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Abstract: The ability to manipulate tools is essential for integrating intelligent1

robots in real-world settings, allowing them to significantly expand the range of2

tasks they can perform in daily life. To address this challenge, we introduce Way-3

TU, a novel framework that learns to generate waypoint representations (3D ori-4

ented keypoints) for motion planning in tool-use tasks. Our approach perceives5

the full environment, reasons over object geometry, and generates waypoints to6

guide the motion optimizer toward task completion, simultaneously enabling tool7

selection by identifying the most suitable tool among candidates. We evaluated8

our framework on three diverse tasks—minigolf, lifting, and hammering—and9

demonstrated a competitive manipulation performance compared to baselines,10

along with effective tool-selection capabilities.11

Keywords: Learning Robot Fine Manipulation Skills, Tool Manipulation and Se-12

lection, Learning Waypoint Representations, Motion Optimization13

1 Introduction14

Figure 1: The framework integrates percep-
tion (point cloud segmentation), waypoint
generation and score prediction, and motion
optimization (KOMO) to find feasible solu-
tions.

Our work aims to solve both tool manipulation and15

tool selection by explicitly considering the environ-16

ment and adapting decisions according to the state17

of the task environment, rather than relying on pre-18

defined manipulation strategies. We propose a com-19

plete framework that perceives the full environment,20

identifies and interprets the objects within it, and21

generates waypoints through a trained network to22

guide a motion optimizer in planning feasible mo-23

tions and selects the best tool between the candi-24

dates.25

We augment a strong motion optimizer with super-26

vised learning components that provide structured,27

high-level guidance. Rather than directly controlling28

the robot through learned policies—or relying solely29

on optimization to complete the task—our frame-30

work uses learning to infer task-relevant informa-31

tion, such as segmenting the scene, selecting the ap-32

propriate tool, and predicting waypoints as interme-33

diate goals. This hybrid design combines the gener-34

alization and perceptual strengths of learning with the physical realism and constraint satisfaction35

offered by optimization. To this end, we propose Way-Tu, a framework that integrates perception,36

learning-based waypoint prediction, and motion optimization (Figure 1).37
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Our contributions are: (1) an end-to-end framework that jointly learns tool selection and waypoint38

generation, integrated with a motion optimizer for contact-rich tool use; (2) a generalizable data39

collection algorithm that produces diverse, valid samples across tasks without random exploration or40

manual annotation; and (3) a hybrid framework combining learning for generalization with motion41

optimization for physical feasibility, yielding a practical solution for tool use.42

2 Related Work43

Prior research has approached the problem from multiple perspectives, and the challenge of tool44

usage in robotics has been studied extensively [1, 2, 3] over the years. An increasing number of45

studies demonstrate that representing tools with sparse geometric structures, such as keypoints, is46

particularly effective for robotic manipulation [4]. Building on this idea, several studies have shown47

that robots can learn key aspects of tool manipulation through these sparse representations, enabling48

them to reason about tool affordances and functional parts rather than entire shapes. For example,49

KETO [2], GIFT [5], and ToolBot [6] leverage keypoint-based representations to learn the best ways50

to grasp the tool and manipulate it to complete the task. However, most of these works pay little51

attention to the environment or contact-rich aspect of the manipulation, and instead focus on a single52

tool placed on a table. In addition, most tool selection studies, whether aimed at choosing the right53

tool for a task [3] or reasoning about causal relationships between tools and tasks [7], have largely54

sidelined the manipulation process itself.55

3 Simulation-Based Automated Waypoint Generation for Data Collection56

We implemented a generalizable waypoint-generation algorithm that adapts to different tool-57

manipulation tasks by constraining grasp and interaction waypoints sampling based on object geom-58

etry and task definitions. For each sample, the environment is constructed by randomly generating59

both tool structures and a task platform, which are then placed on a table in random positions and60

orientations. The algorithm begins by selecting one of the available tools at random and isolating61

its point cloud from the environment. It then uses an antipodal grasp estimation algorithm to find62

all possible grasps. A valid antipodal pair is then randomly selected to define a grasp waypoint63

consisting of a position and a consistent orientation. Next, a contact point is chosen on the tool64

surface—deliberately positioned away from the grasp region. Using the target and contact point,65

the algorithm computes an initial manipulation waypoint aligned toward the task-specific target,66

followed by a goal waypoint representing the final task-achievement state. The goal waypoint is67

determined based on the task requirements and the optimal final position of the target object for68

successful task completion.69

Figure 2: Top-Left: Graph PointNet-based segmentation of point clouds using geometric features.
Bottom: Unified network for waypoint generation and score prediction using object embeddings
extracted with a lightweight PointNet encoder. Top-Right: Example tool selection with predicted
waypoints and chosen tool.
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4 Methodology70

Our framework sequentially handles perception, waypoint generation, and motion optimization to71

address both the manipulation and selection aspects of tool-usage problems. Learning-based com-72

ponents are integrated to understand the environment, identify the most suitable tool for the task,73

and support the motion optimizer during the manipulation phase.74

For training the Way-Tu network, we first collected samples using our proposed data collection75

algorithm without any human interaction. Each sample contains the point cloud of the environment,76

the waypoints tested in the simulation, and a score representing the quality of task completion.77

GNN-Based Segmentation Module The segmentation module takes the raw environment point78

cloud and classifies each point into one of the tool or task-platform classes. The input point cloud79

is represented as a graph, where each point is a node with features including position, normal vec-80

tor, curvature, and eigenvalues. The segmentation network (GraphPointNet) is composed of three81

message-passing layers, each followed by ReLU activation, and two global feature-injection layers.82

These are followed by an MLP segmentation head that assigns semantic labels to each point. This83

design enables the network to generalize to varying numbers of tools and to infer the current task84

platform without requiring explicit task labels.85

Figure 3: Examples of tasks and tools. Top:
three tool-manipulation tasks (a) minigolf,
(b) lifting, (c) hammering. Bottom: repre-
sentative samples from hammer, spatula, and
L-ruler families, illustrating geometric diver-
sity.

Feature Extractor For each object identified by86

the segmentation module (both tools and task-related87

platforms), we first normalize and scale their point88

clouds to reduce noise arising from random place-89

ments in the environment. The normalized point90

cloud is then passed to a lightweight PointNet-based91

encoder. This encoder applies two 1D convolu-92

tional layers with batch normalization and ReLU ac-93

tivations for point-wise feature extraction, followed94

by a global max-pooling layer to aggregate features95

across points into a compact embedding, and a fully96

connected layer for global feature projection. Dur-97

ing training, the feature extractor is optimized with98

two objectives: (1) classifying the given object, and99

(2) predicting its orientation. We include orienta-100

tion prediction because the unified network struggles101

more with estimating correct orientations for way-102

points; explicitly learning orientation helps improve103

the quality of the embeddings.104

Unified Generator and Selector Module For105

each tool in the scene, the tool and environment em-106

beddings produced by the feature extractor are con-107

catenated with their normalization parameters, pre-108

dicted yaw values, and the target object center (cal-109

culated from the environment point cloud using ge-110

ometric methods). These inputs form a single em-111

bedding vector that is passed to the generator head,112

a deep MLP with normalization layers, residual con-113

nections, and SiLU activation functions, which pre-114

dicts a set of three waypoints. The tool waypoint, together with the tool embedding and task encod-115

ing, is then passed to the selector network, a smaller MLP responsible for predicting a task success116

score. During training, the selector learns to evaluate the feasibility of each tool–waypoint com-117

bination. At inference time, it processes each tool individually and assigns a score reflecting the118

expected outcome if the corresponding waypoint set is used. The tool with the highest predicted119

score is selected as the optimal choice for the task. In practice, the ground-truth success score is120
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computed by jointly considering the stability of the tool grasp and the degree of task completion,121

providing consistent supervision for learning effective tool selection.122

Motion Generation and KOMO We employ the K-order Markov Optimizer (KOMO), which123

plans motions by formulating a nonlinear mathematical program with a sum-of-squares cost for124

improved regularization. KOMO is a trajectory optimization technique that can use a discrete set of125

waypoints as constraints to generate the motion path by minimizing the cost function. To achieve126

this minimization, equality constraints involving the generated waypoints are incorporated into the127

constraint function.128

5 Experiments & Results129

Experimental Setup In our experiments, we consider three distinct tool-manipulation tasks, and130

we consider three tool families: hammer, spatula, and L-ruler (Figure 3). The minigolf task is a131

more goal-directed and challenging variation of a pushing task. The robot must push a ball, resting132

on an elevated platform, into a hole. In the lifting task, the robot must free a long stick-like target133

object trapped between thin vertical tubes by applying an upward force. In the hammering task, the134

goal is to drive a nail—partially embedded in a small ball—into a wall.135

Table 1: Tool selection rates (%).
DC Way-Tu

Tool Mini Lift Hamm Mini Lift Hamm

L-ruler 32.7 31.1 34.5 25.0 81.8 34.78
Spatula 36.3 37.4 35.5 53.6 18.2 13.04
Hammer 31.0 31.0 29.9 21.4 0.0 52.2

Tool Selection Evaluation To evaluate the per-136

formance of the tool selection module, we mea-137

sured the ratio of tools chosen during the manipu-138

lation experiments Table 1. In the data collection139

phase, the tool was selected randomly, resulting140

in Data Collection (DC) having an almost uni-141

form distribution over tools. The selection mod-142

ule learns to jointly map tools, tasks, and grasping143

positions to their resulting performance. Consequently, at inference time, the module tends to se-144

lect tools that it has internally associated with higher success probabilities, rather than following the145

random distribution present in the training data.146

Table 2: Success rates (%) across tasks.
Method Mini Lift Hamm

Pure KOMO 0.0 0.0 0.0
Way-Tu-DC 45.3 40.9 35.3
KETO 33.4 41.7 22.3
ToolBot 16.7 33.4 23.5
Way-Tu 75.0 77.8 69.6

Manipulation Performance and Baseline Com-147

parisons The success rates of our model and dif-148

ferent baselines can be seen in Table 2. We eval-149

uate a motion-optimizer-only baseline using the150

KOMO framework without any additional interme-151

diate goals. Even with multiple randomized starting152

configurations per environment, the pure motion op-153

timizer failed in all three tasks. Way-Tu-DC demon-154

strates the performance of our data collection algorithm, which augments the KOMO motion opti-155

mizer with a heuristic that introduces feasible waypoints. Unlike pure KOMO, the data collection156

algorithm was able to solve all tasks, to some extent. We selected KETO [2] and ToolBot [6] for157

learning-based baselines. Both models were originally designed to operate only on the tool; we158

adapted them to also learn from the environment. When the environment point cloud was included,159

the predicted keypoints became unstable and less consistent. Compared with all baselines, Way-160

Tu achieved the highest success rates across all three tasks, demonstrating the effectiveness of our161

method in jointly considering environment point clouds and tools while generating complete way-162

point sets with orientations.163

6 Conclusion164

In this study, we proposed Way-Tu, an end-to-end framework that jointly addresses tool manipula-165

tion and tool selection by considering the full environment rather than focusing solely on the tool.166

We validated our framework on three diverse tool-manipulation tasks—minigolf, lifting, and ham-167

mering. Across all settings, Way-Tu achieved competitive manipulation performance compared to168

relevant baselines, while also providing reliable and meaningful tool-selection results.169
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