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ABSTRACT

Image manipulation has attracted a lot of interest due to its wide range of appli-
cations. Prior work modifies images either from pixel-level manipulation, such as
image inpainting or through manual edits via paintbrushes and scribbles, or from
high-level manipulation, employing deep generative networks to output an image
conditioned on high-level semantic input. In this study, we propose Semantic Im-
age Manipulation with Background-guided Internal Learning (SIMBIL), which
combines high-level and pixel-level manipulation. Specifically, users can edit an
image at the semantic level by applying changes on the scene graph. Then our
model manipulates the image at the pixel level according to the modified scene
graph. There are two major advantages of our approach. First, high-level ma-
nipulation requires less manual effort from the user compared to manipulating
raw image pixels. Second, our pixel-level internal learning approach is scalable
to images of various sizes without reliance on external visual datasets for train-
ing. We outperform the state-of-the-art in a quantitative and qualitative evaluation
on CLEVR and Visual Genome datasets. Experiments show around 8 points im-
provement of SSIM (RoI) on CLEVR and we found human users preferred our
manipulated images over prior work by 9-33% on Visual Genome, demonstrating
the effectiveness of our approach.

1 INTRODUCTION

Image manipulation modifies the content of an image according to user guidance. The task can be
solved in two primary ways: pixel-level manipulation on raw images and high-level manipulation
on image semantics. Pixel-level manipulation spans image inpainting (Zhao et al., 2019; Yeh et al.,
2017), colorization (Zhang et al., 2016), object removal (Shetty et al., 2018), style transfer (Gatys
et al., 2016), image extension (Teterwak et al., 2019), etc. Pixel-level manipulation methods do not
need to understand the semantic meanings of an image. In contrast, high-level manipulation often
uses deep generative networks conditioned on user inputs like semantic maps and language descrip-
tions to identify the desired modifications. Most prior work for high-level image manipulation are
object-centric, such as human face transfer (Choi et al., 2018; Lee et al., 2020; Jo & Park, 2019; Zhao
et al., 2018) and object appearance or attribute modification (Li et al., 2020a; Liang et al., 2018).
Recently, approaches modifying the entire scenes by instance maps (Wang et al., 2018), language de-
scriptions (El-Nouby et al., 2019; Nichol et al., 2021; Avrahami et al., 2022) or scene graphs (Dhamo
et al., 2020) are also proposed. Although high-level manipulation requires less manual effort from
users, deep generative networks for high-level manipulation have two drawbacks. First, high-level
manipulation frameworks often only support outputting low-resolution images due to GPU memory
requirements (Dhamo et al., 2020). Super-resolution modules (Saharia et al., 2022; Nichol et al.,
2021) are required to get higher-resolution images, introducing extra overhead. Second, generative
models may result in the loss of attributes and details of the original images (Bau et al., 2020).

Ideally, a good image manipulation method should satisfy the following requirements: (1) provide
maximum convenience to users; for example, manipulating images by scene graphs or language
description is more convenient than manually segmenting, replacing, or removing the target object,
(2) preserve the textures and details of the original image in appropriate areas, (3) correctly modify
the target region of the image according to user instructions, (4) ability to generalize across input
images without relying on specific external datasets. There are two major challenges to developing
an approach that can satisfy these requirements. First, it is challenging for existing text-driven
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Figure 1: Prior work of image manipulation is either at pixel-level (e.g., EdgeConnect (Nazeri et al.,
2019)), shown in (a), or high-level (e.g., ManiGAN (Li et al., 2020a)), shown in (b). In our work,
shown in (c), we address the issues of prior work (see Section 1 for discussion) by connecting high-
level semantics with pixel-level manipulation, where the semantic level information is encoded by
an RNN-based scene-graph encoder. Then the pixel-level manipulation, background-guided internal
learning, is done according to the processed information.

image editing methods to accurately localize the Region of Interest (RoI)1 at complex scenes. E.g.,
popular frameworks including GLIDE (Nichol et al., 2021) and blended diffusion model (Avrahami
et al., 2022) require users to manually select RoI. Methods (Li et al., 2020a;b) that do not require
bounding boxes as input are mostly object-centric and the images do not contain complex semantic
relationships between objects. The ambiguity of text makes developing an RoI prediction model
challenging. For example, if there are multiple birds in an image, locating the target bird according
to text descriptions would be challenging even for a human. To solve this issue, we use scene graph
information to eliminate the ambiguity of text, while still making manipulations easy. Second, most
image inpainting methods (Nazeri et al., 2019; Yu et al., 2019; Rombach et al., 2022) trained their
models based on reconstruction task. In this case, as we will show in Section 4.2 and Section 4.3,
these external learning methods tend to repair the target object even if the user command is to remove
the object. We further introduce internal learning to avoid the object repair issue.

Specifically, we propose a Semantic Image Manipulation framework with Background-guided In-
ternal Learning (SIMBIL). SIMBIL combines high-level image semantics with pixel-level manipu-
lation. Figure 1 illustrates the difference between SIMBIL and prior work by an object relationship
change example. Figure 2 presents the overall structure of SIMBIL. First, the target object is de-
termined by the scene graph of an image. The users are able to edit the nodes and edges of scene
graphs for four operations, object removal, object replacement, semantic relationship change, and
object addition. We use a segmentation module to outline the mask of target object. A Recurrent
Neural Networks (RNN)-based module further encodes the semantic modifications between the ob-
jects and predicts the target Region of Interest (RoI) according to editing operations. Finally, we
improve Deep Image Prior (DIP) (Ulyanov et al., 2018) by utilizing background pixels as a con-
straint and propose the background-guided internal learning module.

In summary, the contributions of this paper are:
• We propose a semantic image manipulation framework (SIMBIL) to combine high-level seman-

tics with pixel-level image manipulation, reducing manual effort and alleviating the issues caused
by prior work. Notably, compared to existing manipulation methods using scene graphs (Dhamo
et al., 2020), SIMBIL can generate higher resolution images while accurately preserving the orig-
inal details of the input images.

• We develop a background-guided internal learning algorithm based on DIP (Ulyanov et al., 2018)
for image inpainting, which utilizes the average value of the background pixels around the missing
part as guidance as opposed to only relying on the implicit prior captured by the neural network
parameterization, boosting performance.

1We use RoI to indicate the region that is supposed to be edited in the image.
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Figure 2: SIMBIL overview. Given an input image and its modified scene graph, our approach con-
sists of three modules in sequence: (1) Object Segmentation Module: segmenting the target object
according to the modified scene graph; (2) RoI Prediction Module: predicting the Region of Interst
by encoding the modified triplets of the scene graph; (3) Internal Learning Module: leveraging the
average value of the background pixels around the target object to guide the inpainting results.

• Quantitative and qualitative experiments on CLEVR (Johnson et al., 2017) and Visual
Genome (Krishna et al., 2017) demonstrate SIMBIL outperforms the state-of-the-art.

• Extensive experiments on high resolution images demonstrate SIMBIL’s flexibility and scalability.

2 RELATED WORK

Image Manipulation. Many studies based on image synthesis focus on object-centric scenarios,
e.g., editing human face (Choi et al., 2018; Lee et al., 2020; Jo & Park, 2019; Yeh et al., 2017;
Zhao et al., 2018), text-guided attribute manipulation (Liang et al., 2018; Li et al., 2020a), manually
editing with paintbrush and scribbles (Brock et al., 2016; Zhu et al., 2016). Recently there has
been some work modifying images in complex scenes consisting of multiple objects (Wang et al.,
2018; El-Nouby et al., 2019; Tan et al., 2019; Dhamo et al., 2020; Nichol et al., 2021; Avrahami
et al., 2022). These methods often require human effort to outline the region of interest (Wang
et al., 2018; Nichol et al., 2021; Avrahami et al., 2022) and focus only on object replacement or
addition (El-Nouby et al., 2019; Tan et al., 2019; Nichol et al., 2021; Avrahami et al., 2022). Dhamo
et al. (2020) proposed a scene-graph based approach that can also edit the semantic relationships
between objects in a single image. Unlike methods based on generative networks, SIMBIL adopts
an automatic “photoshop” mechanism, directly manipulating raw pixels. Our method is applicable
to different input images while preserving the original image details.

Internal Learning. While external learning trains a model on external datasets, internal learning
methods such as Deep Image Prior (Ulyanov et al., 2018) use a generator network trained on a sin-
gle image to address tasks like image denoising, inpainting, and super-resolution. Internal learning
is not limited to image inverse problems (Guasch et al., 2020; Zhang & Lin, 2020; Zhang et al.,
2019b), but has other applications including video motion transfer (Chan et al., 2019), video in-
painting (Zhang et al., 2019a), and semantic photo manipulation (Bau et al., 2020). Gandelsman
et al. (2019) also applied coupled DIPs to unsupervised image decomposition. In this paper, we in-
troduce a background-guided mechanism based on DIP, which uses the background pixels for more
accurate guidance than the implicit prior used by DIP for the missing region of an image.

Scene Graphs and Visual Relationship Detection. Scene graphs (Johnson et al., 2015) describe
the objects, attributes of objects, and relationships between objects in an image, and methods that
generate them can be divided into two categories: Convolutional Neural Network (CNN)-based
methods (Li et al., 2017; 2018; Yang et al., 2018; Qi et al., 2019) and Recurrent Neural Networks
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(RNN)-based methods (Herzig et al., 2018; Xu et al., 2017; Zellers et al., 2018). At a high level,
scene graph construction combines object/entity detection (Ren et al., 2015; Plummer et al., 2020)
and detecting their visual relationships (Dai et al., 2017; Lu et al., 2016; Plummer et al., 2017).

In our paper, users can apply changes to the relationships between objects to realize image manip-
ulation. A relevant task is visual entity localization according to visual relationships. Krishna et al.
(2018) introduce an iterative model to localize the entities in the referring relationship. Plummer
et al. (2017) combine linguistic cues with learned weights for phrase localization. In our project,
the main difference is that the target object is invisible in the image. Therefore, we propose an
RNN-based method to automatically predict a plausible position for the target object according to
the existing information from the image and <subject-predicate-object> triplets.

3 SIMBIL

Given an input image I and its corresponding scene graph G, users can apply changes on G. Our task
is to perform semantic manipulation according to the user-modified scene graph G̃ and the original
input image I . In practice, G can be obtained by scene graph generation methods (Li et al., 2018;
Qi et al., 2019; Herzig et al., 2018; Xu et al., 2017; Zellers et al., 2018). Following (Dhamo et al.,
2020), we use ground truth scene graphs in our experiments so the accuracy of current methods
is not a factor in evaluating our approach. Figure 2 provides an overview of our framework. We
introduce four kinds of modifications on scene graphs in Section 3.1. In Section 3.2, we discuss
the details of our RoI prediction model. The background-guided internal learning algorithm is then
presented in Section 3.3. Finally, we summarize the overall learning strategy in Section 3.4.

3.1 MODIFICATIONS ON SCENE GRAPHS

Following (Dhamo et al., 2020), we perform four tasks of semantic manipulation: object addi-
tion, object replacement, relationship change, and object removal2. These manipulations are re-
flected on the nodes and edges of scene graphs. Take the blue cylinder in Figure 2 as an exam-
ple, (1) Object Addition: adding a new object (node) and its corresponding relationships (edges)
with other objects on the scene graph; (2) Object Replacement: replacing the node which repre-
sents <blue cylinder> to another object; (3) Relationship Change: changing one spatial rela-
tionship of blue cylinder (edge) from <blue cylinder-front of-red cude> to <blue
cylinder-behind-red cude>. Other relationships of the blue cylinder can be changed simi-
larly; (4) Object Removal: deleting the node of <blue cylinder> and its corresponding edges.
Given the modified scene graph G̃, we extract the bounding box and mask of the target object by
MaskFormer (Cheng et al., 2021), and then proceed with performing the alteration.

3.2 REGION OF INTEREST (ROI) PREDICTION

We introduce a RoI prediction module to support the object addition and semantic relationship
change tasks. Benefiting from this module, SIMBIL can automatically predict RoI instead of man-
ually outlining the bounding box (Nichol et al., 2021; Avrahami et al., 2022). Unlike relationship
detection (Krishna et al., 2017), which identifies relationships between a visible reference and target
object in a scene, our goal is to determine where to place the target object given the reference object
and its semantic relationship to the target object. In addition, multiple relationships may need to
be encoded as the target object may have relationships with multiple objects in the scene. Inspired
by RNN-based methods on scene graph generation (Herzig et al., 2018; Zellers et al., 2018), we
develop an LSTM-based model that encodes all the triplets of the modified scene graph.

We define the categories of the entities (subject & object) in images as O = {o1, ..., on}, the cor-
responding bounding boxes as B = {b1, ..., bn}, and the relationships (predicates) between entities
as R = {r1, ..., rm}. Given the modified scene graph G̃ and the target object o in an image, the
triplets of the target object are referred as y = {y1, ..., yT }. For t ∈ {1, ..., T}, yt is a triplet in
< s − p − o > format, where s, o ∈ O and p ∈ R. For each triplet yt, we devise two embed-
ding layers that obtain the object embedding Vs, Vo and predicate embedding Vp separately. We

2Following Dhamo et al. (2020), we perform four operations on CLEVR (Johnson et al., 2017), three oper-
ations on Visual Genome (Krishna et al., 2017): object replacement, relationship change, and object removal.
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Figure 3: Left: deep image prior; Right: background-guided internal learning. Our methods generate
more reasonsble inpainting result by leveraging the background pixels as guidance.

also introduce a binary indicator I to indicate whether the target object is subject or object in yt.
Suppose the reference object corresponds to “subject” and the target object corresponds to “object”,
we also consider the position of reference object bs as part of the input to our model. The con-
catenation of these features are encoded by a LSTM model. Specifically, it can be expressed as:
xt = concat{Vs, Vo, Vp, bs, I};ht = LSTM(xt, ht−1), where ht is the hidden state of LSTM at
triplet yt. hT is followed by an MLP to predict the RoI. We crop the final output to range (0∼1)
since the image size is normalized and train the model using Mean squared error (MSE).

3.3 BACKGROUND-GUIDED INTERNAL LEARNING

Our internal learning approach, SIMBIL, has two advantages over external learning methods (Nazeri
et al., 2019; Yu et al., 2019; Rombach et al., 2022). First, external learning methods rely on the
training data that consists of image pairs before and after inpainting. Thus, an inpainting model
for CLEVR and Visual Genome needs to be trained separately and is not applicable to different
input images. Second, as we will show in Section 4, many external learning methods tend to repair
rather than remove objects. This is because these models use the ground truth image instead of the
modified image as supervision (i.e., Visual Genome lacks before and after editing image pairs).

Given an image x0 and a binary mask m, the input to image inpainting is x0 ⊙m, where m defines
the known areas of image x0 (1 for the known regions and 0 otherwise) and ⊙ denotes Hadamard’s
product. The standard image inversion problem can be formulated by

x∗ = argmin
x

E(x;x0) +R(x) (1)

where E(x;x0) is a task-dependent data term and R(x) is the regularization term. For deep image
prior (DIP) (Ulyanov et al., 2018), the regularization term R(x) is replaced by the implicit prior
from the neural network parametrization. Specifically, the input of the generative neural network
is a noise map z that has one channel and shares the same spatial size as image x0. The network
parameters are updated to minimize E(x;x0). In terms of image inpainting, E(x;x0) satisfies

E(x;x0) = ||(x− x0)⊙m||2 (2)

where x is the output of the generative model. Note that our “missing” regions are determined
by a segmentation model, i.e., the boundary of the hole might not be accurate. Thus, the genera-
tive network may be given a noisy input, resulting in incorrect predictions by prior work like DIP.
In addition, the object to remove can be large, in which case the relative performance of DIP is
worse (Ulyanov et al., 2018; Zhang et al., 2019a).

We address the aforementioned issue with noisy inputs in two ways. First, we use mask dilation
to alleviate the misinformation of the boundary. Second, we use the background pixels around the
hole as guidance to the model. Specifically, suppose a consistent background is divided into two
parts; the distributions of each part should still be consistent with the other. As shown in Figure 3,
the segmentation of the target car is the missing region of the original image. Then the background
pixels within the red bounding box are extracted from the image. We constrain the average of the
missing region by the average of the specified background region. Denote the average value of
background pixels as B,B ∈ R3. our new objective function is:

E(x;x0) = ||(x− x0)⊙m||2 + λ
1

C
||average(x⊙ (1−m))−B||2, (3)
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where C represents the number of image channels, and λ is the hyper-parameter to control the two
loss terms. In practice, the second loss term can be further divided into sub-terms, for example,
constraining the average row by row.

3.4 OVERALL LEARNING STRATEGY

There are three components in our framework, which are segmentation module, RoI prediction mod-
ule, and background-guided internal learning. The segmentation module (Section 3.1) is applied in
two cases (1) removing the target object from the original position, (2) searching relevant objects
(from the current image or query images) given the object category, which is mainly for object ad-
dition and replacement3. The RoI prediction model (Section 3.2) is designed for object addition and
relationship change. To train this model, we extract modified triplets, bounding boxes of reference
objects, and target objects to construct a dataset. Take CLEVR as an example; we extract 6688 im-
ages from the training set to construct the training data, then the 818 images in the validation set are
used to evaluate the performance of the model. The target object is pasted according to the predicted
RoI of the model. After this step, remember we still need to address the missing region (“hole”),
which is accomplished using our proposed background-guided internal learning (Section 3.3) to get
the final output. More implementation details are provided in Appendix A.

4 EXPERIMENTS

4.1 DATASETS AND EXPERIMENT SETTINGS

Datasets. We evaluate on CLEVR (Johnson et al., 2017) and Visual Genome (Krishna et al., 2017).
CLEVR is a synthetic dataset that contains ground truth pairs for image editing. For a fair com-
parison, we use the test set provided by (Dhamo et al., 2020). Visual Genome, on the other hand,
lacks before and after image editing pairs. Therefore, we leverage human evaluation to estimate
the correctness of manipulation. Qualitative examples from both CLEVR and Visual Genome are
presented to demonstrate the effectiveness of our model on synthetic and natural images.

Metrics. Following Dhamo et al. (2020), we report mean absolute error (MAE) and structural
similarity index measure (SSIM) of RoI to evaluate the model. We defined the modified area of
images as RoI so that it can directly reflect the manipulation accuracy. In addition, we also performed
user study to evaluate whether the edited images are consistent to editing commands.

Baselines. We use the code and pretrained model of SIMSG (Dhamo et al., 2020) as our scene-
graph-guided image editing baseline. In addition, we apply baselines on separate tasks. Specifically,
we use DeepFillv2 (Yu et al., 2019), EdgeConenct (Nazeri et al., 2019), and Latent Diffusion Model
(LDM) (Rombach et al., 2022) on object removal, use Blended Diffusion Model (BDM) (Avrahami
et al., 2022) on object replacement and addition, use GLIDE (Nichol et al., 2021) on object removal,
replacement, and addition. Since GLIDE and BDM require manually outline RoI, we apply RoI
prediction of SIMBIL to these methods.

4.2 PERFORMANCE ON CLEVR DATASET

Manipulation Experiments. Table 1 reports quantitative results of different methods at 256×2564

image resolution. From the table, we see that SIMBIL notably outperforms baselines on four image
editing tasks, especially for object removal and relationship change. We draw three major conclu-
sions from Table 1. First, external image inpainting approches (Yu et al., 2019; Nazeri et al., 2019;
Rombach et al., 2022) do not perform well on our object removal task. As we discussed in Sec-
tion 3.3, these methods tend to introduce unexpected objects to repair the missing regions. Second,
scene-graph based image editing approaches, SIMSG and SIMBIL, perform more accurate manipu-
lation operations on object replacement and object addition compared to text-driven methods GLIDE
and BDM. This is because scene graph contains semantic relationships and object positions in the

3We adopt compositional scene representation mechanism for object addition and replacement following
Text2Scene (Tan et al., 2019)

4Since SIMSG requires more than 48GB GPU memory to train a model that outputs 256× 256 images, we
apply USRNet (Zhang et al., 2020) on the output of SIMSG to avoid out-of-memory issue.
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Figure 4: Comparing SIMBIL to SIMSG on CLEVR. RoI is outlined by red bounding boxes. See
Section 4.2 for discussion.

Table 1: Quantitative results of image manipulation on CLEVR dataset. Empty value means the
corresponding approach is not capable of this task. See Section 4.2 for discussion.

Method Object Object Object Relationship
Removal Replacement Addition Change

MAE ↓ SSIM ↑ MAE ↓ SSIM ↑ MAE ↓ SSIM ↑ MAE ↓ SSIM ↑
DeepFillv2 (Yu et al., 2019) 39.77 65.10 - - - - - -
EdgeConnect (Nazeri et al., 2019) 29.26 66.70 - - - - - -
LDM (Rombach et al., 2022) 37.84 52.41 - - - - - -
LAMA (Suvorov et al., 2022) 33.54 71.19 - - - - - -
MAT (Li et al., 2022) 31.46 74.80 - - - - - -
BDM (Avrahami et al., 2022) - - 42.32 50.12 59.25 52.64 - -
GLIDE (Nichol et al., 2021) 39.51 62.91 34.59 55.57 40.25 59.04 - -
SIMSG (Dhamo et al., 2020) 30.38 85.89 33.76 67.41 44.58 65.80 33.31 85.95
SIMBIL (ours) 9.90 93.33 27.64 68.05 34.18 64.78 11.40 92.32

image which are difficult to be described by text guidance. The relevant information is important for
models to accurately predict manipulated images. Third, we observe that though SIMSG achieves
comparable SSIM scores with our method on object replacement and addition, the MAE loss of
SIMSG is much higher than our model, which means the original attributes such as brightness are
likely to be modified by SIMSG. To validate our analysis, we present images of different manipula-
tions in Figure 4. The figure shows that SIMBIL can accurately edit images while still preserving the
original background perfectly. In contrast, the brightness of SIMSG output is different from original
images (e.g., output of object addition & relationship change), resulting in higher MAE loss.

4.3 PERFORMANCE ON VISUAL GENOME DATASET

Manipulation Experiments. As with experiments on CLEVR, we apply popular inpainting meth-
ods on object removal, text-driven editing methods on object replacement, and SIMSG on all ma-
nipulation tasks. For each image editing task, we randomly selected 30 images generated by each
baseline. This results in 150 images for object removal, 120 images for object replacement, and 60
images for relationship changes. Each image is annotated three times by AMT workers and we asked
our annotators to judge whether the image is correctly manipulated according to the input guidance.
In Table 2, we report that SIMBIL significantly outperforms baselines, especially for object removal
and relationship change tasks, which is consistent with our conclusions on CLEVR.

We provide qualitative results in Figure 5. We set the image resolution to 256 × 256 to fit the
output for most baselines. For SIMSG, we apply USRNet to increase the resolution from 64 × 64
to 256× 256. Figure 5 (a) provides object replacement results, where SIMBIL clearly outperforms
both scene-graph driven approach SIMSG and text-driven approaches GLIDE and BDM. Though
BDM and GLIDE can generate some plausible objects in some cases, the appearance and shape
of the edited object still look odd. Figure 5 (b) presents images reports by relationship change.
From these results, we can see that our RoI prediction module outputs reasonable values for the
relationship change between objects, for instance, riding → beside, near → on. Figure 5 (c) provides
object removal examples. Consistent with our discussion in Section 3.3 and Section 4.2, external
approaches tend to introduce unexpected objects in some cases when inpainting. We believe the
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Figure 5: Qualitative results comparing SIMBIL with baselines on Visual Genome. (a): object
replacement; (b): relationship change; (c): object removal. The edited regions are zoomed in below
each image. See Section 4.3 for discussion.

Table 2: User evaluation judging the correctness of an image manipulation on Visual Genome. See
Section 4.3 for discussion.

Object Object Relationship
Removal Replacement Change

EdgeConnect (Nazeri et al., 2019) 27.8% - -
Latent Diffusion (Rombach et al., 2022) 21.1% - -
Blended Diffusion (Avrahami et al., 2022) - 31.1% -
GLIDE (Nichol et al., 2021) 23.3% 28.8% -
SIMSG (Dhamo et al., 2020) 22.2% 24.4% 15.6%
SIMBIL(ours) 50.0% 40.0% 48.9%

model may recognize the appearance of some objects due to seeing similar images during training.
In contrast, internal learning approaches do not suffer from this issue because they only utilize
the context and textures of the current input image. Additionally, our background-guided method
provides higher quality images compared to DIP.

4.4 LIMITATIONS AND FUTURE WORK

In this section, we analyze the limitations of our method and provide suggestions to address these
limitations. Four cases are presented in Figure 6.
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Figure 6: Limitations of SIMBIL. See Section 4.4 for discussion.

(a) Shadow removal: Since our segmentation module does not consider shadows as part of an
object, they typically remain in an image. However, this can be addressed by incorporating shadow
detection methods (e.g., (Wang et al., 2020)) in the removal module.

(b) Artificial boundary: In some images, we can observe white edges if we zoom out the boundary
region of the modified object. We assume the artificial boundary is introduced when we resize the
object from the query images.

(c) Biased background: Although background-guided internal learning outperforms DIP in most
cases, we do have some failures like the example in Figure 6(c). We believe this is because our
segmentation model does not distinguish the tree from the background. As a result, our approach
guides the missing region to be similar to the tree in some areas within the “hole”.

(d) Human pose transfer: Relationships between objects are not limited to spatial relationships
such as beside, near, on, but also span predicates like standing on, running, walking. Ideally, the
appearance of the objects should also be changed according to various predicates. We tried to apply
a human pose transfer model (Zhu et al., 2019) pretrained on DeepFashion (Liu et al., 2016) to
address this issue. However, there is a significant domain shift from DeepFashion to Visual Genome
that resulted in poor performance, which could be addressed in future work via domain adaptation
techniques.

(e) Inference time: Internal learning methods train a separate network to process each image. The
inference time to process a 256 × 256 image by a RTX 3090 takes approximately 35 seconds. We
observe that our background-guidance mechanism has negligible overhead compared to DIP. For
comparison, text-driven methods BDM (Avrahami et al., 2022) takes approximately 28 seconds
and GLIDE (Nichol et al., 2021) takes approximately 8 seconds to process each image. While our
approach does take a little longer at inference time, it does not have the expensive training step (in
terms of data and computational time) of BDM or GLIDE.

5 CONCLUSION

In this paper, we proposed a semantic image manipulation method called SIMBIL that combines
high-level image semantics with pixel-level manipulation. SIMBIL mainly consists of object seg-
mentation module, an RNN-based RoI prediction module to predict the edited region for target
objects, and a background-guided internal learning module for image inpainting. SIMBIL outper-
forms the state-of-the-art in a qualitative and quantitative evaluation on CLEVR and Visual Genome
datasets. For example, our method outperforms SIMSG around 8 points improvement of SSIM
on CLEVR and around 25% improvement of user evaluation accuracy on Visual Genome. Exten-
sive experiments on images with higher resolution, which prior work struggled to perform, further
demonstrate the effectiveness of our method. Thus, we argue the combination of high-level seman-
tics and pixel-level manipulation is a promising way to solve the image manipulation problem since
it requires less human effort and accurately preserves the original image’s attributes and details.

9



Under review as a conference paper at ICLR 2023

6 REPRODUCIBILITY STATEMENT

Our method, SIMBIL, is presented in detail in Section 3. Figure 2 provides the overall pipeline of our
method by an example of semantic relationship change. Additionally, we provide implementation
details in Appendix A. We will also release our code to ensure reproducibility after the paper is
accepted.

7 ETHICS STATEMENT

In this paper, we develop a model named SIMBIL for semantic image manipulation. From the ex-
periments, we see that SIMBIL can effectively manipulate images according to user guidance. Our
scene-graph driven editing technique not only make our system easy to use, but also help people
with disabilities who cannot perform pixel-level image manipulation to manually segment, delete,
and move the objects. However, just like other image editing approaches, SIMBIL can modify the
content of the original images. Therefore, it is critical for practitioners to carefully review the mod-
ified images to avoid spreading misinformation. Additionally, we found SIMBIL-generated images
are difficult to be recognized and located by exisiting image manipulation detection methods like
IIDNet (Wu & Zhou, 2021). Thus, our internal learning method also provides a potential improve-
ment direction for image manipulation detection, i.e., how to develop a more robust framework that
can recognize both the external learning manipulated images and the internal learning manipulated
images.
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A IMPLEMENTATION DETAILS

A.1 SEGMENTATION MODULE

CLEVR. We apply the CLEVR framework (Johnson et al., 2017) to generate a dataset consisting of
1,000 images with object masks. Following (Dhamo et al., 2020), Mask R-CNN (He et al., 2017) is
trained to classify the objects into 24 categories with 3 shapes (sphere, cylinder, cube) and 8 colors
(blue, yellow, purple, green, red, gray, cyan, brown).

Visual Genome. We use MaskFormer (Cheng et al., 2021) pre-trained on COCO (Lin et al., 2014)
for Visual Genome. In this paper, we focus on objects that the MaskFormer is trained to identify.
However, these categories can be greatly expanded using methods like the transfer learning approach
MaskX R-CNN (Hu et al., 2018) or segmenting entities based on natural language queries (Hu et al.,
2016).

A.2 ROI PREDICTION

CLEVR. As we mentioned in the main paper, the modified triplets, bounding boxes of reference
objects and target objects are extracted from 6,688 images as our training data. 818 images are
adopted as the validation set. We set the maximum number of the modified triplets of each image to
5. The mean absolute error (MAE) on validation set is 12.05±0.87 (computed over 5 runs), where
the image size is 256 × 256. It should be mentioned that the gap between the predicted value and
ground truth value does not necessarily indicate the predicted value is incorrect. Any points in the
correct region can satisfy the relationships between objects. For instance, if a blue cube is on the
right side of a red sphere, then any positions on the right side of the red sphere should be correct.
Therefore, the accuracy of our model is underreported.

Visual Genome. Similar to CLEVR, we use 40,000 images for training and 2089 images for eval-
uation. The MAE on validation set is 77.84±1.25 (computed over 5 runs), where the image size is
512× 512.

A.3 BACKGROUND-GUIDED INTERNAL LEARNING

We use the encoder-decoder structure with skip connections (Ulyanov et al., 2018) for our inpainting
model. The iteration number for each image is set to 2,000 and λ in Eq. 5 is set to 0.1. For CLEVR,
we constrain the average of each missing region by a single value. For Visual Genome, we constrain
the average of missing regions row by row.

A.4 MODIFICATIONS ON SCENE GRAPHS

To precisely reflect the modified relationships between objects, users may need to modify many
graph edges. This process can be simplified by modifying only a few graph edges. For example, in
our Visual Genome experiments, we observe that modifying a single triplet can also render plausible
editing results, though it may bring randomness on RoI prediction.
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Table 3: Ablation study of SIMBIL on CLEVR (256×256 image). DIP, guide, dilation denotes deep
image prior, background-guided internal learning, and mask dilation respectively. See Section B for
discussion.

Method All pixels RoI only
MAE ↓ SSIM ↑ LPIPS ↓ FID ↓ MAE ↓ SSIM ↑

DIP 1.85 98.16 0.069 7.13 25.38 73.48
DIP+guide 1.73 98.19 0.069 8.07 19.85 75.97
DIP+dilation 1.72 98.26 0.065 7.21 22.02 75.60
DIP+guide+dilation 1.71 98.30 0.061 6.55 18.86 79.48

Table 4: Comparison of evaluating modifications A and B. See Semantic correctness of edits of
Section B for details.

l1 (RoI)↓ SSIM(RoI) ↑ l1(RoI) ↓ SSIM(RoI)↑
A 18.86 79.48 B 41.04 65.56

B ADDITIONAL EXPERIMENTS

Additional Qualitative Results. Figures 7, 8, & 9 provide additional qualitative results that demon-
strating SIMBIL outperforms prior work on Visual Genome to supplement the results from the main
paper.

Diverse Outputs. As we discussed in Section A.2, a modified scene graph can point to different
outputs with correct semantics based on the same input. We generate diverse outputs using the
manipulated relationship’s probability map shown in Figure 10.

Semantic correctness of edits. To illustrate that the incorrect semantics of manipulated images
could be captured by our quantitative metrics in the main paper, we performed a comparison experi-
ment in Table 4. We applied modified scene graph A and modified scene graph B on the same input
and compared their outputs with the ground truth label of scene graph A (note A ̸=B). We see the
correctly modified image has significantly better results.

Ablation Study. Table 3 provides the ablation study of mask dilation, validating that the improve-
ments of SIMBIL are based on both the background-guided mechanism and the mask dilation.

Image Editing using Predicted Scene Graphs. We performed an experiment using scene graphs
predicted by F-Net (Li et al., 2018) in Table 5. Consistent with our experiments in Table 3, we
performed four image manipulation operations on the test set, including object removal, object ad-
dition, object replacement, and relationship change. We see that using predicted scene graphs has a
minor impact on the performance of image editing results compared to ground truth scene graphs.
However, our method with predicted scene graphs still outperforms SIMSG (F-Net), which means
ground truth scene graphs are not essential for the improvement of our model. For other baselines
including GLIDE(Nichol et al., 2021) and BDM (Avrahami et al., 2022), since we use the same
RoI as predicted by our model (otherwise, GLIDE and BDM require manually outlining RoI), the
influence of predicted scene graphs should be the same.

Iterations in optimization. We compare the iterations of DIP and SIMBIL in Figure 11 to demon-
strate the improvement of our background-guided mechanism. E.g., in the bottom figure, the re-
moved object is blue cylinder and DIP uses the color of purple cube which is far from the blue
cylinder to fill in the missing part. In contrast, SIMBIL uses the color of grey background to fill in
the missing part.
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Table 5: Image editing using predicted scene graphs by F-Net (Li et al., 2018). GT denotes ground
truth scene graphs. See Image Editing using Predicted Scene Graphs of Section B for details.

l1 ↓ SSIM ↑ l1(RoI) ↓ SSIM(RoI)↑
SIMSG (F-Net) 8.52 96.92 27.81 74.74
SIMSG (GT) 8.30 96.97 24.59 78.61
ours (F-Net) 1.94 98.17 23.55 76.29
ours (GT) 1.71 98.30 18.86 79.48

remove “person”

remove “person”

remove “elephant”

remove “dog”

remove “cow”

remove “car”

remove “motorcycle”

Input SIMSG+
USR-Net SIMBIL(dip) SIMBIL

Figure 7: Object Removal. Target objects are outlined by light yellow bounding boxes. Consistent
with our conclusion in Section4.3, our backgound-guided internal learning mechanism notably im-
proves the inpainting results, especially when the removed object is large.
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replace “person” 
with “zebra”

replace “person”
with “dog”

replace “girl” 
with “sheep”

replace “dog”
with “sheep“

replace “motorcycle”
with “bus”

replace “boat” 
with “car”

replace “car” 
with “boat”

Input SIMSG+
USR-Net SIMBIL(dip) SIMBIL

Figure 8: Object Replacement. Our method can effectively replace target objects according to
editing commands.
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bench - near - sidewalk 

Input SIMSG+
USR-Net SIMBIL(dip) SIMBIL

bench - on - sidewalk 

bench - near - tree 

bench - on - tree

girl - near - bike 

girl - on - bike

man - riding - horse 

man - next to - horse 

bird - near - chair 

bird - on - chair 

man - riding - horse 

man - beside - horse

man - riding - wave 

man - beside - wave 

Figure 9: Relationship Change. SIMBIL puts target objects to reasonable positions according to
different scene-graph modifications, supplementing discussion in Section 4.3.
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(a) probability map

(b) multiple outputs

Figure 10: Top: probability map of selected predicates; Bottom: an example of diverse outputs,
“bird-on-water”.

remove “person”

remove “blue 
cylinder”

500 iterations0 iteration 2000 iterations1000 iterations

Figure 11: The optimization iterations of Deep Image Prior (Ulyanov et al., 2018) (top row of each
image) and our method (bottom row of each image). We use background-guided mechanism to
constrain the optimization of deep image prior and generate plausible results.
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