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Abstract

We present a joint deep neural system identification model for two major sources
of neural variability: stimulus-driven and stimulus-conditioned fluctuations. To
this end, we combine (1) state-of-the-art deep networks for stimulus-driven activity
and (2) a flexible, normalizing flow-based generative model to capture the stimulus-
conditioned variability including noise correlations. This allows us to train the
model end-to-end without the need for sophisticated probabilistic approximations
associated with many latent state models for stimulus-conditioned fluctuations. We
train the model on the responses of thousands of neurons from multiple areas of
the mouse visual cortex to natural images. We show that our model outperforms
previous state-of-the-art models in predicting the distribution of neural population
responses to novel stimuli, including shared stimulus-conditioned variability. Fur-
thermore, it successfully learns known latent factors of the population responses
that are related to behavioral variables such as pupil dilation, and other factors
that vary systematically with brain area or retinotopic location. Overall, our model
accurately accounts for two critical sources of neural variability while avoiding
several complexities associated with many existing latent state models. It thus
provides a useful tool for uncovering the interplay between different factors that
contribute to variability in neural activity.

1 Introduction

Characterizing the activity of sensory neurons is a major goal of neural system identification. While
neural responses in the visual cortex vary with visual stimuli, they also exhibit variability to the
repeated presentations of identical stimuli [1–4]. This stimulus-conditioned variability has significant
and sophisticated correlations among neurons commonly referred to as noise correlations [4–6]
and exhibits dependency on various factors such as the stimulus [7–9], the behavioral task [10, 11],
attention [12–14], and the general brain state [15, 16]. Understanding the nature of this correlated
variability and its functional implication in the processing of sensory stimuli requires models that
account for both stimulus-driven and shared stimulus-conditioned variability. The goal is thus to
model the stimulus-conditioned response distribution p(r|x) of population activity r ∈ Rn over n
neurons responding to an arbitrary sensory stimulus x. However, models that account for stimulus-
driven and stimulus-conditioned correlated variability have been developed largely independently.
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In the recent decade, we have seen significant progress in modeling stimulus-driven activity, largely
driven by the use of deep neural networks (DNNs) [17–22]. Typically, the expected response of the
neurons conditioned on the stimulus is captured as a function of the stimulus via a deep network
fθ(x) = E[r|x] with learnable parameters θ. These models can therefore predict how population
responses depend on an arbitrary stimulus, and could even be used to derive stimuli that would yield
desirable responses [23, 24]. Typically, these networks are trained using Poisson-loss, assuming
that the population activity r is distributed around the stimulus-conditioned mean fθ(x) with an
independent Poisson distribution. Therefore, existing state-of-the-art networks commonly ignore
stimulus-conditioned correlations among neural responses, and impose strong assumptions about
the form of the marginal distribution (i.e. Poisson) for each neuron. As sensory populations are
known to exhibit noise correlations and deviate from Poisson distributions [4, 25, 26], this conditional
independence assumption might limit the ability of these models to accurately capture p(r|x).

On the other hand, many of the existing models for stimulus-conditioned variability capture the
variations in the population activity by specifically modeling the responses to repeated presentations
of an identical stimulus. Many of these approaches employ statistical techniques such as maximum-
entropy or copula distributions to reduce the number of parameters needed to fit the target distribution
[27–29]. A popular approach has been to describe the stimulus-conditioned variability in terms
of a typically lower-dimensional shared latent state z: p(r|x) =

∫
p(r|x, z)p(z|x) dz [16, 25,

26, 30–35]. Among these are hierarchical generative models that can capture more sophisticated
relationships between the stimulus and noise correlations, as well as deviations from Poisson, such as
over-dispersion [25, 26, 32, 34, 35]. While these approaches present powerful methods to capture
stimulus-conditioned variability, they often fit p(r|x) separately for each unique stimulus and require
responses to repeated presentations of the stimulus [16, 25, 26, 29, 35]. This limits their ability
to yield predictions to a novel stimulus without requiring some stimulus-specific parameters to be
learned. Furthermore, the increased complexity of the distribution usually requires a substantially
more involved probabilistic machinery to make latent state inference and parameter fitting feasible.
Consequently, most latent state models for neural data either ignore stimulus-driven variability
altogether [30, 31, 34], or employ a very simple model of stimulus-driven variations [16, 25, 26, 32].

Here, we propose a new model that closes the gap between these two approaches by combining DNN-
based models of stimulus-driven activity with a latent state model that accounts for shared stimulus-
conditioned variability. While DNNs can be trained effectively via gradient-based optimization, the
challenge is to avoid the complex probabilistic machinery associated with existing latent state models,
particularly those that require stimulus-specific parameters to be learned over repeated presentations
of identical stimuli. To this end, we combine normalizing flows [36–41] with Gaussian Factor
Analysis (FA) models [42], where the stimulus-dependence occurs through a DNN that learns to
shift the mean of the FA distribution based on the stimulus. FA models make use of multivariate
Gaussian distributions with a particular low-rank structure of the covariance matrix. While the
use of FA in capturing shared variability greatly simplifies inference and learning, it is not directly
applicable to neural responses because neural responses are not Gaussian-distributed, particularly
for low firing rates. To circumvent this problem, variance-stabilizing transformations, such as the
square-root function, have been used in the past to make the responses more Gaussian-distributed
[16, 30]. However, there may be other transformations that capture the response distribution more
accurately. Furthermore, since the transformation for one neuron may not be applicable to other
neurons, ideally it would be learned for each neuron separately. To achieve this flexibility, we allow
our model to learn neuron-specific transformations with a marginal normalizing flow.

Normalizing flow models are density estimators that use a series of diffeomorphisms to transform
the source density underlying the data into a simple distribution—typically an isotropic Gaussian
of the same dimension. These transformations are usually chosen to have efficient-to-compute
log-determinants, and typically act on the entire variable vector to capture any statistical dependencies
between the dimensions. Here, we replace the isotropic Gaussian with an FA model to capture
dependencies among dimensions and only use diffeomorphisms that act on each dimension separately,
i.e. apply flow-based transformations on the marginals only. While this choice places certain
restrictions on the complex dependencies between neurons that may be captured (refer to section 4
Discussion for details), it has two important advantages: (1) The generative model is easy to train
while combining state-of-the-art deep networks with flexible latent state models, and (2) the use of
marginal flows allows for an easy mechanism to compute conditional distributions of one neuron
given responses of other neurons that would not be easy to obtain with non-marginal flow models.
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a Figure 1: Flow-based
Factor Analysis model.
a: Schematic of the flow-
based model relating all
relevant variables in the
study. b: Schematic
of the sub-network used
by the image-computable
model to map cortical
positions into receptive
field positions. Refer to
section 2 Methods for the
details.

In summary, we make the following contributions. We (1) combine state-of-the-art DNN-based
models with flow-based latent state models to jointly account for stimulus-driven and shared stimulus-
conditioned variability in neural population activity. Our model can predict the distribution of neural
responses to unseen stimuli, without the need for repeated presentations to learn stimulus-conditioned
variability. We (2) apply our method on the activity of thousands of neurons in response to natural
images, recorded via two-photon Calcium imaging from multiple areas of the mouse visual cortex. We
demonstrate that our model outperforms current state-of-the-art methods in capturing the distribution
of responses. Finally, we (3) show that our model infers latent state structures with meaningful
relations to behavioral variables such as pupil dilation as well as other functional and anatomical
properties of visual sensory neurons.

2 Methods

2.1 Models

Flow-based Factor Analysis model (FlowFA) For a given stimulus x and population response
r ∈ Rn, where n is the number of neurons, we define our normalizing flow-based Factor Analysis
(FlowFA) model of the stimulus-conditioned population activity p(r|x) as

p(r|x, θ, φ) = N (Tφ(r); fθ(x),CC> + Ψ) · |det∇rTφ(r)| . (1)

FlowFA has two major parts: (1) A flow model Tφ with learnable parameters φ that transforms the
population responses r such that the transformed responses v = Tφ(r) are well modelled by a (2)
Gaussian Factor Analysis (FA) modelN (v; fθ(x),CC> + Ψ) (Fig. 1a). Here,N (v;µ,Σ) denotes a
Gaussian distribution over v with mean µ and covariance Σ. According to the FA model, the random
variable v is generated via v = fθ(x) + Cz + ε where z ∈ Rk is a low-dimensional latent state with
k � n and an isotropic Gaussian prior z ∼ N (0, Ik) whose samples map to v via the factor loading
matrix C ∈ Rn×k. The effect of the stimulus x on the responses is captured by the mean of the FA
distribution that depends on the stimulus, modeled as a deep network fθ(x) ∈ Rn with learnable
parameters θ (Fig. 1a,b). We further include neuron-specific, independent noise ε ∼ N (0,Ψ) where
Ψ ∈ Rn×n is a diagonal covariance matrix.

Since the flow model is a trainable change of variables, it introduces the absolute determinant
|det∇rTφ(r)| of the Jacobian ∇ of Tφ with respect to r into Eq. (1). The transform itself is a
diffeomorphism, i.e. an invertible differentiable mapping Tφ : Rn 7→ Rn allowing us to evaluate
the exact likelihood of each data point and easily draw samples from the model. Therefore, the
model serves as a fully generative model from which samples of the stimulus-conditioned population
responses can easily be generated for an arbitrary stimulus.

In the model formulation presented here, we choose Tφ to act on each single dimension separately,
i.e. Tφ(r) = [Tφ1

(r1), ..., Tφn(rn)]>. This choice results in a diagonal Jacobian which not only
substantially simplifies the form of the determinant to det∇rTφ(r) =

∏n
i=1

∂Tφi
∂ri

, but also allows
us to easily compute conditionals and marginals (see appendix A for the details). This would not
generally be possible for diffeomorphisms with a non-diagonal Jacobian.
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Zero-Inflated Flow-based Factor Analysis model (ZIFFA) For two-photon Calcium imaging, a
significant portion of inferred neural activity is zero, resulting in a sharp peak at zero in the response
distribution (i.e. zero-inflated distribution) [43]. This zero-inflation is potentially a problem for
the FlowFA model since the model would attempt to generate the peak at zero by mapping a large
proportion of the Gaussian probability mass onto the “zero” responses, resulting in a poor fit to
the response distribution. To avoid this, we extend FlowFA by modeling the zero responses with a
separate peak (similar to Wei et al. [43]) and applying the FlowFA model to capture only the positive
responses. We refer to this model as Zero-Inflated Flow-based Factor Analysis (ZIFFA). More
specifically, ZIFFA is a mixture model that models neural responses below and above a threshold
value ρ with two separate, non-overlapping distributions. To capture the peak at zero, the responses
below the threshold (i.e. “zero” responses) are modeled by a uniform distribution, while FlowFA is
used to capture responses above the threshold:

p(r|x) =

 ∏
{i:ri≤ρ}

1− qi (x)

ρ

·
 ∏
{i:ri>ρ}

qi (x)

·N (Tφ(r+); fθ,+(x),C+C>++Ψ+)·|∇Tφ(r+)| ,

(2)
where qi(x) is the probability of the response being above the threshold ρ modeled, jointly with the
mean of the FA, as a function of the stimulus via a DNN fθ with learnable parameters θ. r+ and
fθ,+(x) are the sub-vectors, and C+ and Ψ+ are the sub-matrices corresponding to responses above
the threshold, and θ, C, Ψ are the same as defined in Eq. (1). Refer to appendix B for the derivation.

Control models We compare the FA-based models against two control models used for neural
system identification that assume independence among neurons with specific forms of marginal
distributions inspired by existing work: (1) Poisson [18, 22] and (2) Zero-inflated Gamma (ZIG)
[43]. To capture continuous neural responses measured with Calcium imaging, we relax the discrete
Poisson distribution into a continuous distribution by assuming r = r̂ + ε where r̂ ∼ Poisson(λ) and
ε ∼ Uniform[0, 1). This yields the likelihood function

ppoiss(r|x) =

n∏
i

λi(x)brice−λi(x)

bric!
, (3)

where λ(x) = fθ(x) is the predicted firing rate of the neurons to input image x modeled as a DNN fθ
with learnable parameters θ. The ZIG distribution is a mixture of a uniform and a gamma distribution
separated at the value ρ with no overlap [43]:

pZIG(r|x) =

n∏
i

(
1− qi(x)

ρ
+

qi(x)rκi−1
i

Γ(κi)νi(x)κi
exp

(
− ri
νi(x)

))
, (4)

where νi(x) is the scale parameter of the gamma distribution, and qi(x) is same as in Eq. (2). To
formulate ZIG as an image-computable model, νi(x) and qi(x) are jointly modeled using a DNN
fθ with learnable parameters θ. Similar to Wei et al. [43], we let the shape parameter κi be neuron-
specific, but independent of the input. Importantly, we used the same value for ρ in both ZIG and
ZIFFA models.

Note that when the covariance matrix of the FA-based models is diagonal (i.e. 0-dimensional
latent state), these models assume independence among neurons and their performance is directly
comparable to the control models.

2.2 Model components

Deep convolutional neural network fθ We capture the stimulus-driven changes in the neuronal
response distribution using a deep convolutional neural network fθ(x) with the same architecture
as used by Lurz et al. [22]. Briefly, the network consists of two parts: (1) A shared four-layer core
network, where each layer consists of a standard or depth-separable [44] convolution operation
resulting in 64 feature channels, followed by batch normalization and ELU nonlinearity, and (2) a
neuron-specific readout mechanism (referred to as “Gaussian readout”) that learns the position of the
neuron’s receptive field (RF) and computes a weighted sum of the features at this position along the
channel dimension (Fig. 1a). In contrast to Lurz et al. [22] where the RF positions δ in image space
were obtained by applying a shared affine transformation on the experimentally measured cortical
positions ∆ of the neurons, here we allow this mapping to take on a non-linear form to allow flips
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in the representation of the visual field as a function of cortical position (Fig. 1b). This is crucial
to model cortex-to-visual space mappings for multiple brain areas, as the retinotopy of some areas
are mirrored with respect to each other. During training, we apply L1 regularization to the readout
feature weights and L2 regularization on the Laplace-filtered weights of the first convolution layer.

Normalizing flow Tφ We construct the marginal flow model Tφ = affine ◦ exp ◦affine ◦ ELU ◦
affine◦ELU◦affine◦ log ◦affine from a set of monotonic functions {affine,ELU, log, exp}, of which
only the affine transformation has learnable parameters. We restricted all the affine transformation
layers to have positive scale, and additionally restricted the first affine layer to have a positive offset.
For each neuron indexed by i, we learn a separate marginal transformation Tφi . We compare the flow
transformation against two common fixed transformations: square-root [16, 30] and Anscombe [45].
These two transformations can be expressed by the general form u = exp(a log(y + b) + c) which is
a series of affine, log, affine, and exp transformations, with a = 0.5, b = 0, and c = 0 for square-root,
and a = 0.5, b = 3

8 , and c = log(2) for Anscombe. We specifically chose the components of Tφ such
that these common fixed transformations exist as special cases, ensuring that the flow transformations
are strictly more flexible than any choice of fixed transformations commonly found in the literature.
For ZIFFA, we adjusted the formulation of the marginal flow Tφ such that the predicted neuronal
responses remain above ρ, the boundary between the uniform and the FlowFA components of the
mixture model, by replacing the first affine transformation in Tφ with a layer that only shifts by −ρ.

2.3 Neural and behavioral data

We recorded the response of neurons in mouse visual cortices (layer L2/3) to gray-scale natural
images using a wide-field two-photon microscope [46] (see appendix C for details). In this study,
we used two scans from two mice spanning three visual areas: primary visual cortex (V1) and
lateromedial area (LM) in scan 1; V1 and posteromedial area (PM) in scan 2. A total of 2,867 V1
neurons and 907 LM neurons were recorded in scan 1; 5,029 V1 neurons and 3,343 PM neurons were
recorded in scan 2. Among these, we used 1,000 V1 and 907 LM neurons from scan 1, and 1,000
V1 and 1,000 PM neurons from scan 2. For both scans, neurons were randomly selected if the area
contained more than 1,000 neurons. We also recorded behavioral variables such as pupil dilation,
simultaneously. The natural image stimuli were sampled from ImageNet [47], cropped to fit a monitor
with 16:9 aspect ratio, and presented to the mice at a resolution of 0.53 ppd (pixels per degree of
visual angle). A total of 6,000 images were shown in each scan, of which 1,000 images consist of
100 unique images each repeated 10 times to allow for an estimate of the neural response variability.
We used the repeated images for testing, and split the remaining images into 4,500 training and 500
validation images.

2.4 Model fitting and evaluation

Fitting We trained all models end-to-end via gradient-based optimization to maximize the log-
likelihood obtained from Eqs. (1), (2), (3) or (4) for the corresponding model, optimizing over all
learnable parameters. To ensure that Ψ, the diagonal covariance matrix, stays positive-valued, we
re-parameterized Ψ = eν and optimized ν instead. To find the best image-computable DNN models,
we used Bayesian optimization [48] to find hyper-parameters that maximized the final log-likelihood
of the trained model. Hyper-parameters include the learning rate and regularization coefficient on the
readout weights. The log-likelihood used for scheduling learning rate, early stopping, and finding
hyper-parameters was computed on the validation set. Additional details about training can be found
in appendix D. The code can be found at https://github.com/sinzlab/bashiri-et-al-2021.

Evaluation We compared the FA-based models (ZIFFA, FlowFA, and FA with fixed transformations)
to the control models based on likelihood and leave-neuron-out prediction correlation on the test set.
For the former, we computed the likelihood of the responses in bits per neuron per image under each
model, based on Eqs. (1), (2), (3), and (4), accordingly. For the correlation measure, we computed
the Pearson correlation between the predicted and the measured responses of each neuron on the
test set. For the FA-based models that may capture the statistical dependency (i.e. covariance)
between neurons, we predicted the response of a given neuron conditioned on the responses of all
other neurons recorded simultaneously on the trial. More specifically, given an image x and the
response of all other neurons r\i, we estimated the response of a neuron ri to the image by computing
the posterior mean of the neuron’s response E[ri|x, r\i]. We refer to this measure as conditional
correlation (see appendix E for details).

5
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Figure 2: FlowFA model recovers the underlying transformation. a: Simulated responses for 2
neurons under various transformations. Across all transformations, transformed responses were
sampled from Gaussian distributions with differing means (indicated by the color of the samples) but
identical covariance. The covariance between the two neurons is shown in black text. b: Transforma-
tions learned by the flow model are shown in black, overlaid on the ground-truth transformations.
c: Performance of models with fixed or learned (flow) transformations (rows) trained on responses
simulated with a variety of transformations (columns). Cases where the simulating and trained
transformations are the same are indicated by black outlines. Performance is measured as the KL
divergence between the modeled and ground-truth distributions, where 0 would correspond to a
perfect fit.

3 Results

3.1 Model performance

FlowFA model faithfully recovers invertible transformations on synthetic data We first used
synthetic data to illustrate that our FlowFA model with a learnable transformation can adequately
learn and recover a wide variety of transformations resulting in different response distributions. To
this end, we sampled 5,000 data points for 100 neurons from models with different ground-truth
transformations (see appendix F for details on data generation). The invertible transformations
(Example 1–10) had the general form exp(a log(y + b) + c) with differing values of a, b, and c
(Fig. 2b). We trained FA-based models with either a fixed (FixedFA) or a learnable flow-based
(FlowFA) transformation. As expected, the models with a fixed transformation performed well
if the data was generated with a similar transformation, but the performance suffered when the
transformations differed (Fig. 2c, first three rows). In contrast, the FlowFA model was able to flexibly
learn every underlying transformation (Fig. 2b) and effectively captured all distributions across all
simulations (Fig. 2c, last row).

Flow-based models capture cortical response distribution well After demonstrating that the flow-
based model can effectively fit a wide range of distributions, we used it to capture distributions of the
mouse visual cortex population responses to natural images, recorded in two different two-photon
scans from two mice (scan 1 and scan 2, refer to section 2.3 for details). We trained the FA-based
models (ZIFFA, FlowFA, and FixedFA) for different values of latent dimensions k ∈ {0, 1, 2, 3, 10}.
We measured the model performance by computing the log-likelihood as well as the conditional
correlations (see section 2.4).
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Figure 3: Comparison of models trained on the mouse visual cortical population responses to natural
images. a: log-likelihood computed for models trained on scan 1 (left panel) and scan 2 (right
panel). Values for both individual (lighter shade) and average (darker shade) performance of a model
trained under various random seeds are shown. Gray block provides a zoomed-in view of the ZIFFA,
FlowFA, and Zero-Inflated-Gamma (ZIG) models. b: Neuron-specific transformations learned by
the flow-based models (ZIFFA in green, average across neurons in light green; FlowFA in pink,
average across neurons in light pink) shown in comparison to fixed transformations. c: Conditional
correlation. Format is similar to a.

The ZIFFA model outperformed all other models across all numbers of latent dimensions k in terms of
log-likelihood (Fig. 3a). Furthermore, with increasing latent dimensions, the conditional correlation
of the ZIFFA model improved significantly beyond the control models (Fig. 3c). Interestingly, we
observed that the ZIFFA model exhibited slightly lower correlation performance compared to models
with fixed transformations, reflecting that fitting models on likelihood does not necessarily yield
optimal correlation. Importantly, the flow-based models outperformed all FixedFA models in terms
of likelihood, which is corroborated by the fact that the learned transformation markedly differs from
all fixed transformations and from one neuron to the other (Fig. 3b). Overall, the results suggest
that the ZIFFA model is able to capture the (marginal) neural response distributions more accurately
than other models (Fig. S2) while at the same time it learns and takes advantage of the statistical
dependencies between neurons.

3.2 Uncovering biological insights from the trained model

Here, we explore the utility of our model in uncovering potential biological insights. All analyses
were performed on the trained ZIFFA model with 3 latent dimensions.

Model-based visual area identification Several visual areas in mice show retinotopies that are
“flipped” with respect to each other [49]. Intuitively, this means that if a point moves along the cortical
surface, as it crosses the boundary between two “mirrored” areas, its counterpart in visual space would
reverse its movement direction. As described in section 2.2, our model is equipped with a component
network that predicts the RF location δ of each neuron in visual space as a function of its cortical
location ∆ (Fig. 1b). This network can be used to infer distinct visual cortical areas by detecting
where the retinotopy “flips” with respect to the cortical position. To detect this flip we looked at the
sign of the determinant of the Jacobian of the RF positions with respect to cortical positions det ∂δ

∂∆ .
The sign can detect changes in the direction because (1) the sign of a determinant flips if one of
the column or row vectors of the Jacobian matrix flips and (2) the determinant is invariant under
rotation. When we compare distinct areas identified via the model to the experimentally identified
areas, we find a very good match (Fig. 4a, left vs. right panels). To assess the quality of the learned
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Figure 4: Analysis of the ZIFFA model with 3-dimensional latent state (k = 3). a: Model-based
area identification from responses of visual sensory neurons to natural images. Left panel (Cortex
positions): cortical position of the recorded neurons color-coded by experimentally identified areas
(green: V1; blue: LM; orange: PM). Middle panel (RF positions): learned receptive field position
for each neuron as a function of cortical positions color-coded by experimentally identified areas.
Right panel (Model-based area identification): visual areas identified via the model by computing
the determinant of the relative changes in RF position with respect to changes in cortical position;
blue color shows negative determinant (i.e. mirrored visual field representation) and red color shows
positive determinant (i.e. non-mirrored visual field representation). b–c: Distribution of the latent-to-
neuron weights across cortical positions (b) and receptive field positions (c). d: Pupil dilation (black)
and the inferred latent states (red) across trials from the test set. R2 values are computed between the
inferred latent state and the pupil dilation.

mapping, we quantified how well our model can identify distinct visual brain areas via the sign of the
determinant. Across models initialized and trained with different random seeds, the sign correctly
classifies distinct brain areas with an accuracy of 84% ± 3.4% (SEM) and 75% ± 7.7% (SEM).
Because the experimental methods to determine area assignment that we use as ground truth can be
quite coarse, the actual accuracy could even be higher. This suggests that our model could in principle
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allow neuroscientists to identify distinct visual areas from responses to natural images alone, without
the need for an extra experiment for area identification.

Inferred latent states and their functional and anatomical implications We next explored the
latent states and how they relate to anatomy or behavior. For any particular trial, the FA-based
models allow us to infer the most probable latent state z (MAP estimate), where the effect of each
latent dimension on the neural population is captured by the factor loading matrix C. However, as
formulated in Eq. (1) and (2), interpreting the inferred latent states z can be difficult because the
latent dimensions can be arbitrarily permuted and rotated (with corresponding changes in C) without
affecting the fit of the model. To facilitate interpretability of the inferred latent states, we follow a
similar procedure used by Yu et al. [30] to extract orthonormalized latent states which are uniquely
ordered by the amount of response variability each latent dimension accounts for (see appendix G for
detailed explanation).

The orthonormalized latent states inferred from the ZIFFA model showed strong correlations with
behavioral variables such as pupil dilation (Fig. 4d), as expected from previous works that use pupil
dilation as a proxy for arousal and attention [50–54]. Interestingly, pupil dilation correlated most
strongly with the second latent dimension in both scans with R2 values of 0.53 (p < 0.001, two-tailed
test for significance of correlation [55]) and 0.63 (p < 0.001) for scan 1 and scan 2, respectively,
comparable to values previously reported [56]. To our surprise, this observation was consistent across
models initialized and trained with different random seeds (Fig. S4b). To further quantify how well
the latent states can jointly predict the pupil dilation, we regressed the pupil dilation against the latent
states (Fig. S4a). The resulting R2 values were 0.56 (p < 0.001) and 0.76 (p < 0.001) for scan 1
and scan 2, respectively. The high correlation between the latent states and the known surrogates of
global brain state such as pupil dilation suggests that the latent model is able to learn meaningful
dependencies and common factors in neural population.

Next, we explored whether the effect of the orthonormalized latent states on the neurons is related to
their cortical or RF positions. To this end, we plotted the sign and magnitude of the weight mapping
from the latent state to each neuron on the cortical position (Fig. 4b) or the RF positions of the
neurons (Fig. 4c). We observed that the effect of some latent dimensions vary systematically across
brain areas where the latent dimension has generally opposite effect on different areas (Fig. 4b:
dimension 2 for both scans). In addition, some latent dimensions seemed to vary as a function of
RF positions/retinotopy where a differential effect of the latent dimension is observed for both areas
(Fig. 4c: dimension 3 for both scans). Interestingly, the first dimension which accounts for most of
the shared variability in neural responses (refer to section G for more details) seemed to have a global
effect that does not vary across different visual areas. These observations illustrate that our model
can be a useful tool for uncovering the functional and structural implications of the behavioral or
internal processes associated with the inferred latent states.

While the result of the analyses we present here are promising, we would like to point out that all
analyses are preliminary, and conclusive biological interpretations would require additional rigorous
experiments and analyses.

4 Discussion

Getting the best of both worlds Two major components of the variability in the activity of cortical
neurons are the variability due to stimulus and the variability due to unobserved or internal processes,
such as behavioral tasks or general brain states, that affect population of neurons in similar ways
giving rise to correlated variability among neurons. Here, we presented a model that combines state-
of-the-art DNN-based models to predict stimulus-driven changes in neural activity with a simple, yet
flexible, flow-based factor analysis model to account for correlated neural activity. This formulation
allows us to evaluate the exact likelihood of neural responses, easily sample stimulus-conditioned
responses, and efficiently compute conditional and marginal distributions of subsets of neurons. By
fitting this model to the activity of thousands of neurons from multiple areas of mouse visual cortex
in response to natural images, we obtained state-of-the-art performance in capturing neural response
distribution while additionally yielding latent states that exhibit meaningful relations to anatomy and
functional properties of visual sensory neurons.

Modeling zero-inflated response distribution Flow models use diffeomorphisms to map one
distribution into another. However, diffeomorphisms cannot transform a single peak at 0—typically
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observed in neural responses recorded via Calcium imaging—into a smooth distribution such as
Gaussian used in our model. The ZIFFA model avoids this problem by only transforming the positive
part of the response with a diffeomorphism while explicitly capturing the peak at 0 via a uniform
distribution as found in ZIG. Importantly, ZIFFA preserves all properties of the FlowFA model, while
capturing the marginal distributions more accurately (Fig. S2), achieving a higher likelihood (Fig. 3),
and learning more consistent and less step-like transformations (Fig. S3).

Dependency of noise correlation on the stimulus The presented flow-based models learn a nonlin-
ear transformation between a simple distribution (Gaussian FA) and the neural response distribution.
While the learned covariance structure on the “transformed” neural responses captured by the FA
model does not vary with the stimulus and the stimulus is only used to shift the mean of the FA model,
this is not true for samples from the FA model transformed back into “neural response space” because
the nonlinear flow transformation can introduce changes in the covariance as the mean varies (Fig. 2a).
This mean-dependent change in the covariance potentially allows the model to capture changes in the
covariance structure based on stimulus through the nonlinear transformation. A possible extension of
our model is an explicit dependence of the FA’s covariance matrix on the stimulus, which would allow
the model to capture more complex dependencies between the stimulus and covariance structure.

Comparison to related methods Our approach in capturing stimulus-conditioned variability is
related to many existing approaches, or can be seen as a generalization thereof, while being compu-
tationally easier to handle at the same time. Recently, Keeley et al. [35] captured the trial-by-trial
fluctuations by modeling the stimulus-specific and trial-specific latents via Factor Analysis (FA)
models much like in our model. Importantly, while we capture the dependence of the stimulus-specific
latents on the stimulus explicitly via a trained DNN, they inferred it from repeated presentations
of the stimulus. Furthermore, the final Poisson distribution used to map from the latents to the
distribution of neurons can be captured in our model via the flow-based transformation (e.g. inverse
Anscombe) that maps Gaussian-distributed latents into a continuous approximation of a Poisson
distribution. Moreover, the use of FA in combination with the marginal flow makes our approach
related to copula-based distribution approximation and related approaches [28, 29, 57]. However, by
explicitly limiting the stimulus dependence to occur via the shift in the mean of the FA model along
with flow-based transformation of responses, we avoid the reliance on the repeated presentations of
the stimuli [29] or highly constrained forms of the marginal distribution [28].

Limitations and future extensions As discussed above, our flow-based approach generalizes
several existing methods to capture stimulus-conditioned variability of neural responses while being
computationally more tractable. This allows us to train our models end-to-end directly on the
likelihood via common gradient-based optimization algorithms. Within this general framework, we
presented a specific case where we learned neuron-specific stimulus-independent transformations,
mapping responses into a FA model whose mean varies with the stimulus. As noted earlier, for
each stimulus, this approach closely parallels Gaussian copula and thus shares much of the same
limitations. Also, the fact that stimulus-dependent changes in the covariance structure only occur
through the learned transformation implies that the model can only capture changes in the covariance
structure that varies with the mean (a limitation shared with many of the existing models). That being
said, we believe that our general approach of flow-based modeling of neural response distributions
allows for several generalizations that would overcome these limitations. Examples include an explicit
dependence of the FA’s covariance matrix on the stimulus, as well as the usage of richer, potentially
stimulus-dependent, learnable transformations.

Broader impact Accurate models of neural variability such as the one presented here can lead
to deeper scientific insights and understanding of how brains perceive and compute with sensory
information, and can eventually also provide insights into how neurological and psychological
disorders may disturb these functions. In particular, a more accurate model that relates internal
brain states, stimulus-driven responses, and anatomical features such as retinotopy or memberships
to certain brain areas might provide deeper insights into the computational principles of cortex.
Naturally, our model requires data from animal experiments to be trained. However, we used existing
datasets with very general protocols that can be used in several analyses to make efficient scientific
use of data from animal experiments. Furthermore, models such as the one presented here do help
to reduce the amount of animal experiments as faithful models allow us to explore the functional
principles of neural populations in silico.
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Singer, and Gergő Orbán. Stimulus complexity shapes response correlations in primary visual
cortex. Proceedings of the National Academy of Sciences, 116(7):2723–2732, 2019.

[10] Marlene R Cohen and William T Newsome. Context-dependent changes in functional circuitry
in visual area mt. Neuron, 60(1):162–173, 2008.

[11] Ralf M Haefner, Pietro Berkes, and József Fiser. Perceptual decision-making as probabilistic
inference by neural sampling. Neuron, 90(3):649–660, 2016.

[12] Marlene R Cohen and John HR Maunsell. Attention improves performance primarily by
reducing interneuronal correlations. Nature neuroscience, 12(12):1594, 2009.

[13] Jude F Mitchell, Kristy A Sundberg, and John H Reynolds. Spatial attention decorrelates
intrinsic activity fluctuations in macaque area v4. Neuron, 63(6):879–888, 2009.

[14] Farran Briggs, George R Mangun, and W Martin Usrey. Attention enhances synaptic efficacy
and the signal-to-noise ratio in neural circuits. Nature, 499(7459):476–480, 2013.

11



[15] Cristopher M Niell and Michael P Stryker. Modulation of visual responses by behavioral state
in mouse visual cortex. Neuron, 65(4):472–479, 2010.

[16] Alexander S Ecker, Philipp Berens, R James Cotton, Manivannan Subramaniyan, George H
Denfield, Cathryn R Cadwell, Stelios M Smirnakis, Matthias Bethge, and Andreas S Tolias.
State dependence of noise correlations in macaque primary visual cortex. Neuron, 82(1):
235–248, 2014.

[17] David A Klindt, Alexander S Ecker, Thomas Euler, and Matthias Bethge. Neural system
identification for large populations separating “what” and “where”. Adv. Neural Inf. Process.
Syst., November 2017.

[18] Eleanor Batty, Josh Merel, Nora Brackbill, Alexander Heitman, Alexander Sher, Alan Litke,
E J Chichilnisky, and Liam Paninski. Multilayer recurrent network models of primate retinal
ganglion cell responses. November 2016.

[19] Lane T McIntosh, Niru Maheswaranathan, Aran Nayebi, Surya Ganguli, and Stephen A Baccus.
Deep learning models of the retinal response to natural scenes. In Advances in neural information
processing systems, volume 29, pages 1369–1377, February 2016.

[20] Fabian Sinz, Alexander S Ecker, Paul Fahey, Edgar Walker, Erick Cobos, Emmanouil
Froudarakis, Dimitri Yatsenko, Zachary Pitkow, Jacob Reimer, and Andreas Tolias. Stim-
ulus domain transfer in recurrent models for large scale cortical population prediction on video.
In Advances in Neural Information Processing Systems 31, pages 7199–7210, 2018.

[21] Santiago A Cadena, George H Denfield, Edgar Y Walker, Leon A Gatys, Andreas S Tolias,
Matthias Bethge, and Alexander S Ecker. Deep convolutional models improve predictions of
macaque v1 responses to natural images. PLoS computational biology, 15(4):e1006897, 2019.

[22] Konstantin-Klemens Lurz, Mohammad Bashiri, Konstantin Friedrich Willeke, Akshay Kumar
Jagadish, Eric Wang, Edgar Y Walker, Santiago Cadena, Taliah Muhammad, Eric Cobos,
Andreas Tolias, et al. Generalization in data-driven models of primary visual cortex. bioRxiv,
2020.

[23] Edgar Y Walker, Fabian H Sinz, Erick Cobos, Taliah Muhammad, Emmanouil Froudarakis,
Paul G Fahey, Alexander S Ecker, Jacob Reimer, Xaq Pitkow, and Andreas S Tolias. Inception
loops discover what excites neurons most using deep predictive models. Nature neuroscience,
22(12):2060–2065, 2019.

[24] Pouya Bashivan, Kohitij Kar, and James J DiCarlo. Neural population control via deep image
synthesis. Science, 364(6439):eaav9436, May 2019.

[25] Adam S Charles, Mijung Park, J Patrick Weller, Gregory D Horwitz, and Jonathan W Pillow.
Dethroning the fano factor: a flexible, model-based approach to partitioning neural variability.
Neural computation, 30(4):1012–1045, 2018.

[26] Robbe LT Goris, J Anthony Movshon, and Eero P Simoncelli. Partitioning neuronal variability.
Nature neuroscience, 17(6):858–865, 2014.

[27] Cian O’Donnell, J Tiago Gonçalves, Nick Whiteley, Carlos Portera-Cailliau, and Terrence J
Sejnowski. The population tracking model: A simple, scalable statistical model for neural
population data. Neural Comput., 29(1):50–93, January 2017.

[28] Pietro Berkes, Frank Wood, and Jonathan Pillow. Characterizing neural dependencies with
copula models. https://pillowlab.princeton.edu/pubs/Berkes09_Copulas_NIPS.
pdf. Accessed: 2021-5-22.

[29] Oleksandr Sorochynskyi, Stéphane Deny, Olivier Marre, and Ulisse Ferrari. Predicting syn-
chronous firing of large neural populations from sequential recordings. PLoS Comput. Biol., 17
(1):e1008501, January 2021.

[30] Byron M Yu, John P Cunningham, Gopal Santhanam, Stephen I Ryu, Krishna V Shenoy, and
Maneesh Sahani. Gaussian-process factor analysis for low-dimensional single-trial analysis of
neural population activity. J. Neurophysiol., 102(1):614–635, July 2009.

12

https://pillowlab.princeton.edu/pubs/Berkes09_Copulas_NIPS.pdf
https://pillowlab.princeton.edu/pubs/Berkes09_Copulas_NIPS.pdf


[31] Jakob H Macke, Lars Buesing, John P Cunningham, Byron M Yu, Krishna V Shenoy, and
Maneesh Sahani. Empirical models of spiking in neural populations. In J Shawe-Taylor, R S
Zemel, P L Bartlett, F Pereira, and K Q Weinberger, editors, Advances in Neural Information
Processing Systems 24, pages 1350–1358. Curran Associates, Inc., 2011.

[32] Evan W Archer, Urs Koster, Jonathan W Pillow, and Jakob H Macke. Low-dimensional models
of neural population activity in sensory cortical circuits. In Advances in Neural Information
Processing Systems 27: 28th Conference on Neural Information Processing Systems (NIPS
2014), pages 343–351, 2015.

[33] Yuan Zhao and Il Memming Park. Variational latent gaussian process for recovering Single-Trial
dynamics from population spike trains. Neural Comput., 29(5):1293–1316, May 2017.

[34] Anqi Wu, Nicholas A Roy, Stephen Keeley, and Jonathan W Pillow. Gaussian process based
nonlinear latent structure discovery in multivariate spike train data. Adv. Neural Inf. Process.
Syst., 30:3496–3505, December 2017.

[35] Stephen L Keeley, Mikio C Aoi, Yiyi Yu, Spencer L Smith, and Jonathan W Pillow. Identifying
signal and noise structure in neural population activity with gaussian process factor models.
July 2020.

[36] E G Tabak. A family of non-parametric density estimation algorithms. https://www.math.
nyu.edu/~tabak/publications/Tabak-Turner.pdf, 2000. Accessed: 2021-5-25.

[37] Esteban G Tabak and Eric Vanden-Eijnden. Density estimation by dual ascent of the log-
likelihood. CMS Books Math./Ouvrages Math. SMC, 8(1):217–233, March 2010.

[38] Oren Rippel and Ryan Prescott Adams. High-Dimensional probability estimation with deep
density models. February 2013.

[39] J P Agnelli, M Cadeiras, E G Tabak, C V Turner, and E Vanden-Eijnden. Clustering and
classification through normalizing flows in feature space. Multiscale Model. Simul., 8(5):
1784–1802, January 2010.

[40] L Dinh, J Sohl-Dickstein, and S Bengio. Density estimation using real NVP. Technical report,
2017.

[41] Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows.
1505.05770, 2015.

[42] Sam Roweis and Zoubin Ghahramani. A unifying review of linear gaussian models. Neural
Comput., 11(2):305–345, 1999.

[43] Xue-Xin Wei, Ding Zhou, Andres Grosmark, Zaki Ajabi, Fraser Sparks, Pengcheng Zhou, Mark
Brandon, Attila Losonczy, and Liam Paninski. A zero-inflated gamma model for deconvolved
calcium imaging traces. June 2020.

[44] François Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pages 1251–1258,
2017.

[45] Shaul K Bar-Lev and Peter Enis. On the classical choice of variance stabilizing transformations
and an application for a poisson variate. Biometrika, 75(4):803–804, 1988.

[46] Nicholas James Sofroniew, Daniel Flickinger, Jonathan King, and Karel Svoboda. A large field
of view two-photon mesoscope with subcellular resolution for in vivo imaging. Elife, 5:e14472,
2016.

[47] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

[48] Facebook. Adaptive experimentation platform, 2019. URL https://ax.dev/.

13

https://www.math.nyu.edu/~tabak/publications/Tabak-Turner.pdf
https://www.math.nyu.edu/~tabak/publications/Tabak-Turner.pdf
https://ax.dev/


[49] Marina E Garrett, Ian Nauhaus, James H Marshel, and Edward M Callaway. Topography and
areal organization of mouse visual cortex. Journal of Neuroscience, 34(37):12587–12600, 2014.

[50] Jacob Reimer, Emmanouil Froudarakis, Cathryn R R Cadwell, Dimitri Yatsenko, George H H
Denfield, and Andreas S S Tolias. Pupil fluctuations track fast switching of cortical states during
quiet wakefulness. Neuron, 84(2):355–362, 2014.

[51] Martin Vinck, Renata Batista-Brito, Ulf Knoblich, and Jessica A Cardin. Arousal and locomotion
make distinct contributions to cortical activity patterns and visual encoding. Neuron, 86(3):
740–754, May 2015.

[52] Matthew J McGinley, Martin Vinck, Jacob Reimer, Renata Batista-Brito, Edward Zagha,
Cathryn R Cadwell, Andreas S Tolias, Jessica A Cardin, and David A McCormick. Waking
state: Rapid variations modulate neural and behavioral responses. Neuron, 87(6):1143–1161,
September 2015.

[53] Jacob Reimer, Matthew J McGinley, Yang Liu, Charles Rodenkirch, Qi Wang, David A Mc-
Cormick, and Andreas S Tolias. Pupil fluctuations track rapid changes in adrenergic and
cholinergic activity in cortex. Nat. Commun., 7:13289, November 2016.

[54] Siddhartha Joshi, Yin Li, Rishi M. Kalwani, and Joshua I. Gold. Relationships between Pupil
Diameter and Neuronal Activity in the Locus Coeruleus, Colliculi, and Cingulate Cortex.
Neuron, 89(1):221–234, 2016. ISSN 0896-6273. doi: 10.1016/j.neuron.2015.11.028.

[55] Student. Probable error of a correlation coefficient. Biometrika, pages 302–310, 1908.

[56] Carsen Stringer, Marius Pachitariu, Nicholas Steinmetz, Charu Bai Reddy, Matteo Carandini,
and Kenneth D Harris. Spontaneous behaviors drive multidimensional, brainwide activity.
Science, 364(6437), 2019.

[57] Jakob H Macke, Philipp Berens, Alexander S Ecker, Andreas S Tolias, and Matthias Bethge.
Generating spike trains with specified correlation coefficients. Neural Comput., 21(2):397–423,
February 2009.

[58] Emmanouil Froudarakis, Uri Cohen, Maria Diamantaki, Edgar Y Walker, Jacob Reimer, Philipp
Berens, Haim Sompolinsky, and Andreas S Tolias. Object manifold geometry across the mouse
cortical visual hierarchy. August 2020.

[59] Eftychios A Pnevmatikakis, Daniel Soudry, Yuanjun Gao, Timothy A Machado, Josh Merel,
David Pfau, Thomas Reardon, Yu Mu, Clay Lacefield, Weijian Yang, et al. Simultaneous
denoising, deconvolution, and demixing of calcium imaging data. Neuron, 89(2):285–299,
2016.

[60] D P Kingma and J Ba. Adam: A method for stochastic optimization. International Conference
on Learning Representations, pages 1–13, 2014.

[61] Lutz Prechelt. Early stopping — but when? In Grégoire Montavon, Geneviève B Orr, and
Klaus-Robert Müller, editors, Neural Networks: Tricks of the Trade: Second Edition, pages
53–67. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[62] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

[63] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Vir-
tanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,

14

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf


Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Hal-
dane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin
Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E.
Oliphant. Array programming with NumPy. Nature, 585(7825):357–362, September 2020. doi:
10.1038/s41586-020-2649-2. URL https://doi.org/10.1038/s41586-020-2649-2.

15

https://doi.org/10.1038/s41586-020-2649-2

	Introduction
	Methods
	Models
	Model components
	Neural and behavioral data
	Model fitting and evaluation

	Results
	Model performance
	Uncovering biological insights from the trained model

	Discussion

