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Abstract

We study out-of-distribution (OOD) prediction behavior of neural networks when they
classify images from unseen classes or corrupted images. To probe the OOD behavior, we
introduce a new measure, nearest category generalization (NCG), where we compute the
fraction of OOD inputs that are classified with the same label as their nearest neighbor
in the training set. Our motivation stems from understanding the prediction patterns of
adversarially robust networks, since previous work has identified unexpected consequences of
training to be robust to norm-bounded perturbations. We find that robust networks have
consistently higher NCG accuracy than natural training, even when the OOD data is much
farther away than the robustness radius. This implies that the local regularization of robust
training has a significant impact on the network’s decision regions. We replicate our findings
using many datasets, comparing new and existing training methods. Overall, adversarially
robust networks resemble a nearest neighbor classifier when it comes to OOD data.

1 Introduction

A large amount of machine learning research focuses on improving classifier accuracy under the premise that
test data is similar enough to training data to warrant good generalization. Recently, however, there has been
much interest in the behavior of deep neural networks on out-of-distribution (OOD) data. In this context,
OOD could mean that the inputs come from previously unseen categories (Salehi et al., 2021; Yang et al.,
2021), or that the inputs have been adversarially perturbed (Madry et al., 2017) or corrupted (Hendrycks &
Dietterich, 2019). Studying OOD generalization may improve the reliability of machine learning systems.
Another goal comes from semi-supervised and self-supervised learning, where the model propagates labels to
unlabeled data (Van Engelen & Hoos, 2020). Identifying clear patterns in OOD behavior can aid engineers in
choosing among many methods.

Unfortunately, predictions on OOD data can be mysterious. For example, adversarially robust training
methods often involve regularizing the network so that it predicts the same label on both a training example
and on all points in a small ε-ball around the example (Madry et al., 2017; Zhang et al., 2019). Such
methods only specify a local constraint on prediction behavior. At first glance, it may be tempting to guess
that training to be robust in a small ε-ball should not affect predictions on other parts of the input space.
However, it has become clear that robust training can cause substantial differences in global behavior. For
example, it may lead to excessive invariances (Jacobsen et al., 2018; Tramèr et al., 2020), improve transfer
learning (Salman et al., 2020), or change confidence on OOD data (Hein et al., 2019).

1.1 Nearest Category Generalization

To investigate the global behavior of robust networks, we explore patterns in how such networks predict
on OOD data. Recent studies observe that robust training encourages the network to predict the same
label not just in an ε-ball but also much further away in the pixel space (Carlini et al., 2019). However,
the scope of these prior experiments is limited to certain OOD data, such as random noise or adversarial
perturbations (Hein et al., 2019). While it is hard to analyze the entirety of the high-dimensional input space,
we can probe predictions on OOD data in another way.
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We introduce a new metric that we call Nearest Category Generalization (NCG). In short, we explore whether
robust networks are more likely to classify OOD data with the class label of the nearest training input.
Concretely, we can fix the same metric for both adversarially robust training and for the nearest neighbor
prediction (e.g., `2 distance in pixel space). Then, we can calculate how often the predicted label on OOD
data matches the 1-nearest-neighbor (1-NN) label. We refer to this measure as the NCG accuracy.

Following prior work (Salehi et al., 2021), we consider two canonical types of OOD data (i) Unseen Classes:
during training, we hold out all images from one of the classes, but during testing, we predict labels for
images from this unseen class, (ii) Corrupted Data: we train on all classes, but we test on images that have
been corrupted. Importantly for us, both sources of OOD data have the property that the distance (e.g., `2)
is quite large between the OOD data and the standard train/test images. In particular, the distance is much
larger than the robustness radius used during robust training, and therefore, the training procedure does not
explicitly dictate the predictions on such OOD data. Hence, NCG accuracy measures global resemblance to
the 1-NN classifier for unseen or corrupted images.

Understanding NCG performance can shed new light on many research questions. First, if changes in the
training method lead to significant changes in NCG accuracy, then this suggests the network’s decision
boundaries have shifted to extrapolate very differently on OOD data. Even for ReLU networks, understanding
the decision regions far away from training data is an active and important area of research (Arora et al.,
2016; Hanin & Rolnick, 2019; Williams et al., 2019). Second, NCG accuracy provides a new way to evaluate
training methods on unlabeled data that cannot be labeled using other information. This is in contrast to
transfer learning and few-shot learning that require auxiliary data Raghu et al. (2019); Yosinski et al. (2014);
Wang et al. (2020). Overall, we emphasize that the NCG framework is not rooted in a standalone task, but
instead, it highlights new prediction patterns of networks on OOD data.

1.2 Contributions

Our first finding is that NCG accuracy is consistently higher than chance levels for many training methods
and datasets. This means that the behavior on OOD data is far from random. On both natural and corrupted
OOD images, the network favors the 1-NN label. Surprisingly, this correlation with 1-NN happens in pixel
space with `2 distance. The network converges to a classifier that depends heavily on the geometry of the
input space, as opposed to making predictions based on semantic or higher-level structures.

Next, we show that robust networks indeed have much higher NCG accuracy than natural training methods.
This holds for a variety of held out classes, corruption types, and robust training methods. OOD inputs that
are classified with the NCG label (1-NN in training set) are considerably further than from their closest
training examples. These training examples also have adversarial examples that are closer than the robustness
radius r (see Figure 1). This implies that the decision regions of adversarially robust methods extend in
certain directions, but not others, and that the local training constraints lead to globally different behavior.
We can identify these types of prediction patterns precisely because we examine the network with OOD data.

x
r

OOD dist

Figure 1: Robust networks tend to predict the same at a large distance in some directions, e.g., toward
natural OOD examples (green), but are susceptible to adversarial examples that are closer in the worst-case
directions (red).

Besides unseen classes, we also look at corrupted data, such as CIFAR10-C, CIFAR100-C, and ImgNet100-C
Hendrycks & Dietterich (2019). The NCG accuracies for all networks (including natural and robust networks)
are above the chance levels, and robust networks often have much higher NCG accuracy than natural training.
We also uncover an interesting correlation between NCG accuracy and prediction accuracy for corrupted
data. Corrupted examples that are correct in terms of NCG accuracy have a higher chance of being classified
correctly in terms of the semantic label as well. In other words, if the network matches the 1-NN prediction,
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then it is more likely to predict the correct label for a corrupted image. This indicates that having higher
NCG accuracy may be a desirable property, as it can encourage better predictions on corrupted data.

Our work uncovers an intriguing OOD generalization property of neural networks, and we find that robust
networks have higher NCG accuracy than naturally trained counterparts. However, robust training does
not inherently impose constraints on the OOD data that we consider (OOD data are far from perturbed
examples). We posit that the NCG behavior is a consequence of the inductive bias produced by neural
networks (especially for adversarially robust networks). Also, different forms of robustness (`2 and corruptions)
may be interconnected with NCG at a deeper level.

1.3 Related Work

There has been much research on properties of robust networks beyond robustness. Santurkar et al. (2020)
study the performance of adversarially trained models on subpopulation shift. Salman et al. (2020) consider
transfer learning for robust models. Kireev et al. (2021) look at accuracy on corrupted data for robust
training methods.

Our results on NCG strengthen and complement existing efforts in understanding the excessive invariances
that are induced by adversarial training (Jacobsen et al., 2018; Ortiz-Jimenez et al., 2020; Tramèr et al.,
2020). Another related area is extrapolation (Balestriero et al., 2021; Xu et al., 2020), where we provide a
theoretical result (Theorem 1) that corroborates claims that higher diversity of the training distribution helps
extrapolation to linear target functions (Hein et al., 2019; Xu et al., 2020).

Data augmentation is an effective way to improve generalization and robustness (Cubuk et al., 2020; Shorten
& Khoshgoftaar, 2019). The success of this approach is consistent with our findings. Local regularization can
lead to unexpected behavior, and hence, training on far-away images helps control the decision regions (e.g.,
for robustness and generalization, cf. Herrmann et al. (2021)).

Connecting NCG with OOD detection is a nice direction for future work (Manevitz & Yousef, 2001; Liang
et al., 2018; Ren et al., 2019). OOD detectors already work well for some tasks, such as detecting data
from another dataset (Sehwag et al., 2021; Tack et al., 2020). Holding out a single class from the same
dataset provides a harder instance of OOD detection. Predictions on unseen data are also studied in the
area of open set recognition (Dhamija et al., 2020). Another approach to OOD generalization involves the
confidence/uncertainty on OOD data (Kristiadi et al., 2020; Meinke & Hein, 2019; Van Amersfoort et al.,
2020). However, much of this work takes a Bayesian perspective and calibrates OOD predictions. We focus on
a geometric framework, looking at distances and 1-NN labels in the input space. The perceptual organization
of neural networks is another way to probe OOD behavior (Kim et al., 2021).

2 Preliminaries

OOD Data. We consider two standard types of OOD data. Unseen Classes: We hold out all examples
from one class during training time (e.g., MNIST without 9s). During test time, we evaluate test accuracy
on the remaining classes, and we evaluate NCG accuracy on the held out class (e.g., we predict 0–8 for
the 9s). For each dataset, we hold out different classes, and we use the shorthand dataset-wo# to mean
that this class # is unseen. For example, MNIST-wo9 is MNIST with unseen digit 9, CIFAR10-wo0 is
CIFAR10 with unseen airplane and CIFAR100-wo0 is CIFAR100 with unseen aquatic mammals. We shorten
this as M-9, C10-0, C100-0, etc. We use coarse labels for CIFAR100. For ImageNet, we subsample to 100
classes to form ImgNet100. Corruptions: We train on all classes and evaluate standard corruptions, which
includes CIFAR10-C and CIFAR100-C (Hendrycks & Dietterich, 2019). Again, we measure NCG accuracy by
classifying corrupted data and checking whether the label matches the 1-NN training label.

Adversarially Robust Training. Let Bpx, rq be a ball of radius r ą 0 around x in a metric space. A
classifier f is said to be robust at x with radius r if for all x1 P Bpx, rq, we have fpx1q “ fpxq. Standard
adversarially robust training methods such as TRADES (Zhang et al., 2019) work by minimizing a loss function
that is the sum of the cross-entropy loss plus a regularization term; this regularization term encourages that
the network is smooth in a ball of radius r around each training point xi, ensuring robustness in this ball.
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Concretely, the TRADES loss is:

`pfθpxiq, yiq ` β max
x1

i
PPi

DKLpfθpx1iq, fθpxiqq, (1)

where β is a tradeoff parameter, ` is the cross-entropy loss, and Pi “ Bpxi, rq is the ball of radius r around xi.

Distance Metrics for NCG. We use the `2 distance for two representations. Pixel Space: Robust methods
aim to have invariant predictions within a small norm ball in pixel space. Hence, we evaluate the distance
in pixel space (we believe the `8 results would be similar). Feature Space: For another representation,
we first train a different neural network (fully connected MLP) on the in-distribution data (we omit the
unseen class). Then we compute the last layer embedding for all images, including those in the unseen class,
giving us a learned, latent embedding. This provides vectors for both in-distribution and OOD images, and
we use these vectors as our “feature space” version of the datasets. Note that we do not claim that these
representations capture human-level or semantic similarity for the OOD data. Nonetheless, they both suffice
to provide insight into the OOD prediction behavior of robust and normal networks.

NCG Accuracy. The NCG accuracy is the fraction of OOD inputs that are labeled as their nearest neighbor
in the training set (i.e., we measure agreement with the 1-NN classifier). For corrupted data, we use the
whole training set. For unseen classes, we use the training set minus the held out class. We measure the
1-NN prediction in `2 distance in either the pixel space or the above-defined feature space.

3 NCG for Unseen Classes

Set-up. For natural/robust training, on MNIST, we evaluate a CNN; on CIFAR10/100, we use Wider
ResNet (WRN-40-10); on ImageNet, we use ResNet50. We consider natural training and mixup (Zhang et al.,
2017) as baselines. For robust training, we consider two standard methods, Adversarial Training (Madry
et al., 2017)(AT) and TRADES (Zhang et al., 2019). These methods are known to have high adversarial
robustness to `2 perturbations, and hence, they serve as good baseline examples of robust networks. For
TRADES, we use robustness radii r P t2, 4, 8u for the `2 ball in Equation (1). In the pixel space, we use r “ 2
for AT. In the feature space, we set r “ 1 for AT on CIFAR10/100, and r “ .5 for AT on ImgNet100 (on
CIFAR10/100, AT failed to converge with r “ 2 and on ImgNet100 with r P t1, 2u). We denote TRADES
with r “ 2 and AT with r “ 1 as TRADES(2) and AT(1), respectively. Prior work observes that AT and
TRADES give similar results with parameter tuning (Yang et al., 2020; Carmon et al., 2019), and hence we
expect them to behave similarly. Appendix C has more details.

Datasets. We consider all 10 classes as the unseen class for MNIST and three unseen classes for each of
CIFAR10, CIFAR100, and ImgNet100. CIFAR10, we consider removing the airplane, deer, and truck classes;
for CIFAR100, we remove the aquatic mammals, fruit and vegetables, and large man-made outdoor things
classes; for ImgNet100, we remove the American robin, Gila monster, and eastern hog-nosed snake classes.
These are denoted as CIFAR10-wo{0, 4, 9}, CIFAR100-wo{0, 4, 9}, ImgNet100-wo{0, 1, 2}.

Results. Table 1 shows the NCG accuracy of natural and robust models averaged over unseen classes (in
both pixel and feature space). We perform a chi-squared test against the null hypothesis that the distribution
of the labels is uniform with the p-value threshold set to 0.01. We find that for all 80 models trained, there
is a significantly higher than chance level NCG accuracy. Then, we perform a t-test between each robust
model vs. natural training, with the null hypothesis being that the robust model has lower NCG accuracy.
In Table 2, we show the number of cases that pass this t-test. Adversarially robust models, TRADES and
AT, almost always have a higher NCG accuracy than natural training with verified statistical significance.
Meanwhile, mixup have a higher NCG accuracy than natural training in only less than half of the cases.

Adversarial robustness increases NCG accuracy. The unseen class is absent at training, and this
property has been obtained simply by making the model adversarially robust. This is interesting because it
suggests that robust models extrapolate to OOD data in a way that is more likely to match 1-NN predictions.
Prior work on extrapolation (Xu et al., 2020) has shown that MLPs tend to extrapolate as linear functions
on far OOD data. The 1-NN classifier is not a linear function in their sense. Specifically, the 1-NN label is
determined by the Voronoi decomposition of the training data, and the decision boundaries separate far away
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points using hyperplanes. Hence, the higher NCG accuracy of robust classifiers uncovers a new phenomenon
of OOD behavior. We next investigate whether we should expect higher NCG accuracy for robust models by
measuring the distance to OOD examples.

Table 1: The average and standard deviation of the NCG accuracies across different held out class of each
dataset. There are 10 unseen classes for MNIST and 3 unseen classes for CIFAR10, CIFAR100, and ImgNet100.
In general robust methods have a higher average NCG than natural training. The chance level is 1{9 for
MNIST and CIFAR10, 1{19 for CIFAR100, and 1{99 for ImgNet100.

MINST CIFAR10 CIFAR100 ImgNet100

pixel

natural .49˘ .14 .24˘ .09 .18˘ .03 .04˘ .01
mixup .47˘ .14 .23˘ .09 .20˘ .06 .04˘ .01
TRADES(2) .59˘ .12 .34˘ .12 .29˘ .09 .04˘ .01
TRADES(4) .59˘ .10 .37˘ .11 .29˘ .10 .05˘ .01
TRADES(8) .52˘ .12 .34˘ .10 .29˘ .13 .06˘ .01
AT(2) .60˘ .10 .36˘ .12 .26˘ .07 .04˘ .01

feature

natural .50˘ .18 .82˘ .02 .66˘ .03 .12˘ .01
mixup .56˘ .16 .79˘ .02 .66˘ .03 .14˘ .01
TRADES(2) .58˘ .15 .82˘ .01 .72˘ .02 .16˘ .01
TRADES(4) .64˘ .10 .85˘ .02 .71˘ .02 .13˘ .01
TRADES(8) .67˘ .11 .85˘ .02 .71˘ .02 .14˘ .01
AT(2)/(1)/(.5) .54˘ .17 .85˘ .03 .73˘ .02 .16˘ .01

Table 2: The number of robust models with higher NCG accuracy than natural training. For MNIST we
check 10 unseen classes, and for CIFAR10, CIFAR100, and ImgNet100, we use 3 unseen classes. 10/10 means
that out of the 10 unseen classes, all 10 models have higher NCG.

pixel feature
M C10 C100 I M C10 C100 I

mixup 5/10 0/3 2/3 0/3 0/10 0/3 2/3 3/3
TRADES(2) 10/10 3/3 3/3 3/3 9/10 2/3 3/3 3/3
TRADES(4) 8/10 3/3 3/3 3/3 10/10 3/3 3/3 3/3
TRADES(8) 7/10 3/3 3/3 3/3 10/10 3/3 3/3 3/3
AT(2)/(1)/(.5) 10/10 3/3 3/3 3/3 9/10 3/3 3/3 3/3

3.1 OOD Data are Farther than Adversarial Examples

Why do robust models have a higher NCG accuracy for unseen classes? One plausible explanation is that the
robust methods enforce the neural network to be locally smooth in a ball of radius r; if the OOD inputs are
closer than r from their nearest training example, then they would get classified accordingly. Next, we test if
this is the case by measuring the `2 distance between each OOD input x and its closest training example
x̃. Then, we calculate the closest adversarial example x1 to x̃ using various attack algorithms. We measure
(i) the distance between OOD example and its closest training example (}x ´ x̃}2) and (ii) the empirical
robustness radius (}x1 ´ x̃}2). We plot the histogram in Figure 2. We use several different attack algorithms
to find the closest adversarial example. Some of these attacks are slow, so we compute adversarial examples
for 300 randomly sampled training examples that are correctly predicted. Then, we restrict to OOD examples
that have one of these 300 training examples as their closest neighbor.

Figure 2 (a) reports a typical distance histogram in the pixel space (for C10-0). We find that the histograms
of OOD distances and the empirical robust radii have little to no overlap in the pixel space, while in the
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feature space, there is some overlap but not much. To better understand what is happening, we measure
the percentage of OOD examples that are covered in the ball centered around the closest training example
with a radius of the empirical robust radius. We find that in both the pixel and feature space, for 186 out of
190 models, this percentage is less than 2%, which is significantly smaller than the difference between the
NCG accuracy of robust and naturally trained models in most cases (190 comes from having two metric
spaces, five models, and 19 datasets). This result shows that almost all OOD examples from unseen classes
are significantly further away from their closest training example than the empirical robust radius of these
training examples.

(a) C10-wo0, pixel space (b) C10-wo0, feature space (c) I-wo0, pixel space (d) I-wo0, feature space

Figure 2: Histograms: log of the empirical robust radius and OOD distance for TRADES(2) on CIFAR10-wo0
and ImgNet100-wo0. Adversarial examples are much closer than OOD examples.

3.2 The Role of the Training Procedure

We next ask whether changing the robustness regions Pi when optimizing the loss in Equation (1) can change
NCG accuracy. TRADES enforces smoothness in a region Pi that is to be a fixed radius r norm ball around
each training example. Enforcing smoothness on fixed radius norm balls may not ensure good NCG accuracy.
Figure 3 (c) shows an example – here, the purple points are closer to the orange cluster on the left and
further from the orange cluster on the right. If we only enforce smoothness on a uniform ball (TRADES),
the decision boundary for the purple points does not extend right enough. We explore making the classifier
smooth in regions Pi that adapt to the geometry of the dataset.

(a) region diagram (b) natural (c) uniform ball (d) sub-Voronoi region

Figure 3: (a) A diagram showing the difference between the sub-Voronoi region (V) and the ball B used to
approximate it. In figure (b), (c), and (d), we plot the decision boundary of neural networks trained with
natural training, TRADES, and enforcement on the smoothness in V. The yellow examples are the OOD
examples, and they are closer to the purple examples. In (b) and (c), we see that the predictions on the
yellow examples are not consistent to the nearest neighbor; on the other hand, in (d), the yellow examples
are predicted as purple.

Sub-Voronoi Region. Can we use the 1-NN classifier as a guide to actively improve NCG accuracy? While
we do not see OOD inputs at training, we can encourage all points x that are closer to a training point
pxi, yiq than to any other training point with a different label to be assigned to label yi. In other words, we
could set Pi to be the Voronoi region of xi in the union of pxi, yiq and all other training points whose labels
are different from yi. We call this the sub-Voronoi region of pxi, yiq. Figure 3 (a) shows an example.

Figure 3 (b), (c), (d) show how different training methods change the decision regions. Note that the yellow
points are never seen during training or testing (they are just for illustration of hypothetical OOD inputs).
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We draw the decision boundary for three methods – natural, TRADES, and training with Pi set to the
sub-Voronoi region in Equation (1). All three perform well on in-distribution examples; however, unlike
TRADES, optimizing over the sub-Voronoi region classifies all of the OOD examples with their nearest
categories by putting the purple boundary in the correct location.

3.3 Approximations to the sub-Voronoi region

The loss in Equation (1) is minimized by an iterative procedure. At each iteration, we find the input in Pi
that maximizes the regularization term. Running this requires being able to project onto Pi efficiently. While
this can be done relatively fast when Pi is a constant radius ball, it is considerably more challenging for
the sub-Voronoi region – which is a polytope with close to n constraints (one for each training point with
label ‰ yi). Therefore, we consider three alternative approximations that are faster to project on and can be
efficiently implemented during training.

Sub-sampled sub-Voronoi. Here, instead of the sub-Voronoi region, of xi in the full training data, we
use the Voronoi cell of xi in the union of pxi, yiq and a subsample of the training data with labels not equal
to yi. Since the sub-sampled sub-Voronoi region can be large, which can cause the network to underfit, we
introduce a shrinkage parameter λ P r0, 1s to scale down the size of the region.

Ellipsoid. An alternative method is to use an ellipsoidal approximation. Computing the maximum volume
ellipsoid inside the region is again challenging. To improve efficiency, we use the following approximation. We
pick k differently-labeled training examples that are closest to xi, learn a PCA on these k examples, and
pick the ellipsoid centered at xi and described by the top k{2 principal components. We use a shrinkage
parameter λ to help generalization.

Non-uniform ball. A final approximation is to use an `2 ball of radius ri, where ri is set to half the distance
between xi and its closest training point with a different label; this is the largest ball centered at xi that
is contained in the sub-Voronoi region. As with the previous methods, with finite training data, this may
overestimate the region where we should predict yi and hence lead to underfitting; to address this, we again
introduce a shrinkage parameter λ, setting Pi to Bpxi, λriq. More details about the minimization procedure
and each of these alternatives are given in Appendix B.

3.4 Experiments on how the robust region affects NCG

We now empirically measure how the role of changing Pi affects NCG accuracy on real data. For this purpose,
we consider enforcing smoothness in the three types of regions discussed above – non-uniform ball, ellipsoid,
and sub-sampled sub-Voronoi. We also look at TRADES with three different radii and natural training as
baselines. A detailed discussion of the experimental setup is in Appendix C. Note that we do not aim to
achieve the best performance in any given measure, so we mostly use standard parameter settings, and we do
not use data augmentation.

Results and Discussion. Table 3 shows the train, test, NCG accuracy for MNIST, CIFAR10, CIFAR100
with different unseen categories. All robust methods – TRADES and three approximations to sub-Voronoi –
have higher NCG accuracy than the natural training. This agrees with our previous observations. Surprisingly,
there is a lot of variation in the results. This warrants investigation, but we do not have a clear conjecture
as to why certain classes have higher NCG accuracy. For instance, in M-4, the NCG accuracy can be up
to 83%, while in M-1, the best is 53%. Perhaps there is a visual similarity between some classes of images
(e.g., 4s and 9s look alike), or spurious correlations (Veitch et al., 2021), or only some datasets have sufficient
diversity in examples to “cover” the OOD class (Hein et al., 2019; Xu et al., 2020). In high dimensional
space, it is hard to measure whether some of the unseen classes are more like the training data than others.
We later explore the NCG accuracy as a function of the distance to the training set. At least in pixel space
and for color images, we find that closer images are more likely to receive the NCG label. We next consider
corrupted images as another source of OOD data.
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Table 3: The training, testing and NCG accuracy of networks trained by enforcing smoothness on different
regions (pixel space). We use MNIST with digits 0, 1, 4, and 9 as the unseen classes, CIFAR10 with airplane
and deer as the unseen classes, and CIFAR100 with aquatic mammals and fruit and vegetables as the unseen
classes.

trn acc. tst acc. NCG acc. trn acc. tst acc. NCG acc.
MNIST-wo0 (M-0) MNIST-wo1 (M-1)

sub-voronoi 0.981 0.981 0.474 0.982 0.981 0.376
ellipsoid 0.981 0.981 0.476 0.982 0.980 0.425
ball 0.975 0.973 0.510 0.976 0.973 0.338
TRADES 0.954 0.956 0.485 0.975 0.974 0.528
nat 1.000 0.995 0.390 1.000 0.995 0.273

MNIST-wo4 (M-4) MNIST-wo9 (M-9)
sub-voronoi 0.982 0.983 0.827 0.988 0.988 0.703
ellipsoid 0.982 0.982 0.820 0.988 0.988 0.725
ball 0.977 0.976 0.795 0.982 0.981 0.711
TRADES 0.988 0.987 0.810 0.962 0.964 0.703
nat 1.000 0.995 0.760 1.000 0.996 0.577

CIFAR10-wo0 (C10-0) CIFAR10-wo4 (C10-4)
sub-voronoi 0.735 0.658 0.452 0.486 0.482 0.417
ellipsoid 0.671 0.613 0.472 0.483 0.481 0.409
ball 0.794 0.618 0.530 0.871 0.664 0.317
TRADES 0.870 0.660 0.520 0.862 0.643 0.355
nat 1.000 0.900 0.362 1.000 0.886 0.222

CIFAR100-wo0 (C100-0) CIFAR100-wo4 (C100-4)
sub-voronoi 0.308 0.289 0.241 0.706 0.499 0.207
ellipsoid 0.633 0.478 0.255 0.466 0.385 0.198
ball 0.936 0.517 0.236 0.930 0.489 0.176
TRADES 0.891 0.534 0.264 0.995 0.534 0.193
nat 1.000 0.757 0.169 1.000 0.694 0.140

4 NCG for Corrupted Data

Do the trends that we have seen for NCG also hold for other OOD data besides unseen classes? We consider
images with Gaussian noise, blur, JPEG artifacts, snow, speckle, etc Hendrycks & Dietterich (2019). We use
“-C” to denoted the corrupted version of a dataset, e.g., CIFAR10-C (C10-C), CIFAR100-C (C100-C), and
ImgNet100-C (I-C), which consists of corrupted images from the CIFAR10 (C10), CIFAR100 (C100), and
ImgNet100 (I) datasets. C10-C and C100-C have 18 kinds of corruption, each with 5 corruption levels. I-C
has 15 kinds of corruption, each with 5 levels. We consider models trained on regular datasets, C10, C100,
and I (instead of removing the unseen class). We use corrupted set to refer to a corruption type and intensity
level. For C10 and C100, there are 90 corrupted sets for each dataset; for I, there are 75 corrupted sets. We
consider NCG under `2 distance for both the pixel and learned feature spaces. We train on C10, C100, and I
and measure NCG accuracy on C10-C, C100-C, and I-C, respectively; each training method is measured on
255 corruption sets.

Results. In both pixel and feature space, we find that all the 255 corruption sets have an NCG accuracy
above chance level. For robust models, we find that in the pixel space, TRADES(2) has an NCG accuracy
higher than naturally trained models on all 255 corrupted sets. Quantitatively, on average (over the 90 and
75 corrupted sets), TRADES has an NCG accuracy that is 1.35˘ .02, 1.36˘ .03, and 1.66˘ .04 times higher
than naturally trained models for CIFAR10, CIFAR100, and ImgNet100 respectively. Hence, in pixel space,
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the TRADES training procedure leads to much higher NCG accuracy for corrupted data. On the other hand,
in the feature space, the results are much less conclusive. In particular, the robust models still have higher
NCG accuracy on average, but this does not happen consistently across corruption types or datasets (see
Appendix D.6).

Discussion. Our findings in Section 3 extend to these corruptions as the OOD data. In particular, the
NCG accuracy of adversarially robust networks is higher on both unseen, natural images, and on corrupted
versions of seen classes. On the other hand, in the feature space, the robust models do not have much
difference in NCG accuracy from the naturally trained models. The fact that we see less variation in the
feature space compared to the pixel space is consistent with our results on the unseen classes. The TRADES
robust training does not affect the decision regions as much when the smoothness is enforced in the feature
space. This is likely because the learned embedding has less variation in elements of the same class, and
hence, the TRADES training does not contribute as much.

4.1 NCG accuracy vs. test accuracy

Next, we look at the interaction between the NCG and test accuracies, so we also measure the test accuracy
on the NCG correct data and NCG incorrect data. We first observe that NCG correct examples are more
likely to be correctly classified. To verify that this phenomenon is statistically significant across the board,
we perform the one-sided Welch’s t-test (which does not assume equal variance) with the null hypothesis
being that the accuracy of NCG correct example is not greater than the accuracy of NCG incorrect example.
We set the p-value threshold to 0.05, and the test results are in Table 4. For more details, please refer to
Appendix D.3.

Table 4: Number of cases where the NCG correct examples have a significantly higher test accuracy than
the NCG incorrect examples. 87{90 means that out of the 90 corrupted sets, 87 of them pass the t-test.

pixel feature
C10 C100 I C10 C100 I

natural 87{90 87{90 57{75 88{90 90{90 73{75
TRADES(2) 84{90 88{90 60{75 89{90 90{90 73{75

5 Discussion and Connections

5.1 Sample complexity of NCG vs. OOD detection

We first observe that NCG is an easier problem in theory than OOD detection. Indeed, any time we can
detect an OOD example, then we can use the 1-NN classifier to label it. Thus, the NCG accuracy should
always be at least as high as the true positive rate for OOD detection.

We next theoretically show that the converse is false in general. We prove that there exist cases where
maximizing NCG accuracy can be significantly more sample efficient than solving detection problems. OOD
detection is hard when certain regions of space have low mass under the input distribution. In this case, it
takes many samples to see a representative covering of the support. Prior work has made similar high-level
observations in the context of data diversity for robustness and extrapolation (Hein et al., 2019; Xu et al.,
2020). In contrast, when the NCG label is the same for nearby regions, then it suffices to see samples
from fewer regions and generalize accordingly. We formalize this claim in the following theorem, which
identifies simple distributions where detection requires many more samples than NCG. While the proof is not
complicated, our result shows that NCG can be much easier than detection.

Theorem 1 For any ε P p0, 1{2q, d ě 1, and C ě 2, there exists distributions µ on training examples from
C classes in Rd and ν on OOD test examples from outside of supppµq such that (i) detecting whether an
example is from µ or ν requires ΩpC{εq samples from µ, while (ii) classifying examples from ν with their
nearest neighbor label from the support of µ requires only OpC logCq samples.

9
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Figure 4 shows intuition for Theorem 1 in the binary case. OOD examples come from outside of the colored
cubes. Appendix A has the proof for C classes in Rd.

´1 `1

ε1´ εε 1´ ε

Figure 4: An example for Theorem 1. The sample frequency is the size of the red/green shapes. With a few
samples from each large probability region, we determine the NCG label via a large margin solution, but
OOD detection requires samples from the small probability regions.

We sketch how to generalize Figure 4 for more classes and higher dimensional data. The idea is that we
translate and replicate the binary dataset and increase the regions to d-dimensional cubes. For the distribution
µ, we have 4C cubes with side length 1{

?
d. There will be 2 cubes that have labels from each of the C classes.

The high probability cubes emit samples with probability « p1´ εq{C and the lower probability with « ε{C.
Due to the side lengths being 1{

?
d, the 1-nearest neighbor (1-NN) in `2 of the low probability region is paired

with an adjacent high probability box, and hence, it is easy to predict given samples from the high probability
region. By a coupon collector argument, we see all high probability regions after OpC logCq samples. On the
other hand, by the construction of the probability distributions, we need ΩpC{εq samples for OOD detection,
where ε is the sample probability from a low probability region. For the OOD distribution ν, we strategically
sample points from outside of all of these cubes (while guaranteeing that the nearest neighbor labels are still
correct). Thus, OpC logCq samples are sufficient for NCG, but ΩpC{εq are needed for OOD detection.

This result suggests that there are cases where OOD detection is extremely sample inefficient and cannot be
done well. In these cases, the model will have to give a prediction on examples that it does not expect. Thus,
it would be crucial to understand how the model predicts these examples.

As a concrete example, we train a model on MNIST images of 0-8 and use the model for prediction on images
of 9s. We also train an OOD detector – ODIN Liang et al. (2018) – which has a .951 true positive rate and
.875 false negative rate. In this example, many images of 9s cannot be easily picked out by OOD detectors
and will be treated as in-distribution examples. Thus, it is important to know what kind of prediction will
be given to these 9s. From our previous result, we find that many 9s are predicted as 4s, and this can be
explained by nearest category generalization.

5.2 When do we have higher NCG accuracies?

One hypothesis is that OOD examples that are further from the training set are less likely to be predicted
with the NCG label. To check this hypothesis, we conduct the following experiment. We bin the OOD
examples based on their distance to the closest training example into 5 equal size bins, and we evaluate the
NCG accuracy in each bin. A typical result is shown in Figure 5 (additional results are in Appendix D.5.3).
We find that the NCG accuracy is generally higher when OOD examples are closer to the training examples.
This is true both for an unseen class and for corrupted data (in aggregate). While this is not surprising, it
does give more insight into the patterns of OOD data that are labeled with the 1-NN label. We also looked
at MNIST, but there was no clear connection between distance and NCG accuracy.

It is known that OOD detectors perform well when in- and out-of-distribution data are far away from
each other (Liang et al., 2018). This, along with our result, gives us an interesting dynamic, which is that
neural networks behave more like the nearest neighbor classifier when detectors perform worse. This means
that many of the OOD examples that are misclassified as in-distribution examples could follow the NCG
property. It would allow the user to know that even when the OOD detector fails, the model would still
output something reasonable. Thus, if one wants a robust and predictable prediction on OOD data, it can be
desirable to have a high NCG accuracy.

Limitation: Choice of the distance metric. We only evaluate `2 distance in the pixel and feature space.
With `2 distance, we already discovered interesting OOD behavior. However, an important direction is to
explore other distance measures to understand the prediction patterns. Some options include `8 or cosine
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(a) CIFAR10-wo0 (b) ImgNet100-wo0 (c) CIFAR10 (corrupted) (d) ImgNet100 (corrupted)

Figure 5: We group OOD examples into five bins based on `2 distance to the closest training example in
pixel space. (a) and (b) show the NCG accuracy of each bin on the unseen class of CIFAR10-wo0 and
ImgNet100-wo0. (c) and (d) the NCG accuracy of each bin on the aggregate corrupted data of CIFAR10 and
ImgNet100. The downward trend seen here is not as apparent in the feature space (see Appendix D.5.3).

distance or measuring distance in a embedding space of an auto-encoder. Ideally, the distance measure
would capture perceptual similarity of the images. This would imply that NCG accuracy corresponds to how
humans may predict an unseen class. However, it is not clear if such a perceptual metric exists for images.

6 Conclusion

We examine out-of-distribution (OOD) properties of neural networks and uncover intriguing generalization
properties. Neural networks have a tendency of predicting OOD examples with the labels of their closest
training examples. We measure this via a new metric called NCG accuracy. Robust networks consistently
have higher NCG accuracy than naturally trained models. We replicate this result for two sources of OOD
data (unseen classes and corrupted images), and we experiment with a variety of new and existing robust
training methods. This is surprising because the OOD data are much further away in `2 distance than both
the robustness radius and the nearest adversarial examples. Therefore, the robust training procedure is
changing the decision regions on parts of space that are not directly considered in the loss function. We posit
that this behavior and the higher NCG accuracy is a consequence of the inductive bias of robust networks.
In the future, it would be interesting to evaluate NCG for other training methods, architectures, and sources
of OOD data like distribution shift or spurious correlations. Overall, NCG can be a valuable and scalable
addition to the toolbox of evaluation metrics for OOD generalization.
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