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Abstract

Beyond-triple fact representations including001
hyper-relational facts with auxiliary key-value002
pairs, temporal facts with additional times-003
tamps, and nested facts implying relationships004
between facts, are gaining significant atten-005
tion. However, existing link prediction mod-006
els are usually designed for one specific type007
of facts, making it difficult to generalize to008
other fact representations. To overcome this009
limitation, we propose a Unified Hierarchical010
Representation learning framework (UniHR)011
for unified knowledge graph link prediction.012
It consists of a unified Hierarchical Data Rep-013
resentation (HiDR) module and a unified Hi-014
erarchical Structure Learning (HiSL) module015
as graph encoder. The HiDR module uni-016
fies hyper-relational KGs, temporal KGs, and017
nested factual KGs into triple-based represen-018
tations. Then HiSL incorporates intra-fact and019
inter-fact message passing, focusing on enhanc-020
ing the semantic information within individual021
facts and enriching the structural information022
between facts. Experimental results across 7023
datasets from 3 types of KGs demonstrate that024
our UniHR outperforms baselines designed for025
one specific kind of KG, indicating strong gen-026
eralization capability of HiDR form and the027
effectiveness of HiSL module. Code and data028
are available at https://anonymous.4open.029
science/r/UniHR-BDCB/.030

1 Introduction031

Large-scale knowledge graphs (KGs) such as Word-032

Net (Miller, 1995), Freebase (Bollacker et al.,033

2008), and Wikidata (Vrandečić and Krötzsch,034

2014) have been widely applied in many areas035

like question answering (Kaiser et al., 2021), rec-036

ommendation systems (Guo et al., 2020), and037

natural language processing (Annervaz et al.,038

2018). However, the presence of missing facts039

within these KGs inevitably limit their applica-040

tions. Therefore, the link prediction task has041
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Figure 1: A special KG consists of triple-based fact,
hyper-relational fact, nested fact and temporal fact.

been introduced to predict missing elements within 042

factual data. Current link prediction methods 043

mainly focus on facts in the form of triple 044

(head entity, relation, tail entity). 045

Despite the simplicity and unity of triple-based 046

representation, it is difficult to adequately express 047

complex facts, such as “Oppenheimer is educated 048

at Harvard University for a bachelor degree in 049

chemistry" shown in Figure 1. Therefore, existing 050

researches (Wang et al., 2021; Xiong et al., 2024; 051

Xu et al., 2019) contribute to focusing on seman- 052

tically richer facts. Figure 1 illustrates three spe- 053

cific types of facts: hyper-relational fact ((Oppen- 054

heimer, educated at, Harvard University), degree: 055

bachelor, major: chemistry), temporal fact (Oppen- 056

heimer, honored with, Fermi Prize, 1963), nested 057

fact ((Oppenheimer, born in, New York), imply, (Op- 058

penheimer, nationality, The United States)). These 059

forms of facts allow for expression of complex se- 060

mantics and revelation of relationships between 061

facts, extending beyond the triple-based represen- 062

tation. Thus in recent years, Hyper-relational KGs 063

(HKG) (Chung et al., 2023), Temporal KGs (TKG) 064

(Xu et al., 2023a), and Nested factual KGs (NKG) 065

(Xiong et al., 2024) attract wide research interests. 066

Recent studies have demonstrated the effective- 067

ness of various embedding strategies for these 068

beyond-triple representations (Xiong et al., 2023). 069
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However, these methods are usually designed for070

specific representation forms, e.g., StarE (Galkin071

et al., 2020) customizes graph neural network to im-072

plement message passing on hyper-relational facts,073

For nested factual KGs, BiVE (Chung and Whang,074

2023) connects two levels of facts throgh a simple075

linear layer. In addition, GeomE+ (Xu et al., 2023a)076

et al. temporal KG embedding methods contain077

time-aware scoring functions to adapt timestamps.078

Although these methods perform well on specific079

type of facts, it is evident that such customized080

methods are difficult to generalize to other types of081

KGs. Therefore, establishing a unified representa-082

tion learning method for multiple types of KGs is083

worth to investigate.084

To overcome the challenges mentioned above,085

we propose a Unified Hierarchical Representation086

learning method (UniHR), which includes a087

Hierarchical Data Representation (HiDR) module088

and a Hierarchical Structure Learning (HiSL) mod-089

ule as the graph encoder. HiDR module standard-090

izes hyper-relational facts, nested factual facts, and091

temporal facts into the form of triples without loss092

of information. Furthermore, HiSL module cap-093

tures local semantic information during intra-fact094

message passing and then utilizes inter-fact mes-095

sage passing to enrich the global view of nodes096

to obtain better node embeddings based on HiDR097

form. Finally, the updated embeddings are fed into098

decoders for link prediction. Experimental results099

demonstrate that our UniHR achieves state-of-the-100

art performance on HKG and NKG datasets, and101

competitive performance on TKG datasets, reveal-102

ing strong generalization capability of HiDR form103

and effectiveness of HiSL module. Our contribu-104

tions can be summarized as follows.105

1. We emphasize the value of investigating uni-106

fied KG representation method, including uni-107

fied symbolic representation and unfied repre-108

sentation learning method for different KGs.109

2. To our knowledge, we propose the first uni-110

fied KG representation learning framework111

UniHR, across different types of KGs, includ-112

ing a hierarchical data representation module113

and a hierarchical structure learning module.114

3. We conduct link prediction experiments on 7115

datasets across 3 types of KGs. Compared to116

methods designed for one kind of KG, UniHR117

achieves the best or competitive results, veri-118

fying strong generalization capability.119

2 Preliminaries 120

In this section, we introduce the definition of four 121

types of existing knowledge graphs (KGs): triple- 122

based KG, hyper-relational KG, nested factual KG 123

and temporal KG, along with link prediction tasks 124

on these types of KGs. 125

Triple-based Knowledge Graph. A common 126

triple-based KG GKG = {V,R,F} represents facts 127

as triples, denoted as F ={(h, r, t) |h, t ∈ V, r ∈ 128

R}, where V is the set of entities andR is the set 129

of relations. 130

Link Prediction on Triple-based KG. The link 131

prediction on triple-based KGs involves answer- 132

ing a query (h, r, ?) or (?, r, t), where the missing 133

element ‘?’ is an entity in V . 134

Hyper-relational Knowledge Graph. A hyper- 135

relational KG (HKG) GHKG = {V,R,F} consists 136

of hyper-relational facts, abbreviated as H-Facts, 137

denoted asF ={((h, r, t), {(ki: vi)}mi=1) |h, t, vi ∈ 138

V, r, ki ∈ R}. Typically, we refer to (h, r, t) as the 139

main triple in the H-Fact and {(ki: vi)}mi=1 as m 140

auxiliary key-value pairs. 141

Link Prediction on Hyper-relational KG. Simi- 142

lar to link prediction on triple-based KGs, the link 143

prediction on HKGs aims to predict entities in the 144

main triple or the key-value pairs. Symbolically, 145

the aim is to predict the missing element, denoted 146

as ‘?’ for queries ((h, r, t), (k1: v1), . . . (ki: ?)), 147

((?, r, t), {(ki:vi)}mi=1) or ((h, r, ?), {(ki:vi)}mi=1). 148

Nested Factual Knowledge Graph. A nested 149

factual KG (NKG) can be represented as 150

GNKG = {V,R,F , R̂, F̂}, which is composed of 151

two levels of facts, called atomic facts and nested 152

facts. F = {(h, r, t) |h, t ∈ V, r ∈ R} is the set of 153

atomic facts, where V is a set of atomic entities and 154

R is a set of atomic relations. F̂ = {(Fi, r̂,Fj) | 155

Fi,Fj ∈ F , r̂ ∈ R̂} is the set of nested facts, 156

where R̂ is the set of nested relations. 157

Link Prediction on Nested Factual KG. The link 158

prediction on the NKGs is performed on the atomic 159

facts or nested facts. We refer to the link prediction 160

on atomic facts as Base Link Prediction, and the 161

link prediction on nested facts as Triple Prediction. 162

For base link prediction, given a query (h, r, ?) or 163

(?, r, t), the aim is to predict the missing atomic 164

entity ‘?’ from V . For triple prediction, given a 165

query (?, r̂,Fj) or (Fi, r̂, ?), the aim is to predict 166

the missing atomic fact ‘?’ from F . 167
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Temporal Knowledge Graph. A temporal KG168

(TKG) GTKG = {V,R,F , T } is composed of169

quadruple-based facts, which can be represented170

as F = {(h, r, t, [τb, τe])|h, t ∈ V, r ∈ R, τb, τe ∈171

T }, where τb is the begin time, τe is the end time,172

V is the set of entities,R is the set of relations and173

T is the set of timestamps.174

Link Prediction on Temporal KG. The link pre-175

diction on TKGs aims to predict missing entities176

‘?’ in V for two types of queries (?, r, t, [τb, τe]) or177

(h, r, ?, [τb, τe]).178

3 Related Works179

Link Prediction on Hyper-relational Knowl-180

edge Graph. Earlier HKG representation learn-181

ing methods e.g., m-TransH (Wen et al., 2016),182

RAE (Zhang et al., 2018) have generalized the183

triple-based approach to HKG and loosely repre-184

sent the combinations of key-value pairs. Galkin185

et al. customize StarE (Galkin et al., 2020) based186

on CompGCN (Vashishth et al., 2019) for hyper-187

relational facts to capture the interaction informa-188

tion of key-value pairs with the main triple in the189

message passing stage, and achieves impressive re-190

sults, demonstrating that the structural information191

of the graph in HKGs is also important. GRAN192

(Guan et al., 2021) introduces edge-aware bias into193

the vanilla transformer attention (Vaswani et al.,194

2017), while HyNT (Chung et al., 2023) designs195

a qualifier encoder for HKG. They both focus on196

intra-fact dependencies but ignore the global struc-197

tural information. Due to the existence of its partic-198

ular key-value pairs on H-Facts, there are many lim-199

itations in capturing global structural information200

through the widely available triple-based GNNs.201

Link Prediction on Nested Factual Knowledge202

Graph. Chung et al. (Chung and Whang, 2023)203

first introduced the concept of nested facts. They204

also propose BiVE which projects atomic facts to205

fact nodes in the encoding phase via a simple linear206

layer and scores both atomic facts and nested facts207

using the quaternion-based KGE scoring functions208

like QuatE (Zhang et al., 2019) or BiQUE (Guo209

and Kok, 2021). Based on BiVE, NestE (Xiong210

et al., 2024) represents the fact nodes as a 1 × 3211

embedding matrix and the nested relations as a212

3× 3 matrix to avoid information loss, embedding213

them into hyperplanes with different dimensions.214

These methods only capture the semantic informa-215

tion between atomic facts and nested facts while216

ignoring global structural information. Meanwhile,217

due to the complexity of this representation, com- 218

mon triple-based GNNs have difficulty in message 219

passing between atomic fact and nested fact. 220

Link Prediction on Temporal Knowledge Graph. 221

Recent studies in temporal knowledge graph rep- 222

resentation learning have focused on enhancing 223

performance by designing special time-aware scor- 224

ing functions. Models such as TTransE (Leblay 225

and Chekol, 2018), HyTE (Dasgupta et al., 2018), 226

TeRo (Xu et al., 2020), and TGeomE+ (Xu et al., 227

2023a) incorporate temporal-aware module into the 228

KGE score function in various ways. However, ex- 229

isting models for link prediction seldom directly 230

utilize GNNs to perceive time information for en- 231

hancing entity and relation embeddings. Therefore, 232

we believe it is a direction worth exploring. 233

4 Methodology 234

In this section, we introduce our method, a Unified 235

Hierarchical Representation learning framework 236

(UniHR), which includes a Hierarchical Data 237

Representation (HiDR) module and a Hierarchical 238

Structure Learning (HiSL) module. Our workflow 239

can be divided into the following three steps: 1) 240

Given a KG G of any type, we represent it into 241

GHiDR under the HiDR form. 2) The GHiDR will 242

be encoded by HiSL module with the enhancement 243

of semantic information within individual facts and 244

structural information between facts on the whole 245

graph. 3) In the phase of decoding, the updated 246

embeddings of nodes and edges are fed into trans- 247

former decoders to obtain the plausibility score of 248

facts. 249

4.1 Hierarchical Data Representation 250

To overcome the differences in the representation 251

of multiple types KGs, we introduce a Hierarchical 252

Data Representation module, abbreviated as HiDR. 253

Different from labelled RDF representation (Ali 254

et al., 2022), we constrain “triple" to be considered 255

as the basic units of HiDR form, then HiDR could 256

continuous benefit from the model developments 257

of triple-based KGs, which is the most active area 258

about link prediction over KGs. 259

As shown in Fig. 2, in order to ensure compre- 260

hensive representation of facts, we introduce three 261

hierarchical types of nodes and three connected 262

relations in HiDR. Inspired by the nested fact 263

form (Xiong et al., 2024), we denote original 264

entities within three types of KGs as atomic 265

nodes and complement fact nodes for HKGs and 266
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Figure 2: Diverse facts are translated into the HiDR form. Blue, light blue, and red circles denote atomic nodes,
relation nodes, and fact nodes. Black, light blue, and red arrows denote atomic relations, connected relations, and
nested relations. The triples they connect correspond to atomic facts, connected facts, and nested facts.

TKGs lacking a designated fact node. To facilitate267

the interaction between fact nodes and relations268

explicitly, we incorporate relation nodes into269

the graph, represented as er for each r. These270

relation nodes are derived from transforming the271

relation edges in the original KG. It is important272

to facilitate direct access of fact nodes to the273

relevant atomic nodes during message passing274

process. To achieve this, we introduce three275

connected relations: has relation, has head276

entity and has tail entity, which establish277

directly connections between atomic nodes and278

fact nodes. Ultimately, we denote the (main) triple279

(h, r, t) in original fact as three connected facts:280

(f, has relation, er) , (f, has head entity, h) ,281

(f, has tail entity, t), and a atomic fact (h, r, t),282

where f is fact node. Formally, the definition of283

HiDR form is as follows:284

Definition 1. Hierarchical Data Representation:285

A KG represented as the HiDR form is denoted286

as GHiDR = {VHiDR,RHiDR,FHiDR}, where287

VHiDR =Va∪Vr ∪Vf is a joint set of atomic node288

set (Va), relation node set (Vr), fact node set (Vf ).289

RHiDR =Ra ∪Rn ∪Rc is a joint set of atomic re-290

lation set (Ra), nested relation set (Rn), connected291

relation setRc ={has relation, has head entity,292

has tail entity}. The fact set FHiDR =Fa∪Fc∪293

Fn is jointly composed of three types of triple-294

based facts: atomic facts (Fa), connected facts295

(Fc) and nested facts (Fn), where Fa= {(v1, r,296

v2)| v1, v2 ∈ Va, r ∈ Ra}, Fc = {(v1, r, v2)| v1 ∈297

Vf , r ∈ Rc, v2 ∈ Va}, Fn = {(v1, r, v2)| v1, v2 ∈298

Vf , r ∈ Rn}.299

Next, we introduce how to transform different 300

types of KGs into HiDR form. 301

For hyper-relational knowledge graphs, we 302

regard key-value pairs as complementary informa- 303

tion for facts. Thus, we translate H-Facts FHKG 304

= {((h, r, t), {(ki: vi)}mi=1} into the HiDR form 305

that GHiDR
HKG = {V,R,FHiDR

HKG } following the defi- 306

nition, where Fc={(f, has relation, er), (f, has 307

head entity, h), (f, has tail entity, t), (f, k1, v1), 308

. . . , (f, km, vm)}, Fa = {(h, r, t) | ((h, r, t), {(ki: 309

vi)}mi=1) ∈ FHKG)} and Fn=∅. 310

For nested factual knowledge graphs, HiDR 311

can naturally represent hierarchical facts, so we 312

translate the atomic facts FNKG = {(hi, ri, ti)} 313

and the nested facts F̂NKG = {((h1, r1, t1), R, (h2, 314

r2, t2))|(hi, ri, ti) ∈ FNKG} into the form of 315

HiDR that GHiDR
NKG = {V,R,FHiDR

NKG } following the 316

definition, where Fa = {(hi, ri, ti) | (hi, ri, ti) ∈ 317

FNKG}, Fc ={(fi, has head entity, hi), (fi, has 318

tail entity, ti), (fi, has relation, eri)|fi = (hi, ri, 319

ti) ∈ FNKG} and Fn={(f1, R, f2)|fi ∈ FNKG}. 320

For temporal knowledge graphs, we regard the 321

TKG as a special HKG, and convert timestamps 322

to auxiliary key-value pairs in HKGs by adding 323

two special atomic relations: begin and end, 324

regarding timestamps as special numerical atomic 325

nodes. Thus, we firstly translate the temporal facts 326

in TKGs FTKG= {(h, r, t, [τb, τe])} into H-Facts 327

form FHKG
TKG = {(h, r, t, begin:τb, end:τe)}. Then 328

according to the previous transformation in HKG, 329

it can be translated into the HiDR form that 330

GHiDR
TKG = {V,R,FHiDR

TKG } following the defini- 331

tion, where Fa ={(h, r, t) | (h, r, t, begin: τb, end: 332
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τe) ∈ FHKG
TKG }, Fc = {(f, has relation, er), (f,333

has head entity, h), (f, has tail entity, t), (f,334

begin, τb), (f, end, τe) | f = (h, r, t, begin: τb, end:335

τe) ∈ FHKG
TKG } and Fn =∅.336

In summary, we could convert all above KGs337

into the HiDR form, and preserve the semantics in338

the original KGs without loss of information.339

4.2 Hierarchical Structure Learning340

In this section, we illustrate how various KGs in the341

form of HiDR can be encoded by the Hierarchical342

Structure Learning module, abbreviated as HiSL343

shown in Fig. 3.344

Representation Initialization. We first initialize345

the embedding matrices Ha ∈ R|Va|×d and E ∈346

R|RHiDR|×d for atomic nodes and all relation edges.347

Then we also initialize the embedding of relation348

node Hr ∈ R|Vr|×d, which can be transformed349

from the relation edge r, define as:350

Hr = Ea ·Wr, (1)351

where Ea ⊆ E,Wr ∈ Rd×d denote the atomic352

relation embeddings and a projection matrix. Then353

we initialize the fact node embeddings Hf to ex-354

plicitly capture key information within facts by355

utilizing the embedding of (main) triple:356

hf = fm([hh;hr;ht]), (2)357

where (h, r, t) ∈ Fa, the operation [·; ·] is the vec-358

tor concatenation, hh,ht ⊆ Ha,hr ⊆ Hr denote359

(main) triple embedding and fm: R3d → Rd is a360

1-layer MLP.361

For numerical atomic nodes, namely timestamps362

in temporal knowledge graphs, we utilize the363

Time2Vec (Kazemi et al., 2019) to encode the364

timestamp τ into an embedding:365

hτ = ωp sin (fp(τ)) + fnp(τ), (3)366

where fp: R1 → Rd is a 1-layer MLP as peri-367

odic function, fnp: R1 → Rd is a 1-layer MLP as368

non-periodic function, and ωp ∈ R1 is a learnable 369

parameter for scaling the periodic features. 370

Intra-fact Message Passing. In this stage, mas- 371

sage passing is conducted for fact nodes. Given a 372

fact node fk ∈ Vf , we construct its constituent 373

elements, i.e., one-hop neighbors, as the node 374

set Vk = {v ∈ Nfk | v ∈ Va ∪ Vr}, where Nfk 375

is the set of one-hop neighbors of fact node fk. 376

Then we retain the edges directly connected to 377

fact node fk, thereby constructing a subgraph 378

Gk = {Vk,Rk,Fk} ⊆ GHiDR. For this subgraph, 379

we employ the graph attention network (GAT) 380

(Brody et al., 2021) to aggregate local informa- 381

tion, computing the attention score αi,j between 382

node i ∈ Vk and its neighbor j. The formula for 383

calculating αi,j in the l-th layer is as follows: 384

αl
i,j =

exp(Wl(σ(Wl
inh

l
i+Wl

outh
l
j)))∑

j′∈Ni

exp
(
Wl

(
σ
(
Wl

inh
l
i+Wl

outh
l
j′

))) , (4) 385

where hl
i,h

l
j ∈ Rd represent the embeddings of 386

node i and its neighbor j in l-th layer. And there 387

are three learnable weight matrices Wl
in,W

l
out ∈ 388

Rd×d and Wl ∈ Rd. We choose LeakyReLU as ac- 389

tivation function σ. Then, the updated node embed- 390

dings are obtained by aggregating the information 391

of neighbors according to the attention scores: 392

hl
i = hl

i +
∑

j∈Ni

αl
i,j ·Wl

outh
l
j . (5) 393

Inter-fact Message Passing. At this stage, mes- 394

sage passing is conducted on the whole graph 395

GHiDR. Similar to previous work (Vashishth et al., 396

2019), we use a non-parametric aggregation opera- 397

tor ϕ (·) :Rd × Rd → Rd to obtain messages from 398

neighbouring nodes and edges. Specifically, we 399

employ the circular-correlation operator inspired 400

from HolE (Nickel et al., 2016), defined as: 401

ϕ (hj , er) = hj ⋆ er = F−1
(
(Fhj)⊙ (Fer)

)
(6) 402

where F and F−1 denote the discrete fourier trans- 403

form (DFT) matrix and its inverse matrix, the ⊙ 404

is the element-wise (Hadamard) product. Further- 405

more, in order to fully capture the heterogeneity 406

of the graph, we classify edges along two dimen- 407

sions: λ(r) ∈ {forward, reverse} and τ(r) ∈ 408

{connected relation, atomic relation, nested 409

relation} and adopt two relation-type specific 410

learnable parameters Wλ(r) ∈ Rd×d and ωτ(r) ∈ 411

R1 for more fine-grained aggregation: 412
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hl+1
i =

∑
(r,j)∈N (i)

σ
(
ωl
τ(r)

)
Wl

λ(r)ϕ
(
hl
j , e

l
r

)
+Wl

selfh
l
i (7)413

414 el+1
r = Wl

rele
l
r (8)415

where Wl
self ,W

l
rel ∈ Rd×d, σ is a sigmoid ac-416

tivation function and N (i) is a set of immediate417

neighbors of i for its outgoing edges r. We utilize418

ϕ (·) to combine the information from both edge419

r and node j, and then passes it to node i. Subse-420

quently, node i aggregates the information accord-421

ing to the types of edge r separately to update its422

embedding, while edge r is also projected into the423

same embedding space as the updated nodes.424

4.3 Link Prediction Decoder425

Since the query varies across different settings, we426

use the transformer (Vaswani et al., 2017) as the427

decoder with the mask pattern. Specifically, we con-428

vert the updated node and edge embeddings into a429

sequence of fact embeddings, mask the elements430

to be predicted in facts with the [M ] token as the431

input to the transformer. Finally, we obtain the em-432

bedding of output [M ] in the last layer to measure433

the plausibility of the fact, denoted as hpre, and434

calculate the probability distribution of candidates,435

followed by training it using the cross-entropy loss436

function:437

P = Softmax
(
f (hpre) [E;H]⊤

)
, (9)438

439

L =
∑|R|+|V|

t=0 yt logPt (10)440

where P ∈ R|R|+|V| represents the confidence441

scores of all candidates, f : Rd → Rd is a 1-layer442

MLP, and [E;H] ∈ R(|R|+|V|)×d is the embedding443

matrix of all candidate edges or nodes. The Pt444

and yt are probability and ground truth of the t-th445

candidate. The final loss function L includes both446

node loss and edge loss during the predictions.447

5 Experiment448

5.1 Experiment Settings449

Datasets. For link prediction on HKGs, we select450

three benchmark datasets: WikiPeople (Guan et al.,451

2021) , WD50K (Galkin et al., 2020) and JF17K452

(Wen et al., 2016). As for the NKGs, we choose453

FBH, FBHE and DBHE constructed by (Chung and454

Whang, 2023). Lastly, we use wikidata12k (Das-455

gupta et al., 2018), a subset of wikidata (Vrandečić456

and Krötzsch, 2014) for link prediction on TKGs.457

The statics of datasets are given in Appendix D.458

Evaluation metric. We conduct link prediction 459

across multiple settings, evaluating performance 460

based on the rank of predicted facts. We use the 461

MR (Mean Rank), MRR (Mean Reciprocal Rank) 462

and Hits@K (K=1,3,10) as our evaluation metrics. 463

And we choose to adopt the metrics used in prior 464

works. Additionally, we employ filtering settings 465

(Bordes et al., 2013) during the evaluation process 466

to eliminate existing facts in the dataset. 467

Baselines. For link prediction on HKG, we com- 468

pare our UniHR against NaLP (Guan et al., 2021), 469

tNaLP (Guan et al., 2021), RAM (Liu et al., 2021), 470

HINGE (Rosso et al., 2020), NeuInfer (Guan et al., 471

2020), StarE (Galkin et al., 2020), HyTransformer 472

(Yu and Yang, 2021), GRAN (Wang et al., 2021) 473

and HyNT (Chung et al., 2023). For link predic- 474

tion on NKG, QuatE (Zhang et al., 2019), BiQUE 475

(Guo and Kok, 2021), Neural-LP (Yang et al., 476

2017), DRUM (Sadeghian et al., 2019), AnyBURL 477

(Meilicke et al., 2019), BiVE (Chung and Whang, 478

2023) and NestE (Xiong et al., 2024) are cho- 479

sen as baselines. BiVE and NestE are especially 480

designed for NKG. We compare against follow- 481

ing TKG link prediction methods: ComplEx-N3 482

(Lacroix et al., 2018), TTransE (Leblay and Chekol, 483

2018), HyTE (Dasgupta et al., 2018), TA-DistMult 484

(Garcia-Duran et al., 2018), ATiSE (Xu et al., 485

2019), TeRo (Xu et al., 2020), TASTER (Wang 486

et al., 2023), TGeomE+ (Xu et al., 2023a). 487

Implementation details. All experiments are 488

conducted on a single Nvidia 80G A800 GPU and 489

implemented with PyTorch. For base link predic- 490

tion on NKGs, we also use augmented triples from 491

(Chung and Whang, 2023) for training to ensure 492

fairness. For triple prediction, due to the small 493

size of training set, we conduct training based on 494

fixed embeddings of entities obtained from the base 495

link prediction and set ωnested relation=0 to prevent 496

overfitting. We employ AdamW (Kingma and Ba, 497

2015) optimizer. Hyperparameters are chosen by 498

using a grid search based on the MRR performance 499

and details can be found in Appendix F. 500

5.2 Main Results 501

Link prediction on HKG. We compare our 502

method with previous methods on the WD50K 503

and WikiPeople datasets shown in Table 1. We 504

can observe that the models based on transform- 505

ers (i.e., StarE, GRAN, HyNT) demonstrate sig- 506

nificantly better performance compared to other 507

models. We attribute this to the transformer’s supe- 508
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WikiPeople WD50K

Model
# Tr. Params

subject/object all entities
# Tr. Params

subject/object all entities

MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

NaLP - 0.356 0.271 0.499 0.360 0.275 0.503 - 0.230 0.170 0.347 0.251 0.187 0.375
tNaLP - 0.358 0.288 0.486 0.361 0.290 0.490 - 0.221 0.163 0.331 0.243 0.182 0.360
RAM 27.34M 0.459 0.384 0.584 0.461 0.386 0.585 - 0.276 0.210 0.399 0.296 0.232 0.416
HINGE - 0.393 0.309 0.547 0.395 0.311 0.549 - 0.264 0.187 0.410 0.277 0.200 0.424
NeuInfer - 0.357 0.247 0.533 0.357 0.248 0.532 - 0.220 0.154 0.347 0.225 0.158 0.355
StarE 7.84M 0.458 0.364 0.611 - - - 10.39M 0.309 0.234 0.452 - - -
HyTransformer - 0.460 0.382 0.594 - - - - 0.304 0.231 0.443 - - -
GRAN 15.26M 0.462 0.366 0.610 0.465 0.371 0.613 18.51M 0.330 0.255 0.472 0.361 0.286 0.501
HyNT 23.02M 0.482 0.415 0.602 0.481 0.414 0.603 29.61M 0.333 0.259 0.474 0.360 0.287 0.500

UniHR 8.02M 0.491 0.417 0.618 0.493 0.420 0.621 10.55M 0.348 0.278 0.482 0.382 0.313 0.513

Table 1: Results of link prediction on HKG datasets. All baselines’ results are taken from (Chung et al., 2023).
The best results are written bold, while the second are underlined. # Tr. Params denotes the number of learnable
parameters during training.

Model
FBHE/FBH DBHE FBH FBHE DBHE

MRR Hits@10 MRR Hits@10 #Tr. Params MR MRR Hits@10 #Tr. Params MR MRR Hits@10 #Tr. Params MR MRR Hits@10

Base link prediction Triple prediction

QuatE 0.354 0.581 0.264 0.440 - 145603.8 0.103 0.114 - 94684.4 0.101 0.209 - 26485.0 0.157 0.179
BiQUE 0.356 0.583 0.274 0.446 - 81687.5 0.104 0.115 - 61015.2 0.135 0.205 - 19079.4 0.163 0.185
Neural-LP 0.315 0.486 0.233 0.357 - 115016.6 0.070 0.073 - 90000.4 0.238 0.274 - 21130.5 0.170 0.209
DRUM 0.317 0.490 0.237 0.359 - 115016.6 0.069 0.073 - 90000.3 0.261 0.274 - 21130.5 0.166 0.209
AnyBURL 0.310 0.526 0.220 0.364 - 108079.6 0.096 0.108 - 83136.8 0.191 0.252 - 20530.8 0.177 0.214
BiVE 0.370 0.607 0.274 0.422 12.66M 6.20 0.855 0.941 12.67M 8.35 0.711 0.866 10.74M 3.63 0.687 0.958
NestE 0.371 0.608 0.289 0.443 12.11M 3.34 0.922 0.982 12.46M 3.05 0.851 0.962 10.22M 2.07 0.862 0.984

UniHR 0.401 0.619 0.300 0.455 4.12M 2.46 0.946 0.993 4.12M 5.20 0.793 0.890 3.67M 1.90 0.862 0.987

Table 2: Results of base link prediction (left) and triple prediction (right). All baselines’ results are taken from
(Xiong et al., 2024). For BiVE (Chung and Whang, 2023) and NestE (Xiong et al., 2024), we pick their best variants.

Model wikidata12k

# Tr. Params MRR Hits@1 Hits@3 Hits@10

ComplEx-N3 - 0.248 0.143 - 0.489
TTransE - 0.172 0.096 0.184 0.329
HyTE 1.69M 0.253 0.147 - 0.483
TA-DistMult - 0.230 0.130 - 0.461
TeRo 12.91M 0.299 0.198 0.329 0.507
ATiSE 31.46M 0.252 0.148 0.288 0.462
TASTER 5.04M 0.327 0.239 - 0.514
TGeomE+ - 0.333 0.232 0.361 0.546

UniHR 3.68M 0.333 0.240 0.367 0.527

Table 3: Results of link prediction on wikidata12k.

rior ability to capture long distance dependencies509

within H-Facts. Among these methods, it can be510

seen that our proposed UniHR achieves state-of-511

the-art results, which means our method effectively512

captures global structural information. Compared513

to the GNN-based method StarE, we achieve im-514

provements of 3.9 points (12.6%) in MRR, 4.4515

points (18.8%) in Hits@1 and 3.0 points (6.6%)516

in Hits@10 on WD50K. This indicates that the517

performance of StarE’s customized graph neural518

network is limited by its inability to flexibly capture519

key-value pair information. Moreover, since the520

embeddings for newly added fact nodes and rela-521

tion nodes are computed from atomic facts, so our522

training parameters do not significantly increase.523

Link prediction on NKG. Our experiments on524

the NKGs consist of two tasks: base link prediction525

and triple prediction. Unlike previous quaternion-526

based methods (Chung and Whang, 2023; Xiong 527

et al., 2024), UniHR significantly reduces the 528

number of required training parameters. From 529

the results in Table 2, we can see that our pro- 530

posed UniHR obtains competitive results as the 531

first method to capture global structural informa- 532

tion of NKGs. For base link prediction task, UniHR 533

achieves considerable improvements on all datasets. 534

Of particular note, the MRR of FBHE/FBH and 535

DBHE increases by 8.1% and 3.8%, respectively. 536

For triple prediction, we perform best on FBH 537

and DBHE datasets, especially obtaining an im- 538

provement of 2.4 points in MRR on FBH, and 539

achieve the second-best performance on FBHE, 540

which suggests that structural information is also 541

valuable for NKG and UniHR can effectively cap- 542

ture the heterogeneity of NKG to enhance node 543

embeddings. In particular, as a unified method, 544

we do not use the customized decoder for triples, 545

while previous state-of-the-art methods do. We will 546

further illustrate the effectiveness of UniHR with 547

other decoders in Appendix C. 548

Link prediction on TKG. As shown in Table 3, 549

we achieve competitive results on the wikidata12k, 550

even surpassing TGeomE+ by 3.4% on Hits@1 551

and 1.7% on Hits@3. However, existing tempo- 552

ral knowledge graph embedding methods, such 553
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Variant FBH FBHE DBHE

MR MRR Hits@10 MR MRR Hits@10 MR MRR Hits@10

w/o initial hf 5.22 0.909 0.980 5.86 0.767 0.885 2.56 0.794 0.978
w/o Wr 3.06 0.944 0.992 5.98 0.792 0.885 2.30 0.850 0.976
w/o intra-fact MP 3.97 0.897 0.972 5.26 0.754 0.883 2.02 0.842 0.983
w/o ωτ(r) 2.70 0.934 0.992 5.46 0.782 0.888 2.69 0.810 0.973
w/o Wλ(r) 2.50 0.941 0.992 5.69 0.778 0.889 2.37 0.810 0.978
w/o inter-fact MP 2.61 0.913 0.991 4.56 0.776 0.887 2.11 0.827 0.986

UniHR 2.46 0.946 0.993 5.20 0.793 0.890 1.90 0.862 0.987

Table 4: Ablation studies on the HiSL module for triple prediction. Best results are boldfaced.

Model
WikiPeople− wikidata12k−

subject/object all entities subject/object

MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10

UniHR 835.8 0.486 0.412 0.528 0.617 829.0 0.488 0.414 0.531 0.620 818.7 0.314 0.220 0.345 0.509
UniHRJoint 692.7 0.488 0.409 0.533 0.629 686.5 0.490 0.414 0.536 0.632 489.5 0.315 0.222 0.346 0.498

Table 5: Results of separate training and joint training on the HKG and TKG dataset, where identical entities and
relations share the same embeddings. WikiPeople− and wikidata12k− represent the filtered test sets.

as TGeomE+, often employ time-aware decoders,554

which are challenging to generalize to other types555

of KGs. In contrast, our approach efficiently en-556

codes timestamps as atomic nodes only during ini-557

tialization and learns temporal information through558

message passing on graph structure, demonstrating559

that graph structure information is also beneficial560

for temporal knowledge graphs, highlighting the561

effectiveness of our UniHR.562

5.3 Further Analysis563

Ablation study on HiSL. We conduct ablation564

experiments on triple prediction, the most relevant565

task to fact nodes, using three NKG datasets. As566

shown in Table 4, all variant models with certain567

modules or parameters removed exhibit a decrease568

in performance. We can conclude that intra-fact569

and inter-fact message passing modules both play570

crucial roles, allowing UniHR to more fully rep-571

resent the current fact node with enhanced struc-572

tural information. We also change the initialization573

of fact node embeddings to learnable embeddings574

(w/o initial hf ) in HiSL. There is a performance575

decrease, indicating that initializing fact node rep-576

resentations is essential. It highlights key informa-577

tion in the facts, mitigating the noise introduced by578

excessive neighbors.579

Potential of Joint Learning on Different Types580

of KGs. We suppose that unified representation581

makes it possible to develop pre-trained models that582

integrate multiple types of KGs. To explore its po-583

tential, we conduct joint learning on different types584

of KGs. Therefore, we construct a hybrid dataset585

called wikimix which includes two subsets of Wiki-586

data (Vrandečić and Krötzsch, 2014), namely HKG 587

dataset WikiPeople and TKG dataset wikidata12k, 588

which encompass 3547 identical entities and 18 589

identical relations. Due to the different types of 590

facts, there are no identical facts in these two sub- 591

sets. To further prevent data leakage, we filter out 592

537 entries from the wikidata12k test set whose 593

main triples appear in the H-Facts of WikiPeople 594

train set, and 384 entries from the WikiPeople test 595

set whose main triples appear in wikidata12k train 596

set. Statics of wikimix are given in Appendix D. 597

From the results in Table 5, it is evident that 598

joint learning outperforms separate learning across 599

most metrics. Notably, there are improvements of 600

17.1% and 40.2% in MR metric on wikipeople− 601

and wikidata12k− datasets, respectively. This indi- 602

cates that more complex structural interactions and 603

diverse types of training data are beneficial. More- 604

over, our UniHR demonstrates good scalability and 605

effectiveness in integrating multiple types of KGs. 606

6 Conclusion 607

In this paper, we propose UniHR, a unified hier- 608

archical knowledge graph representation learning 609

framework consisting of a Hierarchical Data Repre- 610

sentation (HiDR) module and a Hierarchical Struc- 611

ture Learning (HiSL) module. The HiDR form 612

unifies the hyper-relational facts, nested facts and 613

temporal facts into the form of triples, overcoming 614

the limitations of customized encoders for differ- 615

ent forms of facts. Moreover, HiSL captures lo- 616

cal semantic information within facts and global 617

structural information between facts. Our approach 618

achieves the best or competitive performance on 619

link prediction tasks across three types of KGs. 620
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Limitations621

The limitations of our paper are summarized as622

follows:623

Our UniHR In this paper, our UniHR framework624

focuses on link prediction tasks under transductive625

settings with a single modality. In the future, we626

will investigate how to generalize our HiDR form627

to more complex tasks such as inductive reason-628

ing (Teru et al., 2020) and multi-modal scenarios629

(Zhang et al., 2024), etc.630

Joint Learning on Different Types of KGs Con-631

strained by computational resources, our analysis632

of the potential for joint training across multiple633

types of knowledge graphs focuse only on HKG634

and TKG. We believe the unification of knowledge635

graph representation learning methods is a develop-636

ing trend that makes it possible to develop unified637

pre-trained models based on multiple types of KGs.638

In the future, we aim to explore joint training across639

more types of KG to demonstrate the advantages640

of integrating multi-type KG data.641

Ethics Statement642

In this paper, we explore the unified knowledge643

graph link prediction problem, aiming to complete644

various types of knowledge graphs using a unified645

model with deep learning techniques. Our training646

and evaluation are based on publicly available and647

widely used datasets of different types of knowl-648

edge graphs. Therefore, we believe this does not649

violate any ethics.650

References651

Waqas Ali, Muhammad Saleem, Bin Yao, Aidan Hogan,652
and Axel-Cyrille Ngonga Ngomo. 2022. A survey of653
RDF stores & SPARQL engines for querying knowl-654
edge graphs. VLDB J., 31(3):1–26.655

KM Annervaz, Somnath Basu Roy Chowdhury, and656
Ambedkar Dukkipati. 2018. Learning beyond657
datasets: Knowledge graph augmented neural net-658
works for natural language processing. In Proceed-659
ings of the 2018 Conference of the North American660
Chapter of the Association for Computational Lin-661
guistics: Human Language Technologies, Volume 1662
(Long Papers), pages 313–322.663

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim664
Sturge, and Jamie Taylor. 2008. Freebase: a collabo-665
ratively created graph database for structuring human666
knowledge. In Proceedings of the 2008 ACM SIG-667
MOD international conference on Management of668
data, pages 1247–1250.669

Antoine Bordes, Nicolas Usunier, Alberto Garcia- 670
Duran, Jason Weston, and Oksana Yakhnenko. 671
2013. Translating embeddings for modeling multi- 672
relational data. Advances in neural information pro- 673
cessing systems, 26. 674

Shaked Brody, Uri Alon, and Eran Yahav. 2021. How 675
attentive are graph attention networks? In Interna- 676
tional Conference on Learning Representations. 677

Chanyoung Chung, Jaejun Lee, and Joyce Jiyoung 678
Whang. 2023. Representation learning on hyper- 679
relational and numeric knowledge graphs with trans- 680
formers. In Proceedings of the 29th ACM SIGKDD 681
Conference on Knowledge Discovery and Data Min- 682
ing, KDD 2023, Long Beach, CA, USA, August 6-10, 683
2023, pages 310–322. ACM. 684

Chanyoung Chung and Joyce Jiyoung Whang. 2023. 685
Learning representations of bi-level knowledge 686
graphs for reasoning beyond link prediction. In 687
Thirty-Seventh AAAI Conference on Artificial Intelli- 688
gence, AAAI 2023, Thirty-Fifth Conference on Inno- 689
vative Applications of Artificial Intelligence, IAAI 690
2023, Thirteenth Symposium on Educational Ad- 691
vances in Artificial Intelligence, EAAI 2023, Wash- 692
ington, DC, USA, February 7-14, 2023, pages 4208– 693
4216. AAAI Press. 694

Shib Sankar Dasgupta, Swayambhu Nath Ray, and 695
Partha Talukdar. 2018. Hyte: Hyperplane-based 696
temporally aware knowledge graph embedding. In 697
Proceedings of the 2018 conference on empirical 698
methods in natural language processing, pages 2001– 699
2011. 700

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, 701
and Sebastian Riedel. 2018. Convolutional 2d knowl- 702
edge graph embeddings. In Proceedings of the Thirty- 703
Second AAAI Conference on Artificial Intelligence, 704
(AAAI-18), the 30th innovative Applications of Arti- 705
ficial Intelligence (IAAI-18), and the 8th AAAI Sym- 706
posium on Educational Advances in Artificial Intel- 707
ligence (EAAI-18), New Orleans, Louisiana, USA, 708
February 2-7, 2018, pages 1811–1818. AAAI Press. 709

Mikhail Galkin, Priyansh Trivedi, Gaurav Maheshwari, 710
Ricardo Usbeck, and Jens Lehmann. 2020. Message 711
passing for hyper-relational knowledge graphs. In 712
Proceedings of the 2020 Conference on Empirical 713
Methods in Natural Language Processing (EMNLP), 714
pages 7346–7359. 715

Alberto Garcia-Duran, Sebastijan Dumančić, and Math- 716
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(KGE) models (Bordes et al., 2013; Sun et al., 920

2018) have received extensive attention due to their 921

effectiveness and simplicity. The idea is to project 922

entities and relations in the KG to low-dimensional 923

vector spaces, utilizing KGE scoring functions to 924

measure the plausibility of triples in the embedding 925

space. Typical methods include TransE (Bordes 926

et al., 2013), RotatE (Sun et al., 2018), and ConvE 927

(Dettmers et al., 2018). 928

Depending on the KGE model alone has lim- 929

itation of capturing complex graph structures, 930

whereas augmenting global structural information 931

with a graph neural network (GNN) (Vashishth 932

et al., 2019; Nathani et al., 2019; Xu et al., 2023b) 933

proves to be an effective approach for enhance- 934

ment. The paradigm of combining GNN as encoder 935

with KGE scoring function as decoder helps to en- 936

hance the performance of KGE scoring function. 937

These GNN methods design elaborate message 938

passing mechanisms to capture the global struc- 939

tural features. Typically, CompGCN (Vashishth 940

et al., 2019) aggregates the joint embedding of 941

entities and relations in the neighborhood via a 942

parameter-efficient way and MA-GNN (Xu et al., 943

2023b) learns global-local structural information 944

based on multi-attention. These methods achieve 945
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impressive results on triple-based KGs but are hard946

to generalize to beyond-triple KGs.947

B Results on JF17K948

Table 6 shows the experimental results on JF17K.949

Due to the absence of a validation set in the JF17K950

dataset and the different ways of dividing the951

dataset across various baselines, we adopt the re-952

sults reported in the original paper. Consistent with953

previous experiments on hyper-relational knowl-954

edge graphs, we also achieve state-of-the-art perfor-955

mance on JF17K among all baselines. In particular,956

we achieved 1.7 (2.9%) points in MRR and 1.5957

(2.9%) points in Hits@1 compared to the method958

StarE which also utilises a graph neural network959

encoding and a simple transformer decoding, indi-960

cating that our hierarchical GNN HiSL could better961

capture the structure of hyper-relational facts.

Model
JF17K

subject/object all entities

MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

m-TransH 0.206 0.206 0.462 - - -
NaLP 0.221 0.165 0.331 0.366 0.290 0.516
HINGE 0.431 0.342 0.611 0.517 0.436 0.675
NeuInfer 0.449 0.361 0.624 0.473 0.397 0.618
StarE 0.574 0.496 0.725 - - -
HyTransformer 0.582 0.501 0.742 - - -

UniHR 0.591 0.511 0.745 0.621 0.545 0.768

Table 6: Link prediction on JF17K. All results of base-
lines are taken from the original paper. Best results are
in bold.

962

C Decoder Analysis963

To explore the effectiveness of our UniHR encod-964

ing further, we pair UniHR with different decoders965

and evaluated them on triple prediction task. In966

addition to the previously mentioned unified frame-967

work UniHR + Transformer, we also experiment968

on UniHR + ConvE with two scoring strategies.969

The ConvE (Dettmers et al., 2018) is the decoder970

customized for triples and its scoring function is971

vec
(
σ
([

h̃h; ẽr

]
∗ ψ

))
, where h̃h and ẽr repre-972

sent reshaped 2D embeddings of head entity h and973

relation r, and ∗ is a convolution operator. The974

vec (·) and ψ are denoted as the vectorization func-975

tion and a set of convolution kernels.976

Due to our special representation, there ex-977

ists two scoring methods for atomic triples, thus978

we present the base link prediction results sep-979

arately for each scoring method. The sf repre-980

sents scoring triples (f, has head entity, h) and981

(f, has tail entity, t), and st represents scoring 982

(h, r, t). The performance of base link pre- 983

diction is shown in Table 7. Notably, FBH 984

and FBHE share identical atomic facts, result- 985

ing in the same performance. It can be observed 986

that regardless of the scoring method employed, 987

we both achieve competitive performance, espe- 988

cially with scoring (h, r, t) on FBH and scoring 989

(f, has head entity, h) (f, has tail entity, t) on 990

DBHE. We attribute the differences in performance 991

under different scoring methods to dataset charac- 992

teristics. The DBHE dataset is relatively smaller, 993

and scoring method sf effectively alleviates overfit- 994

ting problem. Conversely, for larger datasets FBH, 995

scoring based on (h, r, t) minimizes information 996

loss. 997

Table 8 shows the results of triple prediction 998

on three benchmark datasets. Among all base- 999

lines, Quate, Bique, Neural-LP, Drum, and Any- 1000

BURL struggle to model the mapping relationship 1001

between atomic facts and nested facts. Further- 1002

more, prior works (Chung and Whang, 2023) do 1003

not guarantee that all atomic facts in the nested 1004

fact test set are present in the training set as entities, 1005

which shifts the problem from a transductive setting 1006

to an inductive setting, leading to significant per- 1007

formance gaps between these baselines. On most 1008

metrics, our method outperforms BiVE and NestE 1009

which are specifically modeled for nested facts. No- 1010

tably, NestE fully preserves the semantics of atomic 1011

facts. However, on the FBHE dataset, UniHR + 1012

ConvE achieves an improvement of 0.58 (6.4%) 1013

points in MRR and 0.24 (2.4%) points in Hits@10 1014

compared to the state-of-the-art model NestE and 1015

the second-best performance after UniHR + Trans- 1016

former on the FBH and DBHE datasets, demon- 1017

strating UniHR’s powerful graph structure encod- 1018

ing capabilities. We also carry out ablation exper- 1019

iments on UniHR + ConvE as shown in Table 8. 1020

Performance declines are observed after removing 1021

any part of the HiSL module, showing the signifi- 1022

cance of HiSL for hierarchical encoding. 1023

D Datasets Statistics 1024

Table 9 shows the details of the three hyper- 1025

relational knowledge graph benchmark datasets: 1026

WikiPeople, WD50K, JF17K, three nested fac- 1027

tual knowledge graph benchmark datasets: FBH, 1028

FBHE, DBHE,and the temporal knowledge graph 1029

benchmark dataset wikidata12k. Among them, 1030

WikiPeople is a dataset derived from Wikidata 1031
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Algorithm 1 Message passing process of HiSL
Input: GHiDR = {Va ∪ Vr ∪ Vf ,Ra ∪Rn ∪Rc,Fa ∪ Fc ∪ Fn}; the number of encoder layers L.
Output: The node embedding matrix HL; the edge embedding matrix EL.

1: Initialize the embedding matrix of atomic nodes H0
a ∈ R|Va|×d.

2: Initialize the embedding matrix of three types of relations E0 = {E0
a,E

0
c ,E

0
n} ∈ R|Ra∪Rc∪Rn|×d.

3: Initialize the embedding matrix of relation nodes H0
r ← E0

a ·Wr ∈ R|Vr|×d.
4: for h, r, t ∈ Fa do
5: Initialize the embedding of fact nodes h0

f ← fm([hh;hr;ht]). ▷ Representation Initialization
6: end for
7: for l← 1 to L do
8: for i ∈ V do
9: Ml

i ← hl−1
i . ▷ Intra-fact Message Passing

10: for i, r, j ∈ Fc do

11: αl−1
i,j ←

exp(Wl−1(σ(Wl−1
in hl−1

i +Wl−1
outh

l−1
j )))∑

j′∈Ni
exp

(
Wl−1

(
σ
(
Wl−1

in hl−1
i +Wl−1

outh
l−1
j′

))) .

12: Ml
i ← {α

l−1
i,j ·W

l−1
outh

l−1
j } ∪Ml

i.
13: end for
14: end for
15: for i ∈ V do
16: hl−1

i ← Aggregate(Ml
i).

17: end for ▷ Inter-fact Message Passing
18: for i ∈ V do
19: Ml

i ← {W
l−1
selfh

l−1
i }.

20: for r, j ∈ Ni do
21: ml−1

(i,r,j) ← σ
(
ωl−1
τ(r)

)
Wl−1

λ(r)ϕ
(
hl−1
j , el−1

r

)
.

22: Ml
i ← {m

l−1
(i,r,j)} ∪M

l
i.

23: end for
24: end for
25: for i ∈ V do
26: hl

i ← Aggregate(Ml
i).

27: end for
28: El ←Wl−1

rel E
l−1.

29: end for
30: return HL,EL

(Vrandečić and Krötzsch, 2014) concerning enti-1032

ties type “human”. WikiPeople filter out the ele-1033

ments which have at least 30 mentions as key-value1034

pairs. WD50K is a high-quality dataset extracting1035

from Wikidata statements and avoiding the poten-1036

tial data leakage which allows triple-based models1037

to memorize main fact in the H-Facts of test set.1038

The “with Q(%)" column in Table 9 denote the1039

number of facts with auxiliary key-value pairs and1040

the “Arity" column denote range of the number1041

of entities in hyper-relational facts. The nested1042

factual knowledge graph datasets FBH and FBHE1043

(Chung and Whang, 2023) are constructed based1044

on FB15k237 (Toutanova and Chen, 2015) from1045

Freebase (Bollacker et al., 2008) while DBHE is1046

based on DB15K (Liu et al., 2019) from DBpedia 1047

(Lehmann et al., 2015). FBH contains nested facts 1048

that can be only inferred inside the atomic facts, 1049

while FBHE and DBHE contain externally-sourced 1050

nested relation crawling from Wikipedia articles, 1051

e.g., NextAlmaMater and SucceededBy. Temporal 1052

knowledge graph dataset wikidata12K is also a sub- 1053

set of Wikidata (Vrandečić and Krötzsch, 2014), 1054

which represents the time information τ ∈ T as 1055

time intervals. 1056

E Pseudo-code of HiSL 1057

The pseudo code of HiSL is outlined in Algorithm 1058

1. 1059
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Model FBHE/FBH DBHE

MRR Hits@10 MRR Hits@10

QuatE 0.354 0.581 0.264 0.440
BiQUE 0.356 0.583 0.274 0.446
Neural-LP 0.315 0.486 0.233 0.357
DRUM 0.317 0.490 0.237 0.359
AnyBURL 0.310 0.526 0.220 0.364
BiVE 0.370 0.607 0.274 0.422
NestE 0.371 0.608 0.289 0.443

UniHR + ConvE sh 0.397 0.622 0.289 0.443
UniHR + ConvE sf 0.375 0.596 0.307 0.471
UniHR + Transformer 0.401 0.619 0.300 0.455

Table 7: Base link prediction on FBHE, FBH and
DBHE. All baselines’ results are taken from (Xiong
et al., 2024). The best results among all models are writ-
ten bold, while the second are underlined. The sf and sh
denote (f, has head entity, h) (f, has tail entity, t)
and (h, r, t) two types of scoring method respectively.
For BiVE (Chung and Whang, 2023) and NestE (Xiong
et al., 2024), we pick their variants with best perfor-
mance.

F Hyperparameter Settings1060

Here, we show the hyperparameter details for1061

each link prediction task. To be specific,1062

we tune the learning rate using the range1063

{0.0001, 0.0005, 0.001}, the embedding dim us-1064

ing the range {50, 100, 200, 400}, the GNN layer1065

using the range {1, 2, 3} and dropout using the1066

range {0.1, 0.2, 0.3, 0.4}. Additionally, we use1067

smoothing label in the training phase from range1068

{0.1, 0.2, 0.3}. The best hyperparameters obtained1069

from the experiments are presented in Table 10.1070
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Model
FBH FBHE DBHE

MR MRR Hits@10 MR MRR Hits@10 MR MRR Hits@10

QuatE (Zhang et al., 2019) 145603.8 0.103 0.114 94684.4 0.101 0.209 26485.0 0.157 0.179
BiQUE (Guo and Kok, 2021) 81687.5 0.104 0.115 61015.2 0.135 0.205 19079.4 0.163 0.185
Neural-LP (Yang et al., 2017) 115016.6 0.070 0.073 90000.4 0.238 0.274 21130.5 0.170 0.209
DRUM (Sadeghian et al., 2019) 115016.6 0.069 0.073 90000.3 0.261 0.274 21130.5 0.166 0.209
AnyBURL (Meilicke et al., 2019) 108079.6 0.096 0.108 83136.8 0.191 0.252 20530.8 0.177 0.214
BiVE (Chung and Whang, 2023) 6.20 0.855 0.941 8.35 0.711 0.866 3.63 0.687 0.958
NestE (Xiong et al., 2024) 3.34 0.922 0.982 3.05 0.851 0.962 2.07 0.862 0.984

UniHR + Transformer 2.46 0.946 0.993 5.20 0.793 0.890 1.90 0.862 0.987
UniHR + ConvE 3.00 0.900 0.983 6.27 0.909 0.986 2.06 0.876 0.978

UniHR + ConvE w/o hf 4.39 0.887 0.979 10.10 0.865 0.970 2.76 0.798 0.961
UniHR + ConvE w/o intra-fact 6.54 0.859 0.959 18.10 0.871 0.968 5.82 0.665 0.900
UniHR + ConvE w/o inter-fact 12.56 0.864 0.961 20.56 0.864 0.966 10.75 0.764 0.951

Table 8: Triple prediction on FBHE, FBH and DBHE. All baselines’ results are taken from (Xiong et al., 2024).
The best results among all models are written bold. For BiVE (Chung and Whang, 2023) and NestE (Xiong et al.,
2024), we pick their variants with best performance.

Dataset Atomic Fact Entities Relations Train Valid Test with Q(%) Arity Nested Fact Nested Relation with AF(%) Period

Hyper-relational Knowledge Graph

WikiPeople 369866 34825 178 294439 37715 37712 9482(2.6%) 2-7 - - - -

WD50K 236507 47155 531 166435 23913 46159 32167(13.6%) 2-67 - - - -

JF17K 100947 28645 501 76379 - 24568 46320(45.9%) 2-6 - - - -

Nested Factual Knowledge Graph

FBH 310116 14541 237 248094 31011 31011 - - 27062 6 33157 -

FBHE 310116 14541 237 248094 31011 31011 - - 34941 10 33719 -

DBHE 68296 12440 87 54636 6830 6830 - - 6717 8 8206 -

Temporal Knowledge Graph

wikidata12k 40621 12554 24 32497 4062 4062 - - - - - 19-2020

Multiple types of Knowledge Graph

wikimix 409566 43832 184 326936 41777 3525(TKG)/37328(HKG) 9098(2.2%) 2-7 - - - 19-2020

Table 9: The statistics of diverse knowledge graphs dataset, where “with Q(%)" and “Arity" column respectively
denote the number of facts with auxiliary key-value pairs and the range of arity of hyper-relational facts, the “with
AF(%)" column denotes the number of atomic facts in nested facts.

Hyperparameter WikiPeople WD50K wikidata12k FBHEbase FBHbase DBHEbase FBHEtriple FBHtriple DBHEtriple

batch_size 2048 2048 2048 2048 2048 2048 2048 2048 2048
embedding dim 200 200 200 200 200 200 200 200 200
hidden dim 200 200 200 200 200 200 200 200 200
GNN_layer 2 2 2 2 2 2 2 2 2
GNN_intra-fact heads 4 4 4 4 4 4 4 4 4
GNN_intra-fact dropout 0.1 0.1 0.1 0.3 0.1 0.3 0.2 0.1 0.1
GNN_inter-fact activation tanh tanh tanh tanh tanh tanh tanh tanh tanh
GNN_dropout 0.1 0.1 0.1 0.3 0.1 0.3 0.2 0.1 0.1
transformer layers 2 2 2 2 2 2 2 2 2
transformer heads 4 4 4 4 4 4 4 4 4
transfomer activation gelu gelu gelu gelu gelu gelu gelu gelu gelu
decoder dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
soft label for entity 0.2 0.2 0.4 0.2 0.2 0.3 0.2 0.2 0.2
soft label for relation 0.1 0.1 0.3 0.2 0.2 0.3 0.2 0.2 0.2
weight_decay 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
learning rate 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4

Table 10: The major hyperparameters of our approach for all link prediction tasks.

15


	Introduction
	Preliminaries
	Related Works
	Methodology
	Hierarchical Data Representation
	Hierarchical Structure Learning
	Link Prediction Decoder

	Experiment
	Experiment Settings
	Main Results
	Further Analysis

	Conclusion
	Related Works
	Link Prediction Methods for Triple-based KGs

	Results on JF17K
	Decoder Analysis
	Datasets Statistics
	Pseudo-code of HiSL
	Hyperparameter Settings

