
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS META-MODELS FOR AUTOMATED INTER-
PRETABILITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Previous work has demonstrated that in some settings, the mechanisms imple-
mented by small neural networks can be reverse-engineered. However, these efforts
rely on a manual approach that cannot easily be applied to networks with billions
of parameters. To investigate a potential avenue towards scalable interpretabil-
ity, we show it is possible to use meta-models, neural networks that take another
network’s parameters as input, to learn a mapping from transformer weights to
human-readable code. We build on Tracr (Lindner et al. 2023) to synthetically
generate transformer weights that implement known programs in the RASP lan-
guage (Weiss et al. 2021), then train a transformer to extract RASP programs from
weights. Our trained compiler effectively extracts algorithms from model weights,
reconstructing a fully correct algorithm 60% of the time.

1 INTRODUCTION

Neural networks are typically black boxes; we know that they are able to perform a task (image
recognition, language modeling, etc.), but we do not know how they perform it. In this work, we
approach the problem of extracting a full description of the computations implemented by a neural
network and displaying it in a human-readable form. We propose to train a neural network (the
meta-model) to produce a full description of the algorithm implemented in a small transformer
encoder (the base model) when given the base model’s parameters as input.

A challenge for methods aiming to extract an algorithm description from a base model is that we
typically do not have access to the ground truth algorithm. Thus it is difficult to evaluate or train a
method for extraction. To overcome this challenge, we introduce a dataset of 1.6 million base models
that implement known programs. We leverage RASP (Weiss et al. 2018), a programming language
designed as a computational model for transformers, and Tracr (Lindner et al. 2023), a compiler that
compiles RASP programs to transformer weights.

Contributions:

• We design rasp-gen, a sampler that generates valid RASP programs, and use it to construct
a dataset consisting of 1.6 million RASP programs and corresponding model weights.
(Section 3)

• We train a transformer meta-model to recover RASP programs directly from model weights.
(Section 3)

The trained meta-model accurately recovers RASP programs 60% of the time on an i.i.d. test set. The
meta-model is also able to recover a hand-written sorting algorithm, not generated by the program
sampler and confirmed to not be present in the training set (Figure 2).

2 BACKGROUND: RASP AND TRACR

The Restricted Access Sequence Processing language (RASP) is a domain-specific programming
language developed by Weiss et al. (2021) to provide a computational model for an encoder-only
transformer. A RASP program receives two inputs: a length-n sequence of tokens and corresponding
positional indices ranging from 0 to n− 1. The inputs are then transformed by RASP operations that

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

x1 = Map(
 lambda x: x == 1,
 tokens,
)
s = Select(
 indices,
 indices,
 =<,
)
x2 = Aggregate(s, x1)

Tracr
compiles

attn: value
key

query

mlp: linear_1

linear_2

Concatenate
and reshape

Compiled Weights

Transform
er

RASP Program Input
(Weights & tokenized RASP)

Meta-model Target

<BOS>x1 = Map(
 lambda x: x == 1,
 tokens,
)
x2 =

<BOS>x1 = Map(
 lambda x: x == 1,
 tokens,
)
x2 = SelectAggregate(

Figure 1: We train a meta-model (a transformer decoder) to take base model parameters as input and
output the RASP program implemented by the base model. We concatenate and reshape the base
model parameters for model input. Separately, we tokenize the RASP program. Weights and token
embeddings are concatenated to form an input sequence. During training, the meta-model learns to
predict the next token in a RASP sequence; at test time, it generates RASP programs autoregressively.

correspond to either MLP or attention layers in a transformer. RASP syntax differs slightly between
implementations; we build on the RASP implementation by Lindner et al. (2023), in which RASP
consists of five basic operations. These operations can be distinguished by their correspondence to
either MLP or attention layers:

Elementwise mappings (MLP layers). RASP programs can implement arbitrary elementwise
mappings on sequences. The Tracr implementation of RASP uses the Map and SequenceMap
operation to implement such mappings; for example

SequenceMap(f, a, b)

for f(x, y) := x+y returns the elementwise sum of sequences a and b. The Map operation works just
like SequenceMap, but instead operates on a single sequence, e.g. to implement an elementwise
f(x) = x2.

Select-Aggregate operations (attention layers). To move information between sequence elements,
RASP uses Select and Aggregate operations: given a boolean predicate predicate and two
sequences a and b, the Select operation returns a boolean ‘selector’ matrix:

Select(a, b, pred) := (predicate(ai,bj))ij<n.

To reduce a selector matrix to a sequence, the Aggregate operation takes as input a selector and
a sequence, and returns the average of the input sequence weighted by the nonzero elements in the
selector.

A simple example program in RASP is available in Figure 2. For more detail on RASP, please refer to
Weiss et al. (2021) and Lindner et al. (2023). Additionally, Figure 9 may be helpful for understanding
the Aggregate operation.

Tracr. Tracr (Lindner et al. 2023) is a compiler for a large subset of RASP. Given a RASP program,
Tracr outputs a set of transformer weights that implement the RASP program. To compile a RASP
program, Tracr first computes the value set (i.e. the set of possible values) of sequences in intermediate
layers using a Python implementation of RASP, then converts each RASP operation into either an
MLP layer or an attention head that implements the same mapping. Where possible, layers are then
merged and stacked, forming a sequence of MLP and multi-head attention layers.

Tracr distinguished two kinds of sequences: categorical and numerical. Categorical sequences are
assumed to be discrete-valued. During compilation, Tracr transforms RASP operations on categorical

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

input: tokens, indices
sel = Select(tokens, tokens, <)
sop0 = SelectorWidth(sel)
sel = Select(sop0, indices, ==)
return Aggregate(sel, tokens)

Figure 2: Example RASP program recovered by our decompiler at test time. This program from
Lindner et al. (2023) uses attention operations to sort the input. When compiled by Tracr, the
operations Select and SelectorWidth are implemented in the first attention layer, and the operations
Select and Aggregate are implemented in the second attention layer. The training set is deduplicated
of any instances of this particular program, so it is an unseen example.

sequences into a lookup table. Operations on float-valued (numerical) sequences are instead compiled
into a a piecewise-linear MLP mapping obtained via solving an optimization problem; thus numerical
operations are inexact when compiled. Tracr provides a special primitive LinearSequenceMap
which functions like SequenceMap, but is constrained to weighted sums of the input elements
which can be compiled efficiently without the need for fitting an approximation.

Tracr places some limitations on the use of numerical sequence variables. While the Aggregate
operation accepts numerical sequence inputs, Select operation only accepts categorical inputs;
that is, values may be numerical while keys and queries must always be categorical. In addition,
numerical inputs to Aggregate must take values in {0, 1}, thus constraining float-valued attention
outputs to the interval [0, 1].

A major motivation for the development of Tracr is its potential as tool for interpretability; for
example, Lindner et al. (2023) use compressed Tracr-compiled models to study a neural network’s
tendency to compress a large number of sparse features using superposition (Elhage et al. 2022).

3 EXPERIMENTS

We train a meta-model to map transformer parameters obtained via Tracr to the corresponding RASP
programs. Code and datasets will be made available under an open-source license.

3.1 TRAINING A DECOMPILER FOR TRACR

We generate a dataset of 1.6 million RASP programs compiled using Tracr and train a meta-model to
map transformer weights directly to RASP code, effectively training a decompiler for Tracr. This
experiment functions as a proof of concept to show that meta-models are able to reverse-engineer
algorithms implemented in compiled transformers.

Sampling RASP Programs In order to generate our dataset, we need to sample ran-
dom RASP programs. To sample a program, we sequentially sample an operation
from the set {Map, SequenceMap, LinearSequenceMap, Select, Aggregate,
SelectorWidth} while keeping track of available sequence variables, starting from the two
input sequences (input tokens and positional indices). To make sure that sampled programs are
nontrivial we filter out programs that are constant or equal to the identity on a set of test inputs. We
further filter out programs in the subset of RASP not supported by the Tracr compiler. After we finish
sampling and filtering programs, the resulting programs are tokenized and deduplicated.

Tokenizing. In order to cast decompilation as a sequence prediction task, we tokenize the RASP
language via a vocabulary of 105 tokens consisting of variable names, operations, encodings, a set of
60 possible elementwise mappings, and a set of possible predicate functions. Since every Select
operation is always followed either by an Aggregate or a SelectorWidth, we fuse Selects
with the subsequent operation when tokenizing; that is,
SelectAggregate(x, y, pred, z) = Aggregate(Select(x, y, pred), z)

For example, the RASP program in Figure 2 is tokenized as follows (line breaks added between
layers for clarity):

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

0 10 20 30 40 50
Training epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

4 5 6 7 8
RASP Program length (number of SOps)

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Figure 3: Accuracy (fraction of RASP programs recovered perfectly by the learned decompiler).
Left: Validation accuracy across training time. Right: Final test accuracy by program length. Length
is measured by number of sequence operations (e.g. Map, Aggregate, etc.) in a RASP program.
To count as ‘recovered’, the decompiler meta-model needs to correctly predict the entire program.
When tokenized, most RASP programs are 30-60 tokens long and when compiled result in a model
of 5-10 layers and between 1,000-60,000 parameters.

1. BOS sop_0 categorical SelectorWidth tokens tokens LT EOO EOL

2. EOL

3. sop_1 categorical SelectAggregate sop_0 indices EQ tokens
EOO EOL

4. EOL EOS

Note that BOS and EOS tokens mark the beginning and end of the entire program, while EOO marks
the end of an operation and EOL marks the end of a layer. Since this particular program does not
include any Map or SequenceMap operations, the MLP layers are empty.

Base model dataset. We generate a dataset of 1.6 million RASP programs via the procedure
described above and use Tracr to compile every program to a set of transformer weights. This results
in a dataset consisting of tuples (P,W), where P is a RASP program and W is the corresponding set
of transformer weights. We deduplicate this dataset after generation. Generated programs contain
between 4 and 9 SOps (sequence operations), and the compiled transformers are between 3 and 10
layers deep. Every compiled transformer contains between 600 and 65,563 weights.

Compilation using Tracr is computationally cheap; compiling a single model takes under five seconds
on average on a single CPU, and to generate the full dataset we used approximately 1000 CPU-hours
(CPU cores × hours worked). This stands in contrast to the cost of training thousands of base models
as typical for previous work on meta-models (Eilertsen et al. 2020; Schürholt, Kostadinov, et al.
2021). For instance, it cost us 1200 A100-hours to generate the dataset in Appendix A.

Meta-model training. We cast decompilation as a supervised next-token prediction task. For
input to the meta-model, we flatten the base model weights and pad them to a fixed length m, then
reshape them into an array w ∈ Rm/d×d where d is the embedding dimension of the meta-model.
The tokenized RASP operations are padded to a fixed length r and embedded via a linear layer as is
standard in language modeling. We then concatenate the weights and the RASP program, resulting in
an input array x ∈ R(m/d+r)×d. In our experiments we pick m = 65, 536, d = 256, and r = 128.

We train the meta-model to predict the next token in the RASP program via a standard cross-entropy
loss. At test time, we generate an entire RASP program autoregressively: we condition the trained
model on a set of base model parameters and perform consecutive model calls to generate a RASP
program.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Uniqueness of compilation and decompilation. In general, different sets of model weights can
implement the same function, e.g. due to symmetries in MLP layers. Similarly, the Tracr compiler
may return different sets of weights given the same RASP program, since numeric MLP operations
are compiled via a piecewise linear approximation found by solving a nondeterministic optimization
problem. In the other direction, two distinct RASP programs may compute the same function. If
this is the case, the Tracr compiler does not guarantee that two RASP programs compile to distinct
models. Thus it is possible that in some situations, our decompiler must choose between two RASP
programs that both validly describe the base model weights. However, we have not been able to find
such cases in our dataset.

Results. Our results are reported in Figure 3, and we display an example of a short reconstructed
program in Figure 2. We evaluate the meta-model on a i.i.d. test set of programs which we split
off after deduplication, so it is guaranteed to consist of unseen examples. On this test dataset the
decompiler is able to decompile 60% of programs without errors. On a per-token level it achieves
an accuracy of 98.3%; a tokenized RASP program typically consist of between 30 and 60 tokens.
Unsurprisingly, the accuracy degrades significantly with program length, dropping from 80% on
programs consisting of 5 operations down to 26.3% for programs consisting of 8 operations. We also
evaluate on a handcrafted RASP program that sorts an input sequence (Figure 2), which we ensure is
unseen during training.

3.2 DECOMPILING FROM NON-SPARSE WEIGHTS

Weights obtained by compiling a RASP program via Tracr are dissimilar from weights obtained via
training by gradient descent. Not only are Tracr-compiled models highly sparse, they also represent
sequence variables (i.e. internal activations) in a disentangled fashion, as every RASP variable is
represented by a separate linear subspace in the residual stream.

In fact, Friedman et al. (2023) show that a significant subset of Tracr-compiled models (those
consisting only of categorical sequence variables) can be mapped to RASP code via a hand-crafted
algorithm. While our dataset is more challenging, as it includes compiled models that operate on
numerical variables, it is clear that decompiling Tracr is an easier problem than extracting algorithms
from trained transformers in general. To account for this sparsity problem, we run a second experiment
to show that our meta-model is still able to recover accurate RASP programs from non-sparse models.

The key to our approach is the observation that it is possible to apply a linear transformation to
transformer weights without modifying the output. If A ∈ Rd×d where d is the dimension of the
residual stream, then consider modifying a model such that it applies A to activations before writing
them to the residual stream and A−1 before reading from it, leaving the final output unchanged.
Since every layer reads from and writes to the residual stream linearly, it is enough to multiply every
weight matrix by A or A−1 as appropriate, resulting in a new set of transformer weights. Given a
transformer with sparse weights, we can therefore construct a set of dense weights with the same
outputs by sampling a random orthogonal matrix and applying it to the sparse weights.

Finally, we use PCA to learn a linear projection B ∈ Rd×d′
to compress the original activations of

size d to a smaller dimension d′ < d. We apply B in the same way as the sampled orthogonal matrix,
multiplying weights by B or BT as appropriate. This does not necessarily leave the output fully
unchanged, but if d′ is not too small the outputs of the compressed model are equal on > 99% of
inputs.

The purpose of this compression is to ensure that activations are not disentangled. In Tracr, RASP
sequence variables are represented as orthogonal directions in the residual stream of a compiled
model. In contrast, a common observation in trained transformers is that a model learns to make use
of more features than can be orthogonally represented. Thus compressing the residual stream helps
make our testbed more realistic.

Base model dataset. We construct a dataset of 780, 000 program-model pairs (P,W) as in Sec-
tion 3.1, keeping program length fixed at 5 RASP operations. For every datapoint, we then apply
the de-sparsification procedure described above: we first multiply weights by a random orthogonal
matrix, and then create a set of compressed weights W ′ by applying a compression matrix obtained
via PCA.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

input: tokens, indices
select_1 = Select(tokens, tokens, predicate=GEQ)
select_2 = Select(tokens, tokens, predicate=GT)
select_3 = Select(tokens, indices, predicate=NEQ)
selector_width_1 = SelectorWidth(select_1)
selector_width_2 = SelectorWidth(select_2)
selector_width_3 = SelectorWidth(select_3)
sequence_map_1 = SequenceMap(lambda x, y: x * (y + x) % 5,
selector_width_1, selector_width_2)
map_1 = Map(lambda x: x < 0, selector_width_3)
select_4 = Select(sequence_map_1, selector_width_1, predicate=GEQ)
aggregate_1 = Aggregate(select_4, map_1)
return aggregate_1

Figure 4: A random RASP program sampled by our generator

Results. We train a new meta-model in the same way as in Section 3.1. However, instead of training
on base models with sparse weights as returned by Tracr, we train on base models with weights
compressed to be dense as described above. We then evaluate it on an i.i.d. test set of size 25, 000.
On this test set the meta-model is able to decompile 77% of programs without errors. On a per-token
level it achieves an accuracy of 99%. Note that as the postprocessing to avoid sparsity is expensive,
unlike in Section 3.1 we keep program length fixed at 5 operations.

4 LIMITATIONS

Models obtained by Tracr are dissimilar from trained models The models we train on tend to
be compiled from simple RASP programs with no more than a few (1-5) RASP operations per layer
and less than 10 total. It is likely that most transformers trained in realistic settings do not have a
short representation in RASP.

Training dataset. We have chosen a task such that it is easy to generate a training dataset for
the meta-model, and for which a loss function is easily evaluated. For Tracr in particular it is
computationally cheap to generate hundreds of thousands of programs, and a ground truth explanation
is readily available via the RASP program. It is likely to be harder to generate training data for
real-world interpretability tasks. In addition, our meta-models tend to be larger than the base models
they are trained on by about a factor of 10-100, which would be prohibitive for very large base
models.

We use a black box to interpret a black box. Interpretability research can broadly be classified
into two kinds of approaches: those that generate explanations, and those that verify explanations.
We show that meta-models can be used to generate explanations, but do not address the problem
of verifying the explanations produced by the meta-model. Without any means of verification, this
approach cannot provide guaranteed assurances about the base models analyzed.

5 RELATED WORK

Meta-models. While to our knowledge we are the first to use the term meta-model in a paper, the
idea of using neural networks to operate on neural network parameters is not new. A line of work
focuses on training an autoencoder meta-model on a dataset of neural network weights (Schürholt,
Kostadinov, et al. 2021; Schürholt, Knyazev, et al. 2022). The trained encoder can be used as a feature
extractor to predict model characteristics (such as hyperparameters), and the decoder can be used
to sample new weights, functioning as an improved initialization scheme. In earlier work, Eilertsen
et al. (2020) train a meta-model to predict base model hyperparameters such as learning rate and
batch size. Our meta-model architecture is simpler and outperforms both works on all tasks we tested

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(Appendix A). Although we improve on the state-of-the-art, we don’t include these results in the
main text because our focus is on automating interpretability rather than hyperparameter prediction.

Extraction. Weiss et al. (2018) algorithmically extract a representation of an RNN as a finite state
automaton. This is similar to our work because we are also interested in extracting a full description
of the computation performed by a transformer (Section 3); the main difference is that we learn
an extraction method (rather than using a fixed algorithm), and that we work with compiled rather
than trained models. Other works that have extracted programmatic representations of functions
implemented by trained neural networks include Cai et al. (2017) and Mikulik et al. (2020). More
recently, Friedman et al. (2023) show it is possible to deterministically extract a RASP-like description
from transformer parameters trained to operate on categorical variables in a fashion explicitly inspired
by Tracr.

Hypernetworks. Hypernetworks (Ha et al. 2017) are neural networks that generates the weights of
another network (usually called the ‘main’ network). Typically, a hypernetwork takes a layer index
and other layer information as input and outputs the weights for that layer, thus achieving a kind
of relaxed weight sharing between layers. One trains a hypernetwork by jointly back-propagating
through the main network and the hypernetwork. Hypernetworks are related to meta-models in that
they operate on weights directly. They are different in that hypernetworks return weights as output,
whereas meta-models take weights as input.

Interpretability. The field of interpretability studies the workings of machine learning models,
with the goal of making the outputs and behaviour of these models more understandable to humans
(Doshi-Velez and Kim 2017; Lipton 2018). While there is no universally agreed-upon definition
of interpretability, in the context of this work, we focus on the particular problem of mechanistic
interpretability, which aims to fully reverse engineer the learned algorithm implemented by a neural
network. Despite the supposed black-box nature of neural networks, the field has had some noteworthy
successes understanding network internals (Cunningham et al. 2023; Bricken et al. 2023), in one
setting fully understanding the exact algorithm implemented by a network (Nanda et al. 2023).
However, so far these successes have mostly been restricted to relatively small models, and either
only consider models trained on toy tasks or limited aspects of a model’s behavior. Other recent
work on mechanistic interpretability includes tracking chess knowledge in AlphaZero (McGrath et al.
2022), locating a circuit responsible for a specific grammatical task in GPT-2 (Wang et al. 2022), and
the study of superposition in transformers (Elhage et al. 2022).

There have been a number of proposed approaches to automating mechanistic interpretability,
including automated circuit ablation (Conmy et al. 2023) and verification of circuit behavior (Chan
et al. 2022). Both of these works study automatic verification of hypotheses, but don’t propose a
method for automatic generation of hypotheses. A different approach to automated interpretability
is to use LLMs to annotate neurons based on dataset examples (Bills et al. 2023; Foote et al. 2023).
While this allows for the automatic generation of hypotheses, these hypotheses are written in natural
language and thus hard to verify and likely unreliable.

6 FUTURE WORK

Our work provides a first proof-of-concept for the approach we propose: using meta-models to
automate aspects of mechanistic interpretability. A number of challenges remain before this approach
can be applied practically.

Scaling Meta-Models. A challenge in training meta-models is that training data is either synthetic
and thus potentially unreliable (such as Tracr-compiled models), or expensive to generate (such as
when generating a large dataset of trained base models). This is especially problematic for large state-
of-the-art models (e.g. LLMs), since training hundreds or thousands ‘frontier’ models is not feasible.
There are a number of potential avenues to effectively scaling up meta-models to process large input
models. Questions include: (1) Can large-scale pre-training on a base model zoo (e.g. doing masked
weight prediction, or contrastive learning) improve performance? (2) Can a meta-model trained on
smaller base models generalize to larger base models, implying that neural circuitry is consistent

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

across scale? (3) Can meta-models be readily applied to problems that only require processing a
small part of a base-model at a time?

Transformer Reverse-Engineering. Tracr-compiled models are relatively sparse compared to
trained transformers. We suggest a couple steps to approach general transformer reverse-engineering.
(1) Can meta-models reverse-engineer transformers obtained from a more realistic variant of the Tracr
compiler featuring a compressed residual stream and SGD-trained weights? 1 (2) Can a meta-model
trained on Tracr-compiled models generalize to transformers trained on the inputs and outputs of
similar RASP programs? If transfer from Tracr-compiled models is helpful, it may be possible to
cheaply generate large training sets for meta-models.

Creating Hypotheses for Causal Scrubbing. Causal scrubbing (Chan et al. 2022) is a technique
for evaluating whether a simplified, human-legible computational graph is an accurate model of a
given neural network circuit. Can a simple dataset be constructed with one-to-one pairs of (network
circuit, equivalent computation graph)? Can a meta-model be trained on this dataset and learn to map
circuits to mechanistic explanations?

Classifying Attention Heads in LLMs. Recent work in mechanistic interpretability has associated
specific functions to attention heads in LLMs.2 Can a meta-model be trained to identify the functions
of attention heads using relatively few labeled examples? Operating on one head at a time has
numerous benefits, as the meta-model need only process a small part of the input model, and a single
large input model can produce many labeled training examples.

Automated Verification of Interpretations. Can a meta-model be trained to output not only a
programmatic description of the base model, but also evidence or proof that this description is
accurate? One approach would be to train a meta-model to adversarially suggest examples which
might disprove any proposed equivalence between a model and an interpretation.

7 CONCLUSION

Scaling is currently a major bottleneck for mechanistic interpretability. The current state-of-the-art
requires substantial human labor by researchers to understand a model, and may remain infeasible
for many large models in deployment. We propose to use transformers, which show favorable
performance scaling, as “meta-models”—models that take other models weights as input—that
can be trained to perform interpretability tasks. The method is general: we apply it to generating
human-readable code from neural networks, but it is very flexible; for example in Appendix A we
apply our meta-model to the task of predicting hyperparameters from weights. Despite its generality,
it performs well: beating prior work on both hyperparameter prediction and successfully recovering
the majority of RASP instructions from Tracr-compiled transformer weights.

Our work indicates the potentially broad applicability of meta-models in the circumstances where it
is possible to construct an appropriate supervised training set of models and interpretations. Future
work may extend meta-models to more complex and more useful tasks.

1See Section 5 and the Appendices A.2 and F of Lindner et al. (2023).
2For instance, Name Mover and Backup Name Mover heads for the Indirect Object Identification task found

by Wang et al. (2022).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

REFERENCES

[1] Steven Bills et al. Language models can explain neurons in language models. https://
openaipublic.blob.core.windows.net/neuron- explainer/paper/
index.html. 2023 (cit. on p. 7).

[2] Trenton Bricken et al. “Towards Monosemanticity: Decomposing Language Models
With Dictionary Learning”. In: Transformer Circuits Thread (2023). https://transformer-
circuits.pub/2023/monosemantic-features/index.html (cit. on p. 7).

[3] Jonathon Cai, Richard Shin, and Dawn Song. Making Neural Programming Architectures
Generalize via Recursion. 2017. arXiv: 1704.06611 [cs.LG] (cit. on p. 7).

[4] Lawrence Chan et al. “Causal scrubbing, a method for rigorously testing interpretability
hypotheses”. In: AI Alignment Forum (2022). https : / / www . alignmentforum .
org/posts/JvZhhzycHu2Yd57RN/causal- scrubbing- a- method- for-
rigorously-testing (cit. on pp. 7, 8).

[5] Arthur Conmy et al. Towards Automated Circuit Discovery for Mechanistic Interpretability.
2023. arXiv: 2304.14997 [cs.LG] (cit. on p. 7).

[6] Hoagy Cunningham et al. Sparse Autoencoders Find Highly Interpretable Features in Lan-
guage Models. 2023. arXiv: 2309.08600 [cs.LG] (cit. on p. 7).

[7] Finale Doshi-Velez and Been Kim. “Towards a rigorous science of interpretable machine
learning”. In: arXiv preprint arXiv:1702.08608 (2017) (cit. on p. 7).

[8] Alexey Dosovitskiy et al. “An image is worth 16x16 words: Transformers for image recognition
at scale”. In: arXiv preprint arXiv:2010.11929 (2020) (cit. on p. 12).

[9] Gabriel Eilertsen et al. “Classifying the classifier: dissecting the weight space of neural
networks”. In: arXiv preprint arXiv:2002.05688 (2020) (cit. on pp. 4, 6, 11, 12).

[10] Nelson Elhage et al. Toy Models of Superposition. Sept. 21, 2022. DOI: 10.48550/arXiv.
2209.10652. arXiv: arXiv:2209.10652. URL: http://arxiv.org/abs/2209.
10652 (visited on 03/10/2023). preprint (cit. on pp. 3, 7).

[11] Alex Foote et al. Neuron to Graph: Interpreting Language Model Neurons at Scale. 2023.
arXiv: 2305.19911 [cs.LG] (cit. on p. 7).

[12] Dan Friedman, Alexander Wettig, and Danqi Chen. “Learning transformer programs”. In:
Advances in Neural Information Processing Systems 36 (2023) (cit. on pp. 5, 7).

[13] David Ha, Andrew M. Dai, and Quoc V. Le. “HyperNetworks”. In: International Conference
on Learning Representations. 2017. URL: https://openreview.net/forum?id=
rkpACe1lx (cit. on p. 7).

[14] David Lindner et al. “Tracr: Compiled transformers as a laboratory for interpretability”. In:
arXiv preprint arXiv:2301.05062 (2023) (cit. on pp. 1–3, 8, 15).

[15] Zachary C. Lipton. “The Mythos of Model Interpretability: In Machine Learning, the Concept
of Interpretability is Both Important and Slippery.” In: Queue 16.3 (2018), pp. 31–57. ISSN:
1542-7730. DOI: 10.1145/3236386.3241340. URL: https://doi.org/10.
1145/3236386.3241340 (cit. on p. 7).

[16] Thomas McGrath et al. “Acquisition of Chess Knowledge in AlphaZero”. In: Proceedings of
the National Academy of Sciences 119.47 (Nov. 22, 2022), e2206625119. ISSN: 0027-8424,
1091-6490. DOI: 10.1073/pnas.2206625119. arXiv: 2111.09259 [cs, stat].
URL: http://arxiv.org/abs/2111.09259 (visited on 03/05/2023) (cit. on p. 7).

[17] Vladimir Mikulik et al. Meta-trained agents implement Bayes-optimal agents. 2020. arXiv:
2010.11223 [cs.AI] (cit. on p. 7).

[18] Neel Nanda et al. “Progress measures for grokking via mechanistic interpretability”. In:
The Eleventh International Conference on Learning Representations. 2023. URL: https:
//openreview.net/forum?id=9XFSbDPmdW (cit. on p. 7).

[19] Konstantin Schürholt, Boris Knyazev, et al. “Hyper-Representations as Generative Models:
Sampling Unseen Neural Network Weights”. In: Advances in Neural Information Processing
Systems. Ed. by S. Koyejo et al. Vol. 35. Curran Associates, Inc., 2022, pp. 27906–27920.
URL: https://proceedings.neurips.cc/paper_files/paper/2022/
file/b2c4b7d34b3d96b9dc12f7bce424b7ae-Paper-Conference.pdf (cit.
on p. 6).

9

https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://arxiv.org/abs/1704.06611
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://arxiv.org/abs/2304.14997
https://arxiv.org/abs/2309.08600
https://doi.org/10.48550/arXiv.2209.10652
https://doi.org/10.48550/arXiv.2209.10652
https://arxiv.org/abs/arXiv:2209.10652
http://arxiv.org/abs/2209.10652
http://arxiv.org/abs/2209.10652
https://arxiv.org/abs/2305.19911
https://openreview.net/forum?id=rkpACe1lx
https://openreview.net/forum?id=rkpACe1lx
https://doi.org/10.1145/3236386.3241340
https://doi.org/10.1145/3236386.3241340
https://doi.org/10.1145/3236386.3241340
https://doi.org/10.1073/pnas.2206625119
https://arxiv.org/abs/2111.09259
http://arxiv.org/abs/2111.09259
https://arxiv.org/abs/2010.11223
https://openreview.net/forum?id=9XFSbDPmdW
https://openreview.net/forum?id=9XFSbDPmdW
https://proceedings.neurips.cc/paper_files/paper/2022/file/b2c4b7d34b3d96b9dc12f7bce424b7ae-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b2c4b7d34b3d96b9dc12f7bce424b7ae-Paper-Conference.pdf

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

[20] Konstantin Schürholt, Dimche Kostadinov, and Damian Borth. “Self-supervised representation
learning on neural network weights for model characteristic prediction”. In: Advances in
Neural Information Processing Systems 34 (2021), pp. 16481–16493 (cit. on pp. 4, 6, 11, 12).

[21] Kevin Wang et al. Interpretability in the Wild: A Circuit for Indirect Object Identification
in GPT-2 Small. Nov. 1, 2022. DOI: 10.48550/arXiv.2211.00593. arXiv: arXiv:
2211.00593. URL: http://arxiv.org/abs/2211.00593 (visited on 03/02/2023).
preprint (cit. on pp. 7, 8).

[22] Gail Weiss, Yoav Goldberg, and Eran Yahav. “Extracting Automata from Recurrent Neural
Networks Using Queries and Counterexamples”. In: Proceedings of the 35th International
Conference on Machine Learning. Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Pro-
ceedings of Machine Learning Research. PMLR, July 2018, pp. 5247–5256. URL: https:
//proceedings.mlr.press/v80/weiss18a.html (cit. on pp. 1, 7).

[23] Gail Weiss, Yoav Goldberg, and Eran Yahav. “Thinking Like Transformers”. In: Proceedings
of the 38th International Conference on Machine Learning. Ed. by Marina Meila and Tong
Zhang. Vol. 139. Proceedings of Machine Learning Research. PMLR, 2021, pp. 11080–11090.
URL: https://proceedings.mlr.press/v139/weiss21a.html (cit. on pp. 1,
2).

10

https://doi.org/10.48550/arXiv.2211.00593
https://arxiv.org/abs/arXiv:2211.00593
https://arxiv.org/abs/arXiv:2211.00593
http://arxiv.org/abs/2211.00593
https://proceedings.mlr.press/v80/weiss18a.html
https://proceedings.mlr.press/v80/weiss18a.html
https://proceedings.mlr.press/v139/weiss21a.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Activation Batch Size Dataset Initialization Optimizer
0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Eilertsen et al. (conv)
Ours

Activation Initialization Optimizer

Schürholt et al. (120k)
Ours (1k train samples)
Ours (10k)
Ours (100k)

Figure 5: Comparison with prior meta-model work (Eilertsen et al. 2020; Schürholt, Kostadinov,
et al. 2021). The task is to classify map neural network weights based on hyperparameter values.
Despite not adapting our method to the task at all, we outperform prior work. This is true even when
we train on far less data—for example, we match or outperform Schürholt, Kostadinov, et al. (2021)
(right) using 100 times fewer training samples.

A COMPARISON WITH PRIOR META-MODEL WORK

Past work has applied meta-models (that is, neural networks that take weights of other neural networks
as input) to a variety of tasks. To sanity check our choice of meta-model architecture as well as our
methods for preprocessing network parameters for model input, we compare against Eilertsen et al.
(2020) (henceforth EJR) and Schürholt, Kostadinov, et al. (2021) (henceforth SKB), who both train a
meta-model to predict hyperparameters used to train base models.

The main difference between our meta-model and EJR/SKB is that we use a simple transformer
encoder as meta-model. In order to compare against EJR/SKB, we adapt our meta-model to the
classification setting by removing all causal attention masks and attaching a single linear layer to the
output at position 0, from which we decode the logits for classification.

EJR use a CNN meta-model to predict (from the base model weights) the dataset, batch size,
augmentation method, optimizer, activation function, and initialization scheme used to train the base
model. They use two datasets: one where the architecture (and thus the size) of the base models are
fixed, and another where the base models have variable size. We recreate their second dataset as it is
the more general setting. We follow their dataset generation procedure, training CNNs with random
selections of the hyperparameters listed above.

The setting of SKB is similar but differs in a few respects. SKB use a fixed model size for the base
models, a smaller set of hyperparameters for classification, and an autoencoder architecture as the
meta-model. The autoencoder is first pre-trained in an unsupervised manner to reconstruct neural
network weights. After pretraining, the encoder plus an extra linear layer is fine-tuned to perform the
classification task. While pretraining on large datasets is a promising direction, we chose to train a
classifier directly.

Base model dataset. We create two base model datasets corresponding to the experimental setups
in EJR and SKB respectively. For comparison to EJR, we train 10,000 CNNs while randomizing the
model size, dataset, batch size, augmentation method, optimizer, activation function, and initialization
scheme used to train the base model. For comparison to SKB, we replicate their dataset construction
and train 30,000 CNNs on each of MNIST, FashionMNIST, CIFAR-10, and SVHN while randomizing
the optimizer, activation function, and initialization scheme used to train the base model.

We match the dataset size and composition for both EJR and SKB, including randomizing hyper-
parameters in the same way. The only difference in our setup is in the comparison to EJR, where
we use fewer augmentations when training the CNN base models. This is because EJR use an large
set of augmentations that is hard to replicate. We discuss this difference more in the appendix. We
also provide more details on both base model datasets in the appendix. Training the CNNs for

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

these datasets used approximately 1200 A100-hours, while meta-model training used around 15
A100-hours. We release both base model datasets.3

Meta-model training. For every hyperparameter (activation, batch size, and so on), we train a
meta-model (a decoder-only transformer) to classify base model (input) weights based on the values
of the hyperparameter. For example, the meta-model might predict the kind of activation function
used (ReLU, ELU, Sigmoid, or Tanh). All meta-models are trained the hyperparameter classification
task in a supervised fashion.

To prepare the CNN weights for model input we flatten them into a single vector of length 800, 000
by truncating or padding depending on the size of the base model. We then reshape the weights to
form a sequence x ∈ R256×3125 and embed x via a linear layer. To use the transformer outputs for
classification, we attach a single linear layer to the output at position 0.4

As EJR use a 1-dimensional CNN as meta-model, they are restricted to training on a 5,000-long
randomly chosen segment of the flattened weights. As a transformer meta-model scales more easily,
we only truncate base model weights past 800,000 parameters.

The results are visible in Figure 5. We outperform EJR and SKB in every category, sometimes
substantially. While these problems are not clearly valuable from an interpretability standpoint,
they show that our proposed meta-model architecture readily solves extant tasks and beats the
state-of-the-art.

A.1 DETAILS

A.1.1 COMPARISON WITH EILERTSEN ET AL. (2020)

Eilertsen et al. (2020) use a CNN meta-model to predict (from the base model weights) the dataset,
batch size, augmentation method, optimizer, activation function, and initialization scheme. They
have two settings: one where the architecture (and thus the size) of the base models are fixed, and
another where they are allowed to have variable size. We focus on the second, more general setting.
We replicated their dataset generation procedure, training a dataset of 40,000 CNNs via a random
search across hyperparameters and datasets (MNIST, CIFAR-10, SVHN, STL-10, Fashion-MNIST).

The base models were trained with the following hyperparameters. For meta-model training, every
hyperparameter corresponds to a classification task. For example, dataset prediction is a 4-way
classification task.

• Dataset: MNIST, CIFAR-10, CVHN, Fashion-MNIST,
• Batch size: 32, 64, 128, 256
• Optimizer: Adam, RMSProp, MomentumSGD
• Activation: ReLU, ELU, Sigmoid, Tanh
• Initialization: Constant, RandomNormal, GlorotUniform, GlorotNormal

A.1.2 COMPARISON WITH SCHÜRHOLT, KOSTADINOV, ET AL. (2021)

The setting of Schürholt, Kostadinov, et al. (2021) is similar to Eilertsen et al. (2020). The base
model dataset consists of classifiers trained on four datasets: MNIST, FashionMNIST, CIFAR-10,
and SVHN. Schürholt, Kostadinov, et al. (2021) train 30,000 base models on each of the four datasets,
then train a meta-model classifier to detect hyperparameters (activation function, initialization scheme,
and optimizer) from the base model weights. While Schürholt, Kostadinov, et al. (2021) train a
separate meta-model on each dataset, we simply train one model and compare against the average
performance over the four datasets.

The base models were trained with the following hyperparameters. For meta-model training, every
hyperparameter corresponds to a classification task. For example, dataset prediction is a 4-way
classification task.

3URL redacted for anonymity.
4This extra classification head is a standard trick and is used e.g. in Vision Transformers (Dosovitskiy et al.

2020).

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

• Activation: ReLU, Tanh

• Initialization: XavierNormal, HeNormal, Orthogonal, RandomNormal, TruncatedNormal

• Optimizer: Adam, RMSProp, SGD

B META-MODEL TRAINING

B.1 TRANSFORMER TRAINING

We use the following hyperparameters for meta-model training in Section 3.

• Hidden dimension: 256

• Number of attention heads: 4

• Number of layers: 6

• Query size: 256

• MLP hidden size: 1024

• Dropout rate: 0 (no dropout)

• Learning rate: 0.0005

• Weight decay: 0.0001

• Batch size: 256

• Optimizer: Adam

• Adam β1: 0.1

• Adam β2: 0.001

• Adam ε: 10−8

Meta-model training as described in Section 3 takes 24 hours on a single RTX-3090 (24GB).

B.2 DATASET PREPROCESSING

Recall that our base model dataset consists of 1, 6 million datapoints, where each datapoint is a tuple
(p, w) where p is the tokenized rasp program (an integer vector of length r = 128) and w is the
corresponding set of transformer weights (a float vector of length m = 65, 536).

At dataset generation time, we filter out all base models larger than m parameters (this is less than 1%
of all models). Before model input, we treat each set of weights as a vector of length m, padding to
length m if required (we use the pad value 0.05). Similarly, we filter out all datapoints with a RASP
program longer than r when tokenized.

When Tracr compiles a RASP program, a small subset of parameters in the compiled model can be
very large (>1000). For this reason, we preprocess the weights array with a symmetric log-transform
that is linear close to the origin:

w′ =

{
sign(w) log(|w|) if |w| > 2

w · (log 2)/2 otherwise.

This transformation is chosen to be continuous, linear in the region [−2, 2], and symmetrically
logarithmic elsewhere.

For input to a meta-model with an embedding dimension of width d, we reshape the weights vector
of every example to shape (m/d, d). In our case, d = 256. We embed the tokenized RASP program
p via a linear layer as is standard in language modeling. We then concatenate the weights and the
RASP program, resulting in an input array of shape (m/d+ r, d).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

C RASP PROGRAM DATASET

The source code of our program generator is available in the supplementary material. See Figure 6
and Figure 7 for statistics on our RASP program dataset. Dataset generation can be done entirely on
CPUs. Generating the RASP dataset (including compilation) takes approximately 1,000 CPU-hours
(CPU cores × hours worked), most of which is spent on Tracr-compilation.

0 1 2 3 4 5 6 7 8 9 1011121314
Program length (# SOps per program)

0.0

0.1

0.2

0.3

2.5 5.0 7.5 10.0 12.5
Layers per model

0.0

0.1

0.2

0.3

0.4

0 20000 40000 60000
Parameters per model

0

2

4

6
1e 5

20 30 40 50 60 70
Tokens per model

0.00

0.01

0.02

0.03

0.04

Figure 6: Statistics of the RASP program dataset used to train the decompiler.

Map

SequenceMap

SelectAggregate

LinearSequenceMap

SelectorWidth

SOp counts

0.0

0.5

1.0

1.5

2.0

2.5

Co
un

t

1e6

categorical numerical
Encoding counts

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Co
un

t

1e6

Figure 7: Statistics of the RASP program dataset used to train the decompiler.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C.1 EXAMPLE RASP PROGRAMS

input: tokens, indices
all_true_sel = Select(tokens, tokens,
True)
length = SelectorWidth(all_true_sel)
return length

(a) Input Length

tokens = [‘h’, ‘e’, ‘l’, ‘l’, ‘o’]

all_true_sel =


T T T T T
T T T T T
T T T T T
T T T T T
T T T T T


length =

[
5 5 5 5 5

]
(1)

(b) Program Variables

Figure 8: Example RASP program by Lindner et al. (2023). This program uses attention operations
to calculate the length of the input without the use of indices. Since the selector predicate is set
to a constant the selection confusion matrix will be filled with True with equal shape to the length
of tokens. When the SelectorWidth operation is applied to this the sum of each column is taken,
resulting in an s-op of equal length to tokens filled with the length of the token inputs.

input: tokens, indices
num_l = Map(tokens, x == ’l’)
prevs = Select(indices, indices, <=)
frac_prevs = Aggregate(prevs, num_l)
return frac_prevs

(a) Faction Previous

tokens = [‘h’, ‘e’, ‘l’, ‘l’, ‘o’]

indices =
[
1 2 3 4 5

]
num_l =

[
0 0 1 1 0

]

prevs =


T F F F F
T T F F F
T T T F F
T T T T F
T T T T T



prevs × num_l =


0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 1 1 0
0 0 1 1 0


out =

[
0 0 1

3
1
2

2
5

]
(2)

(b) Program Variables

Figure 9: Example RASP program by Lindner et al. (2023). This program uses a map followed
by attention to calculate the fraction of tokens that were previously ‘l’. The map operation simply
identifies the ‘l’ tokens in the input. The selection matrix is independent of the tokens and is just
an upper triangular matrix of shape equal to the length of the input. In the intermediate step within
the aggregation operation this matrix is weighted by the s-op num_l giving a masked version of the
selection matrix. Finally, the attention head averages the rows of the matrix giving the fraction of
tokens seen up until that index that were ‘l’.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C.2 EXAMPLE RANDOM RASP PROGRAMS

input: tokens, indices
sequence_map_1 = SequenceMap(lambda x, y: x and y, indices,
tokens)
select_1 = Select(tokens, tokens, predicate=Comparison.LEQ)
map_1 = Map(lambda x: x != 1, tokens)
map_3 = Map(lambda x: x + 4, sequence_map_1)
aggregate_1 = Aggregate(select_1, map_1)
map_3 = Map(lambda x: x, aggregate_1)
sequence_map_2 = SequenceMap(lambda x, y: x * y, map_2, map_3)
return sequence_map_2

Figure 10: A random RASP program sampled by our generator

input: tokens, indices
select_1 = Select(tokens, tokens, predicate=Comparison.GEQ)
select_2 = Select(tokens, tokens, predicate=Comparison.GT)
select_3 = Select(tokens, indices, predicate=Comparison.NEQ)
selector_width_1 = SelectorWidth(select_1)
selector_width_2 = SelectorWidth(select_2)
selector_width_3 = SelectorWidth(select_3)
sequence_map_1 = SequenceMap(lambda x, y: x * (y + x) % 5,
selector_width_1, selector_width_2)
map_1 = Map(lambda x: x < 0, selector_width_3)
select_4 = Select(sequence_map_1, selector_width_1,
predicate=Comparison.GEQ)
aggregate_1 = Aggregate(select_4, map_1)
return aggregate_1

Figure 11: A program sampled by our generator

input: tokens, indices
map_1 = Map(lambda x: x + 1, indices)
select_1 = Select(map_1, indices, predicate=Comparison.GT)
selector_width_1 = SelectorWidth(select_1)
select_2 = Select(tokens, selector_width_1, predicate=Comparison.GT)
selector_width_1 = SelectorWidth(select_2)
return selector_width_1

Figure 12: A program sampled by our generator

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

input: tokens, indices
select_1 = Select(tokens, tokens, predicate=Comparison.GEQ)
select_2 = Select(tokens, tokens, predicate=Comparison.EQ)
selector_width_1 = SelectorWidth(select_1)
aggregate_1 = Aggregate(select_2, tokens)
select_3 = Select(tokens, aggregate_1, predicate=Comparison.EQ)
aggregate_2 = Aggregate(select_3, selector_width_1)
return aggregate_2

Figure 13: A program sampled by our generator

input: tokens, indices
sequence_map_1 = SequenceMap(lambda x, y: x * (y + 1) % 5,
indices, tokens)
sequence_map_2 = SequenceMap(lambda x, y: x or y, sequence_map_1,
indices)
return sequence_map_2

Figure 14: A program sampled by our generator

D HANDCRAFTED TEST PROGRAMS

sort
input: tokens, indices
smaller = Select(tokens, tokens, LT)
target = SelectorWidth(smaller)
sel = Select(target, indices, EQ)
return Aggregate(sel, tokens)

17

