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ABSTRACT

The webpage-to-code task requires models to understand visual representations of
webpages and generate corresponding code. However, existing benchmarks pri-
marily focus on static screenshot-to-code tasks, thereby overlooking the dynamic
interactions fundamental to real-world web applications. To address this limi-
tation, this paper introduces IWR-Bench, a novel benchmark for evaluating the
capabilities of Large Vision-Language Models (LVLMs) in interactive webpage
reconstruction from video. IWR-Bench comprises 113 meticulously curated tasks
from 100 real-world websites, with 1,001 actions and featuring diverse interac-
tion complexities (e.g., web games), visual styles, and domains. Aligning with
standard web development practices, each task includes not only user interaction
videos but also all crawled static assets (e.g., images, videos). This benchmark
evaluates models on two fundamental challenges: comprehensive multi-modal
reasoning to infer interaction logic from video and assets, and advanced code
generation to translate this logic into functional code. An agent-as-a-judge frame-
work with a comprehensive metric system automatically assesses the functional
correctness and visual fidelity of generated webpages. Extensive experiments on
28 LVLMs reveal a significant challenge: the best model achieves an overall score
of only 36.35%, as functional correctness (24.39% IFS) lags significantly behind
visual fidelity (64.25% VFS). These results highlight critical limitations in current
models’ ability to reason about temporal dynamics and synthesize event-driven
logic, establishing IWR-Bench as a challenging frontier for vision-language re-
search. The benchmark and evaluation code would be made publicly available.

1 INTRODUCTION

Recent advances in Large Vision-Language Models (LVLMs) have unlocked remarkable capabilities
in visual understanding and code generation (OpenAI, 2025; Comanici et al., 2025; Bai et al., 2025).
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Figure 1: Performance of 10 representative models on IWR-Bench. For a comprehensive list of all
28 model results, see Table 3.
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<!DOCTYPE html> 
<html lang="en"> 
<title>IMDb - Mock</title>   

<style> 
:root { 
    --sidebar-width:320px 
    --sidebar-bg: #313131; 
} 
</style>

<script>   
  document.addEventListener
('DOMContentLoaded', () => 
{const ELEMENTS = {   
    logo: { name: ‘Logo’, img: 
'__PLACEHOLDER_ASSETS
_BASE_DIR__/logo.svg' }
   }}) 
</script> 
 ...

Generated code(b) Assets(a) Video

Agent as a judge

Evaluation

Checkpoint-based
Evaluation

Action passed
Action failed+1 +1 +1 +0

MLLMs

Action: Open URL ;
Visual_Eval: true

Action: Click ;
Action Params: “Click the 
first result of 'The Dark 
Knight' title.” ;
Visual_Eval: false

Action: Type ;
Action Params: “Type ‘good 
movie’ into the ‘Title of your 
review’ input field.” ;
Visual_Eval: false

Action: Click ;
Action Params: “Click the 
9th star to set the rating to 
9/10.” ;
Assertion: “The text ‘Rating 
updated successfully: 9/10’ 
appears” ;
Visual_Eval: false

(c) Actions Annotation

Figure 2: Overview of the IWR-Bench task and evaluation. The inputs to the model are (a) a
user interaction video and (b) composite images of all static assets sniffed from the webpage. The
evaluation employs an agent-as-judge framework (Zhuge et al., 2024), where an automated agent
assesses the rendered page’s interactivity by executing (c) a ground-truth action sequence and its
visual fidelity through screenshot comparison.

State-of-the-art models can now translate a static screenshot of a webpage into corresponding HTML
with impressive fidelity (Yun et al., 2024; Gui et al., 2025). This nascent success, however, highlights
a fundamental limitation of current evaluation methodologies. Existing benchmarks are either con-
fined to static reconstruction (e.g., Design2Code (Si et al., 2024), WebSight (Laurençon et al., 2024))
or model interactions as single-step, stateless events from image pairs (e.g., Interaction2Code (Xiao
et al., 2025)), while also failing to provide the necessary static assets for reconstruction. This simpli-
fied setup falls short of capturing the continuous, stateful workflows and complete resource context
characteristic of real-world web applications. The disconnect between demonstrated capabilities and
the demands of true interactivity motivates our central research question: Can LVLMs reconstruct
the dynamic, interactive functionalities of a webpage from observing a user interaction video?

Reconstructing an interactive webpage from video poses two fundamental challenges. The first,
comprehensive multi-modal perception and reasoning (Luo et al., 2024; Gupta & Kembhavi,
2023; Song et al., 2025; Deka et al., 2017; Lee et al., 2023), is the process of inferring latent interac-
tion logic from dynamic visual evidence. This requires a model to ground its temporal understanding
of observed interactions in a precise visual comprehension of the resultant UI states. A critical facet
of this reasoning is robust image matching to associate dynamic elements with their static asset
counterparts. The second challenge, advanced code generation (Jimenez et al., 2024; Xiao et al.,
2025; Li et al., 2022), is the translation of this inferred logic into functional code that implements
the complex, stateful logic of interactive applications (e.g., web-games like 2048 and Minesweeper).

The construction of a comprehensive benchmark for interactive webpage reconstruction confronts
three pivotal challenges. The first pertains to ensuring Diverse Interaction Coverage, which ne-
cessitates the curation of tasks spanning a broad spectrum of interaction paradigms and visual com-
plexities, while simultaneously adhering to strict standardization for reproducible evaluation. The
second challenge centers on the establishment of an Authentic Task Environment. Departing from
prior benchmarks characterized by incomplete setups or placeholder assets (Jiang et al., 2025; Gui
et al., 2025), this requires the meticulous curation of a complete set of authentic resources from live
websites. Such resources must encompass both static assets, such as images and icons, and dynamic
content, such as embedded videos, to faithfully represent real-world development contexts. The final
challenge lies in the formulation of a Robust Automated Evaluation protocol. Conventional met-
rics, including pixel-wise similarity, are insufficient for this purpose (Zhang et al., 2018; Caron et al.,
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Operation Description (High

Level)

V1-Simple Layout (11.50%) V2-Standard Grid Layout (43.36%)

V3–Complex Layout (35.40%) V4-Data Intensive Layout (9.73%)

(2). Complexity of Layout & Visuals(1). Core Domain/Functionality

(3). Complexity of Interaction Logic
L2-Simple State(47.79%) L3-Complex Workflow(33.63%) L4-Algorithmic/Game(10.62%)L1-Static Display(7.96%)

Figure 3: An overview of the IWR-Bench taxonomy, which organizes tasks along three orthogonal
axes: Domain, Visual Complexity, and Interaction Logic.

2021; Radford et al., 2021), as they cannot appraise functionality. An effective protocol must there-
fore employ programmatic interaction with the generated webpage to ascertain both the functional
integrity of its components and the state-wise visual consistency across dynamic transitions.

This paper formalizes the task of Interactive Webpage Reconstruction (IWR) and introduces IWR-
Bench, a comprehensive benchmark that addresses these fundamental design challenges. To ensure
comprehensive coverage, tasks are taxonomized along orthogonal axes of application domain, vi-
sual complexity, and interaction logic, as illustrated in Figure 3. Each task instance, as depicted in
Figure 2, then provides the model with (a) an interaction video that captures a complete, stateful
workflow, and (b) the full set of crawled static assets. This setup ensures a realistic reconstruction
context. Evaluation is conducted via programmatic interaction: an ‘agent-as-a-judge’ executes a
ground-truth (c) action sequence to assess the generated webpage’s functionality. Performance is
quantified by two holistic metrics: the Interactive Functionality Score (IFS), a unified measure of
operational and logical correctness, and the Visual Fidelity Score (VFS), a composite metric inte-
grating low-level features with high-level semantic evaluation.

An extensive evaluation on 28 leading LVLMs reveals substantial challenges posed by the IWR
task. The top-performing proprietary model, GPT-5, achieves a Final Score of 36.35%. A clear
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performance hierarchy is observed, as leading open-source models attain lower scores, and video-
specialized models lag even further behind. For the top-performing model, a significant disparity
exists between its functional correctness (24.39% IFS) and visual fidelity (64.25% VFS). This gap
indicates a fundamental limitation across the field: while models can reproduce static layouts with
moderate success, their capacity for synthesizing event-driven logic remains severely underdevel-
oped.

Our key contributions are:

• A Benchmark for Interactive Webpage Reconstruction. We introduce IWR-Bench, the first
benchmark to formalize and evaluate Interactive Webpage Reconstruction (IWR) from video. It
comprises 113 curated tasks from real-world websites, taxonomized along axes of domain, visual
complexity, and interaction logic.

• A Functionality-Centered Automated Evaluation Protocol. We develop a robust evaluation
protocol that employs a programmatic agent to assess functional correctness by executing ground-
truth action sequences. Performance is quantified by two holistic metrics: the Interactive Func-
tionality Score (IFS) and the Visual Fidelity Score (VFS).

• An Extensive Evaluation and Analysis. We conduct a comprehensive evaluation of 28 lead-
ing LVLMs, establishing strong initial baselines. The results reveal a critical performance gap
between visual replication and functional implementation. Further analysis identifies systematic
weaknesses in temporal reasoning and logic synthesis, outlining concrete directions for future
research.

2 RELATED WORK

Webpage Understanding. Webpage understanding evolved from structural analysis based on DOM
parsing to a subsequent multimodal perspective that jointly represents a page’s visual and textual
content (Furuta et al., 2023; Burns et al., 2023; Liu et al., 2024a). Large Vision-Language Mod-
els (LVLMs) have advanced webpage understanding by enabling a unified approach where a single
model demonstrates strong performance across diverse downstream tasks, indicative of deep com-
prehension, such as element grounding (Team, 2025) and screen-based question answering (Wang
et al., 2024b; Xu et al., 2024). Among these capabilities, generating code from a visual webpage rep-
resentation is a key task where existing models have demonstrated strong performance (Beltramelli,
2018; Yun et al., 2024; Gui et al., 2025). With the enhanced capabilities of LVLMs in handling
multiple images or videos (Bai et al., 2025; OpenAI, 2025; Guo et al., 2025; Comanici et al., 2025),
a logical extension of this capability is the generation of interactive webpages, moving beyond static
layouts to better mimic real-world applications.

LVLM Benchmarks. The development of benchmarks for LVLMs has been driven by the rapid
expansion of their capabilities, leading to evaluations of increasing complexity (Jimenez et al., 2024;
Yang et al., 2024; Mialon et al., 2023; Lu et al., 2023). This progression is evident in the evolution
from single-image comprehension to multi-image reasoning and video understanding (Yue et al.,
2024; Li et al., 2023; Wang et al., 2024a; Liu et al., 2024b; Hu et al., 2025; Li et al., 2024; Fang
et al., 2024; Fu et al., 2025; Ning et al., 2023; Chen et al., 2024; Yang et al., 2024; Lu et al.,
2025). Concurrently, in the web domain, benchmarks have targeted either webpage understanding
or static code generation from a single screenshot (Beltramelli, 2018; Laurençon et al., 2024; Yun
et al., 2024; Si et al., 2024; Gui et al., 2025; Jiang et al., 2025; Awal et al., 2025; Xu et al., 2025),
with works like IWR-Bench (Guo et al., 2024) creating more robust evaluation metrics for this
task, while others like PairBench (Feizi et al., 2025) investigate the fundamental reliability of using
models as evaluators. A recent advancement, Interaction2Code (Xiao et al., 2025), extends this
by generating code from discrete interaction traces. However, such approaches primarily evaluate
single-step, stateless events, rather than the complete, stateful workflows captured in continuous
video. Therefore, a critical disconnect exists between model capabilities for dynamic inputs and the
benchmarks for interactive web generation.
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3 IWR-BENCH

3.1 TASK DEFINITION AND STRUCTURE

The Interactive Webpage Reconstruction (IWR) task challenges models to generate functional web
code from observing user interactions. Formally, given a video V = {f1, ..., fn} demonstrating user
interactions and a set of static assets A = {a1, ..., am} from the original webpage, the model must
generate code C that reproduces both the visual appearance and interactive behavior observed in V .
Each task instance in IWR-Bench comprises four key components:

• Video Recording: A screen capture documenting complete user interactions, preserving temporal
dynamics and state transitions that define the webpage’s behavior.

• Static Web Assets: All relevant images, icons, and videos necessary for reconstruction. To pre-
vent models from leveraging prior knowledge based on semantic filenames (e.g., logo.png), all
asset filenames are anonymized (e.g., renamed to asset 001.png) (Agrawal et al., 2018; Gurari
et al., 2018). This forces the model to rely on visual matching and reasoning.

• Action Trajectory: A structured sequence T = {(ai, pi, di, vi, li)}ki=1 where each action contains
type ai, parameters pi, a natural language description di, a visual evaluation flag vi, and logical
assertions li for verification.

• Checkpoint Screenshots: Stable-state images S = {s1, ..., sk} capturing the visual state after
each action. This ensures evaluation occurs on fully rendered pages rather than on transitional
states.

3.2 BENCHMARK CONSTRUCTION

Annotation of action 
descriptions for evaluation 

agent execution

Stable-state checkpoint 
screenshots after each 

action for visual validation

Annotations include logical 
assertions and directives for 

non-visual actions.

Task Sourcing and Curation

Expert-level tasks 
from real websites 

(n=200)

Deduplication
 &

diversity balancing(n=161)

Interaction Recording and 
Asset Collection

Interaction video 
capture with 

timestamped action logs

Comprehensive collection 
of static assets (images, 
icons, embedded videos)

Verification and Finalization

Cross-verification ensures 
correct trajectories, complete 
assets, accurate checkpoints.

Removal of disputed or 
trivial cases (final n=113)

Ground-Truth Trajectory and 
Checkpoint Annotation

Figure 4: The overview of Benchmark construction.

Establishing and maintaining high standards for annotation quality and impartiality is a central de-
sign principle in the development of IWR-Bench. The process is shown in Figure 4.

Task Sourcing and Curation. The process begins with an initial set of 200 candidate tasks sourced
from real-world websites by experts in web development. Each task is defined by a high-level
goal and a URL to reflect common usage patterns. Through a rigorous curation process involving
deduplication and balancing for diversity across predefined axes, such as domain and complexity
(Figure 3), this set is reduced to a high-quality candidate pool of 161 tasks for annotation.

Interaction Recording and Asset Collection. For each curated task, interactions on the live website
are performed by trained annotators and captured as screen recordings, while a browser extension
concurrently records the action type ai and parameters pi for each action (Yun et al., 2024; Zhou
et al., 2023). In parallel, all relevant static assets, such as images and icons, are collected via auto-
mated crawlers and manual inspection.

Ground-Truth Trajectory and Checkpoint Annotation. The raw recordings and action logs are
converted into the final ground-truth representation. For each action, the logged type ai and param-
eters pi are augmented through a three-step annotation process: (1) a natural language description
di is authored to provide a clear instruction; (2) a visual evaluation flag vi is assigned, and a corre-
sponding checkpoint screenshot si is captured only when this flag is true, signifying a major visual
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state change; and (3) an optional logical assertion li is defined where necessary to programmatically
verify functional correctness, such as the appearance of a message or game logic.

Verification. Each annotated task undergoes a two-stage quality assurance process. First, a cross-
verification review by a different annotator assesses trajectory correctness, asset completeness, and
checkpoint fidelity, with a large model additionally used to verify the accuracy of logical assertions
against the ground truth (Zheng et al., 2023; Gou et al., 2025). All identified discrepancies are rec-
tified. Finally, disputed, ambiguous, or overly trivial tasks are filtered out, leaving a final collection
of 113 verified tasks.

3.3 TAXONOMY AND STATISTICS

Table 1: Key Statistics of IWR-Bench.

Statistic Number

Video & Resolution Statistics
Total Videos 113

- Short Videos (≤20s) 25 (22.1%)
- Medium Videos (20 ∼ 60s) 72 (63.7%)
- Long Videos (>60s) 16 (14.2%)

Video Duration (avg/max) 35.4s / 172.9s
Unique Resolutions 19

- Mobile 10.62%

Evaluation Statistics
Total Actions in Sequences 1001

- Visual Evaluation 620
- Assertion Checks 403

Actions per Video (avg) 8.9

IWR-Bench organizes tasks along three orthogo-
nal axes (Figure 3; see Appendix A for details):
(1) Domain Coverage, which spans 5 major and
16 subcategories such as e-commerce and educa-
tion to reflect real-world web diversity; (2) Visual
Complexity, which scales from minimalist lay-
outs to data-dense dashboards; and (3) Interaction
Logic, which progresses from static content dis-
play to complex workflows and algorithmic game
logic.

Table 1 presents key statistics. The benchmark
includes 113 videos averaging 35.4 seconds, with
1,001 total actions across all sequences. Of these,
620 require visual evaluation and 403 include as-
sertion checks, ensuring comprehensive assess-
ment of both appearance and functionality. Tasks
average 8.9 actions, with 10.62% targeting mobile interfaces, reflecting modern web usage patterns.

3.4 COMPARISON TO OTHER BENCHMARKS

As detailed in Table 2, IWR-Bench addresses a critical gap between webpage reconstruction and
video understanding benchmarks. Existing webpage reconstruction benchmarks either focus on
static image-to-code tasks (e.g., Pix2Code, WebSight) or model interaction as stateless, single-step
events without providing the necessary static assets for reconstruction (e.g., Interaction2Code). Con-
versely, general video understanding benchmarks (e.g., MVBench) are designed for comprehension
tasks like Video QA, not code generation.

IWR-Bench overcomes these limitations by using videos of stateful, full-trajectory workflows from
live websites. Interaction2CodeXiao et al. (2025), the most closely related benchmark, focuses
on stateless, single-step events captured by image pairs from archived pages, whereas IWR-Bench
requires temporal reasoning over complete user workflows with state transitions. Notably, while all
existing webpage reconstruction benchmarks, including Interaction2Code, remove static assets to
simplify the task, IWR-Bench provides all original assets (images, videos, icons) to enable realistic
visual-to-asset grounding. This asset provision further allows the evaluation protocol to compute
page-level visual similarity metrics, ensuring comprehensive assessment of reconstruction fidelity.

4 EVALUATION AND METRICS

4.1 EVALUATION PROTOCOL

The evaluation of generated code C is conducted using a deterministic executor built upon the
browser-use library (browser-use, 2025). This executor programmatically interacts with the ren-
dered webpage by sequentially executing each pre-defined action ai from the ground-truth action
trajectory T . This design isolates the evaluation to code execution and removes any dependency on
high-level task planning, thereby ensuring a stable and reproducible protocol.
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Table 2: Comparison of IWR-Bench with existing benchmarks. IWR-Bench is unique in its sourcing
from live websites, video-based tasks, comprehensive interactive evaluation, and provision of static
assets to create a realistic reconstruction task.

Benchmark Task Type Data Source Videos
Images

(Checkpoints)
Asset
Input

Desktop
& Mobile

Interactive
Evaluation

(a) Webpage Reconstruction Benchmarks
Pix2Code (Beltramelli, 2018) Image-to-Code Synthesized – 1.7K ✗ ✓ ✗
DWCG (Yun et al., 2024) Image-to-Code Synthesized – 60K ✗ ✗ ✗
WebSight (Laurençon et al., 2024) Image-to-Code Synthesized – 2M ✗ ✗ ✗
Design2Code (Si et al., 2024) Image-to-Code C4 – 484 ✗ ✗ ✗
CC-HARD (Gui et al., 2025) Image-to-Code C4 – 128 ✗ ✗ ✗
ScreenCoder (Jiang et al., 2025) Image-to-Code Live Websites – 3K ✗ ✗ ✗
Interaction2Code (Xiao et al., 2025) Images-to-Code C4 & GitHub – 374 ✗ ✗ ✓(Single-step)

(b) Video Understanding Benchmarks
MMBench-Video (Fang et al., 2024) Video QA - 609 – – – –
MVBench (Li et al., 2024) Video QA - 20K – – – –
Video-MME (Fu et al., 2025) Video QA - 900 – – – –
Video-MMMU (Hu et al., 2025) Video QA - 300 – – – –

IWR-Bench (Ours) Video-to-Code Live Websites 113 620* ✓ ✓ ✓(Full Trajectory)

* These are images used for evaluating visual fidelity across interaction states.

The evaluation of the trajectory proceeds step-by-step. At each step i, the action ai is attempted. The
action is considered a failure under two conditions: (1) it is operationally infeasible (e.g., a target
element is not found), or (2) its corresponding logical assertions li are not satisfied.

For logical assertion verification, an MLLM judge, specifically Gemini-2.5-Pro (Comanici et al.,
2025), is employed to analyze screenshots of the page state before and after an action to determine
its correctness. The prompt for this judge is detailed in Appendix E. Upon the successful completion
of an action, a new screenshot is captured. If the visual evaluation flag vi for this step is true, the new
screenshot undergoes a visual fidelity assessment. This assessment is based on a composite score
that integrates OCR-based text similarity (Cui et al., 2025), DINO-based structural similarity (Oquab
et al., 2023), and a high-level evaluation also conducted by Gemini-2.5-Pro (see Appendix E for
the prompt). Actions where vi is false, which typically involve insignificant or stochastic visual
changes, are omitted from this visual assessment phase.

4.2 METRICS

Model performance is quantified through a hierarchy of metrics designed to measure functional
correctness, visual fidelity, and overall task completion.

Interactive Functionality Score (IFS). This metric measures a model’s ability to generate func-
tionally correct code. An action ai from the trajectory T is considered successful if and only if
it executes without operational errors and all associated logical assertions li are satisfied, as deter-
mined by the protocol in Section 4.1. The IFS is defined as the ratio of successfully completed
actions (Nsucc) to the total number of actions (Ntotal).

IFS =
Nsucc

Ntotal
(1)

Visual Fidelity Score (VFS). The VFS assesses the visual quality of the rendered user interface.
This score is computed exclusively over checkpoints that were successfully reached and have the
visual evaluation flag enabled (vi = true). Let Iv,succ be the set of indices for these qualifying
checkpoints. The score for each checkpoint i ∈ Iv,succ is a weighted combination of two compo-
nents: a Low-level Visual Score (SLVS,i), which averages an OCR-based Levenshtein similarity and a
DINO-based cosine similarity, and a High-level Visual Score (SHVS,i), which is a holistic assessment
from the MLLM judge. The final VFS is the macro-average of these checkpoint scores. The weight
w is set to 0.5 based on validation studies (Section 5.4).

VFS =
1

|Iv,succ|
∑

i∈Iv,succ

(w · SLVS,i + (1− w) · SHVS,i) (2)

Final Score. The Final Score is defined by combining the IFS and VFS with fixed weights. For
steps where actions cannot be executed, no images are available to compute visual similarity scores.

7
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An alternative weighting scheme based on the ratio of successful (Nsucc) to total (Ntotal) steps was ex-
plored, but it proved ineffective for differentiating model performance. Therefore, a simple weighted
combination is adopted with the weighting factor α set to 0.7 (see Section 5.4). By assigning sub-
stantial weight to the IFS component, the impact of unreachable states on overall evaluation is ap-
propriately reflected. All reported scores are macro-averaged across the entire benchmark.

Final Score = α · IFS + (1− α) · VFS (3)

5 EXPERIMENTS

5.1 EVALUATION SETUP

Evaluation Models. The evaluation is conducted on a diverse set of 28 leading Large Vision-
Language Models (LVLMs) to establish a comprehensive performance baseline on IWR-Bench.
This selection encompasses both proprietary and open-source models, as well as specialized video
understanding models. The full list of evaluated models and their performance is detailed in Table 3.

Implementation Details. For each task in IWR-Bench, models are provided with the user inter-
action video and a composite image of all crawled static assets. To accommodate models without
native video support, each video is sampled at 1 fps, with the number of frames capped at 64.
Videos exceeding 64 seconds are uniformly downsampled to meet this limit. The video (or its sam-
pled frames) and the composite image are arranged as a sequential, multi-image input. The task is to
generate a single, self-contained HTML file that integrates all necessary CSS and JavaScript to repli-
cate the observed webpage. All other inference parameters utilize the default settings recommended
by the model providers. The complete prompt templates are detailed in Appendix E.

5.2 MAIN RESULTS

The comprehensive evaluation results on IWR-Bench are presented in Table 3. The findings reveal a
clear performance landscape, highlighting the substantial difficulty of the task and surfacing several
key observations regarding current model capabilities, with case studies provided in Appendix F.

A Clear Performance Hierarchy Is Observed Across Model Categories. The results on IWR-
Bench show a pronounced performance stratification across model categories. Proprietary multi-
modal large language models are positioned in the upper echelon, with GPT-5 obtaining the high-
est Final Score (36.35). This is followed by a competitive cluster that includes Claude-Sonnet-4
(thinking) (34.62), Claude-Opus-4 (thinking) (34.13), Doubao-seed-1.6 (34.02), and Claude-Sonnet-
4 (34.00). The top-performing open-source model, Qwen3-VL (thinking), has a score of 31.15. This
score is lower than that of the leading proprietary group but surpasses several mid-tier proprietary
entries, such as GPT-4o (latest) (29.55). At the lower end of the performance spectrum, video-
specialized models like VideoLLaMA3-7B (13.67) and InternVideo-2.5-Chat-8B (10.07) are found.
This hierarchy indicates that general multimodal reasoning and code generation capabilities are more
critical for success on IWR-Bench than specialized video-processing architectures.

Interactive Functionality Remains the Primary Performance Bottleneck. A substantial perfor-
mance gap exists between static visual replication and dynamic functionality implementation. This
gap is reflected in the consistently higher Visual Fidelity Scores (VFS) compared to the Interactive
Functionality Scores (IFS). For instance, GPT-5 obtains the highest visual metrics (LVS 68.29, HVS
60.21, VFS 64.25), yet its corresponding IFS is only 24.39. A similar pattern is observed for Claude-
Sonnet-4, which has the second-highest VFS (61.34) but an IFS of only 22.29. The difficulty of this
task is further underscored by the low absolute IFS values, with the highest score remaining below
25, highlighting that interactive webpage reconstruction is a largely unsolved problem.

Reasoning Enhancement Provides Consistent but Moderate Gains. Consistent but moderate
performance improvements are observed when using reasoning-enhanced inference. For instance,
the “thinking” variant of Claude-Sonnet-4 shows higher performance in both Final Score (34.62
vs. 34.00) and IFS (23.65 vs. 22.29). A similar trend is noted for Claude-Opus-4 (Final 34.13
vs. 33.33; IFS 23.61 vs. 21.83) and Gemini-2.5-Pro (Final 30.36 vs. 30.31; IFS 21.65 vs. 20.51).
This evidence indicates that while enhanced reasoning acts as a useful refinement, the base model’s
capability remains the primary factor determining the performance ceiling on IWR-Bench.
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Table 3: Main evaluation results on IWR-Bench. Models are grouped by category and sorted by
Final Score. Reasoning-enhanced (‘thinking’) model variants are highlighted in gray. The best
result in each column is bolded, and the second-best is underlined.

Model
Low-level

Visual
Score

High-level
Visual
Score

Visual
Fidelity
Score

Interactive
Functionality

Score

Final
Score

Proprietary MLLMs
GPT-5 (OpenAI, 2025) 68.29 60.21 64.25 24.39 36.35
Claude-Sonnet-4 (thinking) (anthropic, 2025b) 64.90 55.51 60.20 23.65 34.62
Claude-Opus-4 (thinking) (anthropic, 2025a) 63.53 53.80 58.67 23.61 34.13
Doubao-seed-1.6 (bytedance, 2025) 65.95 55.62 60.79 22.55 34.02
Claude-Sonnet-4 (anthropic, 2025b) 65.75 56.92 61.34 22.29 34.00
Claude-Opus-4 (anthropic, 2025a) 65.23 55.13 60.18 21.83 33.33
GPT-5-mini (OpenAI, 2025) 63.36 50.25 56.81 23.18 33.27
GPT-4.1 (OpenAI, 2025) 63.07 54.63 58.85 20.48 31.99
Gemini-2.5-Pro (thinking) (Comanici et al., 2025) 54.52 46.83 50.67 21.65 30.36
Gemini-2.5-Pro (Comanici et al., 2025) 57.46 48.91 53.18 20.51 30.31
GPT-4o (latest) (Hurst et al., 2024) 63.39 51.71 57.55 17.55 29.55
Gemini-2.5-Flash (Comanici et al., 2025) 47.53 37.75 42.64 19.88 26.71
GPT-5-nano (OpenAI, 2025) 53.49 35.70 44.59 18.17 26.10
Grok-4 (X.ai, 2025) 48.95 30.54 39.74 19.44 25.53
GPT-4o (0806) (Hurst et al., 2024) 54.03 39.83 46.93 15.87 25.19
Doubao-seed-1.6-flash (bytedance, 2025) 45.49 32.06 38.78 16.34 23.07
Gemini-2.5-Flash-Lite (Comanici et al., 2025) 28.95 19.05 24.00 13.29 16.50

Open-Source MLLMs
Qwen3-VL (thinking) (QwenTeam, 2025) 58.55 46.13 52.34 22.07 31.15
Qwen2.5-VL-72B (Bai et al., 2025) 47.83 28.25 38.04 17.42 23.61
Qwen2.5-VL-32B (Bai et al., 2025) 39.36 23.30 31.33 16.50 20.95
Keye-VL-1.5-8B (Yang et al., 2025) 30.81 15.49 23.15 16.06 18.18
MiniCPM-V-4.5 (Yu et al., 2025) 31.18 15.41 23.29 15.58 17.89
Qwen2.5-VL-7B (Bai et al., 2025) 28.92 12.20 20.56 13.28 15.47
Kimi-VL (thinking) (Team et al., 2025b) 26.18 12.23 19.20 12.04 14.19
Mimo-VL-7B (Team et al., 2025a) 23.28 4.99 14.14 10.57 11.64
GLM-4.5V (Team et al., 2025c) 16.31 10.52 13.41 10.11 11.10

Open-Source Video-Specialized LMs
VideoLLaMA3-7B (Zhang et al., 2025) 31.29 11.86 21.58 10.29 13.67
InternVideo-2.5-Chat-8B (Wang et al., 2025) 17.27 3.33 10.30 9.97 10.07

5.3 PERFORMANCE ANALYSIS ACROSS TASK DIMENSIONS

A fine-grained analysis (detailed in Appendix B) reveals distinct performance patterns. The synthe-
sis of event-driven functionality is the primary bottleneck, evidenced by a sharp performance drop
from static (L1) to interactive (L2-L4) tasks (Table 4). Models also struggle with highly structured
layouts (Table 5). Performance varies by domain, with relative strength in “Entertainment & Media”
(Table 6), pointing to structured code generation and state management as key research directions.

5.4 VALIDATION OF THE EVALUATION PROTOCOL

The robustness and reliability of the evaluation protocol are validated through a rigorous, two-part
analysis that addresses both the metric parameters and the agent-as-a-judge methodology (Zheng
et al., 2023; Gou et al., 2025; Maaz et al., 2023). First, the weighting coefficients (w and α) for the
scoring metrics are determined through a human alignment study, with the detailed procedure and re-
sults presented in Appendix C. Second, the agent-as-a-judge framework is validated through a multi-
stage process. This process includes a meticulous cross-verification of annotated action trajectories
(Section 3.2), automated verification of logical assertions using an MLLM-based judge(Comanici
et al., 2025), and manual inspection of the agent’s operational fidelity. For the manual inspection,
three PhD students observed the agent’s execution on 100 randomly sampled, model-generated web-
pages, with the browser’s headless mode disabled to compare on-screen behavior against evaluation
logs. Failures in the agent’s evaluation were observed in only three instances. These issues typically
stemmed from ambiguous element descriptors (e.g., buttons with identical names), which required
a more precise locator (d i). All identified discrepancies were subsequently rectified.
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6 CONCLUSION

This paper introduces IWR-Bench, the first benchmark designed to evaluate Interactive Webpage
Reconstruction from video. Through an automated agent-as-a-judge evaluation protocol, perfor-
mance is quantified using two metrics: the IFS and the VFS. Comprehensive evaluations on 28
LVLMs reveal a stark disparity between visual replication and functional implementation. While
models achieve moderate success in reconstructing static appearance (VFS), their ability to generate
correct, event-driven logic remains critically limited, as shown by low IFS scores across the board.
This finding indicates that the primary bottleneck for current models is not visual understanding but
the synthesis of complex interaction logic. IWR-Bench thus establishes a challenging new frontier
for vision-language research, highlighting the need for future work to focus on temporal reasoning,
dynamic asset binding, and robust code synthesis to create truly functional web applications.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Aishwarya Agrawal, Dhruv Batra, Devi Parikh, and Aniruddha Kembhavi. Don’t just assume;
look and answer: Overcoming priors for visual question answering. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 4971–4980, 2018.

anthropic. claude-opus. https://www.anthropic.com/claude/opus, 2025a.

anthropic. claude-sonnet-4. https://www.anthropic.com/claude/sonnet, 2025b.

Rabiul Awal, Mahsa Massoud, Aarash Feizi, Zichao Li, Suyuchen Wang, Christopher Pal, Aish-
warya Agrawal, David Vazquez, Siva Reddy, Juan A Rodriguez, et al. Webmmu: A bench-
mark for multimodal multilingual website understanding and code generation. arXiv preprint
arXiv:2508.16763, 2025.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Tony Beltramelli. pix2code: Generating code from a graphical user interface screenshot. In Pro-
ceedings of the ACM SIGCHI symposium on engineering interactive computing systems, pp. 1–6,
2018.

browser-use. browser-use. https://browser-use.com/, 2025.

Andrea Burns, Krishna Srinivasan, Joshua Ainslie, Geoff Brown, Bryan A Plummer, Kate Saenko,
Jianmo Ni, and Mandy Guo. A suite of generative tasks for multi-level multimodal webpage
understanding. arXiv preprint arXiv:2305.03668, 2023.

bytedance. seed1x6. https://seed.bytedance.com/en/seed1x6, 2025.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
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A MULTI-DIMENSIONAL TASK TAXONOMY

To move beyond a monolithic view of difficulty and enable a fine-grained analysis of model capabil-
ities, we developed a three-dimensional taxonomy to classify each task. This taxonomy categorizes
tasks along the orthogonal axes of Interaction Complexity, Visual Complexity, and Application Do-
main, providing a structured framework to understand the specific challenges inherent in each task
and to diagnose model failure modes with high precision.

Interaction Complexity (L1-L4) This first axis categorizes tasks based on the depth of logical
and temporal understanding required for successful reconstruction.

• L1: Static Content Consumption. Tasks involve passive information consumption, pri-
marily requiring correct handling of vertical scrolling to reconstruct long pages that extend
beyond a single viewport (e.g., browsing a blog post or a project’s README).

• L2: Simple State Manipulation. Tasks feature components that manage local state, such
as filtering e-commerce results, switching between on-page tabs, or expanding/collapsing
accordion menus. This level tests the generation of basic client-side event handlers.

• L3: Complex Workflow Interaction. These tasks involve multi-step, sequential inter-
actions where state is passed between components, such as a multi-step product config-
urator or an online booking process. This tests understanding of application logic and
inter-component communication.

• L4: Algorithmic/Game Logic. The most complex level requires the model to reverse-
engineer and implement a set of rules or algorithms, such as an online calculator, a text-
based puzzle, or a simple game like 2048.

Visual Complexity (V1-V4) This second axis captures the static challenge of rendering the web-
page’s appearance, focusing on its layout and styling.

• V1: Minimalist Layouts. Simple, single- or two-column structures with standard element
alignment, typical of documentation or text-heavy sites.

• V2: Standard Grid-based Layouts. Organized grid systems are used in e-commerce or
news portals, featuring numerous but regularly arranged elements.

• V3: Asymmetric & Modern Layouts. Visually-driven designs with complex CSS, such
as overlapping elements, parallax scrolling, and non-standard component shapes.

• V4: Data-Dense Layouts. Dashboards or admin panels with a high density of information
presented in charts, tables, and data cards, testing the ability to generate precise, repetitive
structures.

Application Domain To ensure our benchmark reflects the breadth of real-world web applications,
the third axis classifies tasks by their Application Domain. Drawing inspiration from established
taxonomies in web-centric agent research (Gou et al., 2025), we group tasks into five high-level
domains: Commerce & Services (e-commerce, booking, finance), Knowledge & Education (aca-
demic sites, news portals, documentation), Productivity & Tools (calculators, project management
boards), Entertainment & Media (games, streaming platforms), and Lifestyle & Community (so-
cial forums, blogs). This classification guarantees that models are evaluated across a diverse spec-
trum of functionalities and visual paradigms. For instance, a task involving filtering products on an
e-commerce site is tagged as [L2, V2, Commerce], while a task requiring the reconstruction of a
simple browser game is tagged as [L4, V1, Entertainment]. This multi-dimensional labeling allows
us to analyze whether a model’s performance correlates with certain types of interactions, visual
styles, or application contexts.

B DETAILED EXPERIMENTAL RESULTS

This appendix provides a comprehensive breakdown of model performance on IWR-Bench across
the three classification axes defined in the taxonomy: Application Domain (Table 6), Interaction
Logic Complexity (Table 4), and Visual Complexity (Table 5). For each task category, the Final
Score is reported.
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Table 4: Final Score breakdown by Interaction Logic Complexity.

Model Static Content
Consumption (L1)

Simple State
Manipulation (L2)

Complex Workflow
Interaction (L3)

Algorithmic/Game
Logic (L4)

Proprietary MLLMs
GPT-5 61.85 35.43 35.12 25.26
Claude-Sonnet-4 (thinking) 65.75 33.88 31.05 25.86
Claude-Opus-4 (thinking) 61.78 31.52 32.57 30.07
Doubao-seed-1.6 63.69 34.03 30.12 24.08
Claude-Sonnet-4 68.36 31.04 32.86 25.15
Claude-Opus-4 66.88 30.85 31.30 25.76
GPT-5-mini 56.83 32.10 31.38 26.84
GPT-4.1 51.45 30.32 31.98 24.78
Gemini-2.5-Pro (thinking) 68.96 26.88 28.15 23.83
Gemini-2.5-Pro 59.58 31.51 23.95 22.58
GPT-4o (latest) 48.61 29.09 27.53 23.75
Gemini-2.5-Flash 56.57 24.95 25.53 15.00
GPT-5-nano 46.23 25.57 24.31 19.02
Grok-4 48.37 24.94 22.76 19.53
GPT-4o (0806) 38.59 24.95 24.65 17.90
Doubao-seed-1.6-flash 42.77 22.14 22.65 13.88
Gemini-2.5-Flash-Lite 35.34 15.61 13.87 14.70

Open-Source MLLMs
Qwen3-VL (thinking) 51.05 30.43 29.86 23.60
Qwen2.5-VL-72B 45.35 22.83 21.90 15.46
Qwen2.5-VL-32B 37.64 20.45 18.80 17.48
Keye-VL-1.5-8B 46.85 19.47 12.11 10.13
MiniCPM-V-4.5 37.30 18.02 15.27 11.10
Qwen2.5-VL-7B 28.58 15.99 13.91 8.21
Kimi-VL (thinking) 23.61 15.45 10.63 12.75
Mimo-VL-7B 22.23 12.32 9.36 7.87
GLM-4.5V 18.56 11.02 9.77 10.08

Open-Source Video-Specialized LMs
VideoLLaMA3-7B 23.11 14.15 12.31 8.77
InternVideo-2.5-Chat-8B 27.89 9.81 7.68 5.42

C METRIC PARAMETER VALIDATION

The VFS and Final Score metrics rely on the weighting coefficients w and α. These parameters are
determined and validated through a human alignment study. A sample of 60 evaluation instances
is constructed by selecting outputs from three randomly chosen models for each of 20 randomly
selected tasks from IWR-Bench. Each instance is assessed by five PhD-level students on two di-
mensions: visual fidelity and overall quality. To determine the optimal parameters, a grid search
is performed over the discrete set {0.1, 0.2, . . . , 0.9} for both w and α. The value that maximizes
the Spearman’s ρ correlation between the automated scores and the aggregated human judgments is
selected. For the VFS metric, the peak correlation (ρ = 0.57) is observed at w = 0.5, indicating an
equal weighting between LVS and HVS. For the Final Score, the maximum correlation with human
overall judgment (ρ = 0.65) is achieved with α = 0.7, empirically validating the decision to weigh
functionality (IFS) more heavily than visual fidelity (VFS).

D TASK AND ACTION REPRESENTATION

Each task in IWR-Bench is formally defined by an ‘action sequence‘, a structured list of discrete
actions that an automated agent must perform to validate the reconstructed webpage. This rep-
resentation standardizes the evaluation process. We defined a vocabulary of atomic actions, in-
cluding Click(description), Type(key, description), Scroll(direction, amount, description), and
Press(key, description). A crucial design choice is the use of a natural language ‘description‘ field
for targeting elements instead of unstable positional coordinates (e.g., “Click the primary ‘Submit’
button” instead of “Click at (x:120, y:350)”). This makes the evaluation robust to minor layout vari-
ations in the generated code and tests a more semantic understanding of the page structure, both for
the model during generation and the agent during evaluation.
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Table 5: Final Score breakdown by Visual Complexity.

Model Minimalist
Layouts (V1)

Standard
Grid-based Layouts (V2)

Asymmetric &
Modern Layouts (V3)

Data-Dense
Layouts (V4)

Proprietary MLLMs
GPT-5 44.77 30.73 43.77 26.05
Claude-Sonnet-4 (thinking) 40.05 31.12 40.08 25.26
Claude-Opus-4 (thinking) 37.01 32.26 38.95 22.97
Doubao-seed-1.6 41.55 30.56 38.03 26.97
Claude-Sonnet-4 37.33 30.28 39.95 26.25
Claude-Opus-4 35.77 30.79 38.34 24.77
GPT-5-mini 38.76 29.29 38.44 26.75
GPT-4.1 35.24 28.96 36.89 25.32
Gemini-2.5-Pro (thinking) 31.59 25.77 36.99 25.82
Gemini-2.5-Pro 37.20 25.17 36.51 23.27
GPT-4o (latest) 31.89 26.14 34.64 24.41
Gemini-2.5-Flash 32.21 21.80 34.13 16.28
GPT-5-nano 29.21 24.39 28.96 20.37
Grok-4 33.73 22.11 30.01 17.18
GPT-4o (0806) 29.88 23.54 27.41 19.62
Doubao-seed-1.6-flash 30.23 22.76 22.87 17.27
Gemini-2.5-Flash-Lite 19.64 15.44 19.31 8.31

Open-Source MLLMs
Qwen3-VL (thinking) 38.14 28.74 33.37 26.25
Qwen2.5-VL-72B 28.68 21.14 28.31 12.48
Qwen2.5-VL-32B 27.56 17.90 24.06 16.15
Keye-VL-1.5-8B 24.75 15.65 20.85 12.74
MiniCPM-V-4.5 28.24 16.11 18.87 10.79
Qwen2.5-VL-7B 20.48 12.68 18.52 11.48
Kimi-VL (thinking) 18.57 14.22 14.21 9.26
Mimo-VL-7B 14.68 11.42 12.42 6.71
GLM-4.5V 12.39 10.66 13.34 4.20

Open-Source Video-Specialized LMs
VideoLLaMA3-7B 18.81 13.55 13.69 8.56
InternVideo-2.5-Chat-8B 13.36 11.07 9.09 5.57

E PROMPTS

A standardized system prompt is employed for all models and tasks in IWR-Bench to ensure a fair
evaluation. This prompt defines clear requirements for the task, output format, and operational con-
straints. Such a design minimizes ambiguity and helps isolate the core code generation capabilities
of each model. The complete prompt template is detailed in Figure 5.

The evaluation relies on a large multimodal model guided by two distinct prompts. To assess the
similarity between generated and reference webpages, a prompt template is utilized (Figure 6). This
template instructs the model to perform both quantitative and qualitative evaluations. For logical
assertion verification, a separate prompt, presented in Figure 7, is employed to determine the cor-
rectness of an action.

F CASE STUDY

This section presents a selection of representative tasks from the IWR-Bench to illustrate the di-
versity of challenges encompassed by our benchmark. The input of each case includes a webpage
operation video and the static resources involved in the webpage. Then the web pages generated
by different multimodal large models and the corresponding interaction results are displayed. Then
we provide a detailed analysis of these representative cases, corresponding to the figures presented
below. Each analysis breaks down the task’s objectives, its position within our taxonomy, and the
specific model behaviors observed, illustrating how our benchmark facilitates a fine-grained diag-
nosis of model capabilities.
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Table 6: Final Score breakdown by Application Domain.

Model Business &
Services

Entertainment
& Media

Knowledge &
Education

Life &
Community

Productivity
& Tools

Proprietary MLLMs
GPT-5 39.37 47.24 37.05 22.80 28.53
Claude-Sonnet-4 (thinking) 39.74 41.02 32.60 24.86 31.15
Claude-Opus-4 (thinking) 35.54 42.48 34.91 24.21 28.56
Doubao-seed-1.6 37.82 43.19 32.14 22.44 30.20
Claude-Sonnet-4 38.84 42.09 32.22 25.57 27.58
Claude-Opus-4 38.64 43.25 30.51 22.03 28.09
GPT-5-mini 37.16 45.11 30.29 21.38 28.36
GPT-4.1 33.58 45.35 27.61 17.28 32.65
Gemini-2.5-Pro (thinking) 31.49 41.67 30.31 15.82 26.34
Gemini-2.5-Pro 33.66 36.93 30.74 19.03 25.55
GPT-4o (latest) 36.33 32.35 28.97 20.01 25.42
Gemini-2.5-Flash 29.16 40.60 21.38 15.27 25.83
GPT-5-nano 30.61 34.29 22.67 16.50 23.69
Grok-4 27.71 32.06 26.47 15.00 19.85
GPT-4o (0806) 27.60 32.05 23.97 15.54 23.29
Doubao-seed-1.6-flash 25.37 31.07 20.17 14.21 22.36
Gemini-2.5-Flash-Lite 18.38 24.93 10.13 9.42 20.55

Open-Source MLLMs
Qwen3-VL (thinking) 37.36 35.00 29.57 17.71 31.19
Qwen2.5-VL-72B 28.71 31.20 20.89 14.29 19.88
Qwen2.5-VL-32B 24.05 28.58 20.67 9.80 16.73
Keye-VL-1.5-8B 19.27 26.29 16.42 9.95 16.50
MiniCPM-V-4.5 17.10 26.63 17.38 11.21 14.63
Qwen2.5-VL-7B 17.11 21.96 16.69 4.67 11.61
Kimi-VL (thinking) 16.77 17.58 13.87 9.59 10.83
Mimo-VL-7B 12.90 14.64 12.11 4.33 11.08
GLM-4.5V 10.78 18.20 10.10 2.88 11.10

Open-Source Video-Specialized LMs
VideoLLaMA3-7B 14.36 16.44 14.44 9.21 11.51
InternVideo-2.5-Chat-8B 10.77 15.77 9.18 2.90 9.36

Case 1 Analysis: E-commerce Workflow Simulation. Our first case study, classified as [L2, V2,
E-commerce], simulates a fundamental e-commerce user journey to test a model’s ability to handle
sequential state manipulations within a standard visual structure. The task requires the model to
replicate a workflow involving filtering a product grid by a specific brand, sorting the filtered results
by price and adding a selected item to the shopping cart.

As illustrated in Figure 8, this task effectively exposes different failure modes in different models.
On the left, Claude-Sonnet-4 demonstrates good capabilities in static replication and simple state
management. It accurately renders the initial layout and correctly implements the action for filtering
and sorting. However, its failure occurs at the final “add to cart” step. The right side shows the result
of GPT-5. This case likely involved too many static resources, causing the product list on the initial
page to fail to render successfully. By pinpointing these different stages of failure, the benchmark
provides a granular diagnosis of each model’s specific strengths and weaknesses in front-end code
generation.

Case 2 Analysis: Algorithmic Logic Reconstruction. This case study moves to the highest level
of our interaction complexity scale, L4, to assess a model’s capacity for algorithmic reasoning.
Classified as [L4, V2, Gaming], the task requires the model to reverse-engineer and implement the
complete set of rules for a simple browser game (e.g., 2048) based solely on observing its behavior in
the input video. The visual complexity is simple (V2), deliberately shifting the evaluation focus from
layout replication to the correctness of the underlying algorithmic logic. The The core challenge is
to deduce and codify the game’s state-transition functions, including tile movement, merging logic,
and the spawning of new tiles.
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Prompt template for the IWR-Bench

You are an expert front-end developer. Your task is to create a pixel-perfect replica of a
website from a video.
Generate a single ‘index.html’ file that contains all HTML, CSS, and JavaScript necessary
to replicate the UI, content, and interaction features shown. The webpage resolution in the
video is <resolution>.
Instructions:
1. Single File Output: All HTML, CSS, and JS must be in one ‘index.html’ file.
2. If backend logic is implied, mock it in JS with static data (e.g., a JS array for a fake API
call).
3. Assets(Images and Videos in the webpage):
− All images must use the provided stitched image assets.
− The ‘src’ attribute must start with the literal, unchanging string

‘ PLACEHOLDER ASSETS BASE DIR /’, followed by the actual filename iden-
tified from the stitched image.
− For example: ‘src=“ PLACEHOLDER ASSETS BASE DIR /asset001.svg”’.
− ‘<img>’ tags must include ‘width’ and ‘height’ attributes.
− The provided stitched image assets are before the video.

4. No External Dependencies: The generated code must be entirely self-contained. No
External Libraries and no External Fonts.
5. Final Response: Return only the complete HTML code in a single “‘html code block,
with no additional text or explanations.

Figure 5: Prompt template for the IWR-Bench

Prompt for evaluating HVS

You are an expert Webpage Evaluator. Your task is to provide a quantitative and qualitative
assessment of the similarity between a generated webpage and a reference webpage.
The default score is 0.
Evaluation Format:
—
Comments:
-Layout (10 points): ${comment and subscore}
-Elements (15 points): ${comment and subscore}
-Content and Text (40 points): ${comment and subscore}
-Style (15 points): ${comment and subscore}
-Overall (20 points): ${comment and subscore}
Score: ${final score}/100

Figure 6: Prompt for evaluating HVS

As illustrated in Figure 9, the left side is the result of Grok-4, which can successfully reproduce the
2048 game logic from the input video. However, Qwen2.5-VL-72B failed to merge the correspond-
ing blocks after inputting ’↑’. This type of task requires a high level of logical reasoning ability from
the model and is a significant challenge.

Case 3 Analysis: Long-Context Fidelity and Fine-Grained Visual Detail. This case study, clas-
sified as [L1, V3, E-commerce], is designed to stress-test a model’s visual fidelity on multiple fronts.
While the interaction is simple (L1, passive scrolling), the task’s difficulty lies in three distinct chal-
lenges: (1) maintaining structural integrity across a long page, (2) correctly handling diverse media
assets, including an embedded video, and (3) achieving fine-grained visual accuracy, particularly
with small, repetitive elements like icons. This multi-faceted task evaluates not just broad layout re-
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Prompt used to determine whether the assertion is correct

Please compare two webpage screenshots (Image 1 is the previous step, Image 2 is the
current step) and determine whether the following assertion is true:
Assertion: {assertion}
Return JSON format without any additional information:
{{
”think”: ”the thinking process”,
”result”: ”Yes—No”
}}

Figure 7: Prompt used to determine whether the assertion is correct

construction but also the model’s attention to detail and its ability to precisely match visual elements
to the provided stitched assets.

As illustrated in Figure 10, Gemini-2.5-pro and GPT-5 can both restore relatively complete long
pages based on videos, but they do not handle the details of the web pages well, including the
corresponding icons and matching product images. A successful reconstruction would require both
holistic understanding of the page structure and meticulous attention to its smallest components.

Case 4 Analysis: Time-Based State Management in a Mobile Viewport. This case study, clas-
sified as [L3, V1, Productivity & Tools], is designed to evaluate a model’s ability to handle time-
driven state changes, presented within the constraints of a mobile screen resolution. The task is
to reconstruct a functional Pomodoro timer. While the visual complexity is low (V1), the mobile
viewport requires the model to generate a layout that is responsive or appropriately scaled for a nar-
row screen. The primary challenge, however, resides in the L3 interaction complexity: the model
must implement a state logic governed by both user clicks (e.g., ’start’, ’pause’) and asynchronous,
time-based events (the countdown reaching zero).

As illustrated in Figure 11, GLM-4.5V can successfully implement the interactive operations and
logic in the video, but Kimi-VL-thinking is unable to perform subsequent operations because the
elements that need to be clicked in the first step are missing in the initial state.

G USE OF LARGE LANGUAGE MODELS

We utilized a Large Language Model to assist with grammar correction and language refinement in
this paper.

H COMPARISON WITH PIPELINE METHODS

As shown in Table 7, a two-stage pipeline method is evaluated to investigate the effect of decoupling
perception and generation. In the first stage, the model is prompted to analyze the interaction video
and generate a structured description of user actions (the prompt is detailed in Figure 12). In the
second stage, this generated description, together with the original visual inputs (video and stitched
images), is fed to the model to produce the final code (the prompt is detailed in Figure 13). The
results indicate that this approach does not yield significant performance gains. This outcome sug-
gests that the IWR-Bench task requires a tight integration of visual perception, reasoning, and code
generation. Critical information, such as assets matching and high-fidelity visual layout, is difficult
to fully encapsulate in textual descriptions. Consequently, the two-stage pipeline approach proves
less effective for this task.

I ANNOTATION GUIDELINES
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Table 7: Performance comparison between End-to-End and Pipeline approaches on IWR-Bench.

Model Method LVS HVS VFS IFS Final Score

GPT-5 End-to-End 68.29 60.21 64.25 24.39 36.35
Pipeline 67.15 58.95 63.05 25.03 36.43

Claude-Sonnet-4 End-to-End 65.75 56.92 61.34 22.29 34.00
Pipeline 64.88 58.87 61.88 23.05 34.70

Qwen3-VL (thinking) End-to-End 58.55 46.13 52.34 22.07 31.15
Pipeline 59.21 43.58 51.39 20.31 29.64

Qwen2.5-VL-72B End-to-End 47.83 28.25 38.04 17.42 23.61
Pipeline 49.11 27.04 38.08 15.21 22.07

Qwen2.5-VL-7B End-to-End 28.92 12.20 20.56 13.28 15.47
Pipeline 26.12 12.51 19.32 12.16 14.31

We have provided the annotation guidelines, as shown in Figure 14 and Figure 15.

J TASK SOURCING

Figure 16 displays the examples of our Task Sourcing

K RESOLUTION STATISTICS

Table 8 presents the frequency of various resolutions in IWR-Bench.

L ASSETS STATISTICS

To investigate the impact of asset quantity on model performance, the distribution of assets across
tasks is analyzed and correlated with the performance of the state-of-the-art model, GPT-5. As
shown in Table 9, IWR-Bench contains an average of 74.02 assets per task, with a minimum of 1
and a maximum of 502 assets. Figure 17 and Figure 18 summarize the relationship between asset
count and model performance. As shown in Figure 18, the Visual Fidelity Score (VFS) tends to
decrease as the number of assets increases. Tasks with many assets require more fine-grained visual
grounding and precise asset matching.

In contrast to the VFS trend, Figure 17 shows that the overall Final Score exhibits a generally
positive correlation with asset count. This effect appears counter-intuitive if assets are considered
in isolation and is better explained by the interaction between asset density and task type in IWR-
Bench. In practice, many tasks with few assets correspond to high interaction complexity. For
example, the 2048 game case contains only a small number of visual assets, yet requires models to
reconstruct non-trivial algorithmic, event-driven logic. Conversely, the Apple product introduction
page, which includes a rich set of images and icons but is dominated by static content consumption
and scrolling.
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Table 8: Resolution Statistics

Resolution Count
2560x1304 40
1920x990 21
1920x944 20
644x1398 8
430x932 4
1920x924 2
2560x1262 2
2560x1270 2
2560x1260 2
1920x926 2
2560x1286 2
2560x1288 2
2180x1304 2
1920x968 1
1846x886 1
2560x1392 1
1920x922 1

Table 9: Statistics and distribution of asset counts per task in IWR-Bench.

Statistic Value
Minimum Assets 1
Maximum Assets 502
Average Assets 74.02

Asset Count Number of Tasks
0–39 46
40–79 35
80–119 15
≥ 120 17

Total Tasks 113
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Input

Video.mp4 Stitched_Assets

Click passed

Click passed

Click passed

Click failed

Claude-sonnet-4

Click failed

Gpt-5-2025-08-07

Figure 8: Case 1: Multi-Step E-commerce Workflow. This task, classified as [L2, V2, E-
commerce], requires reconstructing a core e-commerce workflow involving filtering products, sort-
ing the results, and adding an item to the shopping cart.
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Input

Video.mp4 Stitched_Assets

Click passed

Grok-4-0709 Qwen2.5-VL-72B

Enter ‘↑’ passed

Enter ‘↓’ passed

Enter ‘→’ passed

Enter ‘←’ passed

Enter ‘↑’ failed

Figure 9: Case 2: Algorithmic Game Logic Reconstruction. This task challenges models to
reconstruct the rules of the simple browser game 2048. Classified as [L4, V2, Gaming], the primary
difficulty lies in algorithmic correctness, not visual complexity.
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Video.mp4 Stitched_Assets

Enter ‘↓’ passed

Enter ‘↑’ failed

Input

Gemini-2.5-pro

Scroll passed

Scroll passed

Scroll passed

Scroll passed

Scroll failed

Gpt-5-2025-08-07

Figure 10: Case 3: Full-Page Reconstruction with Long Scrolling. This task focuses on a funda-
mental capability: reconstructing a webpage that extends far beyond the initial viewport. Classified
as [L1, V3, E-commerce], it tests the model’s ability to handle static content at scale.
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Video.mp4 Stitched_Assets

Input

Click passed Click passed Click passed Click passed

GLM-4.5V

Click failed

Kimi-VL-thinking

Figure 11: Case 4: Pomodoro Timer Logic within a Mobile Viewport. This task requires recon-
structing a Pomodoro timer rendered at a mobile resolution. Classified as [L3, V1, Productivity
& Tools], the core challenge is not the simple layout but the implementation of time-based state
transitions (start, pause, reset).
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Prompt template for Stage 1 of the pipeline method.

Your task is to analyze the provided video frames and describe the user interactions in a
structured JSON format.
Your output MUST be a single, valid JSON object.
The JSON should contain an array named ‘interactions‘. Each object in the array represents
one step and must include:
- ‘step‘: (Integer) The action number.
- ‘user action‘: (String) A clear description of the user’s action (e.g., ”Click the ’Submit’
button”).
- ‘state change‘: (String) A description of the visual changes on the screen after the action.
- ‘inferred logic‘: (String) The functional rule demonstrated by this interaction (e.g., ”Click-
ing ’Submit’ validates the form and shows a success message.”).
**Example Object:**
{
”step”: 1,
”user action”: ”Click the 9th star for rating.”,
”state change”: ”The first 9 stars turn yellow and a message ’Rating updated: 9/10’ ap-
pears.”,
”inferred logic”: ”The webpage should update the rating to the selected star’s value and
confirm it with a message.”
}
Analyze the video frames and generate the complete JSON.

Figure 12: Prompt template for Stage 1 of the pipeline method. The model is instructed to ana-
lyze the interaction video and generate a structured JSON description containing user actions, state
changes, and inferred functional logic for each interaction step.

Prompt template for Stage 2 of the pipeline method.

You are an expert front-end developer. Your task is to create a pixel-perfect replica of a
website from a video and the interactions json.
Generate a single ‘index.html’ file that contains all HTML, CSS, and JavaScript necessary
to replicate the UI, content, and interaction features shown. The webpage resolution in the
video is <resolution>.
Instructions:
1. Single File Output: All HTML, CSS, and JS must be in one ‘index.html’ file.
2. If backend logic is implied, mock it in JS with static data (e.g., a JS array for a fake API
call).
3. Assets(Images and Videos in the webpage):
− All images must use the provided stitched image assets.
− The ‘src’ attribute must start with the literal, unchanging string

‘ PLACEHOLDER ASSETS BASE DIR /’, followed by the actual filename iden-
tified from the stitched image.
− For example: ‘src=“ PLACEHOLDER ASSETS BASE DIR /asset001.svg”’.
− ‘<img>’ tags must include ‘width’ and ‘height’ attributes.
− The provided stitched image assets are before the video.

4. No External Dependencies: The generated code must be entirely self-contained. No
External Libraries and no External Fonts.
5. Final Response: Return only the complete HTML code in a single “‘html code block,
with no additional text or explanations.
Interactions JSON: <interactions json>

Figure 13: Prompt template for Stage 2 of the pipeline method. The model receives the structured
interaction description from Stage 1, along with the original video frames and extracted assets, to
generate the complete webpage code.
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Core Handbook for Data Collection and Annotation 
I. Core Principles (The Four Cornerstones) 

1. Clarity: The task's objective and the user's actions must be unambiguous and instantly 
understandable. 

2. Controllability: The recording environment must be strictly controlled to ensure that 
every task is 100% reproducible. 

3. Evaluability: Each task must be broken down into a sequence of discrete, verifiable 
steps and actions. 

4. Consistency: All annotators must utilize the same tools, settings, and procedures to 
guarantee dataset consistency. 

II. The Three-Step Recording Process 
Step 1: Pre-Recording Preparation 
Before initiating a recording, you must complete the following preparatory steps: 

1. Task Familiarization: Thoroughly understand the task's objective and the required 
operational flow (e.g., game rules). 

2. Classification Review: Confirm that the task's [L, V, Domain] classification is appropriate, 
modifying it with a note if necessary. 

3. Final Checklist (All items must be "Yes"): 
[ ] Compliance: 
o Can the task be completed within a single browser tab? 
o Does the task avoid any file uploads? 
o Are all image assets controllable and not dependent on features like infinite 

scrolling? 
[ ] Feasibility: 
o Is the webpage free of sensitive content (political, private)? 
o Does it avoid complex CAPTCHAs (simple numerical recognition is acceptable)? 
o Is the task duration reasonable, ideally between 15 and 200 seconds? 
o Has the optimal sequence of operations been planned in advance? 

Step 2: Standardized Recording Environment Setup 
To ensure visual consistency, all recordings must be conducted within the following standardized 
environment: 

• Browser: Google Chrome (Stable version). 

• Browser State: 
o Use an Incognito mode window for every session. 
o Disable all browser extensions to prevent interference. 
o Start a fresh Incognito window for each new task. 

• Page Preparation: 
o If login is required, log in first and begin recording from the post-login page. 
o Close any pop-up advertisements whenever possible. 

• Recording Tool & Settings: 
o Use the officially provided screen recording software. 
o Scope: Record the browser viewport only, excluding the address bar, 

bookmarks, or OS UI. 
Step 3: Normative Recording Procedure 
Execute the recording in a manner that ensures clarity and reproducibility. 

• Starting Point: Begin recording only after the start URL has fully loaded in the browser. 

• Mouse Operations: Ensure all movements are deliberate and purposeful, following 
a Move -> Pause -> Act pattern, while avoiding meaningless or rapid cursor movements. 

Figure 14: Annotation Guidelines 1
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• Pacing: Wait for all page elements, animations, and transitions to fully load or complete 
before proceeding to the next action. 

• Integrity: Record the entire process from the starting point to the final, stable state of task 
completion.If any mistake occurs, you must abort the recording and start new. 

III. Post-Processing: Screenshots and Assertions 
After recording, the video must be processed to add evaluation point screenshots, assertions. 
1. Evaluation Point Screenshots 
Definition: Screenshots captured at key moments when the page's visual state undergoes 
a significant and stable change. Naming Convention: eval-point-00.png, eval-point-01.png, 
etc., incrementing sequentially from 00. 
When to Capture a Screenshot: 

• Capture Is Mandatory: 
i. Initial State: The stable page before any user action is taken. 
ii. Post-Interaction State: After an action causes a stable visual change, such as 

content updating after a filter is applied or a modal window appearing. 
iii. Final State: The stable page after the task is fully completed. 

• Capture Is Generally Avoided: 
o Transient effects from mouse hovers. 
o The process of typing in an input field (only capture after typing is 

complete and triggers a page update). 
o Intermediate frames during a smooth scroll. 

2. Assertion Annotation 
Definition: A textual statement used to verify the logical correctness of an action's outcome, 
especially for non-visual changes like price calculations or sorting logic. 
Principles for Writing Assertions: 

1. Binary: The statement must be verifiable as unequivocally true or false. 
o Good: "The number in the top-right corner of the cart icon is '3'." 
o Bad: "The cart seems to have been updated." 

2. Precise: The statement must describe specific, quantifiable facts. 
o Good: "The text in the 'Total Cost' field reads '$2,049.99'." 
o Bad: "The price looks correct." 

3. Targeted: The statement should focus on logic, data,etc, not purely on visual style. 
o Good: "After applying the filter, the result count changed from '100 items' to 

'15 items'." 
o Bad: "After applying the filter, the list's background turned gray." 

When to Add an Assertion: 
• After List Content Changes: Following sorting or filtering operations. 

o Example: "After sorting by 'Price: Low to High,' the price of the first item should 
be less than or equal to the second." 

• After Numerical Calculations: When a shopping cart total price updates. 
o Example: "After changing the item quantity from 1 to 2, the total price should 

update to '€198.00'." 

• After State Changes and Feedback: When feedback appears after a form submission. 
o Example: "After entering an invalid password, an error message 'Incorrect 

password format' appears." 

• For Game/Algorithm Logic: Verifying rules in games like 2048 or Sudoku. 
o Example: "After merging two '4' tiles, a new '8' tile appears, and the score 

increases by 8 points." 

Figure 15: Annotation Guidelines 2
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Website page URL Operation Description (High Level) Complexity 
of Interaction 
Logic 

Comple
xity of 
Layout 

Domain Desktop/
Mobile 

Proposer 

https://www.apple.com/iphone/ Scroll down for the iPhone product introduction. L1 V3 Business 
& Services 

Desktop expert 2 

https://www.amazon.com/s?i=specialty-
aps&bbn=16225007011&rh=n%3A1622500
7011%2Cn%3A13896617011&ref=nav_em__
nav_desktop_sa_intl_computers_tablets_0_2
_7_4 

On the Amazon page, select "Lenovo" as the 
brand, sort by price from low to high, then select 
the lowest-priced physical item and add it to the 
shopping cart. 

L2 V2 Business 
& Services 

Desktop expert 5 

https://wandb.ai/zhejiangu/geo3k_async_rl
?nw=nwusershenyfzju 

In the W&B experiment log, expand the charts 
for `training`, `timing_pertoken_ms`, and 
`response_length` in sequence. Finally, in the 
`response_length` chart, check the value of 
`response_length` at the fifth step. 

L2 V4 Productivi
ty & Tools 

Desktop expert 4 

https://www.youtube.com/shorts Swipe down to the third Short, then swipe up to 
the second Short and open the comment section. 

L2 V2 Entertain
ment & 
Media 

Desktop expert 3 

https://www.hulu.com/welcome As you browse the homepage, an automatic 
zoom will occur upon reaching the bottom, and 
a pop-up will appear after a certain period of 
time. 

L1 V3 Entertain
ment & 
Media 

Desktop expert 5 

https://minesweeper.online/game/4945019
480 

In the Minesweeper game, click "Beginner" or 
"Intermediate" at the top to switch between 
different sizes. Click "Custom" to enter a custom 
size of 30x20 with 100 mines. Then, start the 
game. The game will end after 10 clicks or if you 
hit a mine sooner. 

L4 V2 Entertain
ment & 
Media 

Desktop expert 2 

https://www.nytimes.com/games/wordle/in
dex.html 

Letter Guessing Game, start the game, an error is 
prompted when trying to input a non-English 
word, keep playing until one round is complete. 

L4 V2 Entertain
ment & 
Media 

Desktop expert 5 

https://papergames.io/en/gomoku Gomoku game: start recording after clicking 'play 
with robot', and continue for up to 30 clicks or 
until an early win or loss. 

L4 V2 Entertain
ment & 
Media 

Desktop expert 1 

https://2048.gg/en In the 2048 game, press the up, down, left, and 
right arrow keys in sequence. 

L4 V2 Entertain
ment & 
Media 

Desktop expert 2 

https://www.imdb.com/chart/top/ Browse the top 50 movies from the IMDb Top 
250. 

L1 V2 Entertain
ment & 
Media 

Desktop expert 2 

https://www.imdb.com/ On the IMDb homepage, search for "The Dark 
Knight". Once on the movie's main page, scroll 
down and click the "+Review" button. Select a 9-
star rating, enter "good movie" for the title, and 
submit the review. 

L3 V3 Entertain
ment & 
Media 

Desktop expert 4 

https://music.apple.com/en/new On the Apple Music home page, click to play the 
first of the latest songs, then click the player bar 
at the top to enter full screen, and then click the 
pause button to pause playback. 

L3 V3 Entertain
ment & 
Media 

Desktop expert 3 

https://www.goodreads.com/ On the homepage, scroll down to find "Readers' 
Favorite 2024" from "Goodreads Choice Awards: 
Readers' Favorite Books 2024". Once the new 
page opens, find "2022 Awards" on the left. 

L2 V2 Entertain
ment & 
Media 

Desktop expert 4 

https://www.wikipedia.org/ Search for "artificial intelligence". After the page 
opens, click the "Future" button in the directory 
on the left to go to the Future page, then click 
the "Goals" button on the left to go to the Goals 
page. 

L2 V1 Entertain
ment & 
Media 

Desktop expert 1 

https://www.nytimes.com/ Select "Your Money" under "Business" at the top, 
and then click on an article to browse. 

L2 V1 Entertain
ment & 
Media 

Desktop expert 5 

https://store.steampowered.com/ Open the Steam homepage, search for 2077, and 
open its game page. Verify your age by entering 
1975 to access the main game page. Click 'Add 
to Cart', and a page will appear confirming it has 
been successfully added to your cart. 

L2 V4 Entertain
ment & 
Media 

Desktop expert 4 

https://store.steampowered.com/charts/ Open the page, scroll down and click "see all 100 
top sells". Find the list, click on the first three 
discounted items and add them to the cart. Then, 
open the shopping cart and check the three 
items. 

L3 V4 Entertain
ment & 
Media 

Desktop expert 4 

https://www.polygon.com/ Open the homepage and swipe down to browse 
information. 

L1 V3 Entertain
ment & 
Media 

Desktop expert 2 

https://papergames.io/en/chess Chess game: Start recording after clicking 'Play 
with Robot' to begin. The recording stops after a 
maximum of 30 moves or if the game is won or 
lost sooner. 

L4 V2 Entertain
ment & 
Media 

Desktop expert 4 

https://papergames.io/en/tic-tac-toe Tic-Tac-Toe Game: Start recording after clicking 
'play with robot'. The recording will end after a 
maximum of 10 clicks or when the game is won 
or lost. 

L4 V2 Entertain
ment & 
Media 

Desktop expert 5 

https://www.ebay.com/ Browse the homepage and favorite three 
different items. 

L2 V2 Business 
& Services 

Desktop expert 3 

https://www.walmart.com/ip/Hawaiian-
Tropic-Sheer-Touch-Ultra-Radiance-50-
SPF-Adult-Sunscreen-Lotion-8-fl-
oz/15610900 

Switch the Pack Size from single to 2-pack, and 
then to 3-pack. 

L2 V3 Business 
& Services 

Desktop expert 3 

Figure 16: Examples of Task Sourcing
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Figure 17: Task Count and Average final score by Asset Count

Figure 18: Task Count and Average VFS by Asset Count
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