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Abstract
Though some recent works focus on inject-001
ing sentiment knowledge into pre-trained lan-002
guage models, they usually design mask and003
reconstruction tasks in the post-training phase.004
In this paper, we aim to benefit from senti-005
ment knowledge in a lighter way. To achieve006
this goal, we study sentence-level sentiment007
analysis and, correspondingly, propose two008
sentiment-aware auxiliary tasks named senti-009
ment word cloze and conditional sentiment pre-010
diction. The first task learns to select the cor-011
rect sentiment words within the input, given the012
overall sentiment polarity as prior knowledge.013
On the contrary, the second task predicts the014
overall sentiment polarity given the sentiment015
polarity of the word as prior knowledge. In ad-016
dition, two kinds of label combination methods017
are investigated to unify multiple types of labels018
in each task. We argue that more information019
can promote the models to learn more profound020
semantic representation. We implement it in a021
straightforward way to verify this hypothesis.022
The experimental results demonstrate that our023
approach consistently outperforms pre-trained024
models and is additive to existing knowledge-025
enhanced post-trained models.026

1 Introduction027

Sentence-level sentiment analysis aims to extract028

the overall sentiment, which has received consider-029

able attention in natural language processing (Liu,030

2012; Zhang et al., 2018). Recently, pre-trained031

language models (PTMs) have achieved state-of-032

the-art performance on many natural language pro-033

cessing (NLP) tasks, including sentiment analysis.034

However, it is still challenging in integrating knowl-035

edge explicitly (Lei et al., 2018; Xu et al., 2019; Liu036

et al., 2020b; Wei et al., 2021; Yang et al., 2021).037

For sentiment analysis task, sentiment lexicon,038

a kind of commonly used knowledge, has been039

injected into PTMs. A common practice is to post-040

train self-designed tasks on domain-specific cor-041

pora, e.g., sentiment word prediction task, word042

sentiment prediction task, aspect-sentiment pairs 043

prediction task or part-of-speech (POS) tag predic- 044

tion task, and so forth (Xu et al., 2019; Tian et al., 045

2020; Ke et al., 2020; Gururangan et al., 2020; 046

Gu et al., 2020; Tian et al., 2021; Li et al., 2021). 047

Specifically, they are usually designed according to 048

the paradigm of the mask language model (MLM), 049

where sentiment words are masked and recovered 050

in the input and output layer, respectively. In ad- 051

dition, word sentiment or POS label may be pre- 052

dicted simultaneously. We argue, however, that 053

these methods have the following shortcomings. 054

First, it is computation costly to recover the masked 055

words, since the probability distribution is calcu- 056

lated over the entire vocabulary. Second, it has 057

a greater dependence on the quality of the senti- 058

ment lexicon, because sentiment label of words are 059

treated as the ground-truth. This requires the label 060

to be precise, otherwise performance of the tasks 061

and the interpretability of the models will be im- 062

paired. Third, extensive domain-specific corpora 063

are used to post-train the proposed tasks. Fourth, 064

sentiment information may lose, because the senti- 065

ment words are replaced with "MASK", which can 066

change the semantics of the sentiment of the input. 067

In this paper, to alleviate the above issues, we 068

propose two novel auxiliary tasks and integrate 069

them into the fine-tuning phase. The first task is 070

sentiment word cloze (SWC), which selects the 071

sentiment words that belong to the input from the 072

options. It contains K + 1 options (1 ground- 073

truth word with K negative words), which is much 074

smaller than the vocabulary size of PTMs. The 075

number of calculations and parameters is therefore 076

reduced. The second task is conditional sentiment 077

prediction (CSP), which predicts the sentiment po- 078

larity of a sentence, considering the sentiment po- 079

larity of the word within it. Conversely, the word 080

sentiment extracted from the sentiment lexicon is 081

treated as prior information at the input end in- 082

stead of as the ground-truth label at the output end. 083
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Intuitively, this transformation can reduce the de-084

pendence on the accuracy of the sentiment lexicon.085

Also, both auxiliary tasks are injected into the fine-086

tuning phase, and only task-specific data are used.087

Note that, the tasks are integrated in the training088

phase, not the inference phase, to avoid increasing089

the inference time. Additionally, we do not substi-090

tute the selected sentiment words with "MASK"091

identifiers to prevent loss of critical information.092

More precisely, our method starts by building the093

sentiment lexicon out of public resources and rec-094

ognizing all the sentiment words in the input sen-095

tence. Next, two auxiliary tasks are added to the096

task-specific (output) layer. Additionally, there are097

also two ways of unifying different types of labels,098

i.e., the joint combination and the conditional com-099

bination, are investigated. Lastly, the auxiliary loss100

is added to the main loss to achieve the total loss.101

Our contributions are outlined below.102

• We integrate the sentiment lexicon into the103

fine-tuning phase by designing two auxiliary104

tasks. The tasks avoid using a large number of105

classification classes and reduce dependence106

on the accuracy of the sentiment lexicon.107

• We also investigate the joint and conditional108

probability combination to unify different109

types of labels within each task.110

• We carry out experiments to demonstrate the111

effectiveness of our proposed approach. Ab-112

lation studies are also performed to verify the113

effectiveness of each module. The overall im-114

provements on (MR, SST2, SST5, IMDB) are115

(0.76%, 0.38%, 0.72%, 0.1%), respectively.116

2 Related Work117

Pre-training Language Models. Pre-trained lan-118

guage models have achieved remarkable improve-119

ments in many NLP tasks, and many variants of120

PTMs have been proposed. For example, GPT,121

GPT-2 and GPT-3 (Radford et al., 2018, 2019;122

Brown et al., 2020), BERT (Devlin et al., 2019),123

XLNet (Yang et al., 2019) and ALBERT (Lan et al.,124

2019), ERNIE (Sun et al., 2020), BART (Lewis125

et al., 2020) and RoBERTa (Liu et al., 2019b).126

Most PTMs are pre-trained on large-scale unla-127

beled general corpora by pre-training tasks, which128

push models to pay attention to deeper semantic in-129

formation. The pre-training tasks mentioned above130

are summarized in the first block in Table 1.131

Model Pre/Post-training Tasks
BERT MLM and NSP
ALBERT sentence order prediction
ERNIE knowledge mask

sentence reordering
BART token mask/deletion

sentence permutation
SKEP sentiment word prediction

word polarity prediction
aspect-sentiment pair prediction

SentiLARE sentiment word prediction
word polarity prediction
POS label prediction
joint prediction

SentiX sentiment word prediction
word polarity prediction
emotion prediction
rating prediction

KESA sentiment word cloze
conditional sentiment prediction

Table 1: An overview of tasks. The first block is pre-
training tasks, and the second block is knowledge related
tasks. NSP refers to next sentence prediction task.

Knowledge Enhanced Post-trained Language 132

Models. Recently, several works have at- 133

tempted to inject knowledge into pre-trained lan- 134

guage models, where input format or model struc- 135

ture is modified, and knowledge-aware tasks are 136

designed (Zhang et al., 2019; Liu et al., 2020b; Sun 137

et al., 2021; Wang et al., 2021; Liu et al., 2020a; 138

Su et al., 2021). For example, ERNIE 3.0 (Sun 139

et al., 2021) appends triples, e.g., (Andersen, Write, 140

Nightingale), ahead of the original input sentence, 141

and designs tasks to predict the relation "Write" 142

in the triple. K-BERT (Liu et al., 2020b) appends 143

triples as branches to each entity involved in the 144

input sentence to form a sentence tree. Hard and 145

soft position encoding is designed to maintain the 146

tree structure. K-Adapter (Wang et al., 2021) de- 147

signs adapters and regards them as a plug-in with 148

knowledge representations. These adapters are de- 149

coupled from the backbone PTMs and pre-trained 150

from scratch by self-designed tasks, e.g., predicting 151

relations in triples and labels of dependency parser. 152

Knowledge Enhanced Post-trained Language 153

Models for Sentiment Analysis. Sentiment lex- 154

icon is usually injected into PTMs by designing 155

sentiment-aware tasks and then post-training on 156

domain-specific corpora (Tian et al., 2020; Ke et al., 157

2020; Zhou et al., 2020; Tian et al., 2021; Li et al., 158

2



S: It’s tough to watch, it’s a fantastic movie
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Figure 1: Overview of KESA. Firstly, at the bottom of this figure, the sentence S is tokenized into subwords
and input into PTMs to obtain context state h[CLS]. Meanwhile, sentiment word fantastic and its sentiment
positive are recognized by external sentiment lexicon and a sentiment word fear is randomly selected from the
sentiment lexicon. Secondly, for the Sentiment Word Cloze task, fantastic and fear are treated as candidates.
Their sentiment polarities are included at the same time. For the Conditional Sentiment Prediction task, only the
ground-truth sentiment word fantastic and its corresponding sentiment are included. Thirdly, the context state,
word embedding, and sentiment embedding are concatenated to compute each class’s probability (logits). Afterward,
the logits (blue circles) are sampled and weighted summed to produce the final probability to sentence-level
sentiment. Note that, the context state is also solely used to predict sentence-level sentiment for the main task.

2021). For example, SKEP (Tian et al., 2020) de-159

signs sentiment word prediction, word polarity pre-160

diction, and aspect-sentiment pair prediction task161

to enhance PTMs with sentiment knowledge. Sen-162

tiLARE (Ke et al., 2020) designs sentiment word163

prediction, word polarity prediction, and word part-164

of-speech (POS) tag prediction and joint prediction165

tasks. SentiX (Zhou et al., 2020) designs sentiment166

word prediction, word polarity prediction, emoti-167

con and rating prediction tasks. Table 1 summa-168

rizes the tasks mentioned above. Like MLM, they169

mask sentiment words in the input and then recover170

their related information in the output. Besides, for171

aspect-level sentiment analysis (Tian et al., 2021)172

associates each aspect term with its correspond-173

ing dependency relation types as knowledge. (Li174

et al., 2021) enhances aspects and opinions with175

sentiment knowledge enhanced prompts. Our work176

is different from the above. Firstly, like the word177

cloze test, we select the ground-truth word from178

the given options instead of the whole vocabulary.179

Secondly, instead of predicting word sentiment po-180

larity, we treat it as prior knowledge to assist in181

predicting overall sentiment. Thirdly, we fine-tune182

the tasks with only task-specific data instead of183

post-training them with large-scale domain-specific184

corpora. Fourthly, we do not substitute any element185

of the input with "MASK" identifiers.186

3 Methodology 187

Figure 1 illustrates the framework of KESA. In or- 188

der to promote the main task, two straightforward 189

auxiliary tasks are proposed. It is motivated by 190

Hebbian theory, which claims that the cells that fire 191

together wire together (Hebb, 2005). For instance, 192

when painting and eating together, the neurons acti- 193

vated by painting and food will be easier to connect. 194

After some time, the nerves stimulated by food and 195

painting will be activated simultaneously, making 196

the latter more pleasant. The first task is like the 197

word cloze test, where the correct sentiment word 198

is necessary to be selected among the options. The 199

second task is a more approachable version of the 200

main task, where sentiment at the word-level is 201

provided to help infer sentiment at the sentence- 202

level. We believe that facilitating the challenging 203

task with easier tasks, and then the challenging task 204

may be easier. In addition, to unify several types of 205

labels into a single label, we investigate two kinds 206

of label combination methods. In the subsequent 207

subsections, we will detail the two proposed aux- 208

iliary tasks and label combination methods. For 209

convenience, we first give some notations used in 210

the following subsections. 211

Formally, let L = {l1, l2, · · · , lM} denote the 212

sentiment lexicon with M sentiment words, and 213

S = {w1, w2, · · · , wN} denote an input sentence 214

of length N . PS ∈ C, Pw ∈ Z represent the sen- 215

timent polarity of sentence S and sentiment word 216
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a stirring , funny and finally transporting re-imagining of 

beauty and the beast and 1930s horror films

horror (pos)

fear (neg)

𝑝 ′ℎ𝑜𝑟𝑟𝑜𝑟′ = 1 𝑃𝑆 = ′𝑝𝑜𝑠′ = 0.8

𝑝 ′𝑓𝑒𝑎𝑟′ = 1 𝑃𝑆 = ′𝑝𝑜𝑠′ = 0.2
𝐸

PTM

⋮
𝜎

𝑆 𝐿

Figure 2: A demonstration of auxiliary task A. The
sentence is sampled from SST2 dataset, E refers to
word embedding table, and σ refers to the Softmax
layer. It shows that when the polarity of the sentence is
"positive", the probability of "horror" falling within the
sentence is 0.8.

w, respectively. C means all the sentence senti-217

ment labels, and Z represents the word sentiment218

set. Yw,S ∈ {0, 1} represents the ascription rela-219

tionship between word w and sentence S, where220

and Yw,S = 1 means that w belongs to S. d is the221

dimension of embeddings.222

3.1 Main Task223

The main task, i.e., sentence-level sentiment anal-224

ysis, is to predict the sentiment label PS given the225

input sentence S. Firstly, the input S is passed226

through PTMs to get the context state h[CLS]. Then227

the context state is fed into a linear layer and a228

Softmax layer to get the probability P̂S of each sen-229

timent label, i.e., P̂S = Softmax(W1h[CLS] + b1),230

where W1 and b1 are the model parameters.231

3.2 Task A: Sentiment Word Cloze232

Existing sentiment word prediction tasks replace233

identified sentiment words with "MASK" identi-234

fiers in the input, and then reconstruct them in the235

output layer. In this process, the probability distri-236

bution over the vocabulary of PTMs is computed. It237

is computationally expensive, take RoBERTa-base238

as an example, the size of its vocabulary is 50, 265.239

Besides, replacing sentiment words with "MASK"240

may change the overall sentiment semantics of the241

input. To alleviate the above issues, sentiment word242

cloze is designed, which aims to reduce the com-243

putational cost, i.e., the number of parameters.244

Given a training sample (S, PS), we first rec-245

ognize all the sentiment words in S according to246

the sentiment lexicon by exact word match. Then,247

we choose one of them as sentiment word wi and248

record its sentiment polarity as Pwi . Meanwhile,249

we randomly sample one sentiment word from the250

sentiment lexicon as wj and record its sentiment251

polarity as Pwj . Next, S is fed into PTMs and its252

first token ([CLS]) representation h[CLS] is used as253

sentence representation. Meanwhile, we extract the254

𝑝 𝑆 = 𝑛𝑒𝑔|′ℎ𝑜𝑟𝑟𝑜𝑟′ = 𝑛𝑒𝑔 = 0.1
𝑝 𝑆 = 𝑝𝑜𝑠|′ℎ𝑜𝑟𝑟𝑜𝑟′ = 𝑛𝑒𝑔 = 0.9(horror, negative)

a stirring , funny and finally transporting re-imagining of 

beauty and the beast and 1930s horror films

𝐸

PTM

𝐿

𝐸𝑝
⋮

𝜎

Figure 3: A demonstration of auxiliary task B. The
sentence is sampled from SST2 dataset, E and Ep refer
to word/polarity embedding table, respectively, and σ
refers to the Softmax layer. It means that when the
polarity of "horror" is "negative", the probability of
sentence S being "negative" is 0.1.

embeddings of the sentiment word wi and wj as e, 255

and the embeddings of its sentiment polarity pwi 256

and pwj as e′. Then a linear layer and a Softmax 257

layer is used to compute each label’s probability, 258

Ô1 = Softmax(W2(h[CLS] + e+ e′) + b2) (1) 259

where W2 and b2 are model parameters and we will 260

detail them in the subsequent subsection. 261

SWC learns the influence of overall sentiment 262

of the sentence (global information) on sentiment 263

words within it (local information). Figure 2 gives 264

an example of the procedure of SWC. In this ex- 265

ample, "stirring", "funny", "beauty" and "horror" 266

are first recognized as sentiment words. "horror" is 267

then randomly selected as the correct option, and 268

"fear" is randomly sampled as a false option. The 269

sentence S is input into PTMs to get the context 270

state h[CLS]. Meanwhile, the word embeddings 271

of "horror" and "fear" are lookup from the word 272

embedding table E. Correspondingly, their senti- 273

ment embeddings are looked up from sentiment 274

embedding table Ep, respectively. Subsequently, 275

h[CLS] is concatenated with the word and sentiment 276

embeddings of the two options, respectively, to 277

produce sentiment enhanced or polluted sentence 278

representation. Finally, the SWC task is required 279

to distinguish between the enhanced and polluted 280

sentence representation. 281

3.3 Task B: Conditional Sentiment Prediction 282

Existing word polarity prediction tasks replace sen- 283

timent words with "MASK" in the input, and re- 284

cover their sentiment labels in the output layer. In 285

this process, sentiment words and their sentiment 286

labels are extracted by sentiment lexicon or sta- 287

tistical methods, and they may be inaccurate. To 288

allieviate the above issues, conditional sentiment 289

prediction is designed, which aims to reduce the 290

dependence on the accuracy of sentiment lexicon. 291

More specifically, given a training sample 292
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(S, PS), similar to SWC, we first choose one sen-293

timent word w from all sentiment words in S rec-294

ognized with the sentiment lexicon, meanwhile295

recording its sentiment polarity Pw. After that,296

sentiment word embedding ew and its polarity em-297

bedding e′w are lookup from the embedding table298

and polarity embedding table, respectively. Next299

the input sentence S is fed into PTMs to get the300

context state hCLS. Afterwards, we concatenate301

ew, e′w and h[CLS] to enhance sentence representa-302

tion with sentiment word and its sentiment polarity,303

then pass them through a linear layer and a Softmax304

layer to predict the probability, i.e.,305

Ô2 = Softmax(W3(h[CLS] + ew + e′w) + b3) (2)306

where W3, b3 are model parameters and we will307

detail them in the next subsection. CSP learns the308

influence of the sentiment polarity of a word on the309

polarity of its assigned sentence. In a broader sense,310

how local information affects global information.311

Figure 3 gives an example of the auxiliary task B.312

3.4 Label Combination313

Both auxiliary tasks contain multiple kinds of la-314

bels. Specifically, for the SWC task, in addition315

to the sentence polarity label PS , we also need to316

consider the word ascription label Y . Correspond-317

ingly, for the CSP task, both overall sentiment PS318

and sentiment polarity Pw of a word are involved.319

Intuitively, multiple kinds of labels can describe the320

input sentence from different perspectives. There-321

fore, encouraging the model to leverage different322

helpful information simultaneously and improving323

generalization performance (Caruana, 1997).324

To treat the various kinds of labels in a uni-325

form manner, we propose two types of combina-326

tion methods. The first one is joint combination,327

which models the joint probability distribution of328

the multiple kinds of labels. This method treats329

all kinds of labels as a single label defined on the330

Cartesian product of different labels. The second331

way is conditional combination motivated by Lee332

et al. (2020), which models the conditional proba-333

bility distribution of multiple kinds of labels. This334

method essentially predicts one kind of label with335

other kinds of labels as prior conditions.336

Joint combination. For task A (SWC), given337

the overall logits Ô1 in Eq. 1, we need to pre-338

dict the joint probability distribution of the word339

ascription label Y and the sentence polarity PS .340

That is, p(Y, PS |Ô1) ∈ R|Y |×|C|, where |Y | means341

the number of Y ’s labels ({0, 1}) and |C| means 342

the number of PS’s labels, e.g., ({positive, 343

negative}). For task B (CSP), given the overall 344

logits Ô2 in Eq. 2. Similarly, we need to predict 345

the joint distribution of the word polarity Pw and 346

the sentence polarity PS . That is, p(Pw, PS |Ô2) ∈ 347

R|Z|×|C|, where |Z| means the number of Pw’s la- 348

bels ({positive, negative}). 349

Conditional combination. For task A, given 350

the overall logits Ô1 in Eq. 1, we predict the prob- 351

ability to each word ascription label Y under the 352

condition that sentence polarity PS is known, i.e., 353

p(Y |Ô1, PS) ∈ R|Y |. To get this, we simply 354

choose the according logits indexed by PS from 355

Ô1 followed by normalization. Similarly, For task 356

B, given the overall logits Ô2 in Eq. 2, the con- 357

ditional probability of sentence sentiment polar- 358

ity PS given the word sentiment polarity Pw is 359

p(PS |Ô2, Pw) ∈ R|C|. For that, we just select the 360

according logits indexed by Pw from Ô2 followed 361

by normalization. 362

3.5 Loss Function 363

We take cross entropy as our loss function, which 364

is a standard selection in classification problem. 365

The loss function is defined as the cross-entropy be- 366

tween the predicted probability P̂S and the ground- 367

truth label PS . 368

The loss function of the main task is: 369

Lmain = − 1

|C|
∑
i∈C

PS · log(P̂S) (3) 370

The loss function of the auxiliary tasks Laux 371

has the same formulation as Eq. 3, except that the 372

predicted probability P̂S is weighted by Ô1, Ô2: 373

W4(p(PS |Ô1, Y ) || p(PS |Ô2, Pw)) ∈ RC (4) 374

where W4 ∈ R2×1 is model parameters, || refers 375

to concatenation, p(PS |Ô1, Y ) and p(PS |Ô2, Pw) 376

are extracted from Ô1 and Ô2 indexed by Y and 377

Pw, respectively. Note that, we omit the bias in 378

Eq. 4. The final loss is a weighted sum, 379

L = Lmain + γLaux (5) 380

where γ is loss balance weight and γ ∈ (0.0, 1.0). 381

Notably, the weight of Lmain is set to 1.0. γ > 0.0 382

to ensure that the parameters of the auxiliary tasks 383

can be optimized by back propagation.γ < 1.0 to 384

prevent the final loss is dominated by the auxiliary 385

task loss and diminishing the performance of the 386

main task (Liu et al., 2019a). 387
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Dataset #Train/Valid/Test #W #C
MR 8,534/1,078/1,050 22 2
SST2 6,920/872/1,821 20 2
SST5 8,544/1,101/2,210 20 5
IMDB 22,500/2,500/25,000 280 2

Table 2: Datasets statistics. The columns are the amount
of training/validation/test sets, the average sentence
length, and the number of classes, respectively.

4 Experiment388

4.1 Datasets389

Four commonly used public sentence-level senti-390

ment analysis datasets are used for the experiment,391

as shown in Table 2. The datasets include Movie392

Review (MR) (Pang and Lee, 2005), Stanford Sen-393

timent Treebank (SST2 and SST5) (Socher et al.,394

2013) and IMDB. For MR and IMDB, we adopt the395

data split in SentiLARE (Ke et al., 2020), due to the396

lack of test data in the original dataset. We evaluate397

the model performance in terms of accuracy.398

4.2 Comparison Methods399

To demonstrate the effectiveness of the proposed400

method for sentence-level sentiment analysis, we401

compare our method with two types of com-402

petitive baselines, including popular vanilla pre-403

trained models (PTMs) and sentiment knowledge404

enhanced post-trained models.405

Vanilla Pre-trained Language Models. We406

use the base version of vanilla BERT (Devlin407

et al., 2019), XLNet (Yang et al., 2019) and408

RoBERTa (Liu et al., 2019b) as our baselines,409

which are the most popular PTMs.410

Sentiment Knowledge Enhanced Post-trained411

Language Models. We also adopt some methods412

focusing on leveraging sentiment knowledge, two413

of the influential methods are used as baselines,414

i.e., SentiLARE (Ke et al., 2020) and SentiX (Zhou415

et al., 2020). Both design the sentiment word pre-416

diction task and the word polarity prediction task.417

More precisely, the sentiment word is first iden-418

fied and masked, then the PTMs are prompted419

to recover the corresponding masked words and420

their corresponding sentiment information. Second,421

both continue pre-training vanilla PTMs on million422

scale domain-specific corpora, i.e., Yelp Dataset423

Challenge 2019 for SentiLARE , Yelp Dataset Chal-424

lenge 2019 and Amazon review dataset for Sen-425

tiX. In terms of PTMs, SentiLARE is post-trained426

on RoBERTa-base version while SentiX is post- 427

trained on BERT-base version. 428

KESA (Ours). We also utilize the external sen- 429

timent knowledge to enhance PTMs on sentiment 430

analysis, of which two auxiliary tasks are designed, 431

i.e., SWC and CSP. However, the difference be- 432

tween KESA and SKEP, SentiLARE, SentiX arises 433

from the following. First, the number of options 434

is much smaller than the size of vocabulary of the 435

PTMs. Second, word sentiment is used as local 436

prior information rather than the ground-truth la- 437

bel. Third, no extra corpora are used, and auxiliary 438

tasks are integrated into fine-tuning instead of post- 439

training phase. Fourth, sentiment words are not 440

replaced with "MASK" identifiers. 441

4.3 Sentiment Lexicon 442

We extract word sentiments from SentiWordNet 443

3.0 (Baccianella et al., 2010). Notably, each word 444

in SentiWordNet 3.0 has several usage frequency 445

levels and is linked with different semantic and 446

sentiment scores. Intuitively, we set the sentiment 447

polarity of a word according to its most vital scores. 448

Take "thirsty" for example, the polarity of the most 449

common usage is "positive" (with a score of 0.25), 450

while the polarity of the third common usage is 451

"negative" (with a score of -0.375). Therefore, we 452

set the polarity of "thirsty" to "negative", consider- 453

ing it has a larger weight of "negative". 454

4.4 Implementation Details 455

We implement our model using HuggingFace’s 456

Transformers1. The batch size is set to 16 457

and 32 for IMDB and other datasets, respec- 458

tively. The learning rate is set to 2e-5 for XLNet, 459

RoBERTa and SentiLARE, and 5e-5 for BERT and 460

SentiX. The input and output formats are consistent 461

with each corresponding PTM. In the meantime, 462

the input sequence length is set to 50, 512, and 463

128 for MR, IMDB, and other datasets, respec- 464

tively, to ensure that more than 90% of the sam- 465

ples are covered. Other hyper-parameters are kept 466

by default. To explore the influence of auxiliary 467

task on the main task, we search the loss balance 468

weight γ from {0.01, 0.1, 0.5, 1.0}. These weights 469

are tested based on the following considerations. 470

First, the weights in (0.0, 1.0) should be tested 471

evenly. Second, we argue that higher auxiliary task 472

weights may dominate the total loss. On the con- 473

trary, smaller weights should be better, and 0.01 is 474

1https://github.com/huggingface/
transformers
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selected. We fine-tune each model for 3 epochs,475

and the best checkpoints on the development set476

are used for inference. As for each dataset, with a477

reproducible implementation, we run 4 times with478

different random seeds, and the average results are479

reported. Moreover, to make a fair comparison, all480

methods use the same seeds for the same dataset.481

4.5 Overall Results482

Model MR SST2 SST5 IMDB
BERT∗ 86.62 91.38 53.52 93.45
XLNet∗ 88.83 92.75 54.95 94.99
RoBERTa∗ 89.84 94.00 57.09 95.13
SentiX# − 93.30 55.57 94.78
SentiX∗ 86.81 92.23 55.59 94.62
SentiLARE# 90.82 − 58.59 95.71
SentiLARE∗ 90.50 94.58 58.54 95.73
KESA 91.26‡ 94.96‡ 59.26 95.83∗∗

Table 3: Overall accuracy on sentence-level sentiment
classification benchmarks. The marker # means that
the results are reported in the original paper while −
means no reported results. The marker ∗ refers to our
re-implementation. The markers ∗∗ and ‡ indicate that
our model significantly outperforms the best baselines
with t-test, p-value < 0.01 and 0.05, respectively.

Table 3 reports the results of our method and483

all baselines, w.r.t. the accuracy. Note that, we484

only report the results of KESA fine-tuned on the485

checkpoints released by SentiLARE, since it per-486

forms best. We find that KESA works across all487

four datasets, with overall improvements of (0.76%,488

0.38%, 0.72%, 0.1%) on (MR, SST2, SST5,489

IMDB), respectively. Although SentiX and Sen-490

tiLARE are post-trained on million scale domain-491

specific corpora. There are still gains when fine-492

tuning with KESA, indicating that KESA is addi-493

tive to pre-trained models and sentiment knowledge494

enhanced post-trained models.495

4.6 Ablation Results496

The ablation studies of the SWC and CSP task are497

reported in Table 4. We find our SWC outperforms498

the baselines by up to 0.7%. The results verify the499

correctness of our motivation and the effectiveness500

of the word ascription label being supervised sig-501

nal. This is probably because the word ascription502

label pushes the model to focus on the interactions503

between sentence sentiment and its items, and this504

kind of connection between global information and505

local information can promote the main task. Like-506

wise, we also report the results of the CSP task507

Model MR SST2 SST5 IMDB
BERT∗ 86.62 91.38 53.52 93.45
+SWC 86.30 91.46 54.21 93.59
+CSP 86.45 91.70 54.38 93.51
+KESA 86.29 91.56 54.13 93.51
XLNet∗ 88.83 92.75 54.95 94.99
+SWC 89.05 93.47 55.51 95.03
+CSP 89.31 92.79 55.45 94.97
+KESA 89.10 93.01 55.94 95.00
RoBERTa∗ 89.84 94.00 57.09 95.13
+SWC 89.81 94.22 57.22 95.40
+CSP 89.86 94.17 57.24 95.44
+KESA 90.07 94.40 57.18 95.46
SentiX∗ 86.81 92.23 55.59 94.62
+SWC 87.31 92.20 55.74 94.71
+CSP 87.35 92.24 55.83 94.61
+KESA 87.36 92.52 55.78 94.57
SentiLARE∗ 90.50 94.58 58.54 95.73
+SWC 90.74 94.72 59.29 95.80
+CSP 91.10 94.91 58.59 95.80
+KESA 91.26 94.96 59.26 95.83

Table 4: Ablation studies of each tast, joint combination
is adopted here. "+SWC" and "+CSP" refer to that we
fine-tune the models with SWC and CSP solely, respec-
tively. "+KESA" represents that both auxiliary tasks are
adopted. The marker ∗ refers to our re-implementation.

solely. With the addition of CSP, performance is in- 508

creased on nearly all datasets with a maximum gain 509

of 0.86%. The results demonstrate that adding the 510

sentiment of word explicitly brings more informa- 511

tion and lowers the difficulty of the CSP task than 512

that of the main task. Afterward, this similar but 513

easier auxiliary task promotes the optimization for 514

the main task, namely, fire together wire together. 515

Remarkably, the experimental results show that the 516

combination of two auxiliary tasks is not system- 517

atically superior to the performance of SWC or 518

CSP used alone. This is likely because SWC learns 519

the influence of sentences on words, while CSP 520

learns the influence of words on sentences, and 521

they may compete with each other in some cases. 522

As reported in (Bingel and Søgaard, 2017), multi- 523

ple tasks may promote each other or compete with 524

each other (negative learning). Above all, these 525

results remind us that the combinations of multiple 526

tasks need to be carefully analyzed, even if each 527

is effective. Even so, KESA still outperforms the 528

baselines on all evaluated datasets. 529
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Figure 4: Impacts of loss balance weights, from left to right are the results of MR, SST2, SST5 and IMDB,
respectively. A and B refer that auxiliary task A and B are tested solely. Our refers to KESA.

Model MR SST2 SST5 IMDB
SentiXA+JC 87.31 92.20 55.74 94.70
SentiXA+CC 87.35 92.26 55.81 94.71
SentiXB+JC 87.35 92.24 55.83 94.59
SentiXB+CC 87.38 92.59 55.74 94.61
SentiLAREA+JC 90.69 94.72 59.29 95.80
SentiLAREA+CC 90.74 94.91 59.21 95.83
SentiLAREB+JC 90.88 94.91 58.59 95.80
SentiLAREB+CC 91.10 94.99 58.97 95.84

Table 5: Comparison of joint combination (JC) and
conditional combination (CC) in two auxiliary task A
and B.

4.7 Analysis on Loss Balance Weight530

We further analyze the impact of loss balance531

weight, as shown in Figure 4. It can be observed532

that, generally, lower loss balance weight achieves533

better performance in most cases. More specifi-534

cally, take IMDB as an example, as there are more535

training samples and longer sequence length (512),536

making it less sensitive to seeds. With the decrease537

of loss balance weight, the advantages gradually538

increase on SWC, CSP, and KESA, loss balance539

weight equal to 0.01 always performs better than540

1.0. This is presumably due to that the weight of541

auxiliary tasks should be a small value to avoid542

undue impact on the main task.543

4.8 Analysis on Label Combination544

In terms of unifying several types of labels in each545

task, we carry out experiments to compare their546

performance. SentiX and SentiLARE are selected,547

as they perform better. The result is shown in Ta-548

ble 5. Overall, for both SWC and CSP tasks, the549

conditional combination is slightly better than the550

joint combination in most cases across all evalu-551

ated datasets. Specifically, the difference is greater552

upon SentiLARE than that of SentiX. The joint553

combination is better on MR, SST2, and IMDB ex- 554

cept SST5. All the results above demonstrate that 555

the label combination method should be selected 556

based on PTMs and datasets. Nevertheless, we 557

recommend conditional combination as the default. 558

4.9 Analysis on Parameters 559

For SWC, the number of increased parameters 560

is W2 ∈ R|Y |d×|C||Y |, b2 ∈ R|C||Y | and polarity 561

embedding Ep ∈ R|Z|×d. For CSP, the number 562

of increased parameters is W3 ∈ Rd×|Z||C|, b3 ∈ 563

R|Z||C| and polarity embedding Ep ∈ R|Z|×d. Be- 564

sides, the number of increased parameters induced 565

by combining the two tasks is W4 ∈ R2×1, b4 ∈ R. 566

Therefore, the number of parameters increase in- 567

duced by KESA is W2,W3,W4, b2, b3, b4 and Ep. 568

In the experiments, |C| ≤ 5, |Y | = 2, |Z| = 2, 569

d = 768, and V = 30, 522 (refers to the size of 570

the vocabulary of base BERT). The parameters in- 571

creased by SWC is about 0.7% (Y/V ) of that of 572

recovering from the vocabulary. 573

5 Conclusion 574

In this paper, we propose two sentiment-aware 575

auxiliary tasks to include sentiment knowledge in 576

pre/post-trained language models. Further, we pro- 577

pose joint and conditional combinations to unify 578

multiple kinds of labels into a single label. In 579

addition, both auxiliary tasks are integrated into 580

the fine-tuning phase to avoid a large volume of 581

domain-specific data. Finally, sentiment words are 582

not replaced with "MASK" to avoid sentiment in- 583

formation loss. Though straightforward and con- 584

ceptually simple, KESA still further improves on 585

solid baselines. Our work verifies that more knowl- 586

edge integrated at the input or output end can help 587

improve the performance of the model. 588
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