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ABSTRACT

The paper deals with the comparison of the Gompertz function and the logistic
function. We show that the Gompertz trend can be approximated with high accuracy
by a sum of three logistic functions (multilogistic function). Two of them are
increasing, and one is decreasing. We use second-order logistic wavelets to estimate
the parameters of the multilogistic function.
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1 INTRODUCTION

The Gompertz function is described by the following autonomous differential equation of the first
order

x′(t) = sx log
xsat
x

x(0) = x0 > 0, (1)

with parameters s−growth rate and xsat−saturation level (asymptote), 0 < x0 < xsat; log is the
natural logarithm. After solving (1) we can write the Gompertz function in the following convenient
form

x(t) = xsate
−e−s(t−t0)

, (2)
where constant t0 appears in the integration process of (1) and is connected with the initial condition
x(0) = x0 = xsate

−est0 , thus t0 = 1
s log log(xsat/x0). It is easy to check that t0 is also the

inflection point of x(t) (2). Fig 1 shows an exemplary Gompertz funcion.
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Figure 1: Exemplary Gompertz function with parameters xsat = 100, s = 0.15, t0 = 20

The Gompertz function (2) is the example of the so-called S-shaped curves and was first described
and applied in actuarial mathematics in 1825 by Gompertz (1825). Since then, the Gompertz function
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has found applications in probability theory (Gumbel distribution), biology, medicine, economics,
engineering, physics and other fields. Many interesting applications of the Gompertz curve are
given by Waliszewski & Konarski (2005).The first hundred years of the use of this function are well
described by Winsor (1932). The interesting story of the next almost one hundred years can be found
in the article by Tjørve & Tjørve (2017). In recent years, many papers have appeared in which the
Gompertz function was used to describe the spread of COVID-19 pandemy (see Ohnishi et al. (2020),
Dhahbi et al. (2022), Kundu et al. Kundu et al. (2021), Estrada & Bartesaghi (2022)).

The logistic equation defining the logistic function x = x(t) has the form

x′(t) =
s

xsat
x(xsat − x), x(0) = x0. (3)

where t is time, and the parameters s-steepness or slope coefficient and xsat-saturation level are real
constants. We assume here that the saturation level can be a positive or negative number. The integral
curve x(t) of equation (3) satisfying the condition that x(t) lies between zero and xsat is called the
logistic function. The logistic function is used to describe and model various phenomena in physics,
economics, medicine, biology, engineering, sociology and many other sciences. Logistic functions
now seem even more important from the point of view of their possible applications, due to the
theory of the Triple Helix (TH) developed in the 1990s by Etzkowitz & Leydesdorff (1995) (see also
Leydesdorff (2021)). This theory explains the phenomenon of creating and introducing innovations
under the influence of the interaction of three factors University-Industry-Government and relations
between them. According to the TH theory, the phenomenon of the emergence of innovations can be
described by means of logistic functions Ivanova (2022a), Ivanova (2022b) has shown that the KdV
equation naturally appears in TH theory and has also applied it to other fields such as the COVID-19
pandemic or financial markets.

After solving the differential equation (3) we obtain the logistic function in the form

x(t) =
xsat

1 + e−s(t−t0)
, (4)

where t0 is the inflection point associated with the initial condition x(0) = x0 =
xsat

1 + est0
, then

t0 =
1

s
log

(xsat − x0
x0

)
. At the point t0, x(t0) = xsat/2. An exemplary logistic function is shown

in the Fig 2.
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Figure 2: Exemplary logistic function with parameters xsat = 100, s = 0.15, t0 = 20

Mahjan et al. (1990) show areas in which various S-shaped curves are used as diffusion models. The
authors find that the Bass function is useful for modeling of consumer durable goods, retail services,
agricultural, education, and industrial innovations. The logistic curve serves as model in industrial,
high technology, administrative innovations, and the Gompertz function can be used for modeling
consumer durable goods and agriculture innovations.
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Klein et al. (2017) use a basis function model (with several parametric forms) combined in a
probabilistic prediction framework. They show that combining basis functions gives better predictions
than simpler single-form models, especially when the observed part of the curve is not yet in the
saturation regime.

The aim of this paper is to show that, for a given Gompertz function, it is possible to find some
logistic functions (waves) such that their sum (multilogistic function) approximates the Gompertz
function with high accuracy.

The structure of the article is as follows. In Sec. 2 we describe the basic properties of the second-order
logistic wavelets. Sec. 3 is devoted to show connections between the Gompertz function and the
logistic function. We prove that the Gompertz function can be approximated with high accuracy by a
multilogistic function. The paper is concluded in Sec. 4.

2 LOGISTIC WAVELETS

We briefly outline the basic general properties of wavelets (cf. Daubechies (1992); Meyer & Ryan
(1996); Meyer (1997)), which we will need later. A wavelet or mother wavelet (see Daubechies
Daubechies (1992), p.24 ) is a function ψ ∈ L1(R) such that the following admissibility condition
holds:

Cψ = 2π

∫ ∞

−∞
|ξ|−1|ψ̂(ξ)|2dξ <∞, (5)

where ψ̂(ξ) is the Fourier transform F (ψ) of ψ, i.e.,

F (ψ)(ξ) = ψ̂(ξ) =
1√
2π

∫ ∞

−∞
ψ(x)e−iξxdx.

Since for ψ ∈ L1(R), ψ̂(ξ) is continuous then condition (5) is only satisfied if ψ̂(0) = 0, which is
equivalent to

∫∞
−∞ ψ(x)dx = 0. On the other hand, Daubechies Daubechies (1992), p.24 points out

that condition
∫∞
−∞ ψ(x)dx = 0 together with a slightly stronger than the integrability condition∫∞

−∞ |ψ(x)|(1+ |x|)αdx <∞, for some α > 0 are sufficient for (5). Usually, in practice much more
is assumed for the function ψ hence, from a practical point of view, conditions

∫∞
−∞ ψ(x)dx = 0 and

(5) are equivalent. Suppose the function ψ is also square-integrable, ψ ∈ L2(R) with the norm

||ψ|| =
(∫ ∞

−∞
|ψ(x)|2dx

)1/2

.

From a mother wavelet, one can generate a doubly-indexed family of wavelets (called children
wavelets), by dilating and translating,

ψa,b(x) =
1√
a
ψ
(x− b

a

)
,

where a, b ∈ R, a > 0. The normalization has been chosen so that ||ψa,b|| = ||ψ|| for all a, b.
In order to be able to compare different wavelets, it is convenient to normalize the wavelets, i.e.,
||ψ|| = 1.

The continuous wavelet transform (CWT) of a function f ∈ L2(R) for this wavelet family is defined
as

(Twavf)(a, b) = ⟨f, ψa,b⟩ =
∫ ∞

−∞
f(x)ψa,b(x)dx. (6)

Rzadkowski & Figlia (2021) introduced the logistics wavelets of any order and then Rzadkowski
(2023) presented their standardized form. The formula for the normalized second-order logistic
mother wavelet ψ2(t) (see Fig. 3) is as follows

ψ2(t) =

√
30

1 + e−t

(
1− 1

1 + e−t

)(
1− 2

1 + e−t

)
=

√
30(e−2t − e−t)

(1 + e−t)3
. (7)
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Figure 3: Logistic mother wavelet ψ2

Formula (7) is simply the second derivative of the basic logistic function x(t) =
1

1 + e−t
multiplied

by
√
30.

As usually, we generate from the mother wavelet a doubly-indexed family of wavelets from ψ2 by
dilating and translating

ψa,b2 (t) =
1√
a
ψ2

( t− b

a

)
,

where a, b ∈ R, a > 0, n = 2, 3, . . ..

3 APPLICATIONS

Let (yn) be a time series. To calculate the CWT (Continuous Wavelet Transform) coefficients for the
central second differences

∆2yn = yn+1 − 2yn + yn−1,

we use MATLAB’s Wavelet Toolbox. Assume that the time series (yn) locally follows a logistic
function y(t) =

ysat

1 + exp(− t−b
a )

, i.e., yn ≈ y(n) =
ysat

1 + exp(−n−b
a )

. By definition (7) we have

y′′(t) =
ysat√
30a3/2

ψa,b2 (t).

Lemma 1. The continuous wavelet transform CWT (6) of the function y′′(t), based on the logistic
wavelets ψc,d2

(Twavy′′)(c, d) = ⟨y′′, ψc,d2 ⟩ =
∫ ∞

−∞
y′′(t)ψc,d2 (t)dt,

takes the maximum (for ysat > 0) or minimum (for ysat < 0) value when c = a and d = b.

Proof. Assume that ysat > 0. By the Cauchy-Schwartz inequality

|(Twavy′′)(c, d)| = |⟨y′′, ψc,d2 ⟩| ≤ ||y′′|| ||ψc,d2 || = ysat√
30a3/2

||ψa,b2 || ||ψc,d2 || = ysat√
30a3/2

.

However the maximum is reached for c = a, d = b, because:

(Twavy′′)(a, b) = ⟨y′′, ψa,b2 ⟩ = ysat√
30a3/2

⟨ψa,b2 , ψa,b2 ⟩ = ysat√
30a3/2

.

Similarly we consider the case ysat < 0.

4
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In view of Lemma 1, for the maximal value of Index we get successively

max(Index) =
∑
n

∆2ynψ
a,b
2 (n) ≈

∑
n

∆2y(n)ψa,b2 (n) ≈
∫ ∞

−∞
y′′(t)ψa,b2 (t)dt

=

∫ ∞

−∞

ysat√
30a3/2

ψa,b2 (t)ψa,b2 (t)dt =
ysat√
30a3/2

∫ ∞

−∞
(ψa,b2 (t))2dt =

ysat√
30a3/2

. (8)

Two parameters of a logistic wave, b - shift (translation) and a - dilation, can be read from the
CWT scalogram by finding a point where the sum (8) (denoted in the scalogram by Index) is locally
maximal (or locally minimal). It remains to determine the third parameter of the wave, i.e., its
saturation level ysat. Using (8) we can estimate the saturation level ysat as follows

ysat ≈
√
30a3/2

∑
n

∆2ynψ
a,b
2 (n) =

√
30a3/2 max(Index). (9)

Similarly we get

ysat ≈
√
30a3/2

∑
n

∆2ynψ
a,b
2 (n) =

√
30a3/2 min(Index). (10)

Consider the Gompertz function

x(t) = 100, 000 exp(− exp(− t− 50

10
)),

with parameters xsat = 100, 000; t0 = 50; s = 0.1 and a time series yn following the same exact
Gompertz growth trend (Fig. 4a)

yn = x(n) = 100, 000 exp(− exp(−n− 50

10
)) n = 0, 1, 2, . . . , 201. (11)

Then we calculate the central first differences (Fig. 4b)

∆1yn = (yn+1 − yn−1)/2, n = 1, 2, . . . 200,

and the central second differences (Fig. 4c)

∆2yn = yn+1 − 2yn + yn−1, n = 1, 2, . . . , 200.

For the central second differences, we apply the MATLAB’s cwt function, which uses second-order
logistic wavelets (Fig. 4d). The marked point indicates the maximum of the Index. Using (9) we can
estimate the parameters of the first logistic wave, which best fits the Gompertz trend (yn):

a = 6.115, b = 50, ysat =
√
30 · 6.1153/2 · 1062 = 87959.

Thus we obtain logistic function

h(t) =
87959

1 + e−
t−50
6.115

.

Then we repeat this procedure for the time series (yn−h(n)), Fig. 5a. We calculate its first differences
(Fig. 5b) and the second differences (Fig. 5c), for which we again apply the MATLAB’s cwt function.
(Fig. 5d) shows two points (the minimum and the maximum of Index) giving the other two logistic
waves with the following parameters (for saturations levels we use (10) and (9)):

a = 4.028, b = 34, ysat =
√
30 · 4.0283/2 · (−246.4) = −10910,

and
a = 6.74, b = 66, ysat =

√
30 · 6.743/2 · 226.4 = 21698.

The three logistic waves described above, when summed to a multilogistic function, approximate
the time series yn with the maximum absolute error equal to 1808, with the root mean square error
(RMSE) equal to 969 and R2 = 0.9998. The RMSE error is mainly influenced by deviations, related
to the mismatch of saturation levels, for values of n greater than 100. The value of these deviations
is approximately 100000− 87959 + 10910− 21698 = 1253. After optimizing the parameters with
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(a) Time series yn with the Gompertz growth (11)

0 20 40 60 80 100 120 140 160 180 200

n

0

500

1000

1500

2000

2500

3000

3500

4000

fir
st

 d
iff

er
en

ce
s

(b) First differences ∆1yn
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CWT coefficients

50 100 150 200

n

2

4

6

8

10

12

14

16

18

20

S
ca

le
s 

c

-500

0

500

1000

[X,Y] [50 6.115]
Index 1062
[R,G,B] [0.498 0 0]

(d) CWT scalogram for the second differences (c)

Figure 4: Graphs and the CWT scalogram for the time series (11), with exact Gompertz growth

the objective function - minimization of the maximum absolute error - we get the multilogistic
approximating function in the following form:

f(t) =
88057

1 + e−
t−50
6.17

− 10919

1 + e−
t−33.55

5.12

+
22846

1 + e−
t−67.17

8.77

. (12)

The multilogistic function (12), f(t) approximates the Gompertz growth trend yn, (11) with errors
(see Fig 6):

max
0≤n≤201

|yn − f(n)| = 525, RMSE =

√√√√ 1

202

201∑
n=0

(yn − f(n))2 = 160, R2 = 0.999985.

4 CONCLUSIONS

In the present paper we showed that the Gompertz curve can be approximated, with high accuracy, by
a multilogistic function consisting of three logistic functions. We have shown this using an example of
one specific time series having the exact Gompertz growth. Obviously, this applies to any Gompertz
curve by linearly replacing the variables.

The question arises whether it is possible to interpret somehow the subsequent components of the
multilogistic function (12). It seems that the first component in (12) could be interpreted as a
diffusion model in a favorable business environment. The second function, with a negative saturation
level, could play the role of an inhibitory influence of business competitors, trying to prevent a
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Figure 5: Graphs and the CWT scalogram showing the other two logistic waves
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new, innovative product from entering the market. This last function can be interpreted as a kind of
strengthening function (boost function) that appears after the role of the competitors is effectively
limited. All these interactions cause the appearance of the Gompertz curve.
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