
Graph Classification via Reference Distribution
Learning: Theory and Practice

Zixiao Wang Jicong Fan∗

School of Data Science
The Chinese University of Hong Kong, Shenzhen

zixiaowang@link.cuhk.edu.cn fanjicong@cuhk.edu.cn

Abstract

Graph classification is a challenging problem owing to the difficulty in quantify-
ing the similarity between graphs or representing graphs as vectors, though there
have been a few methods using graph kernels or graph neural networks (GNNs).
Graph kernels often suffer from computational costs and manual feature engineer-
ing, while GNNs commonly utilize global pooling operations, risking the loss of
structural or semantic information. This work introduces Graph Reference Distri-
bution Learning (GRDL), an efficient and accurate graph classification method.
GRDL treats each graph’s latent node embeddings given by GNN layers as a
discrete distribution, enabling direct classification without global pooling, based
on maximum mean discrepancy to adaptively learned reference distributions. To
fully understand this new model (the existing theories do not apply) and guide
its configuration (e.g., network architecture, references’ sizes, number, and reg-
ularization) for practical use, we derive generalization error bounds for GRDL
and verify them numerically. More importantly, our theoretical and numerical
results both show that GRDL has a stronger generalization ability than GNNs
with global pooling operations. Experiments on moderate-scale and large-scale
graph datasets show the superiority of GRDL over the state-of-the-art, emphasizing
its remarkable efficiency, being at least 10 times faster than leading competitors
in both training and inference stages. The source code of GRDL is available at
https://github.com/jicongfan/GRDL-Graph-Classification.

1 Introduction

Graphs serve as versatile models across diverse domains, such as social networks [Wang et al., 2018],
biological compounds [Jumper et al., 2021], and the brain [Ktena et al., 2017]. There has been
considerable interest in developing learning algorithms for graphs, such as graph kernels [Gärtner
et al., 2003, Shervashidze et al., 2011, Chen et al., 2022b] and graph neural networks (GNNs) [Kipf
and Welling, 2016, Defferrard et al., 2016, Gilmer et al., 2017]. GNNs have emerged as powerful
tools, showcasing state-of-the-art performance in various graph prediction tasks [Veličković et al.,
2017, Gilmer et al., 2017, Hamilton et al., 2017, Xu et al., 2018, Sun et al., 2019, You et al., 2021,
Ying et al., 2021, Liu et al., 2022b, Chen et al., 2022a, Xiao et al., 2022, Sun et al., 2023, Sun and Fan,
2024, Sun et al., 2024]. Despite the evident success of GNNs in numerous graph-related applications,
their potential remains underutilized, particularly in the domain of graph-level classification.

Current GNNs designed for graph classification commonly consist of two components: the embedding
of node features through message passing [Gilmer et al., 2017] and subsequent aggregation by
some permutation invariant global pooling (also called readout) operations [Xu et al., 2018]. The
primary purpose of pooling is to transform a graph’s node embeddings, a matrix, into a single vector.
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Empirically, pooling operations play a crucial role in classification [Ying et al., 2018]. However,
these pooling operations tend to be naive, often employing methods such as simple summation or
averaging. These functions collect only first-order statistics, leading to a loss of structural or semantic
information. In addition to the conventional sum or average pooling, more sophisticated pooling
operations have shown improvements in graph classification [Li et al., 2015, Ying et al., 2018, Lee
et al., 2019, 2021, Buterez et al., 2022, Yu et al., 2024], but they still carry the inherent risk of
information loss.

Different from graph kernel methods and existing GNN methods, we propose a novel GNN method
that classifies the nodes’ embeddings themselves directly, thus avoiding the global pooling step. In
our method, we treat the nodes’ latent representations of each graph, learned by a neural network, as
a discrete distribution and classify these distributions into K different classes. The classification is
conducted via measuring the similarity between the latent graph’s distributions and K discriminative
reference discrete distributions. The reference distributions can be understood as nodes’ embeddings
of representative virtual graphs from K different classes, and they are jointly learned with the
parameters of the neural network in an end-to-end manner. To evaluate our method, we analyze the
generalization ability of our model both theoretically and empirically. Our contributions are two-fold.

• We propose a novel graph classification method GRDL that is efficient and accurate.
– GRDL does not require any global pooling operation and hence effectively preserves the

information of node embeddings.
– Besides its high classification accuracy, GRDL is scalable to large graph datasets and is at

least ten times faster than leading competitors in both training and inference stages.
• We provide theoretical guarantees, e.g. generalization error bounds, for GRDL.

– The result offers valuable insights into how the model performance scales with the properties
of graphs, neural network structure, and reference distributions, guiding the model design.

– For instance, the generalization bounds reveal that the references’ norms and numbers have
tiny impacts on the generalization, which is also verified by the experiments.

– More importantly, we theoretically prove that GRDL has a stronger generalization ability
than GNNs with global pooling operations.

The rest of this paper is organized as follows. We introduce our model in Section 2 and analyze the
generalization ability in Section 3. Related works are discussed in Section 4. Section 5 presents the
numerical results on 11 benchmarks in comparison to 12 competitors.

2 Proposed Approach

2.1 Model Framework

Following convention, we denote a graph with index i by Gi = (Vi, Ei), where Vi and
Ei are the vertex (node) set and edge set respectively. Given a graph dataset G =
{(G1, y1), (G2, y2), . . . , (GN , yN )}, where yi ∈ {1, 2, . . . ,K} is the associated label of Gi and
yi = k means Gi belongs to class k, the goal is to learn a classifier f from G that general-
izes well to unseen graphs. Since in many scenarios, each node of a graph has a feature vector
x and the graph is often represented by an adjacency matrix A, we also write Gi = (Ai,Xi)
for convenience, where Ai ∈ Rni×ni , Xi ∈ Rni×d0 , ni = |Vi| is the number of nodes of
graph i, and d0 denotes the number of features. We may alternatively denote the graph dataset
as G = {((A1,X1), y1), ((A2,X2), y2), . . . , ((AN ,XN ), yN )}.
Our approach is illustrated in Figure 1. For graph classification, we first use a GNN, denoted as fG,
to transform each graph to a node embedding matrix Hi ∈ Rni×d that encodes its properties, i.e.,

Hi = fG(Gi) = fG(Ai,Xi), (1)

where fG ∈ FG and FG denotes a hypothesis space. The remaining task is to classify Hi without
global pooling. Direct classification of node embeddings is difficult due to two reasons:

(i) Different graphs have different numbers of nodes, i.e. in general, ni ̸= nj if i ̸= j.
(ii) The node embeddings of each graph are permutation invariant, namely, PHi and Hi

represent the same graph for any permutation matrix P.

However, the two properties are naturally satisfied if we treat the node embeddings of each graph
as a discrete distribution. Specifically, each Hi is a discrete distribution and each row of Hi is an
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Figure 1: The GRDL framework. Classification involves using a GNN fG to encode a graph’s
information into a node embedding distribution. The similarities between the node embeddings and
K reference distributions are calculated by the reference module fD. The graph is assigned the label
of the reference that exhibits the highest similarity.

outcome of the distribution. There is no order between the outcomes in each distribution. Also,
different distributions may have different numbers of outcomes. Before introducing our method in
detail, we first give a toy example where the commonly used mean and max pooling operations fail.

Example 2.1. Suppose two graphs G1 and G2 have self-looped adjacency matrices Ã1 =
[1 1 1 0; 1 1 0 1; 1 0 1 1; 0 1 1 1] and Ã2 = [1 0 0 0; 0 1 1 0; 0 1 1 0; 0 0 0 1] respectively,
and have one-dimensional node features X1 = [3 6 9 12]⊤ and X2 = [6 6 9 9]⊤ respectively. Let Âi

be the normalized adjacency matrices, i.e., Âi = diag(Ãi1)
−1/2Ãidiag(Ãi1)

−1/2. Performing the
neighbor aggregation Hi = ÂiXi, i = 1, 2, we obtain H1 = [6 7 8 9]⊤ and H2 = [6 7.5 7.5 9]⊤.
We see that mean(H1) = mean(H2) = 7.5 and max(H1) = max(H2) = 9. This means the simple
mean and max pooling operations failed to distinguish the two graphs. In contrast, our method treats
H1 and H2 as two different discrete distributions and hence is able to distinguish the two graphs.
Note that incorporating a learnable parameter W, i.e., Hi = ÂiXiW, or performing multiple times
of neighbor aggregation does not change the conclusion.

We propose to classify the discrete distributions {H1,H2, . . . ,HN} ≜ H by a reference layer fD.
The classification involves measuring the similarity between Hi andK reference discrete distributions
{D1,D2, . . . ,DK} ≜ D that are discriminative. Each Dk ∈ Rmk×d can be understood as node
embeddings of a virtual graph from the k-th class, k ∈ [K]. We make m1 = · · · = mK = m for
convenience. Letting ξ be a similarity measure between two discrete distributions, then

sik := ξ(Hi,Dk), i ∈ [N ], k ∈ [K]. (2)

This forms a matrix S = [s1, s2, . . . , sN ]⊤ where

si = fD(Hi) = [si1, si2, . . . , siK ]⊤ ∈ RK , (3)

fD ∈ FD and FD denotes a hypothesis space induced by the reference layer. References in D are
parameters of the reference layer and are jointly learned with node-embedding network parameters in
an end-to-end manner. Now combining Equation (1) and Equation (3), we arrive at

si = fD(fG(Gi)), i ∈ [N ]. (4)

fD ◦ fG calculates si, representing similarities between Gi and all references. We get Gi’s label by

ypred,i = argmax
k

sik. (5)

To train the model, we first use the softmax function to convert si to a label vector ŷi =
[ŷi1, . . . , ŷiK ]⊤, where

ŷik =
exp (sik)∑K
j=1 exp (sij)

, k ∈ [K]. (6)
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Using the cross-entropy loss, we minimize

LCE = − 1

N

N∑
i=1

K∑
k=1

yik log ŷik. (7)

Intuitively, the reference distributions in D should be different from each other to ensure discrimina-
tiveness. Therefore, we also consider the following discrimination loss:

LDis =
∑
k

∑
k′ ̸=k

ξ(Dk,Dk′). (8)

Then we solve the following problem:

min
fG∈FG,fD∈FD

LCE + λLDis, (9)

where λ ≥ 0 is a hyperparameter. We call (9) Graph Classification via Reference Distribution
Learning (GRDL). Specific designs of FG and FD are detained in the next section.

2.2 Design of FG and FD

We get GRDL’s network F by concatenating the node embedding module and the reference module:

F := FD ◦ FG. (10)

Design of FG We use an L-layer message passing network as our node embedding module FG:

FG := FL ◦ FL−1 ◦ · · · ◦ F1. (11)

F l is the l-th message passing layer (e.g. a GIN layer [Xu et al., 2018]) that updates the representation
of a node by aggregating representations of its neighbors, meaning

a(l)v = AGGREGATE(l)
({
h(l−1)
u : u ∈ N (v)

})
, h(l)v = COMBINE(l)

(
h(l−1)
v , a(l)v

)
(12)

where h(l)v is the feature vector of node v produced by the l-th layer F l. Different GNNs have
different choices of COMBINE(l)(·) and AGGREGATE(l)(·).
Design of FD Based on (3), the hypothesis space defined by the reference layer is

FD := {Hi 7→ si ∈ RK : sik = ξ(Hi,Dk),Dk ∈ Rm×d}. (13)

In our work, we choose ξ(·, ·) to be the negative squared Maximum Mean Discrepancy (MMD).
Initially used for two-sample tests, MMD is now widely used to measure the dissimilarity between
distributions [Gretton et al., 2012a]. For an embedding H ∈ Rn×d and a reference D ∈ Rm×d,

ξ(H,D) =−MMD2 (H,D) = −
∥∥∥∥ 1n

n∑
i=1

ϕ(hi)−
1

m

m∑
j=1

ϕ(dj)

∥∥∥∥2
2

=
2

mn

n∑
i=1

m∑
j=1

ϕ(hi)
⊤ϕ(dj)−

1

n2

n∑
i=1

n∑
i′=1

ϕ(hi)
⊤ϕ(hi′)−

1

m2

m∑
j=1

m∑
j′=1

ϕ(dj)
⊤ϕ(dj′)

(14)

where ϕ is some feature map, h⊤
i is the i-th row of H, and d⊤

j is the j-th row of D. The MMD
in (14) is known as biased MMD [Gretton et al., 2012a] and its performance is almost the same
as the unbiased one, in our experiments. Therefore we only present (14) here. Using kernel trick
k(x,x′) = ϕ(x)⊤ϕ(x′), we obtain from (14) that

ξ(H,D) =
2

mn

n∑
i=1

m∑
j=1

k(hi,dj)−
1

n2

n∑
i=1

n∑
i′=1

k(hi,hi′)−
1

m2

m∑
j=1

m∑
j′=1

k(dj ,dj′).

In this work, we employ the Gaussian kernel, i.e.,

k(x,x′) = exp
(
−θ∥x− x′∥22

)
(15)
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where θ > 0 is a hyperparameter. The Gaussian kernel defines an infinite-order polynomial feature
map ϕ, covering all orders of statistics of the input variable. Consequently, MMD with the Gaussian
kernel characterizes the difference between two distributions across all moments. Actually, we found
that, in GRDL, the Gaussian kernel often outperformed other kernels such as the polynomial kernel.

Several other statistical distances are available for measuring the difference between distributions,
including Wasserstein distance and Sinkhorn divergence [Peyré and Cuturi, 2020]. However, their
computational complexity is prohibitively high, making the model impractical for large-scale graph
datasets. We also find, through experiments, that in our method, the classification performance of
MMD is better than that of Wasserstein distance and Sinkhorn divergence as shown later in Table 1.
These explain why we prefer MMD.

2.3 Algorithm Implementation

The θ in the Gaussian kernel (15) plays a crucial role in determining the statistical efficiency of MMD.
Optimally setting of θ remains an open problem and many heuristics are available [Gretton et al.,
2012b]. To simplify the process, we make θ learnable in our GRDL and rewrite ξ as ξθ. Our empirical
results in Appendix D.5 show that GRDL with learnable θ performs better. For convenience, we
denote all the parameters of fG as w and let fw,D,θ = fD ◦ fG. Then we rewrite problem (9) as

min
w,D,θ

− 1

N

N∑
i=1

K∑
k=1

yik log
exp (fw,D,θ(Gi)k)∑K
j=1 exp (fw,D,θ(Gi)j)

+ λ
∑
k′ ̸=k

ξθ(Dk,Dk′). (16)

The (mini-batch) training of GRDL model is detailed in Algorithm 1 (see Appendix C).

3 Theoretical Analysis

In this section, we provide theoretical guarantees for GRDL, due to the following motivations:

• As the proposed approach is novel, it is necessary to understand it thoroughly using theoretical
analysis, e.g., understand the influences of data and model properties on the classification.

• It is also necessary to provide guidance for the model design to guarantee high accuracy in
inference stages.

3.1 Preliminaries

Matrix constructions We construct big matrices X, A and D, where X =
[
X⊤

1 ,X
⊤
2 , . . . ,X

⊤
N

]⊤ ∈
R(

∑
i ni)×d; A = diag(A1,A2, . . . ,AN ) ∈ R(

∑
i ni)×(

∑
i ni) is a block diagonal matrix, D =[

D⊤
1 ,D

⊤
2 , . . . ,D

⊤
K

]⊤ ∈ RKm×d. The adjacency matrix with self-connectivity is Ã = A+ I. The
huge constructed graph is denoted by G = (Ã,X). This construction allows us to treat all graphs in
dataset G as a whole and it is crucial for our derivation.

Neural network Previously, for a deterministic network f ∈ F , its output after feeding forward a
single graph is f(Gi). However, we mainly deal with the huge constructed graph G in this section,
and notation will be overloaded to f(G) = S ∈ RN×K , a matrix whose i-th row is f(Gi)

⊤.

We instantiate the message passing network as Graph Isomorphism Network (GIN) [Xu et al., 2018].
We choose to focus on GIN for two reasons. Firstly, the analysis on GIN is currently limited, most
of the current bounds for GNNs don’t apply for GIN [Garg et al., 2020, Liao et al., 2021, Tang and
Liu, 2023]. The other reason is that GIN is used as the message-passing network in our numerical
experiments. Notably, our proof can be easily adapted to other message-passing GNNs (e.g. GCN
[Kipf and Welling, 2016]). GIN updates node representations as

h(l)v = MLP(l)

(
(1 + ε(l))h(l−1)

v +
∑

u∈N (v)

h(l−1)
u

)
(17)

where h(l)v denotes the node features generated by l-th GIN message passing layer. Let ε(l) = 0 for
all layers and suppose all MLPs have r layers, the node updates can be written in matrix form as

H(l) = σ
(
· · ·σ

((
ÃH(l−1)

)
W

(l)
1

)
· · ·W(l)

r−1

)
W(l)

r (18)
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where W(l)
i ∈ Rd

(l)
i−1×d

(l)
i is the weight matrix, and H(l) is the matrix of node features with H(0) = X.

σ(·) is the non-linear activation function. Let F l be the function space induced by the l-th message
passing layer, meaning

F l = {(Ã,H(l−1)) 7→ H(l) : W
(l)
i ∈ B

(l)
i , i ∈ [r]} (19)

where B(l)i is some constraint set on the weight matrix W
(l)
i and H(l) is given by (18). The L-layer

GIN function space FG is the composition of F l for l ∈ [L], i.e.,

FG = FL ◦ FL−1 ◦ · · · ◦ F1 = {G 7→ fL(· · · f1(G)) : f i ∈ F i,∀i ∈ [L]}. (20)

Letting sik = −MMD2(H
(L)
i ,Dk), the reference layer defines the following function space

FD = {H(L) 7→ S ∈ RN×K : Dk ∈ Rm×d, k ∈ [K]}. (21)

Our proposed network (GRDL) is essentially F := FD ◦ FG.

Loss Function Instead of the cross entropy loss (7), we consider a general loss function lγ(·, ·)
satisfying 0 ≤ lγ ≤ γ to quantify the model performance. Importantly, this loss function is not
restricted to the training loss because our generalization bound is optimization-independent. For
instance, the loss function can be the ramp loss that is commonly used for classification tasks [Bartlett
et al., 2017, Mohri et al., 2018]. Given a neural network f ∈ F , we want to upper bound the model
population risk of graphs and labels from an unknown distribution X × Y

Lγ(f) := E
(G,y)∼X×Y

[lγ(f(G), y))] . (22)

Given the observed graph dataset G sampled from X × Y , the empirical risk is

L̂γ(f) :=
1

N

N∑
i=1

lγ(f(Gi), yi), (23)

of which (7) is just a special case. Appendix E provides more details about the setup and our idea.

3.2 Main Results

For convenience, similar to [Bartlett et al., 2017, Ju et al., 2023], we make the following assumptions.
Assumption 3.1. The following conditions hold for Fγ := {(G, y) 7→ lγ(f(G), y) : f ∈ F}:

(i) The activation function σ(·) is 1-Lipschitz (e.g. Sigmoid, ReLU).
(ii) The weight matrices satisfy W

(l)
i ∈ B

(l)
i := {W(l)

i : ∥W(l)
i ∥σ ≤ κ

(l)
i , ∥W(l)

i ∥2,1 ≤ b
(l)
i }.

(iii) The constructed reference matrix satisfy ∥D∥2 ≤ bD.
(iv) The Gaussian kernel parameter θ is fixed.
(v) The loss function lγ(·, y) : RK → R is µ-Lipschitz w.r.t ∥ · ∥2 and 0 ≤ lγ ≤ γ.

Theorem 3.2 (Generalization bound of GRDL). Let n = mini ni, c = ∥Ã∥σ, and d̄ = maxi,l d
(l)
i .

Denote RG := c2L∥X∥22 ln(2d̄2)
(∏L

l=1(
∏r

i=1 κ
(l)
i )2

)(∑L
l=1

∑r
i=1

( b
(l)
i

κ
(l)
i

)2/3)3
. For graphs G =

{(Gi, yi)}Ni=1 drawn i.i.d from any probability distribution over X × {1, . . . ,K} and references
{Dk}Kk=1 ,Dk ∈ Rm×d, with probability at least 1− δ, every loss function lγ and network f ∈ F
under Assumption 3.1 satisfy

Lγ(f) ≤ L̂γ(f) + 3γ

√
ln (2/δ)

2N + 8γ+24
√
v1+v2 lnN+24γ

√
Nv2 ln v3

N

where v1 = 64θKRGµ2

n , v2 = Kmd̄, and v3 = 24
√
θNbDµ√
m

.

The bound shows how the properties of the neural network, graphs, reference distributions, etc,
influence the gap between training error and testing error. A detailed discussion will be presented in
Section 3.3. Some interesting corollaries of Theorem 3.2, e.g., misclassification rate bound, can be
found in Appendix F.7. Besides small generalization error Lγ(f)− L̂γ(f), a good model should have
small empirical risk L̂γ(f). The empirical risk L̂γ(f) is typically a surrogate loss of misclassification
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rate of training data and a lower misclassification rate implies a smaller L̂γ(f). We now provide a
guarantee for the correct classification of training data, namely small L̂γ(f).

Notably, the node embeddings Hi from the k-th class as well as the reference distributions Dk are
essentially some finite samples from an underlying continuous distribution Pk. One potential risk
is that, although the continuous distributions P1,P2, . . . ,PK are distinct, we can only observe their
finite samples and may fail to distinguish them from each other with MMD. Specifically, suppose a
node embedding Hi is from the k-th class, although 0 = MMD(Pk,Pk) < MMD(Pk,Pj) for any
j ̸= k, it is likely that MMD(Hi,Dk) > MMD(Hi,Dj) for some j ̸= k. The following theorem
provides the correctness guarantee for the training dataset G:

Theorem 3.3. All graphs in the training set G are classified correctly with probability at least 1− δ if

min
i̸=j

MMD(Pi,Pj) >
(

1√
m

+ 1√
n

)(
4 + 4

√
log 2N

δ

)
.

Theorem 3.3 implies that a larger reference distribution size m benefits the classification accuracy
of training data, resulting in a lower L̂γ(f). Moreover, a larger mini ̸=j MMD(Pi,Pj) also makes
correct classification easier according to the theorem, justifying our usage of discriminative loss (8).

3.3 Bound Discussion and Numerical Verification

Let κ̄ = maxi,l κ
(l)
i , b̄ = maxi,l

b
(l)
i

κ
(l)
i

and suppose δ is large enough, we simplify Theorem 3.2 as

Lγ(f) ≤ L̂γ(f) + Õ
(√v1+γ

√
Nv2

N

)
≤ L̂γ(f) + Õ

(µb̄∥X∥2c
L(Lr)

3
2 κ̄Lr
√

θK/n

N + γ
√

Kmd
N

)
I. Dependence on graph property One distinctive feature of our bound is its dependence on
the spectral norm of graphs’ adjacency matrix. The large adjacency matrix Ã is a block-diagonal
matrix, so its spectral norm c = ∥Ã∥σ = maxi∈[N ] ∥Ãi∥σ. By Lemma F.8, incorporating cL is
sufficient for any L-step GIN message passing. This result aligns with Ju et al. [2023], who achieved
this conclusion via PAC-Bayesian analysis. Our derivation, based on the Rademacher complexity,
provides an alternative perspective supporting this result. Notably, Liao et al. [2021] and Garg et al.
[2020] proposed bounds scaling with graphs’ maximum node degree, which is larger than the spectral
norm of the graphs’ adjacency matrix (Lemma F.18). Consequently, our bound is tighter.

II. Use moderate-size message passing GIN The bound scales with the size of the message passing
GIN, following Õ(cL(Lr)

3
2 κ̄Lr). Empirical observations reveal κ̄ > 1, and we prove that c > 1

(refer to Lemma F.20). Therefore, when the message-passing GNN has sufficient expressive power
(resulting in a small L̂γ(f)), a network with a smaller L and r may guarantee a tighter bound on the
population risk compared to a larger one. Therefore, a promising strategy is to use a moderate-size
message passing GNN. This is empirically supported by Figure 5 of Appendix D.7.

III. Use moderate-size references The bound scales with the size of reference distributions m as
Õ(
√
m). When m is smaller, the bound tends to be tighter. However, if m is too small, the model’s

expressive capacity is limited, potentially resulting in a large empirical risk L̂γ(f), and consequently,
a large population risk. Therefore, using moderate-size references is a promising choice, as supported
by our empirical validation results in Appendix D.3 (see Figure 6).

IV. Regularization on references norm barely helps Regularizing the norm of references ∥D∥2,
i.e., reducing bD, might be considered to enhance the model’s generalization. However, it is important
to note that bD only influences the term v3 (in logarithm) in Theorem 3.2 and has a tiny influence
on the overall bound. Conversely, such regularization constrains the model’s expressive capacity,
potentially leading to a large L̂γ(f) and increasing the population risk. This observation is empirically
supported by experiments in Appendix D.7 (see Table 10).

V. GRDL has a tighter bound than GIN with global pooling In Appendix A, we provide the
generalization error bound, i.e., Theorem A.1, for GIN with global pooling and compare it with
Theorem 3.2. The result shows that our GRDL has a stronger generalization ability than GIN, which
is further supported by the numerical results in Table 4.
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Table 1: Classification accuracy (%). Bold text indicates the top 3 mean accuracy.

METHOD
DATASET AVERAGE

MUTAG PROTEINS NCI1 IMDB-B IMDB-M PTC-MR BZR COLLAB

PATCHY-SAN 92.6±4.2 75.1±3.3 76.9±2.3 62.9±3.9 45.9±2.5 60.0±4.8 85.6±3.7 73.1±2.7 71.5
GIN 89.4±5.6 76.2±2.8 82.2±0.8 64.3±3.1 50.9±1.7 64.6±7.0 82.6±3.5 79.3±1.7 73.6
DROPGIN 90.4±7.0 76.9±4.3 81.9±2.5 66.3±4.5 51.6±3.2 66.3±8.6 77.8±2.6 80.1±2.8 73.9
DIFFPOOL 89.4±4.6 76.2±1.4 80.9±0.7 61.1±3.0 45.8±1.4 60.0±5.2 79.8±3.6 80.8±1.6 71.8
SEP 89.4±6.1 76.4±0.4 78.4±0.6 74.1±0.6 51.5±0.7 68.5±5.2 86.9±0.8 81.3±0.2 75.8
GMT 89.9±4.2 75.1±0.6 79.9±0.4 73.5±0.8 50.7±0.8 70.2±6.2 85.6±0.8 80.7±0.5 75.7
MINCUTPOOL 90.6±4.6 74.7±0.5 74.3±0.9 72.7±0.8 51.0±0.7 68.3±4.4 87.2±1.0 80.9±0.3 75.0
ASAP 87.4±5.7 73.9±0.6 71.5±0.4 72.8±0.5 50.8±0.8 64.6±6.8 85.3±1.3 78.6±0.5 73.1
WITTOPOPOOL 89.4±5.4 80.0±3.2 79.9±1.3 72.6±1.8 52.9±0.8 64.6±6.8 87.8±2.4 80.1±1.6 75.9

OT-GNN 91.6±4.6 76.6±4.0 82.9±2.1 67.5±3.5 52.1±3.0 68.0±7.5 85.9±3.3 80.7±2.9 75.7
WEGL 91.0±3.4 73.7±1.9 75.5±1.4 66.4±2.1 50.3±1.0 66.2±6.9 84.4±4.6 79.6±0.5 73.4

FGW - ADJ 82.6±7.2 72.4±4.7 74.4±2.1 70.8±3.6 48.9±3.9 55.3±8.0 86.9±1.0 80.6±1.5 71.5
FGW - SP 84.4±7.3 74.3±3.3 72.8±1.5 65.0±4.7 47.8±3.8 55.5±7.0 86.9±1.0 77.8±2.4 70.6
WL 87.4±5.4 74.4±2.6 85.6±1.2 67.5±4.0 48.4±4.2 56.0±3.9 81.3±0.6 78.5±1.7 72.4
WWL 86.3±7.9 73.1±1.4 85.7±0.8 71.6±3.8 52.6±3.0 52.6±6.8 87.6±0.6 81.4±2.1 73.9

SAT 92.6±4.3 77.7±3.2 82.5±0.8 70.0±1.3 47.3±3.2 68.3±4.9 91.7±2.1 80.6±0.6 76.1
GRAPHORMER 89.6±6.2 76.3±2.7 78.6±2.1 70.3±0.9 48.9±2.0 71.4±5.2 85.3±2.3 80.3±1.3 75.1

GRDL 92.1±5.9 82.6±1.2 80.4±0.8 74.8±2.0 52.9±1.8 68.3±5.4 92.0±1.1 79.8±0.9 77.9
GRDL-W 90.8±4.6 82.1±0.9 80.9±0.8 72.2±3.1 53.1±0.9 68.5±3.2 90.6±1.5 80.4±1.1 77.3
GRDL-S 90.6±5.7 81.1±1.4 81.2±1.5 72.4±3.3 52.5±1.1 64.2±3.2 91.6±1.3 78.6±1.3 76.5

Remark 3.4. Currently, we use K reference distributions for classification (one for each class). One
natural approach to enhancing the model’s expressive power is increasing the number of references
for each class. However, counterintuitively, our empirical observations, supported by Theorem B.1,
suggest that having only one reference per class is optimal. We discuss this further in Appendix B.

4 Related Work

Various sophisticated pooling operations have been designed to preserve the structural information of
graphs [Bianchi et al., 2020, Ranjan et al., 2020, Baek et al., 2021, Chen and Gel, 2023, Yu et al.,
2024]. For instance, DIFFPOOL, designed by Ying et al. [2018], learns a differentiable soft cluster
assignment for nodes and maps nodes to a set of clusters to output a coarsened graph. Another method
by Lee et al. [2019] utilizes a self-attention mechanism to distinguish nodes for retention or removal,
and both node features and graph topology are considered with the self-attention mechanism.

A recent research direction focuses on preserving structural information by leveraging the optimal
transport (OT) [Peyré and Cuturi, 2020]. OT-GNN, proposed by Chen et al. [2021], embeds a graph
to a vector by computing Wasserstein distances between node embeddings and some “learned point
clouds". TFGW, introduced by Vincent-Cuaz et al. [2022], embeds a graph to a vector of Fused
Gromov-Wasserstein (FGW) distance [Vayer et al., 2018] to a set of “template graphs". OT distances
have also been combined with dictionary learning to learn graph vector embedding in an unsupervised
way (GDL) [Liu et al., 2022a, Vincent-Cuaz et al., 2021, Zeng et al., 2023].

Similar to the “learned point clouds" in OT-GNN, “template graphs" in TFGW, and dictionaries in
GDL, our GRDL preserves information in node embeddings using reference distributions. To the
best of the authors’ knowledge, we are the first to model a graph’s node embeddings as a discrete
distribution and propose to classify it directly without aggregating it into a vector, marking our novel
contribution. Additionally, our work stands out as the first to analyze the generalization bounds
for this type of model, adding a theoretically grounded dimension to the research. By the way, our
method is much more efficient than OT-GNN and TFGW. Please see Figure 2 and Table 8.

5 Numerical Experiments

5.1 Graph Classification Benchmark

Datasets We leverage eight popular graph classification benchmarks [Morris et al., 2020], com-
prising five bioinformatics datasets (MUTAG, PROTEINS, NCI1, PTC-MR, BZR) and three social
network datasets (IMDB-B, IMDB-M, COLLAB). We also use three large-scale imbalanced datasets
(PC-3, MCF-7, and ogbg-molhiv [Hu et al., 2020]). A summary of data statistics is in Table 6.
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Table 2: AUC-ROC scores of large imbalanced data
classification. Bold text indicates the best.

METHOD
DATASET

PC-3 MCF-7 OGBG-MOLHIV

GIN 84.6±1.4 80.6±1.5 77.8±1.3
DIFFPOOL 83.2±1.9 77.2±1.3 73.7±1.8
PATCHY-SAN 80.7±2.1 78.9±3.1 70.2±2.1
GRDL 85.1±1.6 81.4±1.3 79.8±1.0

Baselines Our approach is benchmarked
against four groups of state-of-the-art base-
lines: 1) GNN models with global or so-
phisticated pooling operations, including
PATCHY-SAN [Niepert et al., 2016], DIFF-
POOL [Ying et al., 2018], GIN [Xu et al.,
2018], DropGIN [Papp et al., 2021], SEP
[Wu et al., 2022], GMT [Baek et al., 2021],
MinCutPool [Bianchi et al., 2020], ASAP
[Ranjan et al., 2020], and Wit-TopoPool
[Chen and Gel, 2023]; 2) Optimal transport based models such as WEGL [Kolouri et al., 2020] and
OT-GNN [Chen et al., 2021]; 3) Kernel-based approaches including FGW [Titouan et al., 2019]
operating on adjacency (ADJ) and shortest path (SP) matrices, the WL subtree kernel [Shervashidze
et al., 2011], and the Wasserstein WL kernel [Togninalli et al., 2019]; 4) Graph transformers including
Graphormer [Ying et al., 2021] and SAT [Chen et al., 2022a]. We also show the results of two
variations of our GRDL: GRDL using Sinkhorn divergence (GRDL-S) and GRDL using Wasserstein
distance (GRDL-W). For large imbalanced datasets, we only benchmark our GRDL against PATCHY-
SAN, GIN, and DIFFPOOL because other methods are too costly. Details about the initialization and
hyper-parameters setting can be found in Appendix D.3.

Experiment Settings Due to the page limitation, please refer to Appendix D.2.

Classification Results Table 1 shows the classification results. The AUC-ROC scores of experiments
results on the three large imbalanced datasets are reported in Table 2. Our method has top 3
classification performance over baselines in almost all datasets. Our GRDL, GRDL-W and GRDL-S
have close performance. However, as shown later in Figure 2, our original GRDL has significantly
lower time costs and thus is preferable for practical use. Graph transformers also have competitive
performance, but they have significantly larger amount parameters and much higher time costs than
our model, as shown by Table 13 in Appendix D.8 .

5.2 Time Cost Comparison

We compare the time cost of our GRDL with two models that leverage optimal transport distances
discussed in Section 4: OT-GNN [Chen et al., 2021] and TFGW [Vincent-Cuaz et al., 2022].
Compared with them, our model has significantly lower time costs. We present empirical average
training time per epoch in Figure 2 and average prediction time per graph in Table 9 in Appendix
D.4. Experiments were conducted on CPUs (Apple M1) using identical batch sizes, ensuring a
fair comparison. It’s noteworthy that the OT solver employed in TFGW and OT-GNN is currently
confined to CPU, influencing the choice of hardware for this evaluation. We analyzed the theoretical
time complexity in Appendix D.4 (see Table 8).

Table 3: Comparison of time cost (second) per epoch with Wit-TopoPool and MSGNN.
MUTAG PROTEINS NCI1 IMDB-B IMDB-M PTC-MR BZR COLLAB SYN-100 SYN-300 SYN-500

GRDL (OURS) 0.4 3.4 12.6 2.4 3.5 0.8 1.2 16.3 26.6 45.8 88.7
WITTOPOPOOL 0.4 2.6 21.4 2.4 2.6 1.0 1.3 39.1 32.9 50.8 97.5
MSGNN 45.2 - - - - 75.5 135.3 - - - -

We also compare training time with two latest pooling methods including Wit-TopoPool [Chen and
Gel, 2023] and MSGNN [Lv et al., 2023] on eight real datasets and three synthetic datasets. The three
synthetic datasets have 2000 graphs with 100(SYN-100), 300(SYN-300), and 500(SYN-500) nodes
per graph, respectively. The edge number is 0.1n2 where n is the number of nodes. The empirical
training time per epoch is shown in Table 3, where empty of MSGNN means it takes more than 200
seconds to train a single epoch, which is too costly. As can be seen, our method is the most efficient
among these three methods.

5.3 Graph Visualization

We use t-SNE [Van der Maaten and Hinton, 2008] to visualize the distributions of graphs’ node
embeddings given by our GRDL model, which is equivalent to visualizing each graph in a 3-D
coordinate system. Firstly we use MMD to calculate a distance matrix C ∈ R(N+K)×(N+K) between
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Figure 2: Average training time per epoch. GRDL is 10 times faster than OT-GNN and TFGW.

the node embeddings {Hi}Ni=1 and the reference distributions {Dk}Kk=1. The 3-D visualization given
by t-SNE using C is presented in Figure 3. The graphs are located around the references. It means
that the learned references can represent realistic graphs’ latent node embeddings from the data.

5.4 More Numerical Results

Figure 3: T-SNE visualization of MUTAG
embeddings and reference distributions given
by GRDL. Each dot denotes a graph and each
square denotes a reference distribution.

The ablation study, influence of θ, generalization
comparison with GIN are in Appendices D.5, D.6,
and A, respectively.

6 Conclusions

We proposed GRDL, a novel framework for graph
classification without global pooling operations and
hence effectively preserve the information of node
embeddings. What’s more, we theoretically analyzed
the generalization ability of GRDL, which provided
valuable insights into how the generalization ability
scales with the properties of the graph data and net-
work structure. Extensive experiments on moderate-
scale and large-scale benchmark datasets verify the
effectiveness and efficiency of GRDL in comparison
to baselines. However, on some benchmark datasets
(e.g. NCI1), our model does not outperform the base-
line, which may be a limitation of our work and re-
quires further investigation in the future.
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A Generalization Comparison to GIN with Global Pooling

To see the advantage of our GRDL, we compare it with GIN. The only difference between GRDL
and GIN is that GRDL uses a reference layer while GIN uses readout. We add an r′-layer MLP as the
classifier after message-passing modules in the GIN. The following theorem gives an upper bound of
GIN’s generalization error:

Theorem A.1 (Generalization bound of GIN). Let n = mini ni, c = ∥Ã∥σ, and d̄ = maxi,l d
(l)
i .

Denote RG := c2L∥X∥22 ln(2d̄2)
(∏L

l=1(
∏r

i=1 κ
(l)
i )2

)(∑L
l=1

∑r
i=1

( b
(l)
i

κ
(l)
i

)2/3)3
. For graphs G =

{(Gi, yi)}Ni=1 drawn i.i.d from any probability distribution over X × {1, . . . ,K}, with probability at
least 1− δ, GIN network with mean readout satisfies

Lγ(f) ≤ L̂γ(f) + 3γ

√
ln (2/δ)

2N +
8γ+24µ(

∏r′
i=1 κ

(L+1)
i )

√
RG+R′

G lnN

N

where R′
G = c2L∥X∥22 ln(2d̄2)

(∏L
l=1(
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i=1 κ

(l)
i )2

)(
3C2

2C1 + 3C2C
2
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1

)
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κ
(L+1)
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,

and C2 =
∑L

l=1

∑r
i=1

( b
(l)
i

κ
(l)
i

)2/3
.

This bound is derived using the same techniques as our GRDL bound in Theorem 3.2. To compare
these two bounds, we only need to compare the following two terms:

QGRDL := 24
√
v1 + v2 lnN + 24γ

√
Nv2 ln v3 (Theorem 3.2)

QGIN := 24µ
( r′∏

i=1

κ
(L+1)
i

)√
RG +R′

G lnN (Theorem A.1)

where v1 = 64θKµ2

n RG, v2 = Kmd̄, and v3 = 24
√
θNbDµ√
m

. Our observations are as follows.

• The θ in v1 can be absorbed into W
(L)
r and {Dk}Kk=1. Since n≫ K, we conclude that 64θK

n is
smaller than 1 in practice. Therefore, v1 ≤ µ2RG.

• v2 = Kmd̄ and v3 = 24
√
θNbDµ√
m

are much smaller than R′
G as well as RG, i.e., v2 ≪ R′

G and
v3 ≪ R′

G. The reason is that R′
G and RG involve the multiplication of terms related to c, ∥X∥22,

and κ(l)i .
• In Theorem A.1,

∏r′

i=1 κ
(L+1)
i is typically larger than 3 for r′ > 1 based on empirical obser-

vations. We also observe that
∏r′

i=1 κ
(L+1)
i may be smaller than 1 for r′ = 1, but the linear

classifier’s expressive capacity is very limited and thus has large training error. Therefore, we
focus on the case where r′ > 1.

Now we can conclude that QGRDL < QGIN. Therefore, the generalization error upper bound of GIN
is larger than of GRDL, meaning our GRDL generalizes better on unseen data than GIN in the worst
case. It is worth noting that these results apply to other GNNs such as GCN.

We now use numerical experiments on real datasets to support our claim. The training and testing
accuracy of GRDL and GIN are shown in Table 4. We see that the training accuracy of our GRDL is
close to that of GIN, but the testing accuracy of our GRDL is much higher than that of GIN. This
means that GRDL and GIN have similar training errors but the former has a stronger generalization
ability.

B Theory and Experiments of GRDL with Multiple Reference Distributions

Currently, we use K reference distributions for classification (one for each class). One natural
approach to enhance the model’s expressive power is to increase the number of reference distributions
for each class. However, counterintuitively, our empirical observations suggest that having only
one reference per class is optimal. In this section, we will explore and provide insights into this
phenomenon.
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Table 4: Comparison of the trainining and testing accuracy between GRDL and GIN.

GRDL GIN
Dataset Training Accuracy Testing Accuracy Training Accuracy Testing Accuracy

MUTAG 93.3 92.1 92.7 89.4
PROTEINS 83.1 82.6 80.5 76.2
NCI1 82.8 80.4 83.3 82.2
IMDB-B 76.3 74.8 75.9 64.3
IMDB-M 53.1 52.9 51.7 50.9
PTC-MR 71.3 68.3 66.1 64.6
BZR 93.1 92.0 93.9 82.6
COLLAB 82.1 79.9 82.3 79.3

Average 79.4 77.9 78.3 73.6

Suppose we have P reference distributions for each class, i.e. D ≜
{
D

(p)
k

}p∈[P ]

k∈[K]
, where D

(p)
k is the

p-th reference in the k-th class. The prediction in Equation (5) is changed to

ypred,i = arg max
k∈[K]

sik, sik =

P∑
p=1

ξ(Hi,D
(p)
k ). (24)

The training algorithm is nearly the same as our GRDL with one reference per class (Algorithm 1)
except for the mini-batch training loss because of the multiple references, i.e.,

L = − 1

B

∑
i∈B

K∑
k=1

yik log ŷik + λ
∑
k′ ̸=k

P∑
p,p′=1

ξθ(D
(p)
k ,D

(p′)
k′ ) (25)

We compare the model with P = 2 (GRDL-2) and P = 3 (GRDL-3) with our GRDL (P = 1).
Table 5 shows the classification accuracy of the models on the benchmark datasets.

Table 5: Classification accuracy of models with multiple reference distributions. Bold text indicates
the best mean accuracy.

DATASET
METHOD

GRDL GRDL-2 GRDL-3

MUTAG 92.1±5.9 91.5±4.8 90.4±3.1
PROTEINS 82.6±1.2 81.4±2.1 81.3±2.9
NCI1 80.4±0.8 79.3±1.0 80.0±1.6
IMDB-B 74.8±2.0 73.6±2.2 74.0±1.4
IMDB-M 52.9±1.8 51.1±1.2 50.3±2.1
PTC-MR 68.3±5.4 66.3±6.4 65.4±5.5
BZR 92.0±1.1 87.1±2.7 88.2±3.1
COLLAB 79.8±0.9 77.9±1.2 77.5±0.7

To explain why GRDL performs better than the models with more references, we first introduce the
following theorem

Theorem B.1. Let n be the minimum number of nodes for graphs {Gi}Ni=1, θ be the hyper-parameter
in the Gaussian kernel (Equation (15)), c = ∥Ã∥σ. For graphs G = {(Gi, yi)}Ni=1 drawn i.i.d from

any probability distribution over X ×{1, . . . ,K} and references
{
D

(p)
k

}p∈[P ]

k∈[K]
,D

(p)
k ∈ Rm×d, with

probability at least 1− δ, every loss function lγ and network f ∈ F under Assumption 3.1 satisfy

Lγ(f) ≤ L̂γ(f) + 3γ

√
ln (2/δ)

2N
+

8γ + 24
√
v1 + v2 lnN + 24γ

√
Nv2 ln v3

N
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where

v1 =
64θP 2KRGµ

2

n
, v2 = Kmd̄, v3 =

24P
√
θNbDµ√
m

,RG = c2L∥X∥22 ln(2d̄2)

(
L∏

l=1

(
r∏

i=1

κ
(l)
i

)2) L∑
l=1

r∑
i=1

(
b
(l)
i

κ
(l)
i

)2/3
3

.

This is essentially a more general version of Theorem 3.2. The following is a brief proof of this
theorem.

Proof. The only difference between multiple reference distributions and a single reference distribution
comes from the calculation of sij .

|sij − s′ij | =

∣∣∣∣∣
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j

)
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)

Then with minor modifications of proof of Lemma F.14, the covering number of F is given by

lnN (ϵ,F , ρ) ≤ 64θP 2KRG

nϵ2
+Kmd ln

(
24bDP

√
θN√

mϵ

)
.

Then the theorem can be proved using the same process as the proof of Theorem 3.2.

Let κ̄ = maxi,l κ
(l)
i , b̄ = maxi,l

b
(l)
i

κ
(l)
i

and suppose δ is sufficiently large. The bound in Theorem B.1

can be simplified to

Lγ(f) ≤ L̂γ(f) + Õ
(√

v1 + γ
√
Nv2

N

)
≤ L̂γ(f) + Õ

(
µb̄∥X∥2cL(Lr)

3
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N
+ γ

√
Kmd

N

)
(26)

Empirically, we observe that the training loss L̂γ and the misclassification rate are nearly the same for
small P and large P as shown in Figure 4. Therefore, smaller P implies tighter generalization bound
in (26). This means that one reference distribution for each class (P = 1) may be the optimal choice.

Another explanation is that, the nodes embeddings of graphs in the same class can be regarded as
samples drawn from a single discrete distribution, thus learning a single reference distribution is
sufficient to provide high classification accuracy. On the other hand, the union of multiple distributions
can be regarded as a single distribution.

C Detailed Training Algorithm of GRDL

In practice, since the scale of θ is different from the scale of other parameters in the model, a different
learning rate is used to update it. Suppose Adam [Kingma and Ba, 2014] is used to optimize the
parameters, then the training of GRDL model is presented in Algorithm 1.

D More Experiments

D.1 Dataset Statistics

The statistics of the datasets are reported in Table 6. PC-3, MCF-7, and ogbg-molhiv are three large
graph datasets.
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Figure 4: Training data misclassification rate on MUTAG (left) and IMDB-BINARY (right) with
different numbers of references for each class (P ). The effect of P on the training misclassification
rates is not obvious.

Algorithm 1 GRDL Training

1: Input: Graphs {Gi}Ni=1, α1 the learning rate of w and D, α2 the learning rate of θ, batch size B.
2: Initialize w, D, and θ.
3: repeat
4: Sample a minibatch {Gi : i ∈ B, |B| = B}
5: si ← fw,D,θ(Gi), i ∈ B
6: ŷi ← softmax(si), i ∈ B

7: L = − 1

B

∑
i∈B

K∑
k=1

yik log ŷik + λ
∑
k′ ̸=k

ξθ(Dk,Dk′)

8: (gw, gD, gθ)← ∇w,D,θL
9: (w,D)← (w,D) + α1 ·Adam ((w,D), (gw, gD))

10: θ ← θ + α2 ·Adam(θ, gθ)
11: until convergence conditions are met
12: Output: fw,D,θ

D.2 Experiment Settings

In the GNN literature, researchers typically perform 10-fold cross-validation and report the best
average accuracy along with standard deviation [Xu et al., 2018, Papp et al., 2021, Maron et al.,
2019]. But here, we adopt a different strategy used in [Vincent-Cuaz et al., 2022]. We quantify
the generalization capacities of models by performing a 10-fold cross-validation with a holdout test
set which is never seen during training. The validation accuracy is tracked every 5 epochs, and the
model that maximizes the validation accuracy is retained for testing. This setting is more realistic
than a simple 10-fold CV and can better quantify models’ generalization performances [Bengio and
Grandvalet, 2003]. However, the test sets for MUTAG and PTC-MR contain only 18 and 34 graphs
respectively, making them too small for assessing generalization ability. Therefore, for MUTAG
and PTC-MR, we use 10-fold cross-validation following [Xu et al., 2018]. Notice that kernel-based
methods do not require a stopping criterion dependent on a validation set, so we report results of
10-fold nested cross-validation repeated 10 times following [Titouan et al., 2019].

D.3 Hyper-parameter Settings and Parameter Initializations

Model For all the baselines, we adopt the hyper-parameters suggested in the original papers. For
our methods, we use GIN [Xu et al., 2018] layers as the embedding network. Every GIN layer is an
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Table 6: Dataset Statistics

datasets features #graphs #classes min #nodes median #nodes max #nodes

MUTAG {0, . . . , 6} 188 2 10 17 28
PROTEINS R29 1113 2 2 13 63
NCI1 {0, . . . , 36} 4110 2 3 27 111
PTC-MR {0, . . . , 17} 344 2 2 13 64
BZR R3 405 2 13 35 57
IMDB-B None 1000 2 12 17 136
IMDB-M None 1500 3 7 10 89
COLLAB None 5000 3 32 52 492

PC-3 {0, . . . , 28} 27509 2 3 24 113
MCF-7 {0, . . . , 28} 27770 2 3 24 113
ogbg-molhiv R29 41127 2 2 23 222

MLP of 2 layers (r = 2) with batch normalization, whose number of units is validated in {32, 64}
for all datasets. The parameter λ is validated in {0.1, 1}. We validate the number of GIN layers (L)
in {3, 4, 5, 6, 7, 8, 9}. For each dataset, the references’ dimension (m) is validated in the minimum
number of nodes (G1), average of the minimum and median number of nodes (G2), median number of
nodes (G3), average of the median and maximum number of nodes (G4), and the maximum number
of nodes (G5) of graphs in the dataset. The reference for each class is initialized as follows: 1) If
there is a m-node graph in the dataset that belongs to the corresponding class, then the reference is
initialized as node embeddings of the graph. 2) If no graph in the class has m nodes, then we perform
K-Means clustering on the graphs of the class, and the m clustering center is chosen to be the initial
reference.

Optimization The models are trained with Adam optimizer with an initial learning rate α1 = 10−3

for network weights and references. The learning rate α1 decays exponentially with a factor 0.95.
Since the Gaussian kernel parameter θ is small in practice (around 10−3 in our model), it is hard to
choose a learning rate for it. Therefore, we consider π = 1

θ instead. π is initialized to 500 and its
initial learning rate α2 is validated in {0.1, 1}. The batch size for all datasets is fixed to 32.

Detailed hyper-parameters setting can be found in Table 7.

Table 7: Hyper-parameter settings for experiment results in Table 1.

DATASETS #LAYERS REFERENCE DIM HIDDEN CHANNELS λ α2

MUTAG 5 G2 32 1.0 1.0
PROTEINS 5 G3 32 1.0 0.1
NCI1 5 G3 32 1.0 0.1
IMDB-B 5 G3 32 1.0 1.0
IMDB-M 5 G3 32 0.1 0.1
PTC-MR 5 G3 32 1.0 0.1
BZR 5 G3 32 1.0 0.1
COLLAB 6 G3 32 1.0 0.1
PC-3 6 G4 64 1.0 0.1
MCF-7 6 G4 64 1.0 0.1
OGBG-MOLHIV 6 G4 64 1.0 0.1

D.4 Time Complexity

To provide a comprehensive understanding, we first show the forward propagation time complexity
of the three models for a single graph G = (A,X),A ∈ Rn×n,X ∈ Rn×d. Given that all three
models employ a Graph Neural Network (GNN) for obtaining node embeddings, we denote the
complexity and the number of parameters of the GNN embedding part as C1 and N1, respectively.
Additionally, both OT-GNN and TFGW are augmented with an MLP for classification, introducing
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an extra complexity C2 and additional parameters N2. In the case of our GRDL, the number of
references aligns with the number of classes K.

Let’s assume the number of references for OT-GNN is K1, and for TFGW, it is K2. Notably, TFGW
and OT-GNN usually choose K1 = 2K and K2 = 2K. Additionally, assuming that all references
Di ∈ Rm×d. Since the GW distance is iteratively computed in Vincent-Cuaz et al. [2022], we denote
the number of iterations for convergence as T . The time complexity and the number of parameters
are outlined in Table 8.

Table 8: Time complexity and number of parameters for GRDL, OT-GNN and TFGW.

MODEL COMPLEXITY PARAMETERS

GRDL C1 +O
(
K(n2 +mn+m2)

)
N1 +Kmd

OT-GNN C1 +O
(
K1(m+ n)3 log (m+ n)

)
+ C2 N1 +K1md+N2

TFGW C1 +O
(
TK2(m

2n+ n2m)
)
+ C2 N1 +K2md+N2

Notice that Wasserstein distance can be approximated by sinkhorn iterations with complexity O((m+
n)2) per iteration [Cuturi, 2013]. But in practice, the exact calculation withO((m+n)3 log (m+ n))
complexity empirically gives better performance in terms of both precision and speed, so it is
implemented in the original paper of OT-GNN [Chen et al., 2021]. Theoretically, our GRDL has
lower prediction time complexity and a reduced parameter count. Table 9 shows the empirical
prediction time per graph

Table 9: Average prediction time per graph (10−3

seconds).

DATASET
METHOD

GRDL OT-GNN TFGW

MUTAG 1.2 25.6 53.5
PROTEINS 1.3 29.4 48.3
NCI1 1.2 25.1 83.5
IMDB-B 1.2 16.3 66.0
IMDB-M 1.1 16.3 66.5
PTC-MR 1.8 15.0 58.4
BZR 2.1 23.8 76.2

AVERAGE 1.4 21.6 64.6

Table 10: Comparison of GRDL with/without reg-
ularization on references norm.

DATASET
METHOD

GRDL GRDL-R

MUTAG 92.1±5.9 91.6±5.5
PROTEINS 82.6±1.2 80.3±1.2
NCI1 80.4±0.8 78.6±0.9
IMDB-B 74.8±2.0 73.6±1.6
IMDB-M 52.9±1.8 48.3±1.6
PTC-MR 68.3±5.4 68.1±6.4
BZR 92.0±1.1 90.7±2.4
COLLAB 79.8±0.9 77.9±0.7

D.5 Ablation Study

We consider two variants of GRDL. The first one is GRDL with a fixed θ = 10−2 in the Gaussian
kernel. The other is GRDL with λ = 0 in (9), which does not have the discriminativeness constraint
on the references. We also include another baseline where we first use sum pooling over node
embeddings and get the graph embedding vectors. The graph vectors are then used to compare with
references (vectors in this case) with discrimination loss. The classification results of benchmark
datasets are given in Table 11. The original model with learnable θ and discriminativeness constraints
consistently outperforms the other two.

D.6 Influence of θ

In our model, we initialized the Gaussian kernel hyper-parameter θ to 2× 10−3 and it was adaptively
learned during training. Actually, all values between 1×10−4 and 1×10−1 give similar performance,
as it is adaptively adjusted in the training. The initialization of the neural network parameters and
the reference distributions cannot guarantee that x is close to x′. If θ is too large, the Gaussian
kernel k(x,x′) = exp (−θ∥x− x′∥22) will be too sharp, which will lead to almost zero values.
Hence, MMD will fail to effectively quantify the distance between the embeddings and reference
distributions, as shown in Table 12.
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Table 11: Classification accuracy of ablation methods. Bold text indicates the best mean accuracy.

DATASET
METHOD

GRDL GRDL FIXED θ GRDL λ = 0 GRDL+SUM λ = 0

MUTAG 92.1±5.9 90.4±6.4 89.9±4.9 89.9±6.0
PROTEINS 82.6±1.2 81.8±0.9 81.8±1.3 78.4±0.6
NCI1 80.4±0.8 80.2±2.2 80.0±1.6 77.2±1.7
IMDB-B 74.8±2.0 72.8±1.8 73.1±1.5 71.6±5.2
IMDB-M 52.9±1.8 52.1±1.2 51.3±1.4 49.8±5.4
PTC-MR 68.3±5.4 66.6±5.7 66.6±5.9 62.5±6.3
BZR 92.0±1.1 90.1±1.5 89.5±2.3 85.3±1.5
COLLAB 79.8±0.9 79.5±0.7 79.0±1.0 77.1±0.9

Table 12: Classification accuracy of MUTAG dataset with different θ.

θ 1× 10−4 1× 10−3 1× 10−2 1× 10−1 1 1× 101 1× 102 1× 103

Accuracy 0.9096 0.9149 0.9113 0.9113 0.8254 0.6822 0.5737 0.3345

D.7 Experiments on The Generalization Error Bound

Use moderate-size message passing network We choose the training loss to be the cross-entropy
loss (λ = 0) and lγ is chosen the same as the training loss. We validate the number of GIN layers
L ∈ {3, 4, 5, 6} and the number of MLP layers for each GIN layer r ∈ {2, 3, 4}. Lγ is set to be the
validation loss and L̂γ is set to be the training loss. From Figure 5, we have the following observations

• For any fixed r, if L is increasing, the empirical risk L̂γ increases, and the population risk Lγ

either increases (r = 3 and r = 4) or first decreases then increases (r = 2).
• For any fixed L, if r is increasing, the population risk Lγ first decreases then increases in most

of the cases, and the empirical risk L̂γ decreases in most of the cases.

These observations align with our bound and support our claim that moderate-size GNN should be
used.

Use moderate-size references We validate the reference size (m) in our experiments on real
datasets, as detailed in Appendix D.3. The results in Appendix D.3 show that moderate-size references
(G2, G3, G4) provide better generalization results. Here, we present the classification results for
MUTAG and PROTEINS by choosing m from more fine-grained sets. For MUTAG, m is chosen
from 1, 2, . . . , 30. For PROTEINS, m is chosen from 1, 3, 5, . . . , 61. The figures in Figure 6 show
that our model performs the best when a moderate m is used.

Regularization on references norm barely helps Consider a model regularizing the norm of
references ∥D∥2 (GRDL-R)

minLCE + λ1LDis + λ2∥D∥2 (27)

The hyper-parameter λ2 is set as 0.01. Table 10 compares the empirical results of GRDL model
and the results of GRDL-R model. From the table, we can see that GRDL performs better than
GRDL-R on all datasets, which verifies our discussion in Section 3.3. Therefore, the regularization
of references barely helps in our model.

D.8 Parameter Number and Time Cost Comparison with Graph Transformers

Table 13 compares the number of parameters and training time per epoch of our GRDL with two
graph transformers method. We can see that our GRDL has significantly fewer parameters and
training time, making it preferable. All experiments are conducted on one RTX3080.
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Figure 5: The blue and orange lines denote the training error L̂γ and validation error Lγ , respectively,
of GRDL with r ∈ {2, 3, 4}, L ∈ {3, 4, 5, 6}

.

Table 13: Number of parameters and time cost per training epoch (seconds) of GRDL and Graph
transformers.

Dataset
Method

GRDL SAT Graphormer
# Parameters Time # Parameters Time # Parameters Time

MUTAG 11k 0.11 663k 0.64 647k 0.59
PROTEINS 12k 0.52 666k 3.51 650k 3.31
NCI1 13k 1.77 667k 12.08 651k 11.37
IMDB-B 15k 0.42 680k 3.69 664k 3.42
IMDB-M 13k 0.69 674k 4.32 658k 4.06
PTC-MR 12k 0.17 663k 1.17 647k 0.97
BZR 11k 0.21 665k 1.26 649k 1.09
COLLAB 31k 3.71 725k 17.45 709k 16.89

Average 15k 0.95 675k 5.51 659k 5.21

E Proof Setups

Vector and matrix norms The ℓ2-norm ∥ · ∥2 is always computed entry-wise; thus, for a matrix, it
corresponds to the Frobenius norm. The metric ρ of function spaces is defined as the ℓ2-norm of the
difference between the outputs of functions given some input X , i.e.,

ρ(f1, f2) = ∥f1(X)− f2(X)∥2. (28)

Finally, let ∥ · ∥σ be the spectral norm and ∥ · ∥p,q be the (p, q) matrix norm defined by ∥A∥p,q :=
∥(∥A:,1∥p, . . . , ∥A:,m∥p)∥q for A ∈ Rd×m.
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(a) MUTAG (b) MUTAG

Figure 6: Misclassification rate of GRDL on MUTAG (Figure 6a) and PROTEINS (Figure 6b) using
different reference sizes m. The figures show that our model performs the best when a moderate m is
used.

Rademacher complexity Rademacher complexity is a standard complexity measure of hypothesis
function space. Given dataset G and hypothesis function space F , the Rademacher complexity is
defined as

RG(F) := E
σ1,...,σN

[
sup
f∈F

1

N

N∑
i=1

σif(Gi)

]
(29)

where σ1, . . . , σN are independent Rademacher variables.

Then the bound can be derived with the help of the following lemma:
Lemma E.1. Given hypothesis function space F that maps a graph G ∈ X to RK and any γ > 0,
define Fγ := {(G, y) 7→ lγ(f(G), y) : f ∈ F}. Then, with probability at least 1− δ over a sample

G of size N , every f ∈ F satisfies Lγ(f) ≤ L̂γ(f) + 2RG(Fγ) + 3γ
√

ln (2/δ)
2N .

This Lemma is a standard tool in Rademacher complexity [Mohri et al., 2018]. The only problem left
is to calculate the Rademacher complexityRG(Fγ).

Covering number complexity bounds Direct calculation of the Rademacher complexity is often
hard and the covering number is typically used to upper bound it. V is an ϵ-cover of U with respect
to some metric ϱ if for all v ∈ U , there exists v′ ∈ V such that ϱ(v, v′) ≤ ϵ, meaning

sup
v∈U

min
v′∈V

ϱ(v, v′) ≤ ϵ. (30)

The covering number N (ϵ, U, ϱ) is defined as the least cardinality of the subset V . With covering
number, the Rademacher complexity is upper bounded by the following Dudley entropy integral:
Lemma E.2 (Lemma A.5 of Bartlett et al. [2017], reformulated). Let Fγ be a real-valued function
class taking values in [0, γ], and assume that 0 ∈ Fγ . Then

RG(Fγ) ≤ inf
α>0

(
4αγ√
N

+
12

N

∫ γ
√
N

γα

√
lnN (ϵ,Fγ , ρ) dϵ

)
.

Now the only thing left is to bound N (ϵ,Fγ , ρ).

F Proof for Theorems, Corollaries, and Lemmas

F.1 Correctness Analysis

We first provide the formal definition of correct classification:
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Definition F.1 (Correctness of Classification). For a graph Gi with node embedding Hi belonging to
the k-th class, it is correctly classified if MMD(Hi,Dk) < minj ̸=k MMD(Hi,Dj).
Lemma F.2 (Correctness of Classification). The classification of a graph Gi belonging to the k-th
class (with latent node embedding Hi) is correct with probability at least 1− δ if

min
j ̸=k

MMD(Pk,Pj) >

(
1√
m

+
1√
n

)(
4 + 4

√
log

2

δ

)
.

Lemma F.2 suggests that a larger reference distributions size (m) and graphs with more nodes (n)

induce a smaller
(

1√
m

+ 1√
n

)(
4 + 4

√
log 2

δ

)
, making correct classification easier. Proof of this

theorem is provided in Appendix F.10.

F.2 Lipschitz properties

This section proves some useful lemmas related to functions’ lipschitz property.
Lemma F.3. For any Z,Z′ ∈ Rn×d and W ∈ Rd×m, ∥(Z− Z′)W∥2 ≤ ∥W⊤∥σ∥Z− Z′∥2

Proof. First consider matrices X,Y ∈ Rd×d where X,Y are positive semi-definite. Y is unitarily
diagonalizable, means QΛQ−1 where Λ = diag(λ1, . . . , λd) is the diagonal matrix of eigenvalus of
Y. Then we have

Tr(XY) = Tr(XQΛQ−1) = Tr(ΛQ−1XQ)

Let P = Q−1XQ, and λ0 = maxi λi, we have

Tr(XY) = Tr(ΛP) =
∑
k

λkpkk ≤
∑
k

λ0pkk = λ0Tr(P) = λ0Tr(Q−1XQ) = λ0Tr(X)

Take X = (Z− Z′)⊤(Z− Z′) and Y = WW⊤, easy to see that

∥(Z−Z′)W∥2 = Tr
(
(Z− Z′)⊤(Z− Z′)WW⊤

)
≤ λmax(WW⊤)Tr

(
(Z− Z′)⊤(Z− Z′)

)
= ∥W⊤∥σ∥Z−Z′∥2

Lemma F.4. If σ : Rd → Rd is κ-Lipschitz along ever coordinate, then it is κ-Lipschitz according to
∥ · ∥p for any p ≥ 1.

Proof. For any z, z′ ∈ Rd,

∥σ(z)− σ(z′)∥p =

(∑
i

|σ(z)i − σ(z′)i|p
)1/p

≤

(∑
i

κp|zi − z′i|p
)1/p

= κ∥z − z′∥p

Lemma F.5 (Lemma A.3 of Bartlett et al. [2017]). For every j and every p ≥ 1,M(·, j) is 2-Lipschitz
w.r.t ∥ · ∥p.

Proof. Let v, v′, j be given. Without loss of generality, suppose M(v, j) ≥ M(v′, j). Choose
coordinate i ̸= j so thatM(v′, j) = v′j − v′i. Then

M(v, j)−M(v′, j) = (vj −max
l ̸=j

vl)− (v′j − v′i) = vj − v′j + v′i +min
l ̸=j

(−vl)

≤ (vj − v′j) + (v′i − vi) ≤ 2∥v − v′∥∞ ≤ 2∥v − v′∥p
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Lemma F.6. For every p > 1, rζ(−M(·, y)) is 2
ζ -Lipschitz w.r.t ∥ · ∥p.

Proof. Recall that,

rζ(t) :=


0 t < −ζ,
1 + t/ζ r ∈ [−ζ, 0],
1 t > 0,

(31)

Then the proof is trivial be Lemma F.5.

Lemma F.7. Cross entropy loss l(x,y) = −
∑K

k=1 yk log
exp (xk)∑K
j=1 exp (xj)

is
√
2-Lipschitz w.r.t ∥ · ∥2.

Proof. Since l is differentiable, it is sufficient to find µ such that ∥∇l∥2 ≤ µ. Without loss of
generality, suppose yi = 1, then l(x,y) = − log exp (xi)∑K

j=1 exp (xj)
. Let s =

∑
k expxk, we have

∇li = −
∑

l ̸=i exp (xl)

s
, ∇lj =

exp (xj)

s
∀j ̸= i

Therefore

∥∇l∥22 =
(
∑

l ̸=i exp (xl))
2 +

∑
l ̸=i exp (2xl)

s2

(a)

≤ 2
(
∑

l ̸=i exp (xl))
2

s2
≤ 2

where (a) is because Cauchy–Schwarz inequality.

F.3 Covering number

The following lemma provides an upper bound of the covering number for the network FG.

Lemma F.8 (Covering number bound of FG). Let c = ∥Ã∥σ and d̄ = maxi,l d
(l)
i . Given an L-layer

GIN message passing network FG, for any ϵ > 0

lnN (ϵ,FG, ρ) ≤
RG

ϵ2

where RG = c2L∥X∥22 ln(2d̄2)
(∏L

l=1 κ
2
l

)(∑L
l=1 (τl)

2
3

)3
and κl =

∏r
j=1 κ

(l)
j , τl =(∑r

i=1

(
b
(l)
i

κ
(l)
i

)2/3
)3/2

.

Firstly, we introduce the core lemma used to find the covering number of compositions of multiple
hypothesis function classes.
Lemma F.9. Given hypothesis function classes F1,F2, . . .Fk that maps input from matrix space to
output in matrix space and their covering radius (ϵ1, ϵ2, . . . , ϵk). Assume all functions in Fi is κi-
Lipschitz w.r.t. ∥ · ∥2, and lnN (ϵi,Fi, ρ) ≤ g(ηi) for some function g with parameters ηi (ηi can be

multi-valued). Then there exists ϵ-cover C ofF = Fk◦Fk−1◦· · · F1 with ϵ =
∑k

i=1

(
ϵi
∏k

j=i+1 κj

)
such that

ln |C| ≤
k∑

i=1

g(ηi)

Proof. Inductively construct covers as follows.

• Let C1 be the ϵ1-cover of F1. By our assumption,

ln |C1| ≤ g(η1)

• Let Cj as a ϵj-cover of Fj ◦ · · · ◦ F1. Suppose ln |Cj | ≤
∑j

i=1 g(ηi). For every f ′j ◦ . . . f ′1 ∈ Cj ,
we construct Cj+1,f ′

j ,...,f
′
1

as an ϵj+1-cover of Fj+1 ◦ f ′j ◦ · · · ◦ f ′1. Define

Cj+1 :=
⋃

f ′
h∈Ch,h≤j

Cj+1,f ′
j ,...,f

′
1
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It is clearly a cover of Fj+1 ◦ Fj ◦ · · · ◦ F1 By our assumption, we know that

ln |Cj+1,f ′
j ,...,f

′
1
| ≤ g(ηj+1)

|Cj+1,f ′
j ,...,f

′
1
| ≤ exp (g(ηj+1))

Then, it is trivial to see
|Cj+1| ≤ |Cj | exp (g(ηj))

ln |Cj+1| ≤
j+1∑
i=1

g(ηi)

By the inductive arguments above, we can conclude that

ln |C| = ln |Ck| ≤
k∑

i=1

g(ηi)

Next, inductively find the cover radius ϵ for C.

• It is trivial in the base case that the cover of C1 is ϵ1.
• Suppose for Ch, the cover radius satisfies

ϵh =

h∑
i=1

ϵi h∏
j=i+1

κj


For all fh+1 ◦ fh ◦ · · · ◦ f1 ∈ Fh+1 ◦ Fh ◦ · · · ◦ F1, there exists f ′h+1 ◦ f ′h ◦ · · · ◦ f ′1 ∈ Ch+1

such that

ρ(f ′h+1 ◦ f ′h ◦ · · · ◦ f ′1, fh+1 ◦ fh ◦ · · · ◦ f1) ≤ ρ(f ′h+1 ◦ f ′h ◦ · · · ◦ f ′1, fh+1 ◦ f ′h ◦ · · · ◦ f ′1)
+ ρ(fh+1 ◦ f ′h ◦ · · · ◦ f ′1, fh+1 ◦ fh ◦ · · · ◦ f1)
≤ ϵh+1 + κh+1ρ(f

′
h ◦ · · · ◦ f ′1, fh ◦ · · · ◦ f1)

≤ ϵh+1 + κh+1ϵh

=

h+1∑
i=1

ϵi h+1∏
j=i+1

κj


By the inductive arguments,

ϵ = ϵk =

k∑
i=1

ϵi k∏
j=i+1

κj



The following matrix covering number is well-known and the detailed proof can be found in Bartlett
et al. [2017].

Lemma F.10. Let conjugate exponents (p, q) and (r, s) be given with p ≤ 2, as well as positive reals
(a, b, ϵ) and positive integer m. Let matrix X ∈ Rn×d be given with ∥X∥p ≤ b. Then

lnN
({

XA : A ∈ Rd×m, ∥A∥q,s ≤ a
}
, ϵ, ∥ · ∥2

)
≤
⌈a2b2m2/r

ϵ2

⌉
ln (2dm)

For the composition of a hypothesis function class and a κ-Lipschitz function, we have the following
lemma

Lemma F.11. Suppose ψ is a κ-Lipschitz function, then lnN (ϵ, ψ ◦ F , ρ) ≤ lnN (ϵ/κ,F , ρ)

Proof. Let C denote ϵ
κ -cover of F , then for any f ∈ F , there exists f ′ ∈ C such that ρ(f, f ′) ≤ ϵ

κ .
Let Z denote the input, we have
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ρ(ψ ◦ f ′, ψ ◦ f) = ∥ψ ◦ f ′(Z)− ψ ◦ f(Z)∥2
≤ κ∥f ′(Z)− f(Zzh)∥2 (Lemma F.4)

= κρ(f ′, f)

≤ ϵ

Lemma F.12. Given H,H′ ∈ Rn×d and D,D′ ∈ Rm×d. Squared MMD distance with gaussian
kernel k(x, y) = exp

{
−θ∥x− y∥22

}
satisfies∣∣MMD2 (H,D)−MMD2 (H′,D′)
∣∣ ≤ 4

√
θ
(
n−1/2∥H−H′∥2 +m−1/2∥D−D′∥2

)
Proof. The matrices have the form

H =


h⊤
1

h⊤
2
...

h⊤
n

 H′ =


h′⊤

1

h′⊤
2
...

h′⊤
n

 D =


d⊤
1

d⊤
2
...

d⊤
m

 D′ =


d′⊤

1

d′⊤
2
...

d′⊤
m


Then we have

∣∣MMD2 (H,D)−MMD2 (H′,D′)
∣∣ ≤
∣∣∣∣∣∣ 1n2

n∑
i,j=1

[
exp

(
−θ∥hi − hj∥22

)
− exp

(
−θ∥h′

i − h′
j∥22
)]∣∣∣∣∣∣

+

∣∣∣∣∣∣ 1

m2

m∑
i,j=1

[
exp

(
−θ∥di − dj∥22

)
− exp

(
−θ∥d′

i − d′
j∥22
)]∣∣∣∣∣∣

+

∣∣∣∣∣∣ 2

mn

n∑
i=1

m∑
j=1

[
exp

(
−θ∥hi − dj∥22

)
− exp

(
−θ∥h′

i − d′
j∥22
)]∣∣∣∣∣∣

(a)

≤
√
θ

n2

n∑
i,j=1

|∥hi − hj∥2 − ∥h′
i − h′

j∥2|+
√
θ

m2

m∑
i,j=1

|∥di − dj∥2 − ∥d′
i − d′

j∥2|

+
2
√
θ

mn

n∑
i=1

m∑
j=1

|∥hi − dj∥2 − ∥h′
i − d′

j∥2|

(b)

≤
√
θ

n2

n∑
i,j=1

∥ (hi − h′
i)− (hj − h′

j) ∥2 +
√
θ

m2

m∑
i,j=1

∥ (di − d′
i)− (dj − d′

j) ∥2

+
2
√
θ

mn

n∑
i=1

m∑
j=1

∥ (hi − h′
i)− (dj − d′

j) ∥2

≤4
√
θ

n

n∑
i=1

∥hi − h′
i∥2 +

4
√
θ

m

m∑
j=1

∥di − d′
i∥2

(c)

≤ 4
√
θn

n
∥H−H′∥2 +

4
√
θm

m
∥D−D′∥2

=4
√
θ
(
n−1/2∥H−H′∥2 +m−1/2∥D−D′∥2

)
.

In the above derivation, (a) holds due to
∣∣exp (−x2)− exp (−y2)

∣∣ ≤ |x− y| for any x, y ≥ 0, (b)
holds due to the triangle inequality, and (c) holds by the Cauchy–Schwarz inequality.

The covering number for a single GIN message passing layer F l with the following Lemma:

28



Lemma F.13 (Covering number of F l). Let c = ∥Ã∥σ . For any l ∈ [L] and ϵ > 0

lnN
(
ϵ,F l, ρ

)
≤
c2lτ2l

(∏l
i=1 κi

)2
ϵ2

∥X∥22 ln(2d̄2),

where κi =
∏

j≤r κ
(i)
j , τl =

(∑r
i=1

(
b
(l)
i

κ
(l)
i

)2/3
)3/2

.

Proof. With a little abuse of notation, remove the superscript in Equation (19) for now

F l = {(Ã,H) 7→ σ
(
· · ·σ

((
ÃH

)
W1

)
· · ·Wr−1

)
Wr : Wi ∈ Bi}

where Bi :=
{
Wi : ∥W⊤

i ∥σ ≤ κi, ∥Wi∥2,1 ≤ bi
}

. Denote Fi = {Z 7→ σ(ZWi) : Wi ∈ Bi} for
i ∈ [r − 1], Fr = {Z 7→ ZWr : Wr ∈ Br}, then

F l = Fr ◦ Fr−1 ◦ · · · F1

For any fi ∈ Fi, i ∈ [r − 1] with arbitrary input Z,Z′

∥fi(Z)− fi(Z′)∥2 = ∥σ(ZWi)− σ(Z′Wi)∥2
≤ ∥ZWi − Z′Wi∥2 (Lemma F.4)

≤ ∥W⊤
i ∥σ∥Z− Z′∥2 (Lemma F.3)

= κi∥Z− Z′∥2

Similarly, for any fr ∈ F ′
r, Lemma F.3 gives

∥fr(Z)− fr(Z′)∥2 = ∥ZWr − Z′Wr∥2 ≤ κr∥Z− Z′∥2

Denoting Zi−1 as the input to Fi (Z0 = Z = ÃH) and using the Lipschitz conditions, we have

fi(fi−1(. . . f1(Z))) ≤

 i∏
j=1

κj

 ∥Z∥2 ≤ c
 i∏

j=1

κj

 ∥H∥2 (32)

for any fi ◦ fi−1 ◦ · · · ◦ f1 ∈ Fi ◦ Fi−1 ◦ · · · ◦ F1. So ∥Zi−1∥2 ≤ c
(∏i−1

j=1 κj

)
∥H∥2 ≜ ci−1. By

Lemma F.10 and Lemma F.11, we have

lnN (ϵi,Fi, ρ) ≤
b2i c

2
i−1

ϵ2i
ln(2d̄2)

W is the maximum dimension of weight matrices (as previously defined in the main text). Thus by
Lemma F.9, we have the covering number

lnN
(
ϵ,F l, ρ

)
≤

r∑
i=1

b2i c
2
i−1

ϵ2i
ln(2d̄2) = c2∥H∥22 ln(2d̄2)

r∑
i=1

b2i

(∏i−1
j κj

)2
ϵ2i

with cover radius ϵ =
∑r

i=1

(
ϵi
∏r

j=i+1 κj

)
. Next we need to choose ϵi to minimize the right hand

side of the above inequality. Holder’s inequality states that when 1
p + 1

q = 1,

⟨a,b⟩ ≤ ∥a∥p∥b∥q∑
i

aibi ≤

(∑
i

api

)1/p(∑
i

bqi

)1/q
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Let α2
i = b2i

(∏i−1
j κj

)2
, βi =

∏r
j=i+1 κj . Choose p = 1

3 , q =
2
3 ,[∑

i

(
αi

ϵi

) 2
3×3
] 1

3
[∑

i

(βiϵi)
2
3×

3
2

] 2
3

≥
∑
i

(αiβi)
2
3

(∑
i

(
αi

ϵi

)2
)(∑

i

βiϵi

)2

≥

(∑
i

(αiβi)
2
3

)3

 r∑
i=1

b2i

(∏i−1
j=1 κj

)2
ϵ2i


 r∑

i=1

ϵi r∏
j=i+1

κj

2

≥
r∏

j=1

κ2j

(
r∑

i=1

(
bi
κ i

) 2
3

)3

r∑
i=1

b2i

(∏i−1
j=1 κj

)2
ϵ2i

≥ 1

ϵ2

r∏
j=1

κ2j

(
r∑

i=1

(
bi
κ i

) 2
3

)3

(33)

Add the superscript back,

lnN
(
ϵ,F l, ρ

)
≤ ln(2d̄2)

c2∥H(l−1)∥22
ϵ2

r∏
j=1

(
κ
(l)
j

)2 r∑
i=1

(
b
(l)
i

κ
(l)
i

) 2
3

3

H(l−1) = f (l−1)
(
Ãf (l−2)

(
. . . f (1)

(
ÃX

)))
where f (k) ∈ Fk for k ∈ [l − 1]. By Equation (32),

it is easy to see

∥H(l−1)∥2 ≤ c
r∏

j=1

κ
(l−1)
j ∥f (l−2)

(
. . . f (1)

(
ÃX

))
∥2

≤ . . .

≤ cl−1∥X∥2
l−1∏
i=1

 r∏
j=1

κ
(i)
j


= cl−1∥X∥2

∏
i≤l−1,j≤r

κ
(i)
j

Letting κi =
∏

j≤r κ
(i)
j , τl =

(∑r
i=1

(
b
(l)
i

κ
(l)
i

)2/3
)3/2

, we finish the proof, i.e.,

lnN
(
ϵ,F l, ρ

)
≤
c2lτ2l

(∏l
i=1 κi

)2
ϵ2

∥X∥22 ln(2d̄2)

With the covering number of FG, we can calculate the covering number of F in Equation (10).
Lemma F.14 (Covering number of F). Suppose θ in the kernel (Equation (15)) is fixed. For any
ϵ > 0

lnN (ϵ,F , ρ) ≤ 64θKRG

nϵ2
+Kmd ln

(
24bD

√
θN√

mϵ

)
where RG is defined the same as Lemma F.8.

Proof. Denote S ∈ RN×K as the output of functionF . Consider the entry (i, j) of S, by Lemma F.12,
it has

|sij − s′ij | =
∣∣MMD2 (Hi,Dj)−MMD2

(
H′

i,D
′
j

)∣∣
≤ 4
√
θ
(
n−1/2∥Hi −H′

i∥2 +m−1/2∥Dj −D′
j∥2
)
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Then for the whole matrix S,

∥S− S′∥2 =

√√√√ N∑
i=1

K∑
j=1

|sij − s′ij |2

≤ 4
√
θ

√√√√ N∑
i=1

K∑
j=1

(
n−1/2∥Hi −H′

i∥2 +m−1/2∥Dj −D′
j∥2
)2

(a)

≤ 4
√
θ

√√√√ N∑
i=1

K∑
j=1

2
(
n−1∥Hi −H′

i∥22 +m−1∥Dj −D′
j∥22
)

= 4
√
2θ
√
(Kn−1∥H−H′∥22 +Nm−1∥D−D′∥22)

where (a) holds due to (x+ y)2 ≤ 2(x2 + y2). If ∥H−H′∥2 ≤ ϵ1 and ∥D−D′∥2 ≤ ϵ2, then

∥S− S′∥2 ≤ 4
√
2θ
√
(Kn−1ϵ21 +Nm−1ϵ22)

≤ ϵ

by choosing ϵ1 =
√
n

8
√
Kθ
ϵ and ϵ2 =

√
m

8
√
Nθ
ϵ. Let BD := {D ∈ RKm×d : ∥D∥2 ≤ bD}. It is

well-known that there exists an ϵ2-cover obeying

N (ϵ2,BD, ∥ · ∥2) ≤
(
3bD
ϵ2

)Kmd

(34)

Denote the output space of FG,F asH,Z respectively, we can bound the covering number as

N (ϵ,F , ρ) = N (ϵ,Z, ∥ · ∥2)
≤ N (ϵ1,H, ∥ · ∥2)N (ϵ2,BD, ∥ · ∥2)

It follows from Lemma F.8 and inequality (34) that

lnN (ϵ,F , ρ) ≤ lnN (ϵ1,H, ∥ · ∥2) + lnN (ϵ2,BD, ∥ · ∥2)

≤ 64θKRG

nϵ2
+Kmd ln

(
24bD

√
θN√

mϵ

)

F.4 Proof of Lemma E.2

The Dudley entropy integral bound used by Bartlett et al. [2017] is

Lemma F.15 (Lemma A.5 of Bartlett et al. [2017]). Let F be a real-valued function class taking
values in [0, 1], and assume that 0 ∈ F . Then

RG(F) ≤ inf
α>0

(
4α√
N

+
12

N

∫ √
N

α

√
lnN (ϵ,F , ρ) dϵ

)
.

Lemma E.2 can be proved with simple modifications.

31



Proof. Let F ′ = ψ ◦ Fγ where ψ(x) = 1
γx, then F ′ is a real-valued function class taking values in

[0, 1]. By Lemma F.15, it has

RG(F ′) ≤ inf
α>0

(
4α√
N

+
12

N

∫ √
N

α

√
lnN

(
ϵ

γ
,F ′, ρ

)
d(
ϵ

γ
)

)

= inf
α>0

(
4α√
N

+
12

Nγ

∫ γ
√
N

γα

√
lnN

(
ϵ

γ
, ψ ◦ Fγ , ρ

)
dϵ

)

≤ inf
α>0

(
4α√
N

+
12

Nγ

∫ γ
√
N

γα

√
lnN (ϵ,Fγ , ρ) dϵ

)
(Lemma F.11)

Multiplying both side by γ, it has

RG(Fγ) ≤ inf
α>0

(
4αγ√
N

+
12

N

∫ γ
√
N

γα

√
lnN (ϵ,Fγ , ρ) dϵ

)
.

F.5 Proof of Lemma F.8

Proof. By Lemma F.13, we know

lnN
(
ϵl,F l, ρ

)
≤
c2lτ2l

(∏l
i=1 κi

)2
ϵ2l

∥X∥22 ln(2d̄2)

For any fl ∈ F l, given input Z, it has

∥fl(Z)∥2 = ∥σ
(
· · ·σ

((
ÃZ
)
W

(l)
1

)
· · ·W(l)

r−1

)
W(l)

r ∥2

≤ κ(l)r ∥σ
(
· · ·σ

((
ÃZ
)
W

(l)
1

)
· · ·W(l)

r−1

)
∥2 (Lemma F.3)

≤ ∥σ
(
· · ·σ

((
ÃZ
)
W

(l)
1

)
· · ·W(l)

r−2

)
W

(l)
r−1∥2 (Lemma F.4)

≤ . . .

≤

 r∏
j=1

κ
(l)
j

 ∥AZ∥2

≤ c

 r∏
j=1

κ
(l)
j

 ∥Z∥2
= cκl∥Z∥2

which means all fl ∈ F l is cκl-Lipschitz. Applying Lemma F.9, we have

lnN (ϵ,F ′, ρ) ≤
L∑

l=1

τ2l

(∏l
j=1 cκj

)2
ϵ2l

∥X∥22 ln(2d̄2)

with ϵ =
∑L

l=1

(
ϵl
∏r

j=l+1 cκj

)
. The only thing left is to minimize

∑L
l=1

τ2
l (

∏l
j=1 cκj)

2

ϵ2l
by con-

trolling ϵl’s. Choose α2
l = τ2l

(∏l
j=1 cκj

)2
, βl =

∏L
j=l+1 cκj . Choose p = 1

3 , q = 2
3 , and apply
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Holder’s inequality in the same ways as Equation (33), this yields(∑
l

(
αl

ϵl

)2
)(∑

l

βlϵl

)2

≥

(∑
l

(αlβl)
2
3

)3

 L∑
l=1

τ2l

(∏l
j=1 cκj

)2
ϵ2l


 L∑

l=1

ϵl L∏
j=l+1

cκj

2

≥ c2L
L∏

j=1

κ2j

(
L∑

l=1

(τl)
2
3

)3

L∑
l=1

τ2l

(∏l
j=1 cκj

)2
ϵ2l

≥ 1

ϵ2
c2L

L∏
j=1

κ2j

(
L∑

l=1

(τl)
2
3

)3

Thus derives the conclusion
lnN (ϵ,FG, ρ) ≤

RG

ϵ2

where RG = c2L∥X∥22 ln(2d̄2)
(∏L

l=1 κ
2
l

)(∑L
l=1 (τl)

2
3

)3
.

F.6 Proof of Theorem 3.2

Proof. Since lγ (·, y) is µ-Lipschitz, we can bound the covering number ofFγ (defined in Lemma E.1)

lnN (ϵ,Fγ , ρ) ≤ lnN
(
ϵ

µ
,F , ρ

)
(Lemma F.11)

≤ 64θKRGµ
2

nϵ2
+Kmd ln

(
24bDµ

√
θN√

mϵ

)
(Lemma F.14)

Denote v1 = 64θKRGµ2

n , v2 = Kmd̄, v3 = 24
√
θNbDµ√
m

, then by Lemma E.2, we can bound the
Rademacher complexity

RG(Fγ) ≤ inf
α>0

(
4αγ√
N

+
12

N

∫ γ
√
N

γα

√
v1
ϵ2

+ v2 ln
v3
ϵ
dϵ

)
(a)

≤ inf
α>0

(
4αγ√
N

+
12

N

∫ γ
√
N

γα

√
v1 + v2
ϵ2

+ v2 ln v3 dϵ

)
(b)

≤ inf
α>0

(
4αγ√
N

+
12

N

(∫ γ
√
N

γα

√
v1 + v2
ϵ

+
√
v2 ln v3 dϵ

))

= inf
α>0

(
4αγ√
N

+
12

N

(
√
v1 + v2 ln

(√
N

α

)
+ γ
√
v2 ln v3

(√
N − α

)))
(c)

≤ 4γ

N
+

12
√
v1 + v2 lnN

N
+

12γ(N − 1)
√
v2 ln v3

N
√
N

≤ 4γ

N
+

12
√
v1 + v2 lnN

N
+

12γ
√
v2 ln v3√
N

where (a) holds due to ln 1
x ≤

1
x2 , (b) holds due to

√
x+ y ≤

√
x +
√
y. For (c), we have chosen

α = 1√
N

.

It can be shown that the covering number bound of FD satisfies N (ϵ,FD, ρ) ≤ (3bD/ϵ)
Kmd

(Lemma F.14). Combining the bounds of N (ϵ,FG, ρ) and N (ϵ,FD, ρ) and Lemmas E.1 and E.2,
we derive the generalization bound:

Lγ(f) ≤ L̂γ(f) +
8γ + 24

√
v1 + v2 lnN + 24γ

√
Nv2 ln v3

N
+ 3γ

√
ln (2/δ)

2N
This finished the proof.
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F.7 Corollary of Theorem 3.2

Corollary F.16 (Mis-classification rate upper bound of GRDL). Let n be the minimum number of
nodes for graphs {Gi}Ni=1, θ be the hyper-parameter in gaussian kernel (Equation (15)), c = ∥Ã∥σ .
For graphs G = {(Gi, yi)}Ni=1 drawn i.i.d from any probability distribution over X × {1, . . . ,K}
and references {Dk}Kk=1 ,Dk ∈ Rm×d, with probability at least 1 − δ, every margin ζ > 0 and
network f ∈ F under Assumption 3.1 satisfy

Pr
G∼X

[argmax
j
f(G)j ̸= y] ≤ L̂ζ(f) + 3

√
ln (2/δ)

2N
+

8 + 24
√
v1 + v2 lnN + 24

√
Nv2 ln v3

N

where

v1 =
256θKRG

nζ2
, v2 = Kmd̄, v3 =

48bD
√
θN√

mζ
,RG = c2L∥X∥22 ln(2d̄2)

 L∏
l=1

(
r∏

i=1

κ
(l)
i

)2
 L∑

l=1

r∑
i=1

(
b
(l)
i

κ
(l)
i

)2/3
3

,

and L̂ζ(f) ≤ N−1
∑

i 1[f(Gi)yi
≤ ζ + argmaxj ̸=yi

f(Gi)j ].

Proof. Choose the loss lγ(·, y) as

lγ(·, y) = rζ(−M(·, y))

whereM(v, y) := vy −maxi̸=y vi is the margin operator and

rζ(t) :=


0 t < −ζ,
1 + t/ζ t ∈ [−ζ, 0],
1 t > 0.

is called the ramp loss. The population ramp risk is defined as Lζ(f) := EG∼X [rζ(−M(f(G), y)))].
Given the graph dataset G sampled from X , the empirical ramp risk is L̂ζ(f) :=

N−1
∑N

i=1 rζ(−M(f(Gi), yi)). It is clear that 1[argmaxj f(G)j ̸= y] ≤ rζ(−M(f(G), y)),
so

Pr
G∼X

[argmax
j
f(G)j ̸= y] = E

G∼X

[
1(argmax

j
f(G)j ̸= y)

]
≤ Lζ(f)

It is easy to see that γ = 1 in this case. Also by Lemma F.6, µ = 2
ζ . Then it is trivial to get the bound

by Theorem 3.2 with simple substitution

Pr
G∼X

[argmax
j
f(G)j ̸= y] ≤ Lζ(f)

≤ L̂ζ(f) + 3

√
ln (2/δ)

2N
+

8 + 24
√
v1 + v2 lnN + 24

√
Nv2 ln v3

N

where v1 = 256θKRG

nζ2 , v2 = Kmd̄, v3 = 48bD
√
θN√

mζ
, RG =

c2L∥X∥22 ln(2d̄2)
(∏L

l=1

(∏r
i=1 κ

(l)
i

)2)(∑L
l=1

∑r
i=1

(
b
(l)
i

κ
(l)
i

)2/3
)3

. Also,

rζ(−M(f(Gi), yi)) ≤ 1[f(Gi)yi
≤ ζ + argmaxj ̸=yi

f(Gi)j ], so we have

L̂ζ(f) = N−1
N∑
i=1

rζ(−M(f(Gi), yi)) ≤ N−1
N∑
i=1

1[f(Gi)yi
≤ ζ + argmax

j ̸=yi

f(Gi)j ]

Corollary F.17 (Generalization bound with cross-entropy loss). Suppose lγ(·, y) is the cross-entropy
loss LCE (7). Let n be the minimum number of nodes for graphs {Gi}Ni=1, θ be the hyper-parameter
in gaussian kernel (Equation (15)), c = ∥Ã∥σ. For graphs G = {(Gi, yi)}Ni=1 drawn i.i.d from
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any probability distribution over X × {1, . . . ,K} and references {Dk}Kk=1 ,Dk ∈ Rm×d, with
probability at least 1− δ, every network f ∈ F under Assumption 3.1 satisfy

Lγ(f) ≤ L̂γ(f) + 3γ

√
ln (2/δ)

2N
+

8γ + 24
√
v1 + v2 lnN + 24γ

√
Nv2 ln v3

N

where v1 = 128θKRG

n , v2 = Kmd̄, v3 = 24
√
2θNbD√
m

, RG =

c2L∥X∥22 ln(2d̄2)
(∏L

l=1

(∏r
i=1 κ

(l)
i

)2)(∑L
l=1

∑r
i=1

(
b
(l)
i

κ
(l)
i

)2/3
)3

.

Proof. According to Lemma F.7, µ =
√
2. Then the proof is trivial by substituting it into Theorem 3.2.

F.8 Adjacency matrix spectral norm

Lemma F.18. Let G = (V,E) be an undirected graph with adjacency matrix A ∈ Rn×n, dG be the
maximum degree of G. Then, the adjacency matrix satisfies

∥A∥σ ≤ dG

Proof. Based on the definition of the spectral norm, we have

∥A∥σ
(a)
= max

∥x∥2=1
x⊤Ax = max

∥x∥2=1

∑
(i,j)∈E

xixj ≤ max
∥x∥2=1

∑
(i,j)∈E

1

2
(x2i + x2j ) = dG

∑
i∈V

x2i = dG

where (a) is because A is a real symmetric matrix.

Lemma F.19. For any matrix X ∈ Rm×n, ∥X∥σ ≤ ∥X∥2 ≤
√
r∥X∥σ where r = rank(X)

Proof. By the definition of spectral norm,

∥X∥σ =
√
λmax(X⊤X)

where λmax denotes the largest eigenvalue. Since X⊤X is a positive semi-definite real symmetric
matrix, it must has n real eigenvalues that can be ordered as

λ1 ≥ λ2 ≥ · · · ≥ λr > λr+1 · · · = λn = 0.

Then it has

∥X∥σ =
√
λ1 ≤

√√√√ n∑
i=1

λi =
√

tr(X⊤X) = ∥X∥2 ≤
√
rλ1 =

√
r∥X∥σ.

Lemma F.20. Let G = (V,E) be a graph with adjacency matrix A ∈ Rn×n. Assume |E| > 0, then
c = ∥Ã∥σ = ∥A+ I∥σ > 1.

Proof. By Lemma F.19,

∥Ã∥σ ≥
1√
r
∥Ã∥2 =

1√
r
∥A+ I∥2 ≥

1√
r
∥A∥2 +

1√
r
∥I∥2

(a)
>

1√
r
∥I∥2 =

√
n

r
≥ 1

where (a) is because |E| > 1.
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F.9 Generalization of MMD (to be used in Section F.10)

Before stating the lemma, we first give alternative definitions of MMD. Let P be a continuous
probability distribution of some random variable Z taking values from space Z . Then, the kernel
mean embedding of P associated with the continuous, bounded, and positive-definite kernel function
k : Z × Z → R is

µP :=

∫
Z
k(z, ·) dP(z) (35)

which is an element in the Reproducing Kernel Hilbert Space (RKHS) H associated with kernel k.
In many practical situations, it is unrealistic to assume access to the true distribution P. Instead, we
only have access to samples P = {zi}ni=1 from P. We can approximate (35) by the empirical kernel
mean embedding

µ̂P :=
1

n

n∑
i=1

k(zi, ·). (36)

For another continuous distribution Q with samples Q = {z′i}mi=1, the MMD between the two
probability distribution is defined as

MMD(P,Q) = ∥µP − µQ∥H ,

and the empirical MMD is
MMD(P,Q) = ∥µ̂P − µ̂Q∥H .

Denote d := MMD(P,Q) and d̂ := MMD(P,Q), we have the follow Lemma:

Lemma F.21. With probability at least 1− δ we have

|d− d̂| ≤
(

1√
m

+
1√
n

)(
2 +

√
2 log

2

δ

)

Proof. We use the following Lemma:

Lemma F.22 (Theorem 7 of Gretton et al. [2012a], reformulated). Assume 0 ≤ k(x, y) ≤ K. Then

with probability at least 1− 2 exp
(

−ε2mn
2K(m+n)

)
∣∣∣d− d̂∣∣∣ ≤ 2

(
1√
m

+
1√
n

)
+ ε

Let δ = 2 exp
(

−ε2mn
2K(m+n)

)
, then it has

ε =

√
1

m
+

1

n

√
2 log

(
2

δ

)
.

Therefore, with probability at least 1− δ

∣∣∣d− d̂∣∣∣ ≤ 2

(
1√
m

+
1√
n

)
+

√
1

m
+

1

n

√
2 log

(
2

δ

)

≤
(

1√
m

+
1√
n

)(
2 +

√
2 log

2

δ

)
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F.10 Proof of Lemma F.2

Proof. For simplicity, let k′ := argminj ̸=k MMD(Hi,Dj). Since Hi and Dk are finite samples
from Pk, and Dk′ is sampled from Pk′ , by Lemma F.21, we have

|MMD(Pk,Pk)−MMD(Hi,Dk)| ≤ ∆1 =

(
1√
m

+
1√
n

)(
2 +

√
2 log

2

δ′

)
w.p. (1− δ′),

|MMD(Pk,Pk′)−MMD(Hi,Dk′)| ≤ ∆2 =

(
1√
m

+
1√
n

)(
2 +

√
2 log

2

δ′

)
w.p. (1− δ′).

Therefore, with probability at least 1− 2δ′ (union bound), we have

MMD(Hi,Dk)−MMD(Pk,Pk) = MMD(Hi,Dk)−0 ≤ ∆1 and MMD(Pk,Pk′)−MMD(Hi,Dk′) ≤ ∆2.

It follows that

MMD(Hi,Dk)−MMD(Hi,Dk′) ≤ −MMD(Pk,Pk′) + ∆1 +∆2.

By Definition F.1, to ensure correct classification, we can let

−MMD(Pk,Pk′) + ∆1 +∆2 < 0.

This means

MMD(Pk,Pk′) > ∆1 +∆2 =

(
1√
m

+
1√
n

)(
4 + 2

√
2 log

2

δ′

)
. (37)

Therefore, if (37) holds, the classification is correct with probability at least 1− 2δ′. Letting δ = 2δ′,
we finish the proof.

F.11 Proof of Theorem A.1

Let H ∈ R
∑

i ni×d be the output of the message passing layers. Then the mean readout is a matrix
multiplication

Z = MH, M =


1
n1

. . . 1
n1

0 . . . 0 0 . . . 0

0 . . . 0 1
n2

. . . 1
n2

0 . . . 0
...

...
...

...
...

...
0 . . . 0 0 . . . 0 1

nN
. . . 1

nN

 .
It is easy to see ∥M∥σ ≤ 1. Since a MLP is concatenated after readout, by the proof of Lemma F.8,
the covering number of GIN F ′ is

lnN (ϵ,F ′, ρ) ≤ c2L∥X∥22 ln(2d̄2)
ϵ2

A

where A =
(∏L

l=1(
∏r

i=1 κ
(l)
i )2(

∏r′

i=1 κ
(L+1)
i )2

)(∑L
l=1

∑r
i=1

( b
(l)
i

κ
(l)
i

)2/3
+
∑r′

i=1

( b
(L+1)
i

κ
(L+1)
i

)2/3)3
.

Then by Lemma E.2, the generalization bound can be easily derived by taking α = 1√
N

.
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experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The paper provides open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specifies all the training and test details necessary to understand the
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper reports information about the statistical significance of the experi-
ments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
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Justification: The paper provides sufficient information on the computer resources needed to
reproduce the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: All the datasets used in the paper are open-source. There is no negative societal
impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators and original owners of assets used in the paper are properly
credited and the license and terms of use explicitly mentioned and properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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