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Abstract

The rise of Large Language Models (LLMs) has driven progress in reasoning tasks,
from program synthesis to scientific hypothesis generation, yet their ability to
handle ranked preferences and structured algorithms in combinatorial domains
remains underexplored. We study matching markets, a core framework behind
applications like resource allocation and ride-sharing, which require reconciling
individual ranked preferences to ensure stable outcomes. We evaluate seven state-
of-the-art models on a hierarchy of preference-based reasoning tasks—ranging from
stable-matching generation to instability detection, instability resolution, and fine-
grained preference queries—to systematically expose their logical and algorithmic
limitations in handling ranked inputs. Surprisingly, even top-performing models
with advanced reasoning struggle to resolve instability in large markets, often
failing to identify blocking pairs or execute algorithms iteratively. We further show
that parameter-efficient fine-tuning (LoRA) significantly improves performance in
small markets, but fails to bring about a similar improvement on large instances,
suggesting the need for more sophisticated strategies to improve LLMs’ reasoning
with larger-context inputs.

§ Data and Code: github.com/SamarthKhanna/LLM_Matching_Markets

1 Introduction

The emergence of Large Language Models (LLMs) has positioned them as integral components in a
wide range of reasoning-intensive tasks such as program synthesis, logical inference, mathematical
problem solving, and scientific hypothesis generation, highlighting the importance of structured
problem-solving capabilities. Despite their recent success in symbolic and logical reasoning, their
capacity to reason over ranked preferences and to execute structured algorithms within combinatorial
domains remains largely unexplored. Preference reasoning constitutes a foundational component
in numerous domains, including economic contexts—e.g., auctions, voting systems, and market
design—and in the architecture of pre-trained generative models using Reinforcement Learning from
Human Feedback (RLHF) to capture and internalize human value judgments. These methods often
have to execute algorithms on a large number of preference lists (either pairwise, partial, or complete
rankings) to aggregate the rankings through constitutional AI [2] or social choice theory [15].

Despite substantial progress, reasoning over preferences remains a non-trivial endeavor: ensuring
transitivity [64, 75], accurately augmenting ordinal rankings [23], and achieving coherent value
alignment pose significant challenges. Without robust mechanisms for preference elicitation and the
capacity to execute the requisite combinatorial procedures, even state-of-the-art LLMs may produce
outputs that diverge from true human preferences [33] or fail to satisfy desirable properties [24].

We consider matching markets, a domain that constitutes a fundamental class of problems underlying
diverse applications—from healthcare resource allocation to ride-sharing platforms and recommender
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Figure 1: The framework for reasoning with ranked preferences through matching markets.

systems—and demand accurate comprehension of individual preferences and reconciliation of
conflicting choices to guarantee system-wide stability. Matching markets are a ideal testbed for
studying reasoning in AI models for two key reasons: First, they provide a structured platform for
evaluating reasoning over ranked preferences and algorithmic thinking. They provide a framework
that is axiomatically rich yet computationally tractable where solution quality (e.g., stability and
efficiency) can be rigorously evaluated. Second, LLMs are increasingly utilized as black-box systems
in a variety of economic, social, or medical settings to inform automated screening in recruitment
pipelines [28], investigating market behavior [39], market clearing in ride-hailing platforms [42], and
in general simulating economic interactions [32]. This makes it imperative to evaluate their ability in
terms of computing “desirable” solutions from stakeholders’ preferences. Additionally, their potential
to serve as interfaces between stakeholders and established black-box systems (e.g., the National
Residents Matching Program [61]) requires benchmarking their ability to reason about provided
solutions and address aspects that users might find undesirable.

1.1 Our Results

We focus on four preference-based tasks: (i) generating stable solutions, requiring LLMs to produce
stable matchings directly from ranked inputs, (ii) instability resolution, demanding preference
reasoning to transform unstable matchings to stable ones, (iii) instability detection, in which models
detect blocking pairs within a proposed solution, and (iv) preference reasoning, assessing nuanced
query answering over ranked lists. We evaluate seven large language models with varying reasoning
capabilities, including basic models, those with some limited reasoning, and advanced reasoning
models. Our methodology and results are summarized in Figure 1.

Benchmark. We introduce a benchmark with instances and questions aimed at evaluating the above
tasks involving reasoning over ranked preferences. These tasks are categorized into three levels of
difficulty—Easy, Medium, and Hard—based on problem size. Each task utilizes ranked preferences
sampled from two statistical distribution models: Impartial Culture (IC) and Master List (ML).

Generating Stable Solutions. Although models with advanced-reasoning capabilities generally
outperform other LLMs on Easy and Medium instances, all models struggle to generate stable
solutions on Hard instances—indicating that the combinatorial reasoning capability of LLMs does not
necessarily extend to larger-context inputs. Interestingly, the fraction of invalid and failed solutions
is significantly lower for models with higher reasoning abilities, indicating their understanding of
constraints, despite their inability to perform precise and step-by-step reasoning with preferences.

Instability Detections and Resolution. We find that LLMs frequently make mistakes in determining
whether solutions are stable, with hallucinations about blocking pairs being the most common among
basic models. Additionally, LLMs’ ability to correct unstable solutions is (at best) as good as their
ability to generate them from scratch, in some cases making the provided incorrect solutions worse.
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Preference Reasoning. We consider tasks based on three levels of inference over ranked preferences.
Large language models with advanced reasoning capabilities generally demonstrate a strong com-
prehension of preferences across levels of inference. However, even small errors compound in tasks
requiring multi-step sequences of reasoning (e.g., generating stable solutions or resolving instability),
or in other words, small errors multiply!

Supervised Parameter-Efficient Fine-Tuning. We demonstrate that fine-tuning an open-source
reasoning model using synthetically generated reasoning traces substantially improves performance,
significantly outperforming advanced-reasoning models on Easy and Medium instances. However,
we find that this approach does not address the challenges LLMs face with large inputs (Hard).

1.2 Related Work

Reasoning Capabilities of LLMs. Mathematical problem solving has been a key area of focus in
evaluating the reasoning ability of LLMs, through a variety of benchmarks such as [14, 30, 31, 57].
LLMs have also demonstrated remarkable capabilities on coding benchmarks such as SWE-Bench
[41] and CodeForces. As SOTA benchmark scores improve, recent work studies whether these
improvements reflect genuine logical reasoning through benchmarks assessing logical consistency
[50] and rule understanding/execution/planning [29]. Furthermore, the recent rise of LLM agents
has increased interest in benchmarking LLMs’ causal reasoning [12] and strategic planning abilities
[20, 40, 66]. Additionally, the emergence of reasoning models has led to benchmarks evaluating
these models’ improved reasoning and planning abilities [10, 49].

Enhancing Reasoning Capabilities of LLMs. Specialized prompting strategies like Chain-of-
Thought (CoT) [72], Tree-of-Thought (ToT) [77], and Graph-of-Thought (GoT) [3] have performance
abilities on a variety of reasoning benchmarks. Fine-tuning has also been demonstrated to improve
CoT in model outputs [78], as well as economic rationality [11] and abstract reasoning [74]. Addi-
tionally, instruction-tuning has been shown to enhance reasoning in several works [8, 48, 51, 71].
More advanced techniques build upon CoT [68, 80], or utilize multi-agent architectures that leverage
cooperative LLMs [69, 79]. More recently, reinforcement-learning (GRPO) has been used to improve
model reasoning, the most popular example being the Deepseek-R1 reasoning model [17].

LLMs in Social and Economic Decision Making. While still an emerging area of research, multiple
works have focused on the collective decision-making capabilities of LLMs. One particular area of
interest is the use of LLMs in preference elicitation [35, 65]. Fish et al. [24] benchmark the ability
of models to learn and strategize in unknown economic environments using deliberate exploration.
Another notable avenue of work is the study of how well LLMs can represent humans in collective
decision-making, an understudied component of LLM alignment [33, 76].

2 Methodology

2.1 Problem Formulation

A two-sided matching market consists of two disjoint sets of agents (e.g., riders and drivers, freelancers
and job requesters, and content creators and ads) denoted by M and W , where |M | = |W | = n. The
preference list of an agent i, denoted by ≻i, is a ranked order list over the agents on the other side. A
preference profile, ≻, denotes the collection of preferences of all agents. We write w1 ≻m w2 and
m1 ≻w m2 to denote that m prefers w1 to w2 and w prefers m1 to m2 respectively. In this paper, we
primarily consider the standard model, which assumes a complete and strict preference list (no ties)
and aims at finding a one-to-one matching between the agents in two sets.1

Matching and Stability. A matching is a function µ : M ∪W →M ∪W such that µ(m) ∈W for
all m ∈M , µ(w) ∈M for all w ∈W , and µ(m) = w if and only if µ(w) = m. Given a matching
µ, a blocking pair with respect to the preference profile ≻ is a pair (m,w) who prefer each other over
their assigned partners in µ, i.e., w ≻m µ(m) and m ≻w µ(w). A matching is said to be stable if
it does not have any blocking pairs. Given an instance of the problem, the set of all possible stable
solutions forms a distributive lattice and can be exponential in size [45].

1This is the standard model considered by the seminal works of Gale and Shapley [27] and Knuth [45].
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In their seminal work, Gale and Shapley [27] proposed an iterative procedure—the deferred accep-
tance algorithm (DA)—that always guarantees to find a stable solution. It proceeds by a series of
proposals and rejections. In the initial proposal phase, each of the unmatched agents on one side
(aka proposers) proposes to their favorite agent from the other side (aka receivers) according to their
preference list. In the subsequent rejection phase, each agent on the receiving side tentatively accepts
its preferred proposal, rejecting the others. The algorithm terminates when no further proposals can
be made. The details of this algorithm can be found in Appendix C. The underlined solution in
Example 1 is simultaneously optimal for the proposing side and pessimal for the receiving side [56].
We refer to the former as the Optimal matching and the latter as the Pessimal matching.

Example 1 (An instance with multiple stable solutions.). A preference profile for a sample instance
of size n = 4; underlined agents indicate the Optimal matching, the Pessimal matching is indicated
with a ∗, and the † indicates a stable matching that is different from the first two.

m1 : w4 w3 w∗,†
1 w2 w1 : m2 m∗,†

1 m3 m4

m2 : w3 w†
4 w∗

2 w1 w2 : m
∗
2 m3 m†

4 m1

m3 : w1 w†
3 w2 w∗

4 w3 : m
∗
4 m†

3 m1 m2

m4 : w1 w†
2 w∗

3 w4 w4 : m4 m∗
3 m†

2 m1

2.2 Dataset, Models, and Setup

Preference Instances. We synthetically sample a set of 300 preference profiles, partitioned into
three sets of 100 instances for each difficulty level, namely Easy (n = 10 agents on each side of the
market), Medium (n = 20), and Hard (n = 50). The preference profiles are sampled from two
types of distributions Impartial Culture (IC) and Master-list (ML), each constituting 50 questions
at each difficulty level. An impartial culture (IC) is a well-studied probabilistic model for generating
preference profiles in which every agent’s strict preference ranking is drawn independently and
uniformly at random [4, 22]. It has been extensively studied in the context of economics, matching,
and voting theory [5, 7, 9, 70]. A profile with a master-list (ML) is a highly structured preference
profile in which all agents on one side of the market share exactly the same strict ranking over the
agents on the other side. They represent the homogeneity in settings ranging from the labor market
to organ allocation in healthcare [6, 38, 43] While an arbitrary instance generated by IC may admit
exponentially many stable solutions [45], with a master-list, only a single unique stable solution exists,
indicating a difficulty level proportional to the size of the space of stable outcomes. In Appendix C,
we discuss a simpler version of the DA algorithm for computing stable solutions with ML instances.

Matching Dataset. We curate a dataset comprising 2850 questions derived from the instances
described above. These questions cover four task categories, each applied to the same pool of profiles
to ensure consistency: (i) generating stable solutions, given a preference profile (300 questions); (ii)
instability resolution, given a profile and an unstable matching; (iii) instability detection, given a
profile and a solution (1050 questions); and (iv) preference reasoning, given a single preference list
or a profile (900 questions).

Models. We select a representative suite of both open-source and closed-source models for
evaluation. Since our benchmark is based on a reasoning task, we categorize models by their
reasoning ability. We evaluate two basic models (those not specifically trained for reason-
ing), namely Llama-3.3-70B [21] and Gemini-2.0-Flash [60], and five reasoning models, namely
Qwen-QwQ-32B [67], DeepSeek-70B (Llama-distilled) [17], OpenAI o3-mini [59], DeepSeek-R1
[17], and Gemini-2.5-Pro [16]. Among reasoning models, we classify the last three as advanced
reasoning models, based on their SOTA performance on reasoning benchmarks [49].

Prompting. The prompt for each task consists of the preference profile for a given instance, followed
by task-specific instructions (e.g., computing the “proposer-optimal” matching, or resolving a given
unstable matching). While we adopt the stable-marriage setting, considered by Gale and Shapley
[27], where men propose to women, we show (in Appendix D) that the results do not change if a
different setting—where workers are assigned tasks—is used. To scale up the verification of solution
correctness, we instruct LLMs to adhere to a predefined answer format. Additionally, we allow LLMs
two re-tries to correct solutions that are either invalid, partial, or do not adhere to the specified format.
See Appendix I for details about the inference setup, and Appendix J for sample prompts.
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Figure 2: The generated responses by LLMs with Master-List (ML) and Impartial Culture (IC)
preferences at different difficulty levels. Stable indicates one-to-one matchings with no blocking
pairs; otherwise it is unstable. Invalid do not adhere to one-to-one constraint, partial are one-to-one
but leave some unmatched, and Fail indicates models’ failure to return any matching.

2.3 Evaluation Criteria

We consider several metrics for evaluating the quality of returned responses depending on the task.
To account for cases in which LLM outputs violate task requirements, we categorize responses into
the following types: A solution is invalid if some agent from one side is matched to more than one
agent from the other side. It is partial if it is not invalid, but some agents remain unmatched. A
matching is stable if it is a perfect one-to-one matching that admits no blocking pair. Otherwise, it is
unstable if it matches all the agents but admits a blocking pair. The following metrics apply primarily
to valid responses. Informally, these metrics measure the distance from a reference stable outcome.

Instability Rate (IR): The instability rate measures the proportion of agents involved in blocking
pairs, and thus the degree to which a matching violates the stability criterion. Given a complete
matching, instability rate measures the percentage of unstable agents, i.e., those involved in at least
one blocking pair. Formally, IR(µ,≻) = |{i∈M∪W s.t. j ≻iµ(i) ∧ i ≻jµ(j) for some j∈M∪W}|

2n .

Optimality/Pessimality Rate: This rate assesses the overlap between the model’s matching and a
reference stable matching, thereby capturing how closely the model’s output mirrors the stepwise
proposals and acceptances of a canonical algorithm. Formally, given two perfect matchings, µ and µ′,
in a one-to-one market where each matching is viewed as a set of unordered pairs between agents,
the Jaccard similarity is defined as JS(µ, µ′) = |µ∩µ′|

|µ∪µ′| . Then, we define optimality rate (OR) of a
stable matching as its similarity to the proposer-optimal stable solution, which is unique.

3 Generating Stable Solutions

The first task involves evaluating LLMs’ abilities to generate valid, stable matchings in markets with
various difficulty levels. This task ideally requires models to reason over ranked preferences while
iteratively executing a structured algorithm.

We consider two sub-categories for generating matchings depending on declarative knowledge about
algorithms: i) prompt without specifying any algorithm, and ii) prompt with exact step-by-step
instructions of how to execute the DA algorithm [27] (see Section 2.1 for details). Our ablation
studies showed that the above prompting strategies did not result in qualitatively different outcomes,
as all models were able to correctly identify the requirement for considering preferences, the DA
algorithm, and its execution steps.2 The detailed results are presented in Appendix D.

Difficulty, Model Size, and Reasoning. Figure 2 demonstrates the performance of the models in
generating stable outcomes. Baseline models without explicit reasoning mechanisms are unable
to solve even Easy instances, whereas reasoning-enabled models achieve high accuracy on Easy
instances but suffer dramatic performance drops on Hard instances. Furthermore, for Hard problems,

2Furthermore, converting the stable-marriage setting to a task-scheduling setting [24], where “men” and
“women” are replaced by “workers” and “tasks” (respectively), does not have a significant impact on performance.
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unstable outcomes returned by each model as
compared to randomly selected valid (but not nec-
essarily stable) solutions (Random).
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Figure 4: Optimality Rate within unstable out-
comes returned by each model as compared to
randomly selected valid (but not necessarily sta-
ble) solutions (Random).

even reasoning models frequently produce invalid outputs or fail to return any solution. Interestingly,
Qwen-QwQ-32B significantly outperforms a much larger model, DeepSeek-70B, indicating that
LLMs’ combinatorial reasoning capability does not necessarily scale with model size.3

IC vs. ML Profiles. Under Impartial Culture (IC) profiles, the number of stable solutions can
grow exponentially as the problem scales (increase of n) [45]. This combinatorial explosion poses
a significant challenge for LLMs attempting to identify stable solutions, especially when solely
using implicit reasoning over preference lists (without executing a concrete matching algorithm). In
contrast, master-list profiles (ML)—irrespective of the underlying sampling method used to generate
preferences—admit exactly one stable solution. Moreover, this unique stable matching can be
constructed in O(n) steps by (i) extracting the common master list and then (ii) pairing agents in
order of their shared priority [38]. See the details of the algorithm in Appendix C.

We observe that there is a significant performance gap between ML and IC instances—this disparity
is especially marked for DeepSeek-R1. With IC profiles and Hard instances, all models are unable
to compute a stable solution.4 They perform slightly better under ML profiles, and while this
performance drops for Hard instances, these models almost never return invalid or partial matchings.

Prompting Techniques. Prompt-engineering techniques have been empirically demonstrated to
enhance the performance of LLMs on mathematical reasoning and formal logic inference tasks
[3, 72, 77]. We evaluated a range of prompt-engineering techniques—including few-shot prompting
and Chain-of-Thought (CoT) prompting, which supply exemplar “thought processes” and intermediate
reasoning steps—in an attempt to bolster LLM performance. However, none of these strategies
qualitatively improved on medium- or hard-difficulty instances. See Appendix D for further details.

3.1 Measuring Instability

A natural question is how far LLM-produced responses deviate from stable outcomes. To quantify
this, we use two complementary metrics: instability rate and optimality rates (see Section 2.2). The
instability rate directly reflects the distance from any stable solution, whereas the optimality rate
implicitly evaluates the model’s success in executing the underlying matching procedure. Figure 3
and Figure 4 illustrate comparisons of LLMs with a baseline of randomly generated outcomes.5

Broadly, the advanced-reasoning models generate significantly closer approximations to stability
and optimality than their non-reasoning counterparts. Moreover, all evaluated LLMs (regardless of
reasoning sophistication) substantially outperform random baselines on both metrics, indicating that
they inherently leverage preference structures and exhibit nontrivial reasoning about ranked inputs.

Interestingly, the performance distinction between basic and reasoning models becomes less clear.
While the intermediate reasoning models return a lower instability rate in Easy and Medium problems,
their performance significantly drops in larger-scale problems (Hard). In fact, the performance of

3Throughout the paper, all statistical comparisons between the percentages of stable solutions returned
(across LLMs or across treatments) are done using Fisher’s Exact test [25]. Similarly, any two distributions of
Instability or Optimality Rate are statistically compared using Welch’s T-test [73].

4Gemini-2.5-Pro is the only model with a positive success rate (= 8%) with IC preferences Hard instances.
5Note that the plots only illustrate unstable but valid one-to-one outputs.

6



Table 1: The percentage of stable matchings returned when tasked with resolving instability starting
from One-BP or Random matchings. The numbers in bold represent the highest accuracy (across all
LLMs) of resolving the corresponding type of unstable matching.

Basic LLMs Reasoning LLMs Advanced Reasoning LLMs
Gemini-2.0-Flash Llama-3.3-70B Qwen-QwQ-32B DeepSeek-70B o3-mini DeepSeek-R1 Gemini-2.5-Pro

Difficulty Preference One-BP Random One-BP Random One-BP Random One-BP Random One-BP Random One-BP Random One-BP Random

Easy IC 2 2 2 0 60 36 46 54 100 100 96 98 96 92
ML 4 2 0 0 88 78 68 62 96 100 100 98 100 98

Medium IC 0 0 0 0 22 0 10 0 64 64 28 32 74 60
ML 0 0 0 0 17 7 20 6 82 78 88 76 80 82

Hard IC 0 0 0 0 4 0 0 0 0 0 0 0 2 2
ML 0 0 0 0 0 0 0 0 6 0 28 24 16 34

Average 1.00 0.67 0.33 0.00 31.83 20.16 24.00 20.33 58.00 57.00 56.67 54.67 61.33 61.33

DeepSeek-70B becomes worse than even basic non-reasoning models. We attribute this behavior to
the model’s diminished capacity for handling larger input lengths, a hypothesis supported by their
lower proportion of valid outcomes (as seen in Figure 2).

4 Resolving Instability

Generating stable solutions requires both exact reasoning over agents’ preference lists and the execu-
tion of a stability-guaranteeing procedure (e.g., the DA algorithm). As demonstrated in Section 3, all
evaluated models—irrespective of their reasoning capabilities—exhibit severe performance degra-
dation as the problem size grows. This leads to the natural question of whether these models can
resolve instability in a given matching–a task that entails detecting blocking pairs through preference
reasoning and applying an appropriate sequence of adjustments to restore stability.

We provide LLMs with unstable (but valid) matchings along with preference profiles, and instruct
them to convert these initialized solutions to stable matchings. To assess how the instability rate may
influence solution quality, we distinguish two classes of initial matchings: (i) One-BP, matchings
containing exactly one blocking pair (i.e., “almost stable”) such that their stability may be resolved
through simpler proposal-rejection iterations, and (ii) Random, matchings sampled uniformly at
random from the set of all valid one-to-one pairings, which typically contain a large number of
blocking pairs and thus exhibit high degrees of instability. See Appendix F for detailed steps and
pseudo-code for generating one-BP and random initialization. Note that starting from an arbitrary
matching, sequentially resolving blocking pairs may result in a cycle—as shown by Knuth [44].
However, a random sequence converges to stability with probability one [1, 62].

Table 1 displays the fraction of responses in which LLMs return stable matchings when asked to
resolve the above types of unstable matching. Surprisingly, our experiments illustrate that in the task
of resolving instability, the performance of all evaluated models does not exceed—and even degrades—
their performance in generating stable solutions. This behavior persists regardless of initial matchings
(One-BP or Random) and LLMs’ reasoning capability. In fact, on Hard instances, the output returned
by advanced reasoning models on One-BP matchings (i.e., containing a single blocking pair) contains
substantially more than one blocking pair. In other words, even for the most basic instances, LLMs
often introduce additional instabilities beyond the original single violation. We elaborate on this in
Appendix F, demonstrating how all models, including those with advanced reasoning, often return
solutions with a higher instability rate, highlighting their inability to systematically eliminate blocking
pairs in accordance with preference lists.

5 Detecting Instability

The findings in previous sections raise the question of whether LLMs can reliably detect instability
in a given matching—a simpler task that involves iterating over each unmatched pair to determine
whether both agents prefer one another over their assigned partners. This procedure requires only a
straightforward comparison of preferences and requires O(n2) steps.

For this task, we evaluate the performance of valid one-to-one matchings initialized under two
instability conditions: (i) One-BP, representing nearly stable matchings containing a single blocking
pair, and (ii) Random, representing highly unstable matchings with numerous blocking pairs. To detect
false-positives, we additionally include two extreme cases of stable matchings: the proposer-optimal
(Optimal) and the proposer-pessimal (Pessimal) stable solutions.
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Figure 5: The fraction of responses where each model correctly detects stability or instability of a
given matching.

Reasoning Models: Preferences and Blocking Pairs. Figure 5 reveals an interesting observation
about reasoning models: their performance is influenced by the number of blocking pairs in the
matching being evaluated—similar to the observations in Section 4. They achieve a high accuracy
on identifying random matchings (which have a larger number of blocking pairs) as unstable and a
significantly lower accuracy with matchings that have at most one blocking pair.

Basic Models and Hallucination. Interestingly, the non-reasoning models achieve a high accuracy
(80%) with both types of unstable matchings, and extremely low (20%) accuracy with stable match-
ings. Note that the performance across all models is qualitatively similar in ML and IC profiles,
even though each ML profile admits a unique stable solution (thus, identical reports for Optimal and
Pessimal). See Appendix G for further analysis. A manual analysis of non-reasoning models uncov-
ers frequent hallucinations about blocking pairs, resulting in a systematic bias toward classifying
matchings as unstable. This can be largely attributed to misinterpretations of the input preferences.

6 Reasoning about Ranked Preferences

Many advanced reasoning paradigms, ranging from causal inference [12] and counterfactual analysis
to game-theoretic decision making, depend fundamentally on the ability to compare and evaluate
alternative choices. As demonstrated thus far, even advanced reasoning models often fail to execute
the step-by-step procedures of combinatorial algorithms when those procedures operate over ranked
preference lists. This shortcoming motivates the question of whether current LLMs can truly reason
about preferences, as opposed to merely applying preferences in generating responses heuristically.

To investigate preference comprehension, we introduce a suite of tasks spanning three levels of
inference over ranked preferences: (i) basic retrieval (L1), in which models must extract individual
preference relations; (ii) comparison queries (L2), requiring pairwise preference judgments; and
(iii) proposal-acceptance simulations (L3), which combine comparison of alternatives with binary
accept/reject decisions mirroring the dynamics of deferred-acceptance algorithms.

Hierarchical, level-wise reasoning evaluations have been proposed recently in domains such as causal
inference of LLMs [12]. For example, an L1 question is “Who is agent W5’s, 4th-most preferred
agent?”, and an L2 question ‘Would agent W5, prefer M8 over M7?”

L1 L2 L3

Easy

Medium

Hard

Di
ffi

cu
lty

69 61 67

39 50 71

3 54 60

Llama-3.3-70B

L1 L2 L3

99 56 65

85 50 51

23 52 49

Gemini-2.0-Flash

L1 L2 L3

100 100 100

96 99 94

57 74 67

DeepSeek-70B

L1 L2 L3

99 100 98

100 100 100

87 93 95

Qwen-QwQ-32B

L1 L2 L3

100 98 97

100 100 96

100 100 98

OA-o3-mini

L1 L2 L3

100 100 90

100 100 87

100 100 89

DeepSeek-R1

L1 L2 L3

100 100 99

100 100 100

99 99 100

Gemini-2.5-Pro

0

20

40

60

80

100

Ac
cu

ra
cy

Figure 6: Accuracy on questions about provided preferences, with both IC and ML instances.

Basic models have low accuracy in all levels of difficulty even on small instances, which is probably
the reason behind their inability to compute or detect stable solutions (as discussed in Section 3
and Section 5). In basic models (e.g., Llama-3.3-70B) and (non-advanced) reasoning models (e.g.,
DeepSeek-70B), the size of the problem has a greater impact on accuracy as compared to the level
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of the question, indicating their difficulty of handling larger inputs. Although advanced-reasoning
models have significantly higher accuracy rates compared to other models, they still make minor
errors, especially in larger profiles (Hard). Generating stable solutions for these instances often
requires a larger number of reasoning steps over many preference lists, causing minor errors to
compound (small errors multiply!).

7 Performance Improvement through LoRA Fine-Tuning

Supervised fine-tuning has proven to be effective in enhancing the reasoning capabilities of LLMs in
a variety of tasks, including mathematical problem solving [13, 47], logical reasoning [58], and code
generation [52]. Markeeva et al. [55] demonstrate how fine-tuning a small LLM (2B parameters) can
significantly improve LLMs’ ability to execute textbook algorithms (e.g., sorting an array, finding the
shortest path between two nodes on a graph, etc.). Hence, we evaluate whether fine-tuning can be
used to enhance LLMs’ ability to compute stable matchings—a task requiring reasoning over ranked
preferences in addition to algorithmic understanding. To this end, we perform LoRA fine-tuning
[34] on three reasoning models, including Qwen-QwQ-32B and two smaller models, DeepSeek-8B
and DeepSeek-14B, for Generating Stable Solutions task. Additionally, we also evaluate whether
fine-tuning can mitigate errors made by LLMs in the Preference Reasoning task (Section 6).

Training. Let D = {(x(i),y(i))}Ni=1 be the fine-tuning dataset for a given task. Each pair consists of
an input instance x(i) and the desired model completion y(i). The input instance x(i) is made up of
four components: (i) a generic system-prompt s, (ii) a high-level instruction u, (iii) the preference
profile p(i), and (iv) the task-prompt t(i). The desired completion y(i) consists of two components, (i)
a chain-of-thought reasoning trace r(i), and (ii) the answer a(i) in the desired format. Each model is
fine-tuned with standard next-token cross-entropy on the concatenated sequence z(i) = x(i)||y(i).
We separately fine-tune each model for the Generating Stable solutions task (N = 10, 000) and the
Preference Reasoning task (N = 9, 000). See Appendix H for details of the fine-tuning setup and
results from experiments with different hyperparameter values.

Improvement. Fine-tuning LLMs with data containing synthetically generated reasoning
traces substantially improves their performance on both tasks, as evidenced in Table 2.

Table 2: Improvement in performance in the Generating
Stable Solutions and Preference Reasoning tasks after fine-
tuning on respective datasets.

Model Stage

Generating
Stable Solutions

Preference
Reasoning

Stable Solutions (%) Instability Rate (↓) Accuracy (%)
Easy Med. Hard Easy Med. Hard Easy Med. Hard

DeepSeek-8B Vanilla 3.0 0.0 0.0 41.02 64.19 92.70 81.67 74.33 47.67
Fine-tuned 64.0 31.0 0.0 6.00 12.13 – 100.0 98.33 75.00

DeepSeek-14B Vanilla 19.0 0.0 0.0 20.66 55.31 94.09 97.67 91.33 72.33
Fine-tuned 51.0 41.0 0.0 16.35 24.42 84.00 100.0 100.0 91.00

Qwen-QwQ-32B Vanilla 83.0 24.0 0.0 2.35 19.27 59.07 99.00 100.0 91.67
Fine-tuned 100.0 100.0 0.0 0.00 0.00 55.19 100.0 100.0 99.00

In fact, this approach enhances the
performance of Qwen-QwQ-32B, a
(non-advanced) reasoning model, to
a success rate of 100% in computing
stable matchings with both Easy and
Medium instances, significantly out-
performing advanced-reasoning mod-
els. Fine-tuning also clearly improves
smaller models, i.e. DeepSeek-8B
and DeepSeek-14B, both in terms
of achieving stability and Instability
Rate.6 Similar results are obtained for
the Preference Reasoning tasks, with
the error-rate reducing to 0 at the Easy and Medium levels. 7

In spite of these improvements, however, there remains a distinct gap in performance at the Easy and
Medium levels as compared to the Hard level. LLMs remain altogether unable to compute stable
matchings for Hard instances, even after fine-tuning. A similar trend is reflected in the accuracy on
the Preference Reasoning task. Hence, while fine-tuning clearly improves the reasoning capabilities
of LLMs, further enhancements are required to improve their ability to handle larger inputs.

6Interestingly, this improvement is clearer for ML instances, where both models achieve a 100% success rate
at the Easy level and > 80% success rate at the Medium level.

7The only exception being DeepSeek-8B at the Medium level.

9



Table 3: The performance of LLMs with different reasoning capability across all tasks requiring
reasoning over ranked preferences and executing structured algorithms.

Generating
Stable Solutions

Resolving
Instability

Detecting
Instability

Preference
Reasoning

Category Model Stable
Solutions (%)

Instability
Rate (↓)

Optimality
Rate (↑)

Stable
Solutions (%)

Instability
Rate (↓)

Optimality
Rate (↑) Accuracy (%) Accuracy (%)

Basic Llama-3.3-70B 0.33 54.03 0.21 0.17 56.04 0.25 56.76 52.67
Gemini-2.0-Flash 2.36 48.44 0.21 0.83 53.94 0.22 58.38 58.89

Reasoning DeepSeek-70B 26.20 23.43 0.59 22.49 24.61 0.60 77.05 88.67
Qwen-QwQ-32B 35.67 21.22 0.63 28.00 26.37 0.62 75.05 96.89

Advanced
Reasoning

o3-mini 58.00 19.98 0.72 57.50 18.52 0.75 86.67 98.78
DeepSeek-R1 64.22 12.35 0.80 55.73 14.21 0.79 88.19 96.22
Gemini-2.5-Pro 68.33 7.16 0.84 61.33 8.80 0.79 92.38 99.67

8 Concluding Remarks

We summarize the performance of LLMs across all four tasks in Table 3, reflecting the clear hierarchy
between advanced-reasoning models, (non-advanced) reasoning models, and basic models. The
limitations in reliably reasoning about ranked preferences raise concerns about the viability of
LLMs as agents acting on behalf of users in market-oriented or preference-sensitive decision-making
settings, limits their capacity to negotiate complex user preferences, and hinders efforts in developing
pluralistic techniques (e.g., constitutional AI [2] and social choice-theoretic [15]) for value alignment
that are inherently based on aggregating rankings.

Open-Source vs. Closed-Source models. Among the models that we evaluate, Gemini-2.5-Pro (a
closed-source model) emerges as the most capable across all tasks. While DeepSeek-R1 (open-source)
broadly outperforms OpenAI’s o3-mini (closed-source), it performs much worse with IC instances
than with ML instances. While both basic models struggle on all tasks, Gemini-2.0-Flash (closed-
source) marginally outperforms Llama-3.3-70B (open-source) on various metrics. Given the promis-
ing improvement yielded by fine-tuning an open-source reasoning model, i.e. Qwen-QwQ-32B, it is
worth exploring strategies also that enable it to handle large inputs.

Beyond Linear Preferences. Our current evaluation paradigm considers complete and strict linear
preferences. In real-world scenarios, however, preferences involve complexities such as incomplete-
ness, indifference between alternatives, and capacity constraints [18, 46, 54]. As a result, algorithms
to compute stable solutions in such settings are far more complex and solutions are often intractable
[53]. While, in Appendix E, we provide some preliminary insights on preferences with ties, under-
standing such cases requires deeper theoretical and empirical investigation A meaningful next step
would be to examine how AI models respond to these more intricate preference structures.
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A Limitations and Future Work

While we present a comprehensive evaluation of the practical algorithmic and economic reasoning
capabilities of a series of state-of-the-art LLMs, our dataset primarily relies on synthetic data due
to the challenges in obtaining real-world ordinal preference data. This calls for the collection and
curation of datasets in the two-sided matching setting, and generating preference profile datasets that
are better aligned with human preferences.

Additionally, while our work provides insights into the reasons behind the failure of LLMs to
consistently generate stable solutions (see Section 6), there is scope for further clarity on where
exactly LLMs make mistakes during algorithmic execution. A potential method to explore this is to
break the algorithmic execution task into smaller steps (e.g., a single proposal-acceptance/rejection
cycle) and identify which components of the state-transition are challenging for LLMs to understand.

Furthermore, while fine-tuning substantially enhances LLMs’ performance on instances with rela-
tively smaller input sizes, improving their performance with larger inputs requires further exploration.
This can include the investigation of methods such as fine-tuning the entire set of parameters (unlike
with LoRA) or reinforcement-learning methods such as group-relative policy optimization (GRPO)
that are known to increase the reasoning capabilities of LLMs [63].

B Broader Impacts

This paper is intended to advance Machine Learning and AI research, with a special emphasis on
the reasoning ability of LLMs—an essential component of autonomous AI systems. We identify key
shortcomings in the reasoning capabilities of LLMs, especially in terms of aggregating individuals
preferences over alternatives and algorithmic execution. We believe that the findings presented in
this work can inform further research into AI systems to enhance their ability to act independently in
complex decision-making environments.

C Preference-Based Algorithms in Matching Markets

C.1 Algorithm for Generating a Stable Matching

As shown in Algorithm 1, the standard deferred-acceptance algorithm runs by having the proposing
side of the market make a series of proposals, and each agent that receives at least one proposal
decides which proposal to accept (the proposal becomes an engagement), and which proposals
to reject (or engagements to break). This continues until all agents are matched, which requires
O(n2) proposal steps. The resulting solution is stable [27]. To describe the algorithm, we adopt
the traditionally used setting of stable-marriage where the proposing side consists of men and the
receiving side consist of women.

Algorithm 1 The Deferred Acceptance Algorithm

assign each agent m ∈M and w ∈W to be free
while there exists a free man m who has not proposed to every woman do

w ← highest-ranked woman on m’s preference list to whom he has not yet proposed
m proposes to w
if w is free then

w tentatively accepts m
else if w prefers m to her current partner m′ then

w rejects m′ and tentatively accepts m
m′ becomes free

else
w rejects m

end if
end while
return the set of engaged pairs, these form a stable matching
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Another commonly used version of the DA algorithm involves the receiver agent (in a given proposal)
removing all agents (on the proposer-side) from their preference list who are ranked below the current
proposer agent (who also remove the receiver from their respective preference lists). Due to the
shortening of the preference lists as the algorithm progresses (see Algorithm 2), this is referred to as
the version of the DA algorithm with Shortlists [37]. While this version terminates with at most as
many (and often less) proposal steps as compared to Algorithm 1, it requires repeated updates to the
original preference lists.

Algorithm 2 The Deferred-Acceptance Algorithm with Shortlists

assign each agent m ∈M and w ∈W to be free
while some man m is free do

w = first woman on m’s preference list
m proposes and becomes engaged to w
if some man p is engaged to w then

break the engagement (p, w), assign p to be free
end if
for each m′ in w’s preference list s.t. m ≻w m′ do

remove m′ and w from each other’s preferences
end for

end while
return the set of engaged pairs, these form a stable matching

C.2 Algorithm for Generating a Stable Matching w/ Master Lists

Similar to Algorithm 1, Algorithm 3 runs in rounds of proposals. Since there is a Master-list over
proposing agents in the preference lists of receiving agents, and proposing agents are selected to
make proposals in the order in which they appear in the Master-list, there are no rejections (since any
receiver receives the best possible proposal at any step) [38]. Hence, this algorithm terminates in n
proposal steps (and is therefore easier to execute).

Algorithm 3 The Deferred-Acceptance Algorithm for Preferences w/ Master Lists on One Side

assign each agent m ∈M and w ∈W to be free
L←Master-list over men.
for next free man m in L do

w = first woman on m’s preference list
m proposes and becomes engaged to w

end for
return the set of engaged pairs, these form a stable matching

C.3 Algorithm for Resolving Instability

While we don’t explicitly describe the algorithm here, the mechanism presented by Abeledo and
Rothblum [1] can be applied to an unstable matching µ by resolving blocking pairs, resulting in a
stable solution. Intuitively, an LLM does not have to follow a specific mechanism, rather the model
can resolve instability by iteratively resolving blocking pairs as they arise (eventually, assuming all
steps are correct, the model should arrive at a stable solution).

C.4 Algorithm for Detecting Instability

Intuitively, Algorithm 4 works by iteratively visiting each pair of agents (m,w) s.t. m ∈ M and
w ∈ W , and finding a pair such that either m prefers w to their current partner, or w prefers m to
their current partner (when such a pair is found, output it as a blocking pair). If no pair (m,w) is
found to be a blocking pair, then the solution is stable.
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Algorithm 4 Stability Detecting Algorithm

for each (m,w) ∈ µ, where m ∈M and w ∈W
for man m ∈M do

for man w ∈W do
if m ≻w µ(w) and w ≻m µ(m) then

output the identified blocking pair (m,w)
end if

end for
end for
output that there exist no blocking pairs

Table 4: Percentage of stable solutions returned by LLMs when provided with the DA algorithm in
the prompt (With) as compared to the case when not provided (Without).

Basic LLMs Reasoning LLMs Advanced Reasoning LLMs
Gemini-2.0-Flash Llama-3.3-70B Qwen-QwQ-32B DeepSeek-70B o3-mini DeepSeek-R1 Gemini-2.5-Pro

Difficulty Preference Without With Without With Without With Without With Without With Without With Without With

Easy IC 6 10 2 0 76 84 70 74 100 98 100 96 98 100
ML 8 6 2 6 90 88 72 94 96 100 98 100 98 98

Medium IC 0 0 0 0 14 2 0 0 68 64 42 44 90 88
ML 0 0 0 0 34 40 14 12 80 86 86 82 88 94

Hard IC 0 0 0 0 0 0 0 0 0 0 0 0 8 6
ML 0 0 0 0 0 0 0 0 0 0 54 36 40 38

Average 2.33 2.67 0.67 1.00 35.67 35.67 26.00 30.00 57.33 58.00 63.33 59.66 68.33 70.66

D Prompt Engineering

Providing Algorithmic Description. In Table 4, examine LLMs’ performance when provided with
a prompt containing pseudocode for the DA algorithm, and compare it to the case when no algorithm
is provided in the prompt. While providing the DA algorithm as part of the prompt leads to an
improvement in some cases, the only case in which there is improvement is statistically significant8
is with DeepSeek-70B at the Easy level with ML instances.

Reasoning-enhancement Prompts. For models that fail at generating stable matchings even with
small instances, we evaluate whether prompt-based enhancements such as Chain-of-Thought (CoT)
[72] and Few-shot prompting [19] can improve their performance. In particular, we introduce the
following three types of modifications to the original prompt (used in Section 3):

• CoT-Vanilla (CoT-V): The steps of execution of the DA algorithm (see Algorithm 1) are
provided for an example instance. Each step consists of a single (free) proposing agent
making his next proposal, and the receiving agent either accepting or rejecting the proposal
based on their current status.

• CoT-Shortlist (CoT-SL): This version of CoT uses the Shortlist version of the DA algorithm
(see Algorithm 2) which reduces the overall number of proposal steps, but requires repeated
updates to the original preference lists.

• Few-shot Examples: As opposed to the previous two cases, we provide LLMs with three
examples of stable matching instances accompanied by their solutions.

To limit the context size of the prompt, we consider examples with n = 5 for each of these prompt
modifications.

As depicted in Table 5, these prompting enhancements fail to improve the ability of LLMs to
generate stable matchings. While there is a slight improvement for models like Qwen-QwQ-32B
and DeepSeek-70B instances with Master-list preferences and size n = 10, this improvement is not
statistically significant.

8At p < 0.05, using Fisher’s exact test
9All models considered here are never able to generate stable matchings at the Hard difficulty level, with any

prompting method.
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Table 5: Percentage of stable solutions returned when prompt-enhancement strategies are used, as
compared to the case without, for the Easy and Medium difficulty levels. 9

Model Gemini-2.0-Flash Llama-3.3-70B Qwen-QwQ-32B DeepSeek-70B

Size Culure None CoT-V CoT-SL Few-shot None CoT-V CoT-SL Few-shot None CoT-V CoT-SL Few-shot None CoT-V CoT-SL Few-shot

10 IC 6 2 0 0 0 2 0 0 76 86 84 90 70 60 60 68
ML 8 4 4 2 2 0 10 6 90 94 92 94 72 76 68 76

20 IC 0 0 0 0 0 0 0 0 14 2 6 6 0 0 0 0
ML 0 0 0 0 0 0 0 0 34 36 34 42 14 10 4 2

Table 6: Percentage of stable solutions from two LLMs when the task is framed as the stable marriage
and the task-scheduling problem.

Model Gemini-2.0-F o3-mini

Difficulty Preference Stable
Marriage

Task
Scheduling

Stable
Marriage

Task
Scheduling

10 IC 6 8 100 98
ML 8 6 68 50

20 IC 0 0 0 0
ML 0 0 100 98

50 IC 0 0 80 72
ML 0 0 0 0

Modified Problem Setting. We consider the traditionally used setting of stable-marriage, where
the set M consists of men who propose to women in the set W [26]. To measure whether LLMs are
sensitive to the nomenclature used to described the two-sided matching market, we also consider
a different setting, i.e. that where a set of workers (W ) are to be assigned a set of tasks (T ) (and
members on both sides have preferences over members of the other). We test the difference in
the performance of two LLMs—Gemini-2.0-Flash and o3-mini—between the task-scheduling and
stable-marriage settings. The results are provided in Table 6. While there is a slight decrease in
performance for o3-mini, the change is not significant (at p < 0.05). This provides further evidence
that LLMs understand requirements of computing stable solutions for matching markets, in general.

E Generating Stable Solutions for Preferences with Ties

As demonstrated in Section 3, reasoning-enabled models achieve significantly higher accuracy on
Easy instances when compared to non-reasoning baseline models, but suffer dramatic drops in
performance with Hard instances. A natural extension of this is to examine how introducing ties to
preferences impacts an LLM’s ability to generate stable solutions.

New notions of stability. When ties are introduced to preference profiles, additional (stronger)
notions of stability exist. Namely, in addition to the standard notion of weak stability (where a
matching does not admit any weak blocking pairs: agents who strictly prefer each other to their
current partners), we have the added notions of strong and super stability, where a matching does not
admit any strong or super blocking pairs, respectively. A strong blocking pair is a pair of agents in
which one agent strictly prefers the other agent over their current partner, and the other agent remains
indifferent or prefers the first agent and their current partner. A super blocking pair is a pair of agents
in which either agent is either indifferent the other agent and their current partner, or prefers the other
agent to their current partner. Super stability, the strongest notion of stability, implies strong stability,
which in turn implies weak stability. Additionally, it is important to note that strongly and super
stable solutions do not exist for all preference profiles.

Irving [36] provides three algorithms (one for each) to compute weakly, strongly, and super stable
matchings for preference profiles with ties. The algorithm for weak stability takes O(n2) steps
(the algorithm is equivalent to running standard the DA algorithm with arbitrary tie-breaking), the
algorithm for strong stability takes O(n4) steps, and the algorithm for super stability takes O(n2)
steps (these two algorithms require more demanding steps with complex operations).

Generating matchings for each stability notion. To evaluate how LLMs handle preferences
with ties, we perform the same experiment as in Section 3 with Easy preference profiles and
Gemini-2.5-Pro, except we introduce multiple ties of random sizes, at randomly selected start-
ing positions, in each preference list in the profile. Additionally, we modify the prompt listed in
Appendix J.1 to get a total of three different prompts. The first prompt (referred to as the Baseline
Prompt) is identical to the prompt in Appendix J.1. The other two prompts (referred to as the Strong
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Figure 7: The generated responses by Gemini-2.5-Pro for Master-List (ML) and Impartial Culture
(IC) Easy preferences with different prompts. All generated matchings were valid and complete.
Again, unstable indicates one-to-one matchings with weak blocking pairs present.

Prompt and Super Prompt) replace the instruction to “...find the proposer-optimal stable matching...”
with “...find the proposer-optimal STRONG stable matching...” and “...find the proposer-optimal
SUPER stable matching...”, respectively. For each prompt, we run the experiment and count the
proportion of generated matchings that are super, strong, and weakly stable, as well as unstable
matchings.

Figure 7 demonstrates the performance of Gemini-2.5-Pro in generating stable outcomes with respect
to each of the three new notions of stability for preference profiles with ties. Gemini-2.5-Pro once
again demonstrates a high accuracy (96%) in generating stable solutions (considering weak, strong,
and super stability) with the Baseline Prompt, with 50% and 54% of stable solutions being weakly
stable with the IC-Easy and ML-Easy preference profiles, respectively. However, only around 40% of
generated solutions were super (and strongly) stable for both preference cultures. Gemini-2.5-Pro’s
reasoning traces for each instance indicate that the model essentially attempts to execute the DA
algorithm when generating stable solutions even when ties are present (rather than utilizing the more
complex algorithms for strong and super stability, even when explicitly prompted). Additionally, any
generated super stable solutions are a result of an instance’s super stable solution intersecting with its
weakly stable solution. Interestingly, specifying the notion of stability appears to significantly hurt
the model’s ability to generate any stable solutions. While one potential explanation is that specifying
the desired stability notion in the prompt introduces unnecessary noise, this is an interesting avenue
for future study.

F Resolving Instability: Additional Material

F.1 Generating Unstable Matchings

Here we describe the procedures we use to generate the two types of unstable matchings we consider.

One-BP. We generate a matching that contains a single blocking pair, by swapping the partners
of two randomly selected proposer agents in the Optimal matching. Since such a swap may lead
to more than one blocking-pair (or no blocking pairs), we perform this process (for every instance)
until we obtain a matching with exactly one blocking-pair. This procedure is formally described in
Algorithm 5.

Random. A Random matching is simply generated by generating a random permutation of agents
on one side and assigning agents such a list to the agents on the other side, one-by-one.
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Algorithm 5 GENERATEONEBPMATCHING

Require:
Π = (≻m,≻w) ▷ Preference profile for all men m ∈M and women w ∈W
µ∗ ▷ Men-optimal stable matching returned by Deferred Acceptance

Ensure:
A matching µ containing exactly one blocking pair

1: function GENERATEONEBPMATCHING(Π, µ∗)
2: repeat ▷ Keep trying until the condition is met
3: µ← copy(µ∗) ▷ Start from the stable matching
4: (ma,mb)← arbitrary pair ma,mb ∈M s.t. ma ̸= mb

5: wa ← µ(ma)
6: wb ← µ(mb) ▷ Swap partners of the two men
7: µ(ma)← wb, µ(wb)← ma

8: µ(mb)← wa, µ(wa)← mb

9: until |BLOCKINGPAIRS(µ,Π)| = 1 ▷ Stop when exactly one blocking pair exists
10: return µ
11: end function

12: function BLOCKINGPAIRS(µ,Π)
13: B ← ∅
14: for all m ∈M do
15: for all w ∈W do
16: if w ≻m µ(m) and m ≻w µ(w) then
17: B ← B ∪ {(m,w)}
18: end if
19: end for
20: end for
21: return B
22: end function

Table 7: Instability Rate (averaged across instances) in the (valid) matchings returned by LLMs when
asked to resolve a given unstable matching of types One-BP and Random. The column “Baseline”
contains the (average) Instability Rate for the provided matching of the indicated type. Numbers in
bold indicate that the Instability Rate of the corrected solution is significantly worse than the provided
matching. A ∗ on the number in the One-BP column indicates a that Instability Rate is significantly
lower than the case when a Random matching is provided (at p < 0.05).10

Basic LLMs Reasoning LLMs Advanced Reasoning LLMs
Gemini-2.0-Flash Llama-3.3-70B Qwen-QwQ-32B DeepSeek-70B o3-mini DeepSeek-R1 Gemini-2.5-Pro Baseline

Difficulty One-BP Random One-BP Random One-BP Random One-BP Random One-BP Random One-BP Random One-BP Random One-BP Random
Easy 45.5 46.3 34.25∗ 42.05 4.30∗ 10.80 8.74 9.05 0.25 0.00 0.20 0.20 0.30 0.80 10.00 77.32

Medium 55.09 58.81 57.48∗ 64.12 14.50∗ 49.20 23.39∗ 43.84 3.92 3.25 10.65 12.58 2.17 3.5 5.00 87.95

Hard 49.99∗ 74.66 61.42∗ 86.79 17.44∗ 86.91 35.38∗ 84.76 43.77∗ 59.98 14.8∗ 47.81 20.99∗ 25.08 2.00 94.52

F.2 Further Results

Measuring Instability after Repair. The extent to which a given matching is incorrect does
influence quality of the solutions returned by LLMs after being asked to correct it. Table 7 shows that
the number of blocking pairs is often significantly lower when the unstable matching (that LLMs
are asked to correct) has a single blocking pair, as compared to the case with random matchings.11

Similarly, as shown in Figure 8, matchings returned after resolving an almost stable matching have a
greater overlap with the Optimal solution (especially at Medium and Hard difficulty levels).

10All statistical comparisons in this table are made using Welch’s t-test [73].
11In fact, asking LLMs to resolve a random matching leads to a significantly higher number of blocking pairs

in the returned solution, as compared to the case when they are asked to generate solutions from scratch.
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Figure 8: Optimality Rate when LLMs are asked to resolve a matching with a single blocking pair
introduced into the Optimal solution (One-BP), or a randomly generated matching (Random). These
are is compared to the case when they are asked to generate a stable matching from scratch (Empty).

G Additional Material about Detecting Instability

G.1 Comparing Impartial Culture and Master-List Instances

Generally, the classification of a preference profile as an impartial culture or master-list instance has
a relatively small impact on the ability of an LLM to detect instability in the instance. However, we
observe some differences between the ability of certain LLMs to detect stable/unstable matchings with
ML instances compared to IC instances. Models such as DeepSeek-14B, o3-mini, and DeepSeek-70B
are able correctly detect stable solutions significantly more frequently with ML instances than with
IC instances. A potential explanation for this is that Master-list preferences contain fewer unique
preference lists, decreasing the chances that the model hallucinates blocking pairs. On the other
hand, models such as Gemini-2.0-Flash and Llama-3.3-70B correctly identify unstable solutions
significantly more often with IC preferences as compared to the case with ML preferences. The
intuition for this observation is the opposite: with impartial culture preferences, there is a higher
probability of having blocking pairs, therefore models that tend to predict that solutions are unstable
will perform better with impartial culture instances.

H Fine-tuning Details

Models. We fine-tune four reasoning models:

• DeepSeek-8B (deepseek-ai/DeepSeek-R1-Distill-Llama-8B),

• DeepSeek-14B (deepseek-ai/DeepSeek-R1-Distill-Qwen-14B),

• Qwen-QwQ-32B (Qwen/QwQ-32B), and

• Qwen3-32B (Qwen/Qwen3-32B)

using the Unsloth12 framework with parameter-efficient tuning (LoRA).13

Dataset. The dataset for the Generation task contains N = 10000 samples for which the reasoning
trace is generated using a Python implementation of the DA algorithm. For the Preference Reasoning
task, the dataset consists of N = 9000 samples (3000 for each question level), where the reasoning
trace involves explicitly identifying the positions of agents in the concerned preferences. In both
datasets, we include an equal number of IC and ML instances, with sizes ranging from n = 5
to n = 50. Detailed examples of training examples for both tasks (Generation and Preference
Reasoning) are provided in Appendix K.

Model Setup. We used the FastLanguageModel.from_pretrained interface from Unsloth to
load the base model with a maximum sequence length of 10,000 tokens. The model was loaded in full

12https://unsloth.ai/
13Since results for Qwen-QwQ-32B and Qwen3-32B are similar, we show only those for the former in Table 2.
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precision (no quantization) and fine-tuned using Low-Rank Adaptation (LoRA) with the following
settings:

• Rank (r): 32

• Target Modules: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj

• LoRA α: 32

• LoRA Dropout: 0

• Bias: none

• Gradient Checkpointing: Enabled via use_gradient_checkpointing="unsloth"

Training Configuration. Fine-tuning was conducted using the SFTTrainer from the TRL library
with the following training arguments:

• Epochs: 1

• Batch size per device: 2 (1, for Qwen-QwQ-32B)

• Gradient accumulation steps: 4 (2, for Qwen-QwQ-32B)

• Learning rate: 2× 10−4 with a linear scheduler and 5 warmup steps

• Optimizer: AdamW-8bit

• Weight decay: 0.01

• Precision: Mixed precision (FP16 or BF16, based on hardware support)

• Seed: 3407

Hardware. Each model was fine-tuned using a single NVIDIA H100 GPU (80GB RAM) with
CUDA support; model and inputs were explicitly transferred to GPU for inference and training.

Model Saving and Sharing. The resulting models were uploaded to the Hugging Face Hub and
will be released upon acceptance.

Inference Setup. After fine-tuning, the model was evaluated using in-context inference. Inputs
were formatted similarly to training prompts, and the model’s output was parsed to extract the
JSON-formatted matching solution.

Ablation tests. Table 8 illustrates how performance is sensitive to variations in data-related pa-
rameters such as the types of instances included in the data, range of instance sizes, and number of
training examples, as well as training-related parameters such as the LoRA rank and the base model
used. The primary observation from these tests is that easier training instances are more crucial that
harder ones. For example, performance is significantly better when the training data consists of only
Easy (and smaller) instances, i.e. with n = 10, as compared to the case with only Hard instances
(n = 50). Similarly, performance is much better when the data consists of only ML instances, as
opposed to the case where it consists of only IC instances, which are more difficult than the former.

I Inference Details

Fine-tuned Models. The models we fine-tune have been pushed to HuggingFace Hub and will be
released upon acceptance.

Inference Configuration. For the task of generating stable solutions, inference was performed
on each of the open-source models such as DeepSeek-8B, DeepSeek-14B, Qwen-QwQ-32B,
DeepSeek-70B, and Llama-3.3-70B, with the following sampling parameters:

• Temperature: 0.5

• Maximum tokens: 30,000
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Table 8: Performance (percentage of stable solutions generated) after fine-tuning, for DeepSeek-8B
and Qwen3-32B, with different configurations of data- and training-related hyper-parameters. Con-
figuration 1 is the default configuration. The variation in each other configuration (as compared to
config. 1) is in bold.

ML IC

Config. Instance
types

Instance sizes
(range)

Training
set size

LoRA
rank Base model Easy Medium Hard Easy Medium Hard Total

1 ML, IC [5,50] 10000 32 DeepSeek-8B 94 60 0 34 2 0 31.67

Qwen3-32B 100 98 4 98 84 0 64

2 ML [5,50] 10000 32 DeepSeek-8B 100 94 0 2 0 0 32.67

Qwen3-32B 100 100 0 6 0 0 34.33

3 IC [5,50] 10000 32 DeepSeek-8B 0 0 0 0 0 0 0

Qwen3-32B 0 0 0 0 2 0 0.33

4 ML, IC [5,50] 10000 64 DeepSeek-8B 96 82 0 2 0 0 30

Qwen3-32B 100 100 0 100 100 0 66.67

5 ML, IC [5,50] 5000 32 DeepSeek-8B 74 46 0 0 0 0 20

Qwen3-32B 100 94 0 98 92 0 64

6 ML, IC [5,10] 5000 32 DeepSeek-8B 100 2 0 100 8 0 35

Qwen3-32B 100 52 0 100 26 0 46.33

7 ML, IC [50,50] 5000 32 DeepSeek-8B 0 0 0 0 0 0 0

Qwen3-32B 12 0 0 2 0 0 2.33

Default values were utilized for all other sampling parameters. We used online APIs for the following
models:

• Gemini-2.0-Flash (’gemini-2.0-flash’)
• o3-mini (‘o3-mini’)
• DeepSeek-R1 (‘deepseek-reasoner’)
• Gemini-2.5-Pro (‘gemini-2.5-pro-preview-03-25’)

Hardware. All inference experiments with open-source models were run on NVIDIA H100
GPUs (80GB RAM) with CUDA support; model and inputs were explicitly transferred to GPU
for inference and training. We used a single GPU for inference involving DeepSeek-8B and
DeepSeek-14B, two GPUs for inference involving Qwen-QwQ-32B, and four GPUs for inference
involving Llama-3.3-70B and DeepSeek-70B.
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J Prompts

J.1 Example prompt for Generating Stable Solutions

Vanilla prompt. The prompt used for generating stable solutions with LLMs follows standard
prompting procedures, by first outlining the task, providing appropriate context, specifying constraints,
and detailing the desired output format (a JSON object). We intentionally provide preferences in
a structured, tabular format. It enables us to isolate and rigorously evaluate the LLMs’ reasoning,
alignment, and solution quality relative to normative axioms (e.g., stability). Natural language
formulations introduce significant noise in both input and output, making it difficult to attribute
performance failures to reasoning versus parsing. By grounding our analysis in tabular settings first,
we can obtain clean and interpretable measurements, forming a benchmark for future extensions that
incorporate naturalistic input.

Notice that despite the deferred-acceptance algorithm never being mentioned in the prompt, all models
mentioned the deferred-acceptance algorithm in their responses. As mentioned in Appendix D, we
use the traditional setting of stable-marriage (where men propose to women) considered by Gale and
Shapley [27] while describing the problem in the prompt.

You are an intelligent assistant who is an expert in algorithms. Consider the following instance
of the two-sided matching problem, where 10 men are to be matched with 10 women. Here
are the preference lists for all individuals:
<preferences>
{
M: {
M1: [W10,W1,W3,W6,W2,W4,W9,W8,W7,W5],
M2: [W8,W3,W10,W6,W2,W5,W4,W7,W1,W9],
...
M10: [W2,W5,W1,W3,W7,W6,W10,W4,W9,W8],
},
W: {
W1: [M2,M8,M9,M10,M5,M7,M1,M4,M6,M3],
W2: [M2,M7,M3,M1,M8,M9,M6,M10,M5,M4],
...
W10: [M6,M4,M7,M5,M8,M9,M10,M2,M3,M1],
}}
</preferences>
Your task is to find the proposer-optimal stable matching. You can use XML tags like
<scratchpad> to explain your thought process while computing the solution.
Once you have found a stable matching, please return your matching in the JSON format
given below:
<answer>
{
“M1”: “<woman matched with M1>”,
“M2”: “<woman matched with M2>”,
...
“M10”: “<woman matched with M10>”
}
</answer>
Make sure that each man/woman is matched with exactly ONE partner. It is mandatory that
you provide a matching as a JSON object enclosed in <answer></answer> tags as described
above.
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Providing Algorithmic Description. The following is the prompt is a modification of the vanilla
prompt where the steps of the DA algorithm have been described to assist the model with implement-
ing the same.

You are an intelligent assistant who is an expert in algorithms.
...
</preferences>
Your task is to find the proposer-optimal stable matching. For this, you can use the Deferred
Acceptance algorithm. The steps of this algorithm are described below:
1. Initialize all men and women as unmatched.
2. Create a list to keep track of each man’s next proposal (initially set to 0 for all men).
3. While there are unmatched men:
a. Select an unmatched man (M).
b. Find the next woman (W) on M’s preference list that he hasn’t proposed to yet.
c. If W is unmatched, match M and W.
d. If W is matched but prefers M to her current partner:
- Unmatch W from her current partner.
- Match M and W.
- Set the unmatched man as W’s previous partner.
e. If W rejects M, move to the next woman on M’s preference list.
4. Repeat step 3 until all men are matched.
You can use XML tags like <scratchpad> to explain your thought process ...
...
It is mandatory that you provide a matching as a JSON object enclosed in
<answer></answer> tags as described above.

Modified Problem Setting. The following is a modification to the vanilla prompt, where the setting
of task-allocation (assigning tasks to workers) is considered instead of the stable-marriage setting.
We replace men with workers and women with tasks.

You are an intelligent assistant who is an expert in algorithms. Consider the following instance
of the two-sided matching problem, where 5 workers are to be assigned with 5 tasks, and
each worker is assigned exactly one task.
Here are the preference lists for all workers (W) over tasks (T) and the preferences of tasks
over workers:
<preferences>
{
W: {
W1: [T5, T3, T4, T2, T1]
...
}
T: {
T1: [W3, W5, W4, W1, W2]
...
}}
</preferences>
Your task is to find a stable matching of workers and tasks. You can use XML tags like
<scratchpad> to explain your thought process while computing the solution.
Once you have found a stable matching, please return your matching in the JSON format
given below:
<answer>
{
"W1": "<task assigned to W1>",
...
"W5": "<task assigned to W5>"
}
</answer>
Make sure that each worker is assigned exactly ONE task. It is mandatory that you provide a
matching as a JSON object enclosed in <answer></answer> tags as described above.
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J.2 Example Prompts for Prompt Engineering

J.2.1 CoT-Vanilla

Chain-of-Thought methods were applied to the prompt in Appendix J.1 by additionally including an
example trace of steps performed when running the deferred-acceptance algorithm on a randomly
generated instance. The algorithm trace includes all proposals, all respective acceptances/rejections,
and the resultant stable solution. The entire Chain-of-Thought example is enclosed within <example>
XML tags.

You are an intelligent assistant who is an expert in algorithms. Your task is to find the
proposer-optimal stable matching, for the two-sided matching problem. Here is an example to
demonstrate how you should proceed:
<example>
<preferences>
{
M: {
M1: [W5,W1,W2,W4,W3],
M2: [W1,W2,W5,W4,W3],
M3: [W4,W2,W3,W1,W5],
M4: [W5,W1,W2,W4,W3],
M5: [W3,W5,W4,W2,W1],
},
W: {
W1: [M2,M3,M5,M4,M1],
W2: [M5,M2,M4,M3,M1],
W3: [M2,M1,M3,M5,M4],
W4: [M1,M4,M5,M3,M2],
W5: [M4,M3,M5,M2,M1],
}}
</preferences>
M1 is free. M1 proposes to W5
Since W5 is free, W5 accepts the proposal. Now M1 and W5 are matched.
M2 is free. M2 proposes to W1
Since W1 is free, W1 accepts the proposal. Now M2 and W1 are matched.
M3 is free. M3 proposes to W4
Since W4 is free, W4 accepts the proposal. Now M3 and W4 are matched.
M4 is free. M4 proposes to W5
Since W5 prefers M4 to their current partner M1, W5 accepts the proposal. Now M4 and W5
are matched, and M1 is free.
M1 is free. M1 proposes to W1
Since W1 prefers their current partner M2 to M1, W1 rejects the proposal. M2 and W1 are still
matched, and M1 is still free.
M1 is free. M1 proposes to W2
Since W2 is free, W2 accepts the proposal. Now M1 and W2 are matched.
M5 is free. M5 proposes to W3
Since W3 is free, W3 accepts the proposal. Now M5 and W3 are matched.
<answer>
{
"M1": "W2",
"M2": "W1",
"M3": "W4",
"M4": "W5",
"M5": "W3"
}
</answer>
</example>
Consider the following instance of the two-sided matching problem, where 10 men are to be
matched with 10 women . . .
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J.2.2 CoT-Shortlist

The main distinction between the prompt described here and the one in Appendix J.2.1 lies in how the
algorithm’s execution is detailed. In the CoT-Shortlist prompt, the provided algorithm trace includes
an additional step: agents remove each other from their respective shortlists if they become matched
with a partner they find more desirable than the other agents on their list. All other aspects of the
prompt are identical to the CoT-Vanilla prompt.

You are an intelligent assistant who is an expert in algorithms. Your task is to find the
proposer-optimal stable matching, for the two-sided matching problem. Here is an example to
demonstrate how you should proceed:
<example>
<preferences>
{
M: {
M1: [W4,W3,W5,W2,W1],
M2: [W5,W4,W3,W1,W2],
M3: [W5,W4,W1,W2,W3],
M4: [W5,W4,W2,W1,W3],
M5: [W2,W4,W5,W3,W1],
},
W: {
W1: [M5,M2,M3,M4,M1],
W2: [M3,M4,M5,M1,M2],
W3: [M4,M1,M2,M5,M3],
W4: [M5,M1,M4,M3,M2],
W5: [M1,M4,M5,M3,M2],
}}
</preferences>
M1 is free. M1 proposes to W4. W4 accepts the proposal. Now M1 and W4 are matched.
W1 deletes M4, M3, M2 from her list. M4, M3, M2 delete W4 from their list.
M2 is free. M2 proposes to W5. W5 accepts the proposal. Now M2 and W5 are matched.
M3 is free. M3 proposes to W5. W5 accepts the proposal. Now M3 and W5 are matched.
W5 prefers M3, so W5 breaks her engagement with M2.
W3 deletes M2 from her list. M2 delete W5 from their list.
M4 is free. M4 proposes to W5. W5 accepts the proposal. Now M4 and W5 are matched.
W5 prefers M4, so W5 breaks her engagement with M3.
W4 deletes M5, M3 from her list. M5, M3 delete W5 from their list.
M5 is free. M5 proposes to W2. W2 accepts the proposal. Now M5 and W2 are matched.
W5 deletes M1, M2 from her list. M1, M2 delete W2 from their list.
<answer>
{
"M1": "W4",
"M2": "W3",
"M3": "W1",
"M4": "W5",
"M5": "W2"
}
</answer>
</example>
Consider the following instance of the two-sided matching problem, where 10 men are to be
matched with 10 women . . .
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J.2.3 Few-shot Examples

Few-shot prompting was applied to the prompt in Appendix J.1 by additionally including a series of
randomly generated preference/stable solution pairs. As with other few-shot prompting strategies,
the model is then asked to generate a stable solution (as shown in Appendix J.1). As with the CoT
methods, each sample preference/stable solution pairs is enclosed in <example> XML tags.

You are an intelligent assistant who is an expert in algorithms. Your task is to find the
proposer-optimal stable matching, for the two-sided matching problem. Here is an example to
demonstrate how you should proceed:
<example>
<preferences>
{
M: {
M1: [W5,W3,W4,W2,W1],
M2: [W3,W4,W1,W2,W5],
M3: [W5,W1,W4,W2,W3],
M4: [W3,W2,W5,W1,W4],
M5: [W3,W4,W2,W1,W5],
},
W: {
W1: [M1,M4,M3,M5,M2],
W2: [M2,M4,M5,M1,M3],
W3: [M1,M2,M4,M5,M3],
W4: [M3,M5,M1,M4,M2],
W5: [M5,M3,M4,M2,M1],
}}
</preferences>
<answer>
{
"M1": "W3",
"M2": "W1",
"M3": "W5",
"M4": "W2",
"M5": "W4"
}
</answer>
</example>
<example>
...
</example>
<example>
...
</example>
Consider the following instance of the two-sided matching problem, where 10 men are to be
matched with 10 women . . .

J.3 Example Prompt for Evaluating Stability

The following prompt requires LLMs to determine if a given solution to a provided preference profile
is stable. Unlike the prompt in Appendix J.1, the only element that the LLM must include in their
response is a binary response (yes/no).
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Consider the following instance of the two-sided matching problem, where 5 men are to be
matched with 5 women.
Here are the preference lists for all individuals:
<preferences>
{
M: {
M1: [W5,W3,W4,W2,W1],
...
},
W: {
W1: [M3,M5,M4,M1,M2],
...
}}
</preferences>
Your task is to determine whether the following matching is stable or not.
<matching>
[[M1, W4],[M2, W5],[M3, W3],[M4, W1],[M5, W2],]
</matching>
Please return ’Yes’ if you think the provided matching is stable and ’No’ if you think it is
unstable, and enclose your answer in <answer></answer> tags.

J.4 Example Prompts for Preference Comprehension

In each of the following preference comprehension prompts, models are asked to provide the name
of an agent (in level-1) or to provide a binary answer (yes/no for levels 2 and 3) in response to a
provided question. In addition to changing the preference profiles for each instance of a preference
comprehension task, the agents and positions mentioned in the question are also changed with each
instance. For details about each level of preference comprehension, view Section 6.

J.4.1 Level-1

Your goal is to correctly interpret the given preference lists and answer a specific question
about agent preferences.
First, here are the preference lists for all individuals:
<preferences>
{
M: {
M1: [W5,W3,W4,W2,W1],
...
},
W: {
W1: [M3,M5,M4,M1,M2],
W2: [M1,M3,M4,M5,M2],
...
}}
</preferences>
Now, you will be asked a specific question about agent preferences:
<question>
Who is agent W2’s, 1-most preferred agent?
</question>
Once you have determined the answer, provide your output in the following format:
1. The solution as a single agent name. For example, "W1"
Present your final answer within <answer> tags.
IMPORTANT: ONLY RETURN THE NAME OF THE SINGLE AGENT THAT IS THE ANSWER
TO THE QUESTION. Do not include any explanations or additional information in your final
answer.
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J.4.2 Level-2

You are an AI assistant tasked with analyzing preference profiles in a two-sided matching
problem with one-to-one solutions. Your goal is to correctly interpret the given preference lists
and answer a specific question about agent preferences.
First, here are the preference lists for all individuals:
<preferences>
{
M: {
M1: [W5,W3,W4,W2,W1],
...
},
W: {
W1: [M3,M5,M4,M1,M2],
...
}}
</preferences>
Now, you will be asked a specific question about agent preferences:
<question>
Would agent W1, prefer M3 or M2 over M4?
</question>
Once you have determined the answer, provide your output in the following format:
1. The solution as a YES or a NO. For example, "NO"
Present your final answer within <answer> tags.
IMPORTANT: ONLY RETURN YES OR NO THAT IS THE ANSWER TO THE QUESTION. Do
not include any explanations or additional information in your final answer.

J.4.3 Level-3

You are an AI assistant tasked with analyzing preference profiles in a two-sided matching
problem with one-to-one solutions. Your goal is to correctly interpret the given preference lists
and answer a specific question about agent preferences.
First, here are the preference lists for all individuals:
<preferences>
{
M: {
M1: [W5,W3,W4,W2,W1],
...
},
W: {
W1: [M3,M5,M4,M1,M2],
...
}}
</preferences>
Now, you will be asked a specific question about agent preferences:
<question>
If agent W1 is currently engaged to M4, would she accept proposals from M3 or M2?
</question>
Once you have determined the answer, provide your output in the following format:
1. The solution as a YES or a NO. For example, "NO"
Present your final answer within <answer> tags.
IMPORTANT: ONLY RETURN YES OR NO THAT IS THE ANSWER TO THE QUESTION. Do
not include any explanations or additional information in your final answer.
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J.5 Example Prompt for Resolving Instability

For the task of resolving instability in a given unstable solution, the prompt begins by providing
models with the instance’s preference profile (as with the prompts for the other tasks). In addition,
the prompt includes an unstable matching, and asks the model to resolve the instability by outputting
a stable solution (in an identical format to the prompt in Appendix J.1).

You are an intelligent assistant who is an expert in algorithms. Consider the following instance
of the two-sided matching problem and respective unstable matching, where 5 men are to be
matched with 5 women.
Here are the preference lists for all individuals:
<preferences>
{
M: {
M1: [W5,W3,W4,W2,W1],
M2: [W2,W3,W5,W1,W4],
M3: [W5,W3,W1,W4,W2],
M4: [W1,W3,W2,W5,W4],
M5: [W2,W3,W4,W1,W5],
},
W: {
W1: [M3,M5,M4,M1,M2],
W2: [M1,M3,M4,M5,M2],
W3: [M3,M2,M4,M1,M5],
W4: [M4,M2,M3,M5,M1],
W5: [M2,M4,M5,M1,M3],
}}
</preferences>
Here is an unstable matching.
<answer>
{
"M1": "W4",
"M2": "W5",
"M3": "W3",
"M4": "W2",
"M5": "W1"
}
</answer>
Your task is to modify the given unstable matching to make it equivalent to the proposer-optimal
stable matching. You can use XML tags like <scratchpad> to explain your thought process
while computing the solution.
Once you have found a stable matching, please return your matching in the JSON format
given below:
<answer>
{
"M1": "<woman matched with M1>",
"M2": "<woman matched with M2>",
"M3": "<woman matched with M3>",
"M4": "<woman matched with M4>",
"M5": "<woman matched with M5>"
}
</answer>
Make sure that each man/woman is matched with exactly ONE partner. It is mandatory that
you provide a matching as a JSON object enclosed in <answer></answer> tags as described
above.
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J.6 Example Prompt for Repeated Queries Due to Missing JSON Object

For tasks where the desired output is a JSON object (when outputting a stable solution), models are
given an additional opportunity to rectify issues in their response if the original response is incorrectly
formatted. The prompt below is passed to the model to help rectify issues related to missing JSON
objects. Note that the <initially passed prompt> and <last 3,000 characters of LLM’s first response>
XML tags are replaced by the initial prompt and the tail of the models initial response, respectively.

Previously, I gave you the following task:
———————————————————
<initially passed prompt>
———————————————————
In your response, you either failed to provide me with a matching or did not adhere to the
JSON format I had asked for. Here are the last few lines of your response for reference:
———————————————————
<last 3,000 characters of LLM’s first response>
———————————————————
Please correct your response and provide me with the matching in the following JSON format,
enclosed in <answer></answer> tags.<answer>
{
"M1": "<woman matched with M1>",
"M2": "<woman matched with M2>",
"M3": "<woman matched with M3>",
"M4": "<woman matched with M4>",
"M5": "<woman matched with M5>"
}
</answer>
Make sure that each man/woman is matched with exactly ONE partner.

J.7 Example Prompt for Repeated Queries Due to Incorrectly Formatted JSON Object

Similar to the prompt in Appendix J.6, the following prompt is passed to the model when the model’s
initial response contains an incorrectly formatted JSON object. Once again, the <initially passed
prompt> and <last 3,000 characters of LLM’s first response> XML tags are replaced by the initial
prompt and the tail of the models initial response, respectively.

Previously, I gave you the following task:
———————————————————
<initially passed prompt>
———————————————————
In your response, you failed adhere to the JSON format I had asked for. Here are the last few
lines of your response for reference:
———————————————————
<last 3,000 characters of LLM’s first response>
———————————————————
Please correct your response and provide me with the matching in the following JSON format,
enclosed in <answer></answer> tags.<answer>
{
"M1": "<woman matched with M1>",
"M2": "<woman matched with M2>",
"M3": "<woman matched with M3>",
"M4": "<woman matched with M4>",
"M5": "<woman matched with M5>"
}
</answer>
Make sure that each man/woman is matched with exactly ONE partner.
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J.8 Example Prompt for Repeated Queries Due to Incomplete Matching

Similar to the prompt in Appendix J.6, the following prompt is passed to the model when the model’s
initial response contains a correctly formatted JSON object, but the matching itself is incomplete, or
some agents have multiple partners. After the initially passed prompt, note that additional details
are provided to assist the LLM in rectifying its response. Again, the <initially passed prompt> and
<last 3,000 characters of LLM’s first response> XML tags are replaced by the initial prompt and the
tail of the models initial response, respectively.

Previously, I gave you the following task:
———————————————————
<initially passed prompt>
———————————————————
In your response, the matching you selected involves some women being matched with
multiple men, which is not allowed. For example, W2 is matched with M1, M2, and M5.
Additionally, W3, and W4 are unmatched. Here are the last few lines of your response for
reference:
———————————————————
<last 3,000 characters of LLM’s first response>
———————————————————
Please correct your response and provide me with the matching in the following JSON format,
enclosed in <answer></answer> tags.<answer>
{
"M1": "<woman matched with M1>",
"M2": "<woman matched with M2>",
"M3": "<woman matched with M3>",
"M4": "<woman matched with M4>",
"M5": "<woman matched with M5>"
}
</answer>
Make sure that each man/woman is matched with exactly ONE partner.

K Training Examples for Fine-tuning

K.1 System-prompt (s)

This is the first part of the input, and is common across all tasks.

Below is an instruction that describes a task, paired with an input that provides further context.
Write a response that appropriately completes the request.
Before answering, think carefully about the question and create a step-by-step chain of
thoughts to ensure a logical and accurate response.

K.2 High-level instruction (u)

• Generating:

### Instruction:
You are an intelligent assistant who is an expert in algorithms. Your task is to find the
proposer-optimal stable matching, for the two-sided matching problem.
### Question:
Consider the following instance of the two-sided matching problem, where 5 men are
to be matched with 5 women.
Here are the preference lists for all individuals:

• Comprehension:
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### Instruction:
You are an intelligent assistant who is an expert in algorithms. You will be given an
instance of the two-sided matching problem, and will be asked to answer a question
about the preferences of the agents involved.
### Question:
First, here are the preference lists for all individuals:

K.3 Preference Profile (p(i))

<preferences>
{
M: {
M1: [W5,W3,W4,W2,W1],
M2: [W2,W3,W5,W1,W4],
M3: [W5,W3,W1,W4,W2],
M4: [W1,W3,W2,W5,W4],
M5: [W2,W3,W4,W1,W5],
},
W: {
W1: [M3,M5,M4,M1,M2],
W2: [M1,M3,M4,M5,M2],
W3: [M3,M2,M4,M1,M5],
W4: [M4,M2,M3,M5,M1],
W5: [M2,M4,M5,M1,M3],
}}
</preferences>
</preferences>

K.4 Task-prompt (t(i))

• Generating:

Your task is to find the proposer-optimal stable matching.
Once you have found a stable matching, please return your matching in the JSON
format given below:
<answer>
{
"M1": "<woman matched with M1>",
"M2": "<woman matched with M2>",
"M3": "<woman matched with M3>",
"M4": "<woman matched with M4>",
"M5": "<woman matched with M5>"
}
</answer>
Make sure that each man/woman is matched with exactly ONE partner. It is important
that you enclose your JSON object in <answer></answer> tags.

• Comprehension (Level-1):
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Now, you will be asked a specific question about agent preferences:
<question>
Who is agent W3’s, 5-most preferred agent?
</question>
Once you have determined the answer, provide your output in the following format:
1. The solution as a single agent name. For example, "W1"
Present your final answer within <answer> tags.
IMPORTANT: ONLY RETURN THE NAME OF THE SINGLE AGENT THAT IS THE
ANSWER TO THE QUESTION. Do not include any explanations or additional infor-
mation in your final answer.

• Comprehension (Level-2):

Now, you will be asked a specific question about agent preferences:
<question>
Would agent W3, prefer M4 and M3 over M1?
</question>
Once you have determined the answer, provide your output in the following format:
1. The solution as a YES or a NO. For example, "NO"
Present your final answer within <answer> tags.
IMPORTANT: ONLY RETURN YES OR NO THAT IS THE ANSWER TO THE QUES-
TION. Do not include any explanations or additional information in your final answer.

• Comprehension (Level-3):

Now, you will be asked a specific question about agent preferences:
<question>
If agent W5 is currently engaged to M3, would she accept proposals from M1 and
M4?
</question>
Once you have determined the answer, provide your output in the following format:
1. The solution as a YES or a NO. For example, "NO"
Present your final answer within <answer> tags.
IMPORTANT: ONLY RETURN YES OR NO THAT IS THE ANSWER TO THE QUES-
TION. Do not include any explanations or additional information in your final answer.

The input x(i) ends with the following text, to indicate the start of the chain-of-thought reasoning
trace,

### Response:
<think>

K.5 Reasoning-trace (r(i)):

• Generating:
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### Response:
<think>
Okay, so I need to find a stable matching for 5 men and 5 women. For this, I can use
the Gale-Shapley algorithm. Before I compute the solution for this instance, I will list
the steps of the Gale-Shapley algorithm.
1. Initialize all men and women as unmatched.
2. Create a list to keep track of each man’s next proposal (initially set to 0 for all
men).
3. While there are unmatched men:
a. Select an unmatched man (M).
b. Find the next woman (W) on M’s preference list that he hasn’t proposed to yet.
c. If W is unmatched, match M and W.
d. If W is matched but prefers M to her current partner:
- Unmatch W from her current partner.
- Match M and W.
- Set the unmatched man as W’s previous partner.
e. If W rejects M, move to the next woman on M’s preference list.
4. Repeat step 3 until all men are matched.
Next, I will exectute the above algorithm for the given instance. The steps are as
follows:
M1 is free. M1 proposes to W3
Since W3 is free, W3 accepts the proposal. Now M1 and W3 are matched.
M2 is free. M2 proposes to W5
Since W5 is free, W5 accepts the proposal. Now M2 and W5 are matched.
M3 is free. M3 proposes to W1
Since W1 is free, W1 accepts the proposal. Now M3 and W1 are matched.
M4 is free. M4 proposes to W4
Since W4 is free, W4 accepts the proposal. Now M4 and W4 are matched.
M5 is free. M5 proposes to W4
Since W4 prefers their current partner M4 to M5, W4 rejects the proposal. M4 and
W4 are still matched, and M5 is still free.
M5 is free. M5 proposes to W1
Since W1 prefers M5 to their current partner M3, W1 accepts the proposal. Now M5
and W1 are matched, and M3 is free.
M3 is free. M3 proposes to W4
Since W4 prefers their current partner M4 to M3, W4 rejects the proposal. M4 and
W4 are still matched, and M3 is still free.
M3 is free. M3 proposes to W3
Since W3 prefers their current partner M1 to M3, W3 rejects the proposal. M1 and
W3 are still matched, and M3 is still free.
M3 is free. M3 proposes to W2
Since W2 is free, W2 accepts the proposal. Now M3 and W2 are matched.
</think>

• Comprehension (Level-1):

Alright, I have been given the task of determining W3’s 5-most preferred agent. For
this, let me look at her preference list in order:
position 1: M4
position 2: M5
position 3: M1
position 4: M3
position 5: M2
Hence, W3’s 5-most preferred agent is M2.
</think>

• Comprehension (Level-2):
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Alright, I have been asked to determine whether agent W3 would prefer M4 and M3
over M1. For this, let me look at W3’s preference list in order:
position 1: M4
position 2: M5
position 3: M1
position 4: M3
position 5: M2
So, M4 is W3’s 1-most preferred partner, M3 is W3’s 4-most preferred partner, and
M1 is W3’s 3-most preferred partner.
Hence, agent W3 prefers M4 over M1, and agent W3 does not prefer M3 over M1.
This means that the order of preference is M4 > M1 > M3.
Therefore, since the question was whether agent W3 would prefer BOTH M4 AND
M3, given that it DOES NOT prefer M3 over M1, the answer is ’NO’.
</think>

• Comprehension (Level-3):

Alright, I have been asked to determine whether agent W5 would accept a proposal
from M1 or M4, if she is currently matched with M3. For this, let me look at W5’s
preference list in order:
position 1: M5
position 2: M4
position 3: M2
position 4: M3
position 5: M1
So, M1 is W5’s 5-most preferred partner, M4 is W5’s 2-most preferred partner, and
M3 is W5’s 4-most preferred partner.
Hence, agent W5 does not prefer M1 over their current partner M3, and agent W5
prefers M4 over their current partner M3. This means that the order of preference is
M4 > M3 > M1.
Therefore, since the question was whether agent W5 would prefer EITHER M1 OR
M4, given that it prefers M4 over M3, the answer is ’YES’.
</think>

K.6 Answer (a(i)):

• Generating:

<answer>
{
"M1": "W3",
...
"M5": "W1"
}
</answer>

• Comprehension (Level-1):

<answer>M2</answer>

• Comprehension (Level-2):

<answer>NO</answer>

• Comprehension (Level-3):

<answer>YES</answer>
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract are an accurate representation of the paper’s
contributions and scope; a more detailed summary of results and contributions is present in
Section 1.1, and detailed discussion for each result is present in subsequent sections in the
main paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of the work presented in this paper is included in the supple-
mental material (present in the appendix)

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All code and parameters required to run the experiments are present in the
main paper and the supplemental material (the supplemental code).
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

42



5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All code used to run the experiments described in the main paper and appendix
is available as a part of the supplemental material

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental settings and details (including model parameters) are detailed
in the supplemental material (in the appendix, as well as the supplemental code).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The statistical significance tests used throughout the paper have been mentioned
on Page 5 (footnote 4).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g., negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All details about computational resources used are mentioned in the supple-
mental material (in the appendix)

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper conforms in every respect with the
NeurIPS Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: the broader positive and negative societal impacts of this work are discussed in
the supplemental work (in the appendix).

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: While pretrained language models are used in this paper, all datasets and
models mentioned in this paper use randomly-generated and openly available data.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All original owners and creators of assets (code and models) have been properly
credited and respected in both the main paper and supplemental materials.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All assets introduced in the paper are well documented and openly available
through the supplemental materials.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This paper does not involve LLMs as any important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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