Under review as a conference paper at ICLR 2021

MAS-GAN: ADVERSARIAL CALIBRATION OF MULTI-
AGENT MARKET SIMULATORS

Anonymous authors

Paper under double-blind review
ABSTRACT

We look at the problem of how the simulation of a financial market should be
configured so that it most accurately emulates the behavior of a real market. In
particular, we address agent-based simulations of markets that are composed of
many hundreds or thousands of trading agents. A solution to this problem is im-
portant because it provides a credible test bed for evaluating potential trading algo-
rithms (e.g., execution strategies). Simple backtesting of such algorithms suffers
from a critical weaknesses, chiefly that the overall market is not responsive to the
candidate trading algorithm. Multi-agent simulations address this weakness by
simulating market impact via interaction between market participants. Calibra-
tion of such multi-agent simulators to ensure realism, however, is a challenge. In
this paper, we present MAS-GAN - a multi-agent simulator calibration method
that allows to tune simulator parameters and to support more accurate evaluations
of candidate trading algorithm. Our calibration focus is on high level parameters
such as the relative proportions of the various types of agents that populate the
simulation. MAS-GAN is a two-step approach: first, we train a discriminator that
is able to distinguish between “real” and “fake” market data as a part of GAN with
self-attention, and then utilize it within an optimization framework to refine sim-
ulation parameters. The paper concludes with quantitative examples of applying
MAS-GAN to improve simulator realism.

1 INTRODUCTION

1.1 MOTIVATION

Increasingly large market volumes are traded today electronically across multiple asset classes on
public exchanges. Development and testing of trading agents for electronic limit order book markets
rely on availability of high-quality market simulators. While a traditional approach is to test elec-
tronic trading agents against historical data (i.e., backtest), doing so does not consider interaction of
the trading agent with other market participants (i.e. market impact), which can result in poor perfor-
mance estimate of an agent and manifest in trading losses once the agent is deployed to production
environment. Multi-agent simulation is a paradigm that is conceptually closer to real markets as it
allows market impact to emerge as a result of interactions of fully autonomous agents. The chal-
lenge is, however, to find realistic agent configurations and prescribe agent behavior in such a way
that their actions produce synthetic time series whose statistical properties resemble real markets.

Limit order to sell is added
to the queue

Random

$25.14 Noise

Ask Side | GAN Simulated Probability of
$25.12 = ---------- Ask Price Time Time Series
2 :) GENERATOR Series, being real
£ «—— Mid Price | Spread CNN with self-attention DISCRIMINATOR 9
& $25.10 NN, - Bid Price CNN with self-attention

Bid Side Real

Time —| DISCRIMINATOR
CNN with self-attention
Series

$25.08

$25.06

0 100 200 300
Volumes

(a) Visualization of the LOB (b) Schematic illustration of a two-step MAS-GAN ap-
structure. proach: first, we train a GAN; and then use its discrimi-
nator as an objective function for simulator calibration.

Figure 1

Public exchanges such as NASDAQ and NYSE facilitate the buying and selling of assets by accept-
ing and satisfying buy and sell orders from multiple market participants. The exchange maintains an

Under review as a conference paper at ICLR 2021

order book data structure for each asset traded. The limit order book (LOB) represents a snapshot
of supply and demand for the asset at a given time. It is an electronic record of all the outstanding
buy and sell limit orders organized by price levels [Bouchaud et al.|(2018)). A matching engine, such
as first-in-first-out (FIFO), is used to match incoming buy and sell order interest. Order types are
further distinguished between limit orders and market orders. A limit order specifies a price that
should not be exceeded in the case of a buy order (bid), or should not be gone below in the case
of a sell order (ask). A limit order queues a resting order in the LOB at the corresponding side of
the order book. A market order indicates that the trader is willing to accept the best price available
immediately. See Figure [Ia|for visualization of the LOB structure.

In order to have confidence in developed trading strategies, we need to calibrate parametrized multi-
agent limit order book market simulator to be as close as possible to real market data. Since the
primary goal of using multi-agent market simulators is to model emergent phenomena (such as mar-
ket impact of trading) and to test trading strategies in hypothetical scenarios (such as COVID market
shock) — the simulated price series to is expected to diverge significantly from its historic trajectory
and the traditional calibration methods are difficult to apply. To be realistic, limit order book market
simulator quantities should display same distributions as those of the real markets |Vyetrenko et al.
(2019). Such quantities, that are repeated across a wide range of instruments, markets, and time pe-
riod, are known as stylized facts|Cont/ (2001). Some stylized facts originate from traders’ behavior,
while others are a natural consequence of order book market matching mechanism. Examples of
stylized facts include properties of asset return distributions (e.g., asset return distribution have fat
tails), volumes and order flow (e.g., top-of-the-book volumes are gamma-distributed), non-stationary
patterns (e.g., trading volumes are higher in the morning and in the evening), etc. Optimization with
respect to stylized facts can be difficult as it is challenging to design an explicit optimization objec-
tive function due to the overlapping nature of stylized facts and lack of clarity over which stylized
facts should be given more optimization weight. Therefore, we propose to learn a discriminator (i.e.
a classifier) that can distinguish synthetic time series from real, and use it as an implicitly written
objective function for the calibration task.

1.2 BACKGROUND AND RELATED WORK

Modeling the market as an interplay of multiple agents is a natural approach to mimic real mar-
ket collective emergent behavior, however, justifying the realism of such approach for validating
new trading strategies is difficult. Agent-based modeling typically relies on common sense hand-
crafted rules (e.g., |Palit et al.| (2012))), which can be difficult to calibrate as historical data labeled
with details about each individual constituent agent behavior is typically not available for public
use. Several calibration approaches—e.g. error minimization to find parameters for the asset pricing
model with heterogeneous beliefs [Tedeschi et al|(2013) and using Bayesian parameter estimation
techniques in the simulated context—have been introduced |Grazzini et al.| (2015). When individ-
ual agent- or execution strategy-specific data is available to the researcher, it can be used for the
simulator calibration (e.g.,|Vyetrenko & Xu|(2019); Yang et al.|(2012)). Other approaches to multi-
agent simulator realism can include inverse learning agents’ rewards from the market [Yang et al.
(2012); learning approximate representation of the agent-based simulator first and then using it for
parameter optimization either directly [Lamperti et al.| (2017) or as a part of generative adversarial
network |Alonso-Monsalve & Whitehead| (2018)); incorporating feedback from real-time trading into
the simulation |Ruiz et al.|(2019).

Training of GANs (first introduced in|Goodfellow et al.|(2014))) is, however, quite fragile with mode
collapse (when the generator is only capable of producing a limited diversity of samples) being
a frequent problem |Salimans et al.| (2016). Good quantitative metrics to determine the quality of
generated images are an area of active research [Theis et al.|(2015); there is currently no consensus
as to what the best set of metrics is — hence, visual inspection of generated images is still a common
recommendation. The concept of adversarial training has also been explored to generate realistic
time series, however, visual inspection is both impractical and inappropriate, especially for multi-
dimensional time series [Esteban et al.| (2017). GANs have also been used to synthesize financial
time series, where stylized facts were used to check the quality of generated time series Wiese et al.
(2020); [Li et al.[(2020).

Multi-agent simulators that are used in trading can by themselves can be viewed as generative mod-
els, albeit typically non-differentiable ones. These simulators are typically governed by a small num-

Under review as a conference paper at ICLR 2021

ber of physically meaningful parameters, changing which can provide explanations of the collective
system dynamics. Therefore, it is natural to use GANs with generators replaced by domain-specific
simulators to manipulate the simulated time series described by the simulator parameters in order to
produce most realistic time series — hence, calibrate multi-agent simulators. For instance, the result-
ing non-differentiable minimax calibration problem was solved by by minimizing variational upper
bounds of the adversarial objectives in|Louppe et al.[(2017)). Similar approach to simulator calibra-
tion was used in |Alonso-Monsalve & Whitehead| (2018)) with a difference that an emulator neural
network, pretrained to approximate non-differentiable simulator, was used as a part of the GAN
generator. One, however, needs to note that generating training data using multi-agent simulations
can be very expensive, therefore, the above methods might not be feasible in practice.

Transformer’s head mechanisms, introduced in |Vaswani et al.| (2017) have proved their efficiency
at capturing global dependencies in multiple domains of applications such as translation, language
modeling or object detection. Among the different attention mechanisms, self attention is computing
a representation of the next position in a sequence by looking at all the position in the sequence and
learning regions of interest. Using a self-attention mechanism for analysing time series has been
widely studied. In time series forecasting, Wu et al.| (2020) is exploring how to model complex
dynamics of the data using transformer. By doing so, they are not processing the data sequentially
and are able to capture more complex structures. The use of self attention is also increasingly
popular in generative modeling (e.g., GANs). In|Xu et al.| (2018), authors propose to apply self-
attention to input sequences of words, however, it does not intervene directly with the architecture
of the GAN. In|Zhang et al.|(2019), authors introduce the non-local model of self-attention of Wang
et al.| (2018)) directly into the GAN architecture — method called SAGAN — which enables to take
into account important relationships between regions that are widely separated from each other.
SAGAN is applied to 2D images using non trivial stabilizers like spectral norm layers to facilitate
the training phase. In this paper, we adapt SAGAN architecture to the 1D case to encode for complex
relationships between the correlated data and build self-attention mechanism into GANSs for financial
time series.

Most of the GAN literature focuses on training GANs for the purpose of subsequently using only
data generator, and discriminator is only viewed as an auxiliary agent that assists with genera-
tor training. To complement this, using GAN-trained discriminator for the purpose of time series
anomaly detection is discussed in|Schlegl et al.| (2017); Mattia et al.[(2019); L1 et al.| (2018)); [Wang
et al.| (2019). By learning statistical similarities between non-anomalous time series, one can learn
to determine what constitutes an anomaly. In this paper, we rely on a similar idea and introduce an
application of adversarially trained discriminators to multi-agent simulator parameter optimization.

1.3 OUR CONTRIBUTIONS

In this paper, we propose MAS-GAN — a two-step method for multi-agent market simulator cali-
bration (introduced in Section [J). A discriminator is trained in competition with the generator as
a part of GAN to distinguish synthetic time series from real (i.e. historical). Both generator and
discriminator are enhanced by self-attention layers for better time series resolution quality. The in-
put of trained discriminator is a synthetic time series, and the output uses sigmoid activation which
allows to interpret it as probability of synthetic time series being real. Similar to|Liang et al.|(2018)),
the discriminator score is higher if the synthetic time series shares more features with the historical
dataset. One can then use the discriminator score as an implicit optimization objective, and opti-
mize simulated model parameters to determine the set that produces most realistic time series (see
Figure [Ib] for schematic).

Using GANs to generate synthetic time series has been widely studied — however, only LSTMs
and recurrent neural network architectures have been previously considered (e.g., [Esteban et al.
(2017)). To the best of our knowledge, using both convlD and self-attention without recurrence
in the architecture to generate synthetic time series is novel. We use convlD to encode the local
correlations in the data. The deeper the network is, the more global encoding will happen. We add
self-attention to provide a more targeted way to encode global correlations with a single layer. A
2D version of the self-attention layer we used is well described in|Zhang et al.| (2019). We provide
an implementation of a 1D version of the self-attention layer in the appendix section along with its
visualization in Figure [9]

Under review as a conference paper at ICLR 2021

To the best of our knowledge, MAS-GAN is the first method that proposes to use adversarially
trained discriminator as an objective function for multi-agent system optimization. Unlike |Alonso-
Monsalve & Whitehead| (2018), our method is model-agnostic and does not require learning a sim-
ulator approximation which can be expensive. Because MAS-GAN learns from historical dataset
and is unbiased toward synthetic data coming from the simulator, once the discriminator is trained
— it can be used to calibrate any time series model (not necessarily multi-agent) that is intended to
model that historical dataset. Since simulated data is not used for GAN training, the discriminator is
not biased to any particular model and only uses historical data as a ’ground truth’ for learning — this
provides an additional justification of a two-step as opposed to one-step calibration method. In con-
trast with L1 et al.| (2020), our method retains full explainability of multi-agent simulations as GANs
in our case are not used for black-box data generation, but rather only for learning a calibration
objective given by the discriminator.

2 ADVERSARIAL PARAMETER OPTIMIZATION

GANSs were first introduced in|Goodfellow et al.[(2014) for the purpose of generating realistic look-
ing images (i.e. learning the generator) by having a generator adversary compete against the dis-
criminator during training. When a human learns to distinguish between real and synthetic data, it
first learns to recognize what constitutes real data, and then uses this knowledge to decide which
features distinguish real data from synthetic. Hence, in human learning the Anna Karenina principle
is applied: namely, happy families share a common set of attributes which lead to happiness, while
any of a variety of attributes can cause an unhappy family. Similarly, a common set of factors distin-
guishes a real limit order book price time series, whereas, a synthetic time series can be generated in
a variety of different ways. Therefore, we use only real time series to adversarially train a classifier
to only recognize features that are pertinent to real time series. Similar approach was argued in Sun
et al.| (2019) for training a discriminator that can recognize data anomalies.

Most multi-agent simulated systems can be represented by a parameter vector that specifies simu-
lator configuration. For instance, multi-agent market simulator can be described by the number of
agents of different types and their strategy parameters such as arrival rates, order sizes, etc. In this
section, we describe a generic method to find the best configuration for a given multi-agent simulator
given by a parameter vector v, and present an example of optimizing a specific simulated environ-
ment in Section [3.3] Additionally, because the final simulated time series depend on choices that
agents probabilistically make (i.e., exact time of arrival randomly generated according to the prob-
ability distribution with a certain agent arrival rate) — we denote the seed that is used to initialize
pseudo-random number generator by R.

Let Sg(v) be the simulated mid price time series obtained using the parameter vector v and random
seed R. Since the discriminator D outputs probability of time series Sr(v) being real, we are
interested in finding parameter vector v* that maximizes this probability. Formally, we are interested

in finding: v* = argmaxEr [D(Sr(v))]- M

We then perform grid-based optimization with respect to the discriminator-defined objective to find
most realistic simulation parameters out of the given set. We note here that our approach does not
attempt to improve the simulated model but rather finds a set of parameters such that the existing
model describes P,..,; most closely.

3 EXPERIMENTAL RESULTS

3.1 GAN TRAINING DETAILS

In real limit order book markets, multiple correlated data streams are produced as a result of par-
ticipant interaction (e.g., prices and quotes at multiple limit order book levels and traded volumes).
Therefore, capturing temporal autocorrelations and cross-correlations of multiple limit order book
time series distributions is important for calibration realism. Specifically, we train MAS-GAN on
one-minute mid price returns and cumulative one-minute traded volumes of thirty Dow Jones under-
lying stocks traded on NASDAQ in June 2019, with first three weeks of June 2019 being insample
and last week of June 2019 being an outsample dataset. Note that market conditions in June 2019
were characterized by a period of high liquidity and low price volatility.

Under review as a conference paper at ICLR 2021

We are interested in training a GAN for subsequent use of its discriminator part a simulator cali-
bration objective. The specific architecture is depicted in Figure 10| (in the Appendix) — it is using
a self-attention layer both in the discriminator and in the generator together with several layers of
convlD, upsampling and dropouts and Relu. The output layer of generator uses linear activation,
whereas, the output layer of discriminator uses sigmoid activation. This architecture choice is in-
spired by |Zhang et al.| (2019), although we did not need to add the spectral norm layer to stabilize
training. The input to the generator is a Gaussian white noise vector and its dimension (i.e., a latent
dimension) is a hyper-parameter. We set the latent dimension to 200 after a grid search optimization
(for that, we looked at the distribution of the discriminator scores after 20000 iterations).

There are 358 trading minutes in a day between 10 am and 4 pm. To produce the input vector that
is passed to the GAN discriminator, we concatenate the mid price returns (a real vector of length
358) and volumes (an integer vector of length 358). This concatenation produces an input vector
of size 716. It is done in order for the neural network with self-attention to encode correlations
between price and volume time series and to retranscribe them when generating time series from
noise. Mode collapse, when generator output shows little to no variability regardless of the input,
is a common problem in GAN training. To avoid the mode collapse, we rescaled the volumes so
that their order of magnitude is similar to that of the mid price returns. Moreover, we noticed that
for some assets the traded volume vectors are very sparse (due the idiosyncratic trading patterns of
those stocks) which can lead to a fast collapse at training time. Therefore, we fixed a threshold at
50% of non-zero entries per sample to set a level of acceptance of training vector sparsity.

We note that in order to train a high quality discriminator, the generator needs to be capable to
generate a diverse set of realistic time series. Therefore, we train the GAN iteratively and terminate
training when the following conditions are satisfied:

1. Generated time series visually show diversity (to prevent mode collapse) — see Figure
We are aware of the issues raised by Ryan et al.|(2019) that visual inspection might not be
sufficient to demonstrate diversity as generated time series can be simply memorized by
GANSs. We will leave this question for further work.

2. Stylized fact properties of the generated time series converge to historical. Specifically, we
check for convergence of generated asset return distributions and volume/volatility corre-
lations to historical — see Figure [2]

3. The discriminator cannot distinguish generated time series from realD (Z.cq;) ~ % and

D (zg) ~ % — see Figures for distribution of discriminator scores during
training.

3.2 ABLATION STUDY AND EVALUATION

To justify the complexity of the GAN architecture with self-attention in Figure we compare it
to the GAN without self-attention that takes same latent dimension as an input, but whose both
generator and discriminator are given by feed-forward neural networks with dropout layers and
ReLU activation in intermediate layers. This discriminator architecture was studied in [Wang et al.
(2016) and is depicted in Figure [IT] (in Appendix). We train both GANs on mid price return time
series and observe that GANs with self-attention produce discriminators with better recognition
capabilities, as evident from Figures |4al and One can see that adding self-attention to GANs
reduces the variance of discriminator score distribution and makes it more concentrated around
% both for real and generator-produced time series. We further observe that by using both mid
price return and volume time series for training a GAN with self-attention, we achieve sufficient
discrimination accuracy quicker than by using only mid price returns.

To measure the performance of our model more quantitatively and to study the impact of the latent
dimension size, we also conducted analysis using two-sample Kolmogorov-Smirnov test. The his-
torical and generated discriminator scores distributions are compared. The null hypothesis (HO) is
that “the two samples are drawn from the same underlying distribution”. From Figure {4c| p-values
indicates that after 10k iterations, for latent dimensions equal to 100 and 200 we can’t reject the
null hypothesis. This means that our generator is producing a distribution of time series that follows
the same underlying distribution that the historical. For latent dimension equal to 400, the system
requires at least 20k iterations to generalize well and to produce realistic distribution.

Probability density

Under review as a conference paper at ICLR 2021

Historical mid price return distributions

A
y -

Returns(%)

(a) Historical.

Volume Volatility Correlation

Probability density

(d) Initial.

Figure 2: (a) Historical distributions of mid price returns

Probability density
. s 5 5 E

‘GAN-generated mid price returns - 1000 iterations

probabilty density
: % 8 %

|

i

‘GAN-generated mid price returns - 10000 iterations

B

)

_/

(b) GAN-generated after 1000 itera-

tions.

Volume Volatility Correlation

Returns(%)

Returns(%)

(c) GAN-generated after 10000 itera-

tions. Note that distributions are simi-

lar to (a).

Volume Volatility Correlation

Probability density

!

Probability density

\[

(e) After 1000 iterations.

Correlation coefficlent

Correlation coefficlent

(f) After 10000 iterations. Note that

’real’ and ’generated’ distributions are
overlapping.

. (b,c) Training progression of 1- and 10-

minute mid price return distributions.(d,e,f) Training progression of volume/volatility correlation

distributions

Probability density
s s

(a) Initial.

Discriminator score distribution

Discriminator score

(b) After 1000 iterations.

Discriminator score distribution

(c) After 10000 iterations.
Note that ’real’ and ’gener-
ated’ distributions are over-

lapping.

Dollars

Iteration 42000

Iteration 1000

Iteration 0

(d) We visually observe diversity of generated price
time series with training progression.

Figure 3: (a,b,c) Training progression of distributions of discriminator scores. At convergence, we
observe an overlap between ’real’ and ’generated’ data discriminator scores distributions, centered
around 0.5 with low discrimination variance. We also passed random noise to the discriminator to
validate it - ‘random’ label.(d) Training progression of generated mid price returns.

3.3 SIMULATOR PARAMETER OPTIMIZATION

3.3.1

SIMULATION ENVIRONMENT

In order to evaluate the ability of a given agent configuration to reproduce stylized facts about the
market, we employ an agent-based interactive discrete event limit order book simulation environ-
ment [citation redacted]. The environment provides a NASDAQ-like central exchange agent which
manages the flow of time, maintains the limit order book where the orders are inserted and the set
of order matching rules, and handles all inter-agent communication. The environment also accepts
a single pseudo-random number generator seed at initialization for modeling choices that agents
probabilistically make. In our experiments, the simulated agent universe consists of three distinct

Under review as a conference paper at ICLR 2021

Discriminator score distribution Discriminator score distribution

© Epoch Number | Latent Dim | K-S Stat | P-Value
20k 100 0.10 037
g H 200 0.18 0.05
3 400 0.15 0.06
A 1, | T0K 100 0.10 | 0.40
: Ji : 200 0.23 0.06
? ‘ 400 0.10 0.03

, » ‘ 1k 100 0.72 10~

‘ 200 0.44 1033

Discriminator score o * o Discriminator score ““ r 400 0.65 10—20

(a) Ablation study: GAN without self- (b) Ablation study: GAN with self-attention. (c) Two sample Kolmogorov-Smirnov test. At 10k

attention. Trained with latent dimension 10 Trained with latent dimension 10 using mid- iterations for a latent dimension of 100, we cannot

using mid-price returns time series only. price returns time series only. distinguish between historical discriminator scores
distribution and generated one based on the two
sample test.

Figure 4

agent behavior types (described below) — our calibration goal is to find the most realistic agent
configuration that can be described by them:

Market maker agent: The market maker agent acts as a liquidity provider by determining the
market mid price and placing orders on both sides deep into LOB with a constant arrival rate (we
implemented the model of(Chakraborty & Kearns|(2011)). Its goal is to constantly supplies liquidity
to satisfy demand of other market participants.

Value Agents: The value agents are designed to simulate the actions of fundamental traders that
trade according to their belief of the exogenous value of a stock, but without any view of the LOB
microstructure. The external value of stock price is modeled by a fundamental price stream. In our
experiment, fundamental price stream is given by the Ornstein-Uhlenbeck process with megashock
events as described in Byrd|(2019). Each value agent arrives to the market multiple times according
to a Poisson process and chooses to buy or sell a stock depending on whether it is cheap or expensive
relative to its noisy observation of a fundamental price. Once the side of an order is determined, the
value agent places a limit order at a random level either inside the spread or deeper into the LOB.
Therefore, value agents also supply liquidity to the market.

Noise Agents: Noise agents acts as liquidity consumers and are designed to simulate the action of
retail traders to trade on demand (e.g. [Kyle| (1985)). Each noise agent trades once a day by placing
a market order. The direction and the size of the trade are chosen randomly.

Mean discriminator score Mean discriminator score

-060
o o
a a
oss -050
2 050 2
N l N l [**

045
040
040
°
l ” : l b
030 o 030
S
025
025
020

100 200 500 900 1000 1200 1400 1600 1800 2000 100 200 500 900 1000 1200 1400 1600 1800 2000
Number of noise agents Number of noise agents

o
R

70

80
Number of value agents

a
£
]
@
-}
®
o
2
]
S
s
]
2
E
3
H

100

o
8
2

(a) The discriminator is trained with time se- (b) The discriminator is trained with histori-
ries simulated by using N* = 1000 noise cal dataset.

agents and M* = 100 value agents for dif-

ferent random seeds.

Figure 5: Average discriminator score heatmap visualization of parameter optimization procedure
with respect to the number of noise and value agents. For each noise and value agent configuration
on the rectangular grid, we run 20 simulations with different seeds for initialization of pseudo-
random number generator. Lighter colors correspond to higher discrimination score — hence, more
realistic simulator configuration.

Under review as a conference paper at ICLR 2021

3.3.2 CONFIGURATION 'RECOVERY’ EXPERIMENT

All of the above described three agent behavior types are present in real markets, however, the
number of agents of each type are difficult to decide on for simulation configuration. It is especially
difficult, since a small change to the number of agents can lead to a large change in emergent
properties of the simulation. To demonstrate how MAS-GAN works in practice, we consider a
set of configurations that consist of a single market maker, /V noise agents and M value agents that
follow an Ornstein-Uhlenbeck fundamental — with N and M being calibration parameters.

In our first experiment, for fixed N* and M™* and different seeds for initialization of pseudo-random
number generator, one can produce multiple time series samples — that is, simulate trading days
with fixed agent participation. Run the following experiment to verify the validity of calibration
procedure:
1. Train a discriminator as a part of GAN with self-attention to recognize time series samples
for fixed N* and M* and varying random seeds.

2. For each choice of N and M over the rectangular grid, apply the trained discriminator to
“recognize” N* and M* — a configuration that a discriminator was trained against.

Figure [54|illustrates the outcome of the above experiment for N*=1000 and M *=100. We observe
that applying discriminator to the rectangular grid can identify the configuration that the discrim-
inator was trained against. We also notice that configurations in the immediate neighborhood of
N*=1000 and M*=100 on the grid are identified as more likely to have trained the discriminator
than those that are further away.

1-minute Price Return Distribution

400 — historical 1-minute Price Return Distributi 1-minute Price Return

Probability density

ensity

Probability d

simulated N=200 M=90 — Historlcal

50 simulated N=2000 M=50

— Historlcal
simulated N-1000

300 40

ensity

Probability density
N
©
Probability d

0.2

1 A
50 10
5
o
T 0.2 -0.1 0.0 0.1 0.2 ° — ° —
-0.2 -0.1 0.0 01
Returns(%)

Returns(%) -0.2 -0.1 O.!: 0.1 0.2
(a) N = 200 and M = 90 (b) N = 1000 and M = 100 (¢) N = 2000 and M = 50

Figure 6: Comparison of distributions of 1-minute mid price returns for historical and simulated
time series with [NV noise agents and M value agents.

10-minute Price Return Distributi 10-minute Price Return Distributi 10-minute Price Return

] 16 = e i — e

14
14

80 12 12

ensity

60

Probability d

40

20 | _ /N\ :///\\\\

0.0 0.1 0.2 0.3 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
Returns(%) Returns(%) Returns(%)

(a) N = 200 and M = 90 (b) N = 1000 and M = 100 (¢) N = 2000 and M = 50

Figure 7: Comparison of distributions of 10-minute mid price returns for historical and simulated
time series with IV noise agents and M value agents.

Probability density

Under review as a conference paper at ICLR 2021

Volume Volatility C Volume Volatility C Volume Volatility C

200 M-90

Probability density
w IS
Probability density

)

>

o1

(a) N = 200 and M = 90

F
1

o4 o5 o6 %3 o2 a1 oa o5 o6 %5 %2 wa

oo o1 o2 o3 o0 o1 02 o
Correlation coefficient Correlation coefficient

(b) N = 1000 and M = 100

Figure 8: Comparison of distributions of volume/volatility correlations for historical and simulated
time series with N noise agents and M value agents.

3.3.3 EXPERIMENT WITH HISTORICAL DISCRIMINATOR

In our next experiment, we apply the discriminator trained on historical dataset described in Sec-
tion[3.1]to the same rectangular grid. Given a set of configurations, we want to perform a calibration
task - that is, determine which configurations on the grid can produce most the realistic simulation
of the historical dataset. Figure [5b| shows the result of applying discriminator trained on historical
data to the same rectangular grid of noise and value agent configurations. Although we do not have
a “ground truth” in this case, we can examine the stylized facts that these configurations produce
in comparison with historical — see Figures[6] [7]and [§]for such comparisons of 1-minute and 10-
minute mid price returns and volume/volatility correlation distributions for the three points on the
heatmap in Figure [5b] One can see from the charts that the configuration N = 200 and M = 90,
that is identified as least realistic out of the three by the discriminator, has stylized facts that are most
dissimilar to historical; whereas, configurations with N = 1000, M = 100 and N = 2000, M = 50
result in stylized facts that are closer to historical. As in the previous experiment, note that adjacent
points on the grid have similar distribution scores.

4 CONCLUSION

In this paper we present MAS-GAN - a novel adversarial method for multi-agent simulator cali-
bration — we first train a discriminator as a part of GAN, and then use it to optimize the simulation
parameters. We note that fidelity of our method depends on the quality of trained GAN (both gener-
ator and discriminator). In this work, we represented both generator and discriminator by neural net-
works with self-attention and showed experimentally that the method can achieve good calibration
performance. This work can be extended however. For example, following the idea of Linformer in
Sinong et al.| (2020), using the fact that self attention can be approximated with a low-rank matrix,
it can be computed linearly instead of using O(n * *2) in time and space with respect to the input.
Future work could also study to which extent such GAN for time series would memorize the training
set or at the contrary produce diverse outputs.

In this paper, we test the MAS-GAN method on limit order book mid price and traded volume time
series sampled at one minute. Using that data, we calibrate the simulator over a rectangular grid of
noise and value agents (the market maker agent is present in all configurations). In the future, we
are planning to look at different time resolutions, as well as to extend the agent universe by different
well-known types of agents such momentum traders and heuristic belief learners |Gjerstad| (2007).

We also want to point out that even though the primary goal of this paper to perform calibration of
multi-agent market simulators, applying MAS-GAN to historical data for a given asset over a given
time period can help produce behavioral explanations of the market - for instance, how market agent
composition changes for high vs. low liquidity assets or high vs. low volatility regimes. This can
help understand and model the market better.

oo o1 o2 o
Correlation coefficient

04 o5 06

(¢) N = 2000 and M = 50

Under review as a conference paper at ICLR 2021

REFERENCES

Sadl Alonso-Monsalve and Leigh H. Whitehead. Image-based model parameter optimisation using
model-assisted generative adversarial networks. CoRR, 2018. URL http://arxiv.org/
abs/1812.00879.

Jean-Philippe Bouchaud, Julius Bonart, Jonathan Donier, and Martin Gould. Trades, quotes and
prices: financial markets under the microscope. Cambridge University Press, Cambridge, 2018.

David Byrd. Explaining agent-based financial market simulation. arXiv preprint arXiv:1909.11650,
2019.

Tanmoy Chakraborty and Michael Kearns. Market making and mean reversion. In Proceedings of
the 12th ACM conference on Electronic commerce, pp. 307-314. ACM, 2011.

Rama Cont. Empirical properties of asset returns: stylized facts and statistical issues. 2001.

Cristobal Esteban, Stephanie Hyland, and Gunnar Ritsch. Real-valued (medical) time series gener-
ation with recurrent conditional gans. 06 2017.

Steven Gjerstad. The competitive market paradox. Journal of Economic Dynamics and Control,
2007.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014.

Jakob Grazzini, Matteo Richiardi, and Efthymios Tsionas. Bayesian estimation of agent-based
models. Journal of Economic Dynamics and Control, 11 2015.

Albert S Kyle. Continuous auctions and insider trading. Econometrica: Journal of the Econometric
Society, pp. 1315-1335, 1985.

Francesco Lamperti, Andrea Roventini, and Amir Sani. Agent-based model calibration using ma-
chine learning surrogates, 2017.

Dan Li, Dacheng Chen, Jonathan Goh, and See-Kiong Ng. Anomaly detection with generative
adversarial networks for multivariate time series. CoRR, abs/1809.04758, 2018. URL http:
//arxiv.org/abs/1809.04758.

Junyi Li, Xintong Wang, Yaoyang Lin, Arunesh Sinha, and Michael P. Wellman. Generating realistic
stock market order streams. In 7o Appear in the 34th AAAI Conference on Artificial Intelligence,
2020.

Shiyu Liang, Yixuan Li, and R. Srikant. Enhancing the reliability of out-of-distribution image
detection in neural networks. In International Conference on Learning Representations, 2018.
URLhttps://openreview.net/forum?id=H1VGkIxRZ.

Gilles Louppe, Joeri Hermans, and Kyle Cranmer. Adversarial variational optimization of non-
differentiable simulators, 2017.

Federico Di Mattia, Paolo Galeone, Michele De Simoni, and Emanuele Ghelfi. A survey on gans
for anomaly detection, 2019.

Imon Palit, Steve Phelps, and Wing Lon Ng. Can a zero-intelligence plus model explain the stylized
facts of financial time series data? pp. 653—660, 06 2012.

N. Ruiz, S. Schulter, and M. Chandraker. Learning to simulate. In Proceeding of the International
Conference on Learning Representations, New Orleans, LA, 2019.

Webster Ryan, Julien Rabin, Loic Simon, and Frédéric Jurie. Detecting overfitting of deep
generative networks via latent recovery. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019. URL https://openaccess.thecvf.com/
content_CVPR_2019/papers/Webster_Detecting_Overfitting of_Deep_
Generative_Networks_via_Latent_Recovery_ CVPR_2019_paper.pdf.

10

http://arxiv.org/abs/1812.00879
http://arxiv.org/abs/1812.00879
http://arxiv.org/abs/1809.04758
http://arxiv.org/abs/1809.04758
https://openreview.net/forum?id=H1VGkIxRZ
https://openaccess.thecvf.com/content_CVPR_2019/papers/Webster_Detecting_Overfitting_of_Deep_Generative_Networks_via_Latent_Recovery_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Webster_Detecting_Overfitting_of_Deep_Generative_Networks_via_Latent_Recovery_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Webster_Detecting_Overfitting_of_Deep_Generative_Networks_via_Latent_Recovery_CVPR_2019_paper.pdf

Under review as a conference paper at ICLR 2021

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans, 2016.

Thomas Schlegl, Philipp Seebock, Sebastian M. Waldstein, Ursula Schmidt-Erfurth, and Georg
Langs. Unsupervised anomaly detection with generative adversarial networks to guide marker
discovery, 2017.

Wang Sinong, Belinda Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. 2020. URL https://arxiv.org/abs/2006.04768.

Yong Sun, Zhentao Xu, and Tianyu Zhang. On-board predictive maintenance with machine learning.
In SAE Technical Paper. SAE International, 04 2019.

Gabriele Tedeschi, Maria Recchioni, and Mauro Gallegati. A calibration procedure for analyzing
stock price dynamics in an agent-based framework. http.://ssrn.com/abstract=2330739, 09 2013.

Lucas Theis, Adron van den Oord, and Matthias Bethge. A note on the evaluation of generative
models, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 2017. URL https://arxiv.org/abs/1706.03762,

Svitlana Vyetrenko and Shaojie Xu. Risk-sensitive compact decision trees for autonomous execution
in presence of simulated market response. In ICML 2019 Workshop on Al in Finance, 06 2019.

Svitlana Vyetrenko, David Byrd, Nick Petosa, Mahmoud Mahfouz, Danial Dervovic, Manuela
Veloso, and Tucker Hybinette Balch. Get real: Realism metrics for robust limit order book market
simulations, 2019.

Dongyi Wang, Robert Vinson, Maxwell Holmes, Gary Seibel, Avital Bechar, and Shimon Nof. Early
detection of tomato spotted wilt virus by hyperspectral imaging and outlier removal auxiliary
classifier generative adversarial nets (or-ac-gan). Scientific Reports, 03 2019. doi: 10.1038/
s41598-019-40066-y.

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks.
Proceedings of the IEEE conference on computer vision and pattern recognition, 2018.

Zhiguang Wang, Weizhong Yan, and Tim Oates. Time series classification from scratch with deep
neural networks: A strong baseline. CoRR, 2016. URL http://arxiv.org/abs/1611.
06455.

Magnus Wiese, Robert Knobloch, Ralf Korn, and Peter Kretschmer. Quant gans: deep gen-
eration of financial time series. Quantitative Finance, pp. 1-22, Apr 2020. ISSN 1469-
7696. doi: 10.1080/14697688.2020.1730426. URL |http://dx.doi.org/10.1080/
14697688.2020.1730426.

Neo Wu, Bradley Green, Xue Ben, and Shawn O’Banion. Deep transformer models for time series
forecasting: The influenza prevalence case. 2020. URL https://arxiv.org/pdf/2001.
08317.pdf.

Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe Gan, Xiaolei Huang, and Xiaodong
He. Attngan: Fine-grained text to image generation with attentional generative adversarial net-
works. Proceedings of the IEEE conference on computer vision and pattern recognition, 2018.
URL https://arxiv.org/pdf/1711.10485.pdf.

S. Yang, M. Paddrik, R. Hayes, A. Todd, A. Kirilenko, P. Beling, and W. Scherer. Behavior based
learning in identifying high frequency trading strategies. In 2012 IEEE Conference on Computa-
tional Intelligence for Financial Engineering Economics (CIFEr), 03 2012.

H. Zhang, Goodfellow 1., D. Metaxas, and A. Odena. Self-attention generative adversarial networks.
International Conference on Machine Learning, 2019. URL https://arxiv.org/pdf/
1805.08318.pdf.

11

https://arxiv.org/abs/2006.04768
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1611.06455
http://arxiv.org/abs/1611.06455
http://dx.doi.org/10.1080/14697688.2020.1730426
http://dx.doi.org/10.1080/14697688.2020.1730426
https://arxiv.org/pdf/2001.08317.pdf
https://arxiv.org/pdf/2001.08317.pdf
https://arxiv.org/pdf/1711.10485.pdf
https://arxiv.org/pdf/1805.08318.pdf
https://arxiv.org/pdf/1805.08318.pdf

Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 1D SELF-ATTENTION LAYER

Here we present in more detail the attention mechanism that is accountable for encoding the global
correlations of volumes and mid price returns feature maps.

N
*,%% ,,,,, [

o 1x1 conv fiters (8)

5 Softmax(K'Q) > Softmax(K'Q)xV
5

BaxxT1

1x1x7168

Bix1x718

1 cony fillers (64)

Bex1x716

Figure 9: The 1D self-attention mechanism first starts with 1 by 1 convolutional layers along the
channel dimension for memory efficiency. Then it follows the standard key, query, values scheme
applied to the feature map. Kernel size for the feature spaces f, g is 8 and 8 for feature space h.

12

Under review as a conference paper at ICLR 2021

def call(self, x):

f = K.convld(x,
kernel=self . kernel _f ,
strides=1,
padding="same’)

g = K.convld(x,
kernel=self . kernel_g ,
strides=1,
padding="same’)

h = K.convld(x,

kernel=self . kernel_h ,

strides=1,

padding="same’)
s = K.batch_dot(g,K.reshape (f,shape=[K.shape(f)[0],)\
K.shape(f)[2], K.shape(f)[1]]))
beta = K.softmax (s, axis=1)

o = K.batch_dot(beta, h)

o = K.reshape (o, shape=K.shape(x))
x = self.gamma * o + X

return Xx

A.2 GAN ARCHITECTURE

Generator with self-attention Discriminator with self-attention
e amxd NG
batch sizexlatent_dim:x1 baich sizex1x716
| Dense: |
[Relu + Reshape + Upsampling1D | | ConviD |
baich sizex358x716 ¥ \ LeakyRelu(D.2) [
ConviD | l haich sizex1x128
[Relu +Upsampling1D |
balch sizex1432x718 v I ConviD |
| ConviD | [LeakyAelu(0.2) [
Relu baich sizex1x64
baich sizex1432x64 ‘ v |
1D self-ATTENTION 1D self-ATTENTION
batch sizex1x64
baich sizex1432x64
[ConviD |
[ConviD |
\ LeakyRelu(0.2) |
\ Relu [
¢ haich sizex1x128
batch sizex716x32 l | ComviD |
ComviD | [LeakyRelu(0.2) [
baich sizex1x256
‘ 1anh + Reshape |
ConwiD
batchsizex1x716 | | LeakyReiu0) ‘ | i 512
| generator's output (fake | alfRelul0 2) baich sizex1x
timeseries)
| ConviD | batch sizex1x1
[Flatien |
J’ baich sizex1
| Denze |)
Jv batch sizex1

I Discriminator's output I

Figure 10: Generative adversarial network architecture with self-attention. The punctured lines
represent dropout layers.

13

Under review as a conference paper at ICLR 2021

Random
noise

1x10~N(0,1)

RelU

4 0.
00

b
¥
l0jeI3URY

[2
ReLU

Time series ; 0.

l 360 =

Linear

[200 |
ReLU

w

0.

w
\
J0jeuiwIosIq

RelLU

403
ot e sares 1|
being real J
Figure 11: Generative adversarial network architecture without self-attention (used for the ablation
study). The punctured lines represent dropout layers.

14

	Introduction
	Motivation
	Background and related work
	Our contributions

	Adversarial parameter optimization
	Experimental results
	GAN training details
	Ablation study and evaluation
	Simulator parameter optimization
	Simulation environment
	Configuration 'recovery' experiment
	Experiment with historical discriminator

	Conclusion
	Appendix
	1D self-attention layer
	GAN architecture

