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Abstract—Multi-objective optimization algorithms might
struggle in finding optimal dominating solutions, especially in
real-case scenarios where problems are generally characterized
by non-separability, non-differentiability, and multi-modality
issues. An effective strategy that already showed to improve the
outcome of optimization algorithms consists in manipulating the
search space, in order to explore its most promising areas. In this
work, starting from a Pareto front identified by an optimization
strategy, we exploit Local Bubble Dilation Functions (LBDFs)
to manipulate a locally bounded region of the search space
containing non-dominated solutions. We tested our approach on
the benchmark functions included in the DTLZ and WFG suites,
showing that the Pareto front obtained after the application
of LBDFs is most of the time characterized by an increased
hyper-volume value. Our results confirm that LBDFs are an
effective means to identify additional non-dominated solutions
that can improve the quality of the Pareto front.

Index Terms—Multi-objective Optimization, Global Optimiza-
tion, Pareto Front, Search Space Manipulation, Local Bubble
Dilation Functions

I. INTRODUCTION

The last decade has witnessed an increasing number of
studies regarding real-world optimization problems [1], [2],
ranging from civil engineering to manufacturing and intelligent
system design [3], [4], hydrology [5], network analysis [6],
medical imaging [7], and life sciences [8]–[12]. Most of these
problems can be modeled using multiple conflicting objectives,
making Multi-Objective Optimization (MOO) algorithms fun-
damental for identifying optimal solutions [13]. In this con-
text, the family of Multi-Objective Evolutionary Algorithms

(MOEAs) is the most used. Being evolutionary approaches,
MOEAs evolve a population of randomly created individuals
to approximate the Pareto optimal front [14]. An improvement
in one of the objectives generally worsens some of the others;
thus, most of the time, a solution that simultaneously optimizes
all the objectives does not exist. However, there is a set of
Pareto optimal solutions (i.e., the optimal Pareto set) that
contains the best trade-offs in terms of objective values [14].

Among the plethora of MOEAs, it is worth mentioning
the Strength Pareto Evolutionary Algorithm (SPEA) [15] and
the Non-dominated Sorting Genetic Algorithm II (NSGA-II)
[16]. SPEA exploits a regular population and an external
set (i.e., an archive of non-dominated solutions) that are
iteratively updated. The individuals undergo recombination
and mutation operators to generate offspring. In addition, a
clustering technique is applied to preserve the characteristics
of the non-dominated solutions when the archive size exceeds
a predefined limit. SPEA2 is an improved version of SPEA that
integrates a fine-grained fitness assignment strategy, a density
estimation technique, and an enhanced archive truncation
method [17]. NSGA-II is based on the general scheme of
Genetic Algorithms but exploits a different selection strategy,
whereby the individuals are selected based on both the Pareto
front and a crowding distance (i.e., the Manhattan distance in
the objective space) in the generated splitting front. NSGA-III
is an improved version of NSGA-II that integrates a selection
from the splitting front based on a set of reference directions
on a unit simplex [18], [19].

MOEAs often show difficulties in solving real-world opti-
mization problems that exhibit pathological fitness landscape
characteristics, such as non-separability, non-differentiability,979-8-3503-1458-8/23/$31.00 ©2023 European Union
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and multi-modality [20]. For this reason, several research
studies tried to improve their performance by adding new
features or generating surrogate models of the fitness func-
tion [21]–[24]. Surrogate models allow for evaluating simpler
fitness landscapes; however, their application is not always
cost-effective as their construction generally represents a dif-
ficult task. Other research studies employ diversity-preserving
mechanisms to construct uniformly spread Pareto front ap-
proximations. In [25], for instance, the authors propose an
archiving strategy to improve the discretization of the Pareto
front geometry by optimizing some physical interactions (e.g.,
Coulomb’s law) between pairs of candidate solutions. This
strategy can be coupled with any multi-objective evolutionary
algorithm to keep track of candidate solutions discarded by
the selection operator.

Another possible approach is the direct application of trans-
formation or modification strategies to the search space, to the
aim of improving the quality of the sampling procedure of
candidate solutions by avoiding non-promising fitness land-
scape regions. For instance, the Shrinking Space Technique
[26] and Space Transformation Search [27] utilize shrinking
and transformation, respectively, during the optimization phase
to focus on promising areas [26], [28], [29]. A different
strategy relying on Dilation Functions (DFs) has been re-
cently introduced to re-map the original search space onto
a dilated search space [30]. The proposed DFs are used to
expand the most promising regions and compress the regions
characterized by poor fitness values. Considering that DFs are
problem-dependent and require prior knowledge of the fitness
landscape, an automatic method has been proposed to evolve
optimal DFs [31]. An extension of the DFs was then pro-
posed in [32], where the authors introduced the Local Bubble
Dilation Functions (LBDFs), which apply a transformation to
the fitness landscape in a locally bounded region, rather than
dilating the entire search space. In particular, LBDFs perform
mappings of solutions of the search space into other solutions
of the search space, and they can be applied to both single-
objective and MOO problems.

In the case of single-objective problems, the application
of an LBDF is straightforward: the fitness value of the
dilated solution is the fitness value of the re-mapped point
in the original landscape. As a consequence, the landscape
directly reflects the applied manipulation by showing different
fitness values in the dilated region. When applying LBDFs to
MOO problems, since the manipulation is performed at the
candidate solution level (i.e., the search space), the effects
are simultaneously reflected in all landscapes related to the
different objectives. Figure 1 shows an LBDF applied to
the DTLZ1 benchmark problem to dilate both landscapes
of its two objectives. In the context of MOO problems, the
purpose of applying LBDFs slightly differs from the purpose
of applying them on single-objective problems. In fact, while
in single-objective optimization LBDFs aim at dilating the
basin of attraction where the global optimum lies, in multi-
objective problems the aim is to dilate regions containing
non-dominated solutions, rather than regions that improve the
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Fig. 1. Example of an LBDF applied to locally manipulate the search space
of the two objectives of the DTLZ1 benchmark problem.

quality of only some of the landscapes.
In this work, we exploit LBDFs to dilate the search space

of MOO problems to improve the quality of the solutions
in the Pareto set. In particular, given a Pareto set, LBDFs
are applied to specific regions of the search space, marked
as promising areas by analyzing the location of the already
identified non-dominated solutions. To assess the effectiveness
of our approach, we applied LBDFs to improve the quality—
evaluated in terms of hyper-volume—of sets of non-dominated
solutions of benchmark functions belonging to the DTLZ [33]
and WFG [34] suites. All the analyzed problems are defined
with both 2 and 3 objectives over 30 dimensions.

The paper is structured as follows. In Section II we remind
the concepts of MOO, DFs, and LBDFs, and then we introduce
the approach to fill a Pareto front by properly positioning
LBDFs and identifying new non-dominated solutions. Section
III shows the results of the application of LBDFs to the DTLZ
and WFG benchmark suites. Our conclusive remarks are given
in Section IV.

II. METHODS

A. Multi-Objective Optimization

The main aim of a MOO algorithm is to determine a set of
K non-dominated candidate solutions P∗ = {p∗

1, . . . ,p
∗
K},

which cannot improve a single objective without affecting the
others. Without loss of generality, let f1, . . . , fΩ be Ω distinct
objective functions to be simultaneously minimized in a D
dimensional search space S ⊆ RD. A candidate solution x1 ∈
S is said dominated by a solution x2 ∈ S if:

• fi(x2) ≤ fi(x1) for all i = 1, . . . ,Ω;
• fj(x2) < fj(x1) for at least one index j = 1, . . . ,Ω.
The non-dominance relation produces a partially ordered

set of non-dominated solutions that can be used to identify
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the different Pareto sets, each containing all the solutions with
the same ranking; the Pareto set containing the non-dominated
solutions is usually referred to as the “first” Pareto set. The
fitness values of the candidate solutions of a Pareto set can be
represented in an objective space, which is a Ω-dimensional
space whose i-th dimension represents the fitness values of fi.

B. Basis Functions

The family of Basis Functions (BFs) includes all the bijec-
tive and monotonically increasing functions that map the unit
interval into the unit interval. BFs can be composed to define
Dilation Functions (DFs), which can alter the semantics of
candidate solutions. In this work, we focus on the following
BF [31], [32]: hγ(x) = xγ , with γ ∈ (1,∞), whose inverse
function is defined as h−1

γ (x) = h1/γ(x). The parameter γ
influences the intensity of the dilation effect: the further the
curve is from the identity function, the stronger the dilation
of the search space will be, as shown in Figure 2.
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Fig. 2. Examples of Basis Functions hγ and h−1
γ with different values of γ.

C. Local Bubble Dilation Functions

Local Bubble Dilation Functions (LBDFs) perform local
manipulations of the problem landscape by applying a BF
inside a hyper-sphere [32]. The hyper-sphere is identified by
a point c of the search space and a radius r ∈ R+. Formally,
an LBDF Bhγ ,r,c : RD → RD is defined as follows:

Bhγ ,r,c(x) = hγ

(
||x− c||2

r

)
· x− c

||x− c||2
· r + c, (1)

for every x ∈ RD such that ||x−c||2 < r, and Bhγ ,r,c(x) = x
otherwise.

If an LBDF leverages a concave up BF, such as hγ(x),
an expansion is performed: the candidate solutions of the
search space are mapped toward the center of the hyper-
sphere, leading to an enhancement of the search of this area.

Expanding LBDFs can be used to facilitate the exploration of
promising regions of the search space. Conversely, if a concave
down BF is used, such as h−1

γ (x), a compression is performed:
the candidate solutions inside the hyper-sphere are mapped
further from the center, thus reducing the explorability of the
area. Compressing LBDFs can be used to limit the search of
non-promising regions of the search space.

Since LBDFs perform local manipulations of the search
space, it is possible to simultaneously apply a composition
of multiple LBDFs. In principle, this might yield landscapes
where multiple promising regions are expanded and many poor
areas are compressed. In this work, we focus on the application
of multiple expanding LBDFs to improve the quality of a set
of non-dominated solutions.

D. Dilation Functions to Fill the Pareto Front

Effective manipulations of the search space require detailed
knowledge of the characteristics of the fitness landscape,
which is generally not available. For this reason, we propose a
novel approach to improve the quality of an already computed
Pareto set and potentially increase the diversity among the non-
dominated solutions.

Given the first Pareto front P computed on N candidate
solutions, for each pair of adjacent solutions p, q ∈ P in
the objective space, an LBDF is applied between them in
the search space. The center of this LBDF corresponds to the
centroid between p and q, while its radius is equal to half of
the Euclidean distance between p and q. Considering a two-
objective problem, the concept of adjacency is defined by the
ordering along one objective. For three or more objectives it
is not possible to operate in the same way, so the adjacency
is defined in terms of minimum Euclidean distance. After
the positioning of LBDFs, M new candidate solutions are
sampled from the sub-regions of the search space identified by
the LBDFs. These M solutions, together with the candidate
solutions in P , are eventually considered to compute the new
Pareto set, following the first Pareto set selection strategy
described in [16]. Figure 3 shows the workflow of the approach
proposed in this work.

The key advantage of this approach is that it determines
the promising regions of the search space by analyzing
the location of non-dominated solutions, without performing
additional fitness evaluations. Moreover, by using the new
information extracted from the dilated search space, the quality
of the Pareto front can either improve or, at worst, remain the
same. As a matter of fact, if the newly sampled solutions are
all dominated, the Pareto set remains the same and corresponds
to an identical hyper-volume. On the contrary, if one or more
sampled solutions are non-dominated, then the value of the
hyper-volume can only increase, thanks to the improvement
of the Pareto front. The approach proposed in this paper is
based on the idea that a non-dominated solution might lie in
the search space region bounded by two solutions belonging
to the first Pareto front. We expect that the expansion of the
regions between two Pareto-optimal solutions will make the
identification of new dominating solutions easier.
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Fig. 3. Workflow of the proposed approach. Given a set of N candidate
solutions in the original search space (top left), the first Pareto front is
computed (the non-dominated solutions are denoted as blue dots). For each
pair of adjacent solutions (e.g., solutions 1 and 2) in the objective space (top
right), an LBDF is applied to the search space (bottom right). Additional
candidate solutions are obtained from the dilated search space (e.g., solution
5) and the new Pareto set is computed (bottom left).

III. RESULTS

We tested our approach on two common benchmark suites
for MOO—namely, DTLZ and WFG—implemented in the
pymoo 0.6.0.1 Python library. For each benchmark
function, we considered D = 30 dimensions and a number of
objectives Ω ∈ {2, 3}. The source code is available on GitHub:
https://github.com/Vsc0/the-domination-game.

A. Two-Objectives Problems

For each benchmark function with Ω = 2, we performed
three different tests:

• PF-100: we generated 100 random candidate solutions,
and calculated the corresponding Pareto front;

• PF-50: we selected 50 candidate solutions from the
PF-100 test, and calculated the corresponding Pareto
front;

• PF-LBDF: we generated 50 new random candidate solu-
tions in the search space regions manipulated by LBDFs,
which are placed using the approach described in Section
II-D. We then merged this population with the individuals
selected in test PF-50, and calculated the resulting
Pareto front.

Tests PF-100 and PF-LBDF exploit the same budget in terms
of candidate solutions evaluations, and the LBDFs are all
based on the same dilation function hγ , with γ = 2.

To quantify the impact of our strategy on the Pareto front,
at the end of each test we calculated its hyper-volume as
described in [35]. To compare different runs of the same
benchmark function, we normalized the objective values in
[0, 1] by dividing each fitness value by the largest value ob-
served for that objective. To this aim, we used x = (1, 1) ∈ R2

as reference point of the hyper-volume. We performed 30 runs
for each test to collect statistically significant results.

Figure 4 shows the box-plot representation of the dis-
tributions of the hyper-volume values. We applied the
Mann–Whitney U test with Bonferroni correction [36]–[38]
to evaluate any possible statistical difference among them.
According to these results, the approach based on LBDFs is
better than PF-100 as the difference in the hyper-volume
value is statistically significant in 13 cases out of 16. In
the other cases, the approaches resulted to be statistically
equivalent.

To visually clarify the impact of applying an LBDF, we
show in Figure 5-A the Pareto fronts calculated using the re-
sults of tests PF-100, PF-50, and PF-LBDF on the DTLZ2
benchmark function, where the PF-LBDF outperformed the
PF-100. If we compare the Pareto fronts obtained with
tests PF-100 (orange circles) and PF-50 (blue squares),
we can observe that their quality is basically equivalent. The
application of the LDBFs has a beneficial effect since it
allows for filling the gaps in the Pareto front described by
the blue squares (e.g., between solutions 2–3, 4–5, and 7–
8); the resulting approximation of the Pareto front is strongly
improved and characterized by a higher hyper-volume.

A similar result is shown in Figure 5-C for the benchmark
function WFG4. In this case, the application of the LBDFs
between pairs of solutions found in the PF-50 test led to the
identification of a large number of additional Pareto-optimal
solutions (blue crosses). Again, the PF-LBDF strategy led to
a better characterization of the Pareto front, without using any
actual optimization algorithm.

Figure 5-B shows the result obtained on the WFG1 bench-
mark function, which represents one of the cases where no sta-
tistically significant difference was observed. The first Pareto
set includes a solution (i.e., 0) that is distant from all other
solutions, which are instead clustered (those ranging from 1 to
8). What we expected, in this scenario, was to find additional
non-dominated solutions between the two distant solutions
(i.e., 0 and 1) and only a few non-dominated solutions close
to the cluster in the Pareto set. On the contrary, the LBDFs
revealed only one new non-dominated solution between 0 and
1 and ten solutions in the clustered region.

B. Three-Objectives Problems

For each benchmark function defined with Ω = 3, we
performed three different tests:

• NSGAII-5000: we executed NSGA-II with 50 individ-
uals for 100 generations using a total budget of 5000
evaluations of the candidate solutions;
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Fig. 4. The box-plots show the hyper-volume distribution across 30 runs of the proposed method on the DTLZ and WFG suites with 2 objectives. The
Mann–Whitney U test with Bonferroni correction was applied to verify any statistically significant difference between the distributions built starting from the
100 randomly selected points either using the dilation (PF-LBDF) or not (PF-100) (**** p-value ≤ 0.0001, *** p-value ≤ 0.001, ** p-value ≤ 0.01, *
p-value ≤ 0.05, ns p-value ≤ 1).
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• NSGAII-4750: we executed NSGA-II with 50 indi-
viduals for 95 generations using a total budget of 4750
evaluations of candidate solutions;

• LBDF-250: we generated 250 new random candidate

solutions in the search space regions, altered by means
of LBDFs using the proposed approach. We then merged
this population with the individuals created in test
NSGAII-4750, and calculated the resulting Pareto front.
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In NSGAII-5000 we used 50 individuals and 100 genera-
tions to balance the exploration and exploitation capabilities of
NSGA-II. In NSGAII-4750 we leveraged 95% of the budget
to find a good quality first Pareto set, while keeping some
budget to furtherly improve its quality with LBDF-250. Since
we considered three-objective optimization problems, we used
a different approach to determine pairs of adjacent solutions in
the objective space. Namely, for each non-dominated solution,
the nearest non-dominated solution (identified by the smallest
Euclidean distance) in the objective space is selected, and an
LBDF is applied between these points in the search space.
In the case an LBDF was already applied between these two
solutions, the second nearest non-dominated solution is se-
lected. As before, we performed 30 runs to collect statistically
significant tests.

Figure 6 shows the box-plot representation of the distribu-
tions of the hyper-volume values obtained in the three tests.
According to these results, the approach based on LBDFs is
better than NSGA-II, with a statistical significance difference
on 8 out of 16 benchmark functions. It is worth noting that
our approach improves the first Pareto set on many benchmark
functions of the WGF suite, which includes more difficult
problems than DTLZ [34].

We executed the same tests using NSGA-III with reference
directions initialized according to the Riesz s-Energy method
[39]. The obtained results showed that also in this case the
approach based on LBDFs is significantly better than NSGA-

III on 8 out of 16 benchmark functions (data not shown). In
particular, similarly to the tests performed with NSGA-II, the
approach exploiting LBDFs improves the first Pareto set of
many benchmark functions of the WFG suite.

IV. CONCLUSIONS

In this work, we presented an approach, based on local-
bounded dilations of the search space, designed to unveil
non-dominated candidate solutions that were missing in the
Pareto front. Namely, starting from an existing Pareto front
we apply an LBDF, placed between each pair of candidate
solutions that are adjacent in the objective space. We tested
the effectiveness of our approach on Pareto fronts generated
by using random sampling. Moreover, we also applied our
approach to the Pareto fronts optimized by NSGA-II and
NSGA-III. Our results show that our approach can improve
the existing Pareto fronts using both strategies.

There are several directions in which this work could be
further elaborated, the most important one is the generalization
to problems with more than three objectives. When two-
objectives problems are considered, the current algorithm
leverages the strict ordering induced by the domination re-
lationship to determine the adjacent non-dominated solutions
of the first Pareto set. Conversely, with three-objectives prob-
lems, the concept of adjacency is defined as the closest non-
dominated solution in terms of Euclidean distance. Although
the results obtained with the three objectives are promising,
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we argue that the introduction of alternative definitions of
adjacency based on geometrical properties might improve the
performance of our approach when three (or more) objectives
are considered. It is worth noting that more sophisticated
definitions of adjacency can increase the computational costs
or the number of LBDFs introduced, making such an approach
unfeasible. Moreover, we speculate that using some adaptive
strategy for the selection of the parameters γ and r of the
LBDF might improve the outcome of our approach.

Finally, we also plan to consider additional metrics, for
example the Pure Diversity Indicator [40], to evaluate other
geometrical characteristics of the first Pareto front; e.g., how
much the solutions are spread. We will investigate these
improvements in our future work.
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