.88 49.61 49.34
MMLU-Pro (5-shot) 28.73 31.76 28.49 30.17 19.61 20.37 20.25 20.67
TruthfulQA (0-shot) 46.41 55.74 51.57 53.16 44.04 44.74 42.12 43.65
GPQA (0-shot) 27.77 28.78 28.02 29.28 27.85 27.60 26.59 27.68
Reasoning
ARC-C (25-shot) 54.61 59.04 54.44 57.42 44.54 48.46 46.59 47.27
BBH (3-shot) 39.06 45.50 44.99 43.50 36.66 37.81 38.29 38.33
MuSR (0-shot) 42.86 38.49 39.76 40.62 33.33 33.86 34.39 33.28
Commonsense
HellaSwag (10-shot) 60.87 61.54 61.14 62.98 51.01 52.10 50.80 51.36
WinoGrande (5-shot) 76.64 77.19 76.40 79.22 65.90 65.27 65.59 66.06
Instruction Following
IF-Eval (0-shot) 74.09 74.51 74.94 74.84 60.25 56.83 60.73 60.85
Math
GSM8K (5-shot) 74.37 74.75 77.03 74.84 49.43 52.46 56.07 54.13
MATH (4-shot) 12.31 10.42 10.20 11.96 6.27 5.89 5.51 6.16
Code
HumanEval (pass@1) 58.54 54.51 55.88 56.49 1.83 1.83 1.83 1.83
HumanEval+ (pass@1) 45.37 44.27 44.88 44.33 1.83 1.83 1.83 1.83
Leaderboards
Open LLM Leaderboard 1 62.63 65.19 63.88 65.26 50.77 51.82 51.80 51.97
Open LLM Leaderboard 2 37.47 38.24 37.73 38.40 30.66 30.39 30.96 31.16

Overall 50.32 51.38 50.74 51.62 35.16 35.49 35.73 35.89

E.3.3 Efficiency Gains

To assess efficiency and training cost, we report the number of processed tokens (computed with
each model’s distinct tokenizer), estimates for training FLOPs, and total GPU hours (on an 8 x A100
GPU cluster) in Table 16 for SFT training of Llama-3.1-8B and SmolLM-2-1.7B models on Tulu,
SmolTalk, and TuluTalk. We find that the reduction in dataset size translates approximately linearly
into efficiency gains. For example, TuluTalk is around 14% smaller than Tulu. For Llama, this
results in a proportionate reduction in the number of processed tokens (708M compared to 835M),
ExaFLOPs (34 compared to 40), and total GPU hours (38 compared to 45). Similar trends are
observed for the SmolTalk dataset and for the SmolLM model. These additional experiments validate
the efficiency improvements achieved by our curated TuluTalk dataset.

Table 16: Comparison of SFT training efficiency for Llama-3.1-8B and SmolLM2-1.7B on Tulu,
SmolTalk, and TuluTalk. We report processed tokens (per tokenizer), estimated ExaFLOPs, and GPU
hours (excluding the initial warmup phase). Lower is better (↓).

Llama-3.1-8B SmolLM2-1.7B
Metric Tulu SmolTalk TuluTalk Tulu SmolTalk TuluTalk

Tokens (↓) 835M 875M 708M 910M 961M 782M
ExaFLOPs (↓) 40.1 42.0 34.0 9.28 9.80 7.98
GPU Hours (↓) 45 49 38 26 28 22
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E.3.4 Performance Results for Diverse Models and Scales

To demonstrate the effectiveness and generalizability of TuluTalk across different architectures and
scales, we provide results for three additional models: Qwen2.5-0.5B and Qwen2.5-3B [22], as well
as for SmolLM3-3B [31], covering small- to mid-scale models of different architectures.

Tables 17 and 18 report evaluation results across all considered benchmarks. In general, the results
are in line with the observations in our main body and show that our curated TuluTalk SFT dataset
achieves better performance compared to Tulu and Smoltalk, while being a leaner dataset overall.
These additional results demonstrate the generalizability of both TuluTalk and our curation recipe
across model architectures and scales. While evaluating larger models like Qwen2.5-32B would be
informative, our computational setup and budget unfortunately limits us from training larger models.

Table 17: Results for Qwen2.5-0.5B and Qwen2.5-3B fine-tuned on Tulu, SmolTalk, and TuluTalk,
evaluated on the Open LLM Leaderboards and code benchmarks. The overall average is across all
benchmarks. Bold marks the row-wise best score. Color-shaded columns highlight TuluTalk models.

Qwen2.5-0.5B Qwen2.5-3B
Benchmark Base Tulu SmolTalk TuluTalk Base Tulu SmolTalk TuluTalk

Knowledge
MMLU (5-shot) 46.51 45.67 43.25 44.65 65.55 66.09 65.80 65.03
MMLU-Pro (5-shot) 16.98 14.14 13.15 13.89 32.12 32.56 32.00 31.62
TruthfulQA (0-shot) 39.78 39.99 40.87 39.46 48.87 46.85 50.68 48.76
GPQA (0-shot) 27.20 24.33 25.59 25.59 28.27 26.43 27.35 28.19
Reasoning
ARC-C (25-shot) 32.22 31.83 31.66 32.59 52.90 52.29 51.34 52.32
BBH (3-shot) 31.58 30.79 29.53 29.70 46.38 45.20 43.03 45.88
MuSR (0-shot) 34.26 32.01 32.41 32.54 43.25 41.14 39.77 42.83
Commonsense
HellaSwag (10-shot) 39.93 39.10 38.70 39.18 55.51 56.65 54.97 56.40
WinoGrande (5-shot) 56.75 58.33 57.14 57.83 71.35 72.06 70.24 72.09
Instruction Following
IF-Eval (0-shot) 17.34 40.60 35.59 43.24 27.13 63.44 61.50 66.75
Math
GSM8K (5-shot) 34.50 37.30 41.93 41.47 70.20 74.21 77.33 77.10
MATH (4-shot) 4.68 6.50 5.21 5.59 15.63 21.00 16.99 18.67
Code
HumanEval (pass@1) 28.66 28.66 27.44 27.44 38.41 44.34 41.22 42.68
HumanEval+ (pass@1) 26.22 25.00 24.39 24.39 32.93 39.12 34.27 36.85
Leaderboards
Open LLM Leaderboard 1 41.62 42.04 42.26 42.53 60.73 61.36 61.73 61.95
Open LLM Leaderboard 2 22.01 24.73 23.58 25.09 32.13 38.29 36.77 38.99

Overall 31.19 32.45 31.92 32.68 44.89 48.67 47.61 48.94
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Table 18: Results for SmolLM3-3B fine-tuned on Tulu, SmolTalk, and TuluTalk, evaluated on the
Open LLM Leaderboards and code benchmarks. Bold marks the row-wise best score. The color-
shaded column highlights TuluTalk.

SmolLM3-3B
Benchmark Base Tulu SmolTalk TuluTalk

Knowledge
MMLU (5-shot) 61.37 61.10 59.96 61.55
MMLU-Pro (5-shot) 33.55 28.86 31.14 31.80
TruthfulQA (0-shot) 45.91 45.98 49.87 49.19
GPQA (0-shot) 29.70 28.61 30.54 29.85
Reasoning
ARC-C (25-shot) 56.06 53.75 58.53 58.38
BBH (3-shot) 45.57 44.52 44.68 44.19
MuSR (0-shot) 41.80 40.61 39.38 40.30
Commonsense
HellaSwag (10-shot) 57.24 55.49 56.22 56.74
WinoGrande (5-shot) 72.77 73.16 72.38 74.03
Instruction Following
IF-Eval (0-shot) 19.52 65.78 56.89 63.20
Math
GSM8K (5-shot) 67.10 70.32 73.36 72.55
MATH (4-shot) 16.92 19.49 20.62 19.73
Code
HumanEval (pass@1) 37.20 47.44 45.24 44.76
HumanEval+ (pass@1) 29.88 32.44 31.10 30.46
Leaderboards
Open LLM Leaderboard 1 60.08 59.97 61.72 62.07
Open LLM Leaderboard 2 31.18 37.98 37.21 38.18

Overall 43.90 47.68 47.85 48.34

E.3.5 Performance Results for SFT and DPO for Llama-3.1-8B

To assess whether our SFT curation insights transfer to preference-tuned models, we also apply DPO
on Llama models fine-tuned on Tulu, SmolTalk, and our proposed TuluTalk mixture. Table 19 reports
DPO and SFT performance results across benchmarks for the Llama-3.1-8B base model, fine-tuned
on all datasets under consideration and DPO-tuned using the same preference mixture proposed by
Lambert et al. [7].

For both Tulu and SmolTalk, DPO leads to notable improvements on TruthfulQA, all reasoning
benchmarks, HellaSwag, and especially instruction following. For Tulu, math performance shows a
mixed trend: GSM8K scores decrease slightly, while MATH improves significantly. This effect is not
observed for SmolTalk, where math performance remains largely unchanged. Coding performance
declines slightly for both datasets, while both Open LLM Leaderboard scores increase noticeably.

Importantly, the performance gains observed for our proposed TuluTalk under SFT carry over to
the DPO setting. Specifically, TuluTalk achieves the highest overall average under DPO (53.08%),
outperforming Tulu (51.89%) and SmolTalk (52.96%), and improving upon the base model by
over 11%. These gains are observed across evaluation categories, including instruction following,
reasoning, and commonsense understanding, highlighting the consistency of performance gains
across model sizes and families.

Notably, the DPO-TuluTalk model achieves the best IF-Eval score (81.51%) and leads on HellaSwag
and Open LLM Leaderboard 1. This suggests that our mixture not only improves factual accuracy and
instruction compliance, but also enhances performance on alignment-sensitive public benchmarks.

Overall, these results confirm that our principled, quality- and diversity-driven curation, with attention
to instruction following signals, response quality, and task diversity, not only yields performance
gains under SFT, but also that these gains transfer to DPO.
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Table 19: Performance of Llama-3.1-8B (base) fine-tuned via SFT or DPO on Tulu, SmolTalk,
and TuluTalk, evaluated on Open LLM leaderboards, code benchmarks, and reasoning tasks. The
overall average is across all benchmarks. Bold marks the row-wise best score. Color-shaded columns
highlight the superior TuluTalk model under each training method.

SFT DPO
Benchmark Base Tulu SmolTalk TuluTalk Tulu SmolTalk TuluTalk

Knowledge
MMLU (5-shot) 65.03 62.90 62.88 63.91 62.09 63.30 62.58
MMLU-Pro (5-shot) 32.71 28.73 31.76 30.17 29.75 32.58 31.32
TruthfulQA (0-shot) 45.22 46.41 55.74 53.16 56.28 62.45 61.67
GPQA (0-shot) 31.46 27.77 28.78 29.28 29.28 30.70 28.69
Reasoning
ARC-C (25-shot) 54.69 54.61 59.04 57.42 57.85 61.12 60.75
BBH (3-shot) 46.48 39.06 45.50 43.50 40.74 46.50 44.91
MuSR (0-shot) 37.96 42.86 38.49 40.62 40.61 39.15 39.02
Commonsense
HellaSwag (10-shot) 61.44 60.87 61.54 62.98 65.48 66.38 68.64
WinoGrande (5-shot) 76.87 76.64 77.19 79.22 74.74 76.95 79.01
Instruction Following
IF-Eval (0-shot) 12.45 74.09 74.51 74.84 80.51 79.16 81.51
Math
GSM8K (5-shot) 50.64 74.37 74.75 74.84 69.45 75.74 74.75
MATH (4-shot) 5.97 12.31 10.42 11.96 20.85 12.61 13.52
Code
HumanEval (pass@1) 34.76 58.54 54.51 56.49 56.10 54.15 55.66
HumanEval+ (pass@1) 28.66 45.37 44.27 44.33 42.76 40.61 41.10
Leaderboards
Open LLM Leaderboard 1 58.98 62.63 65.19 65.26 64.32 67.66 67.90
Open LLM Leaderboard 2 27.84 37.47 38.24 38.40 40.29 40.12 39.83

Overall 41.74 50.32 51.38 51.62 51.89 52.96 53.08
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F Limitations and Broader Impact

Limitations. While our study provides a comprehensive and principled analysis of post-training
SFT datasets, a few limitations remain. First, our annotations rely on the Magpie framework,
which uses the LLM-as-a-judge technique to score various aspects such as prompt quality, response
helpfulness, and safety. Although we enhance Magpie with error-tolerant parsing and extend it for
multi-turn support, the subjectivity inherent in LLM-based judgments may introduce variance in label
quality. In addition, annotations reflect the capabilities and biases of the underlying judge model,
which may shift as stronger evaluators emerge. Nonetheless, the consistency of observed trends
and performance gains across benchmarks suggests that our annotations, generated using a capable
Llama-3.3-70B-Instruct judge, are robust and highly informative for practical curation. Second, while
our analysis focuses on the SFT stage, evaluating and comparing data quality for preference tuning
remains an important direction for future work, particularly as the variety of training recipes used in
preference tuning makes dataset comparisons more challenging. Third, when designing TuluTalk, we
perform a limited number of ablations for balancing task diversity due to computational constraints.
It is interesting to perform additional data mixture ablations to enhance the performance of TuluTalk.
Finally, as TuluTalk is derived from the open-source Tulu and SmolTalk datasets, it inherits any
existing biases and limitations present in those corpora, such as a predominant focus on English and
limited coverage of specialized skills like tool use.

Broader Impact. By open-sourcing detailed annotations, curated data mixtures, and reproducible
recipes, our work lowers the barrier to high-quality post-training research and promotes transparency
in dataset design. Our quality annotations of Tulu and SmolTalk can be leveraged by both researchers
and practitioners to conduct further analyses or construct data mixtures tailored to their specific use
cases. TuluTalk, our curated dataset, achieves top-tier performance with substantially fewer samples,
offering improvements in both compute efficiency during SFT and downstream performance. While
we apply our curation recipe on Tulu and SmolTalk, our quality-based and diversity-driven curation
recipe can be used with any datasets in principle. Even though the datasets we build on are derived
from open and broadly safe sources, we acknowledge that any general-purpose LLM corpus carries
dual-use risk. We encourage responsible use and support future work that incorporates adversarial
safety evaluations and multilingual fairness into post-training pipelines.

Contributions. This work presents a rigorous and reproducible investigation into the effects of post-
training data quality on LLM performance. We evaluate two widely used model architectures, Llama-
3.1-8B and SmolLM2-1.7B, across a broad suite of benchmarks, including instruction following,
coding, math, and reasoning. Grounded in systematic Magpie-based annotations, our study offers
the first side-by-side dissection of Tulu and SmolTalk, revealing critical differences in data quality
and task composition. Leveraging these insights, we curate TuluTalk, a lean and high-performing
dataset that outperforms both Tulu and SmolTalk on several key benchmarks. Furthermore, we
demonstrate that the performance benefits of our curated dataset generalize beyond SFT, consistently
translating into gains under DPO as well, underscoring the robustness of our data-centric approach
across alignment methods. Our methodology combines principled annotation, quality filtering, and
task-aware rebalancing, complemented by an extensive and transparent analysis in the appendix, to
establish a strong and reusable foundation for future post-training research.
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