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Abstract

Accurate and smooth shape matching is very hard to achieve. This is because
for accuracy, one needs unique descriptors (signatures) on shapes that distinguish
different vertices on a mesh accurately while at the same time being invariant to
deformations. However, most existing unique shape descriptors are generally not
smooth on the shape and are not noise-robust thus leading to non-smooth matches.
On the other hand, for smoothness, one needs descriptors that are smooth and
continuous on the shape. However, existing smooth descriptors are generally not
unique and as such lose accuracy as they match neighborhoods (for smoothness)
rather than exact vertices (for accuracy). In this work, we propose to use different
k-hop neighborhoods of vertices as pairwise descriptors for shape matching. We
use these descriptors in conjunction with local map distortion (LMD) to refine an
initialized map for shape matching. We validate the effectiveness of our pipeline
on benchmark datasets such as SCAPE, TOSCA, TOPKIDS, and others.

1 Introduction

Shape matching is a very important task and has been increasingly so with the increase in the
availability and affordability of 3D scans [31]. It has important applications including but not limited
to shape registration [2, 37], comparison [1, 13], recognition [6], and retrieval [50].

Shapes can undergo different types of transformations which we will group as isometric and non-
isometric transformations in this work. Nonrigid isometric transformations preserve most of the
geometric properties of the shape i.e., after the transformation, its angles, geodesic distances, scale,
connectivity, and other geometric properties are mostly preserved. On the other hand, most geometric
properties are not preserved under nonrigid non-isometric transformations. Examples of isometric
transformations are rotations and translations (though minute scaling may also be included in this
category for nonrigid cases). While examples of non-isometric transformations are splitting, scaling,
dilating, and others which change the geometric properties of the shapes.

Several works have been proposed to address shape matching. However, most of these methods will
either aim for smoothness [12, 17, 19, 13, 1, 34, 39, 37, 44, 31, 20] or for accuracy [45], but not both.
Moreover, most of these methods will focus on specific types of deformations undergone by the shape
either isometric [12, 19, 13, 1, 34, 39, 37, 44, 31, 20, 49] or non-isometric [14, 22, 52]. Some methods
such as 2D-GEM [22] have also tried to address both accuracy and smoothness in shapes undergoing
both isometric and non-isometric deformations. However, 2D-GEM is very parameter-dependent,
using different user-defined parameters for isometric shapes than for non-isometric shapes which
in real life is not practical as one usually does not know whether one is dealing with isometric or
non-isometric deformations.

Given these obsevations, there is a need for a pipeline that aims for accuracy and smoothness across
different settings without significantly changing the pipeline. In this light, we propose HOPE, a k-hop
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neighborhood-based refinement technique. The rest of the paper is organized into; (a) preliminaries,
(b) related work, (c) HOPE, and (d) experiments, (e) limitations and remarks, and (f) conclusion.

2 Preliminaries

3D shapes are usually represented by their coordinates X ∈ Rn×3 and their triangulations (meshes)
which can be used to build an adjacency A ∈ Rn×n, with A(i, j) = 1 if vertices i and j are connected
in the shape and 0 otherwise.

Given two three-dimensional shapes M and N with nM and nN vertices respectively. Though
our proposed pipeline (HOPE) and some other baselines work with nM ̸= nN , we will assume
nM = nN = n, and use n for simplicity except when specified. The goal of nonrigid shape matching
is to find a meaningful correspondence T : M → N , where T is (a) bijective, (b) continuous
(smooth) , and (c) similar vertices should be matched to each other [26, 35, 22]. A measure that
captures both the smoothness and the accuracy of the map is the geodesic error. The geodesic error
measures how far a map T , maps a vertex from its matching position given by the ground truth map
T̂ , where a higher map accuracy will correspond to a higher proportion of vertices having geodesic
error 0, and a smoother map will correspond to a huge increase in the geodesic error curve as we
move slightly away from error 0 (implying that several vertices though not accurate are mapped to
their intended neighborhoods).

The two main components of shape matching involve: (1) initializing a map, and (2) refining the
initialized map.

First, the map is initialized either by using landmarks vertices (i.e., vertices with known correspon-
dences) or by using robust descriptors. These descriptors can be based on: (a) the spectrum of the
shape laplacian [8, 4, 33], (b) The face normals, vertex location, and triangulation [45, 41], geodesic
distances [44, 1] or others [14, 46, 15, 16, 11, 43, 23]. In this work, we will assume that one such
initialization approach has been utilized and we have an initial map at hand.

Second, the initialized map T 0 can then be refined by either using pair-wise descriptors [36, 26, 52,
48, 14, 38, 22] and solving:

T t = argmin
T t

||WM(T t, T t−1)−WN ||, (1)

or by using vertex-wise descriptors [2, 34, 39, 37, 31, 26, 35, 19, 20, 44, 1, 28] and solving:

T t = argmin
T t

||QM(T t, :)−QN f(T t−1)||, (2)

Where in equation 1, WM(T t, T t−1) ∈ (R)n×n is the pair-wise descriptors of vertices for shape
M with its rows and columns aligned using the map T t and the previous iterations map T t−1

respectively. WN is the pair-wise descriptor for shape N . Here for conciseness for aligning rows
or columns we will use T (while in reality if the row map is T = argmax(P , dim=-1) the column
should be T ′

= argmax(P , dim=-2) where P is the permutation matrix such that PQM = QN
and PWMPT = WN

While in equation 2, QM(T t, :) ∈ Rn×d is the vertex-wise descriptors for shape M with feature
dimension d for each vertex and with its rows aligned according to the map T t, f(T t−1) is a function
(such as functional map[34]) to transfer the previous iteration’s map to the descriptor space, and
QN ∈ Rn×d is the vertex-wise descriptors for shape N .

For the map T refined by equations 1 or 2 to have a high accuracy (in the ideal case), the pair-wise
descriptors WN (i, :) ∈ R1×n or vertex-wise descriptors QN (i, :) ∈ R1×d will need to be: (a) unique
for each vertex i on shape N , and (b) identical to its ground truth corresponding pair-wise feature
WM(T̂ (i), :) ∈ R1×n or vertex-wise feature QM(T̂ (i), :) on shape M. Where T̂ is the ground truth
map. Moreover, for smoothness, vertices should be mapped such that they remain in their relative
neighborhoods before and after the mapping.

3 Related Work

ZoomOut [31] and other related works[19, 13, 1, 34, 39, 37, 26, 35] all aim for smoothness of the
map and focus on the settings in which the shapes have undergone an isometric deformation, such
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Figure 1: For sample shapes from the TOPKIDS (first row) and TOSCA (second row), this figure
shows the second eigenvector of the mesh laplacian (LBO 2), the second eigenvector of the uniform
shape laplacian from the triangulation adjacency (uniform shape laplacian 2), the 2-hop and 6-hop
neighborhoods of vertex 100, the second SHOT descriptor and the LMD of vertex 2.

that geometric shape properties are preserved. These works use vertex-wise descriptors usually
based on some truncated (reduced) basis of specific shape properties, generally leading to some loss
of information such as uniqueness. For example, consider the d dimensional vector U(i, :) ∈ Rd

as the vertex-wise descriptors of vertex i, supposing that the matrix U ∈ Rn×d contains the first
d eigenvectors of the uniform shape laplacian built from A, it can be seen that U(i, :) is the soft
cluster assignment of vertex i, and as such most vertices in the same cluster as i will have similar
vertex-wise descriptors. This can be seen in figure 1 where the second eigenvector U(:, 2) ∈ Rn is
shown for example shapes from TOSCA and TOPKIDS. One can see that U(:, 2) ∈ Rn is indeed a
soft cluster assignment grouping some vertices in the same cluster together. This explains the success
in achieving smoothness by some methods that use the d dimensional spectrum of the shape laplacian.

Theorem 3.1 Given the shape descriptor U(i, :) ∈ Rd as the vertex-wise descriptors of vertex i,
supposing that the matrix U ∈ Rn×d contains the first d eigenvectors or left singular vectors of some
unique shape pairwise descriptor W . Using W for the map refinement via Functional maps helps
group nearby clusters together assuming the functional map is perfectly accurate.

Proof 3.1 Recall that given a map T t−1, and two vertex-wise descriptors UM and UN both ∈ Rn×d

the functional map C ∈ Rd×d is obtained as:

Ct = min
Ct

||UM(T t−1, :)− UNCt||

This functional map can then be used to convert functions in the basis of shape M into those of shape
N and vice versa. This is then used to refine the map via solving equation 2 where f(T t) = Ct. One
can see that UNCt converts the soft clusters (left singular vectors or first eigenvectors) of shape UN
into the basis space of the descriptors (soft clusters) of shape UM, and so solving 2 is basically
aligning the soft clusters in the same basis space. Thus solving equation 2 is matching aligned soft
clusters.

In fact, methods such as ZoomOut [31, 20, 34] which iteratively refine the map T by using an
increasing number of eigenvectors of the shape laplacian can be said to be refining the map by
increasingly aligning more fine-grained clusters of the shapes. Figure 2 shows that though ZoomOut’s
recovered maps T on the isometric SCAPE[26] dataset are generally smooth (seen by the rapid
increase of the geodesic curve), they are generally not accurate due to the non-uniqueness of the
descriptors it uses to refine the initialized map (seen by the proportion of vertices at geodesic error 0).

Moreover, though geometric properties may be preserved even for some mild non-isometric deforma-
tions, they usually are not preserved when the transformation deviates significantly from isometry.
For example, consider the shape Laplace Beltrami Operator (LBO) on which many vertex-wise and
pair-wise descriptors are built:

L = V−1S (3)
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Figure 2: Showing mating of sample shapes from the isometric SCAPE dataset (first row) and the
non-isometric TOPKIDS (second row), this figure shows the performance of different baselines.

where V is the diagonal mass matrix with V(i, i) entry along the diagonal being the vertex area of
vertex i, and the matrix S being defined as:

S =


1
2 (cotαi,j + cotβij), j ∈ neigh(i)
−
∑

k∈neigh(i) Si,k i = k
0, otherwise

(4)

where neigh(i) denotes the neighborhood of i. It can be observed from the way the LBO is defined
that a non-isometric deformation which changes angles, areas, or even merges part of the shape
(such as gluing hands to face for example) will change the LBO and by implication its spectrum,
hence changing the vertex-wise and pair-wise descriptors based on the LBO. Figure 2 shows the poor
performance of DIR [49] and ZoomOut [31] (which use the spectrum of the LBO as vertex-wise
descriptors) on a pair of sample shapes from the non-isometric dataset TOPKIDS [26] (which contains
shapes with topological noise).

Other methods aim for accuracy use more unique descriptors. However, these descriptors are
generally not smooth since they generally do not capture neighborhoods and as such do not match
neighborhoods. Figure 1 shows the first SHOT [45] descriptor and figure 2 show that while it
generally provides an accurate map [45] (seen by the proportion of vertices at geodesic error 0) the
map is not smooth (as seen by the lack of rapid increase of the geodesic curve). That is why methods
aiming for smoothness [31, 37, 12, 17] only use these unique descriptors for initialization and then
use the LBO or other smooth basis for refinement.

Others have used the 1-hop [14] or 2-hop [52, 22] neighborhoods of vertices as witnesses to im-
prove an initialized map. Though these methods aim for both accuracy (via uniqueness of vertex
neighborhoods), and smoothness via using neighborhoods as witnesses to improve the map (match-
ing neighborhoods that agree best), they are nonetheless affected by the fact that 1-hop or 2-hop
neighborhoods may not be unique enough and distant vertices may have similar 1-hop and or 2-hop
neighborhoods especially in the presence of symmetries in A. For example, consider GRAMPA [14]
which initializes the map by using a graph matching kernel in the full graph spectrum and then uses
the 1-hop (or 2-hop as in this figure) neighborhood to refine the map. Figure 2 shows GRAMPA [14]
performing well on non-isometric shapes from TOPKIDS where there are few symmetries (and
other graph properties) which normally cause the neighborhoods of the vertices to be non-unique.
However, figure 2 shows that GRAMPA struggles on a pair of shapes from the nearly isometric
dataset SCAPE [26] where shapes have symmetries (and other graph properties) that normally cause
the neighborhoods of the vertices to be non-unique. To address this challenge, 2D-GEM[22] proposed
to use the concept of local map distortion LMD[49, 48] and the spectrum of the uniform shape
laplacian. However, though 2D-GEM seems to perform well on non-isometric and isometric shapes
(figure 2), 2D-GEM does not generalize, but rather significantly changed their model (depending on
user-defined parameters) in order to handle isometric cases as discussed in Section 4.4.
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4 HOPE

To address both accuracy and smoothness for correlated meshes undergoing isometric and non-
isometric deformations we propose HOPE (k-HOP niEghborhood matching). HOPE is based on the
iterative refinement of an initialized map by: (1) using the local map distortion (LMD)[49, 48] to
identify poorly matched vertices, and (2) using noise robust k-hop neighborhood-based descriptors
for refinement of the maps of these poorly matched vertices.

This section is organized as: (a) the local map distortion, (b) k-hop pairwise descriptors, and
(c) iterative refinement pipeline and algorithm.

4.1 Local Map Distortion (LMD)

Let T : M → N be a map between two shapes. The LMD [49, 22] of the map T at the vertex xi is
given as follows:

Dγ(T )(xi) =

∑
xj∈Bγ(xi)

VM(j)DET (xi, xj)∑
xj∈Bγ(xi)

VM(j)
, (5)

where Bγ(xi) = {xj ∈ M | dM(xi, xj) ≤ γ} is the γ-geodesic ball of xi, VM is the area element of
the mesh of shape M, and DET (xi, xj) = |dM(xi, xj)− dN (T (xi), T (xj))|/γ represents a pair-
wise distance distortion of mapping nearby vertices xi and xj to T (xi) and T (xj). A smaller value
of Dγ(T )(xi) means a better map continuity of T at the vertex xi, in other words, the local distance
at the point xi is well preserved. Based on the above definition of LMD, one can check that if T is
an isometric map, then Dγ(T )(xi) = 0,∀xi ∈ M, γ > 0. Conversely, if Dγ(T )(xi) = 0,∀xi ∈ M
for some γ > 0, then T is isometric. We use the LMD to find well-matched pairs (lmks) i.e.,
lmks = {(xi, T (xi))|Dγ(T )(xi) ≤ ϵ}, where ϵ is a threshold, We fix ϵ to be the same values for
all dataset for all our experiments. We then call the rest of the vertices on shape M /∈ lmks as
non-landmarks Nlmks (i.e., poorly mapped vertices).

4.2 K-Hop Pairwise Descriptors

Given an initial map T 0 matching a fraction β of the vertices n correctly and the fraction 1 − β
incorrectly, it has been shown that one can refine the map by (a) using the 1-hop [29] neighborhood
contained in the graph adjacencies of the triangulations AM and AN , or (b) using k-hop [52]
neighborhoods contained in binary matrices AM,k and AN ,k ∈ Rn×n indicating whether vertices
are connected at a path of length k on the shape mesh adjacencies (note that k = 1 is the adjacency).
The refinement is done by solving:

T t = argmax
T

Tr(AM,k(T , T t−1)AN ,k), (6)

the main assumption being that 2 the meshes M and N are correlated i.e., their adjacencies are
assumed to come from the same parent graph, with their correlation ratio being s. Specifically, given
a G(n, p) Erdos Regny parent graph and the correlation s, 1− s is the probability of independently
randomly deleting edges from this graph to either obtain the adjacency of M or that of N . For k = 1

and k = 2, rigorous analysis and tight bounds were given for recovering the ground truth map T̂ (for
given values of s, p and β) by solving equation 6 (see [51, 30, 52, 29] for exact bounds).

Theorem 4.1 Given the k-hop based descriptors AM,k and AN ,k, solving equation 6 is matching
vertices whose neighborhoods agree best under T t−1.

Proof 4.1 Notice that:

• columns of AM,k andAN ,k are descriptors for the vertices (rows), and these columns are
the k-hop neighborhoods of vertices (rows)

• T t−1 is used in equation 6 for first aligning these descriptors i.e., AM,k(:, T t−1) rearranges
the columns of AM,k thus realigning the descriptors of each vertex (the rows),

• each entry K(i, j) in the product K = AM,k(:, T t−1)AN ,k will be the number of vertices
that are common in the k-hop neighborhoods of vertices i and j, after the alignment of the
k-hop neighborhoods of vertices in M by AM,k(:, T t−1)
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Figure 3: HOPE (a pipeline) for shape matching.

• finding T via equation 6 matches the vertices i, and j whose k-hop neighborhood have most
vertices in common based on the alignment T t−1.

However, in the presence of symmetries the next 1-hop and 2-hop neighborhoods may not be unique
enough as even distant nodes may have the same 1 and or 2-hop connectivity. To address this non-
uniqueness, we follow 2D-GEM, and use the LMD to first detect Nlmks vertices. Unlike 2D-GEM
which used the laplacian spectrum to refine the map T (Nlmks) for Nlmks vertices, we instead
propose to iteratively use different k-hop neighborhoods for refining the map T (Nlmks) for Nlmks
vertices, i.e., iteratively using nodes at different lengths k to refine T (Nmlks). We propose this
strategy because: (b) first, 2D-GEM’s strategy of using the spectrum will suffer from non-uniqueness
according to theorm 3.1, and will also not adapt to non-isometric shapes as discussed in Sections 3
and 4.4. (b) Second, according to theorem 4.1 our strategy will ensure that T is consistent across
different neighborhoods. We do so for 1 ≤ k ≤ kmax where kmax is large. This strategy is inspired
by the fact that it was shown that large neighborhood statistics are essential in graph matching
[51, 30, 52, 29, 10, 32], and other graph tasks [18, 5, 47, 21, 22, 53].

4.3 Pipeline for HOPE

Here we show the general pipeline for HOPE which consists of the two aforementioned steps, namely:

• (a) Map initialization: we use any robust map initializations e.g., the map initialized from
SHOT[45] in our experiments

• (b) map refinement for t iteration steps consisting of:

– Using the LMD [22, 49, 48] to detect the poorly matched Nlmks vertices
– refine the map for the Nlmks vertices via enforcing different noise robust k-hop

neighborhoods consistency (for 1 ≤ k ≤ kmax) by solving:

T t(Nlmks) = argmax
T

Tr(AM,k(T (Nlmks), T t−1)AN ,k), (7)

• (c) returning the final map T t

4.4 HOPE vs 2D-GEM

In this section, we briefly introduce 2D-GEM [22] and highlight some key differ-
ences between 2D-GEM and HOPE. Like us, 2D-GEM initializes its map via SHOT[45]
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Figure 4: Comparison on TOPKIDS showing
HOPE using ϵ as in Section 5.5 for its LMD
threshold (same as in the isometric cases),
against 2D-GEM with ϵ set as in the isomet-
ric case (i.e., using the isometric parameters
in [22] rather than ϵ = 100 as in the non-
isometric case).

and then at each iteration t 2D-GEM refined the map
by:

• (1) updating the map T by solving one iter-
ation of equation 6 using the 2-hop neigh-
borhoods, meaning k = 2 in equation 6,

• (2) finding the lmks well-matched pairs,
and poorly matched pairs Nlmks pairs us-
ing the LMD.

• (3) using the lmks vertices to update the
map of the Nlmks vertices in the spectrum
by using the GMWM [52] on a cost matrix
built from the spectrum of the laplacian of
the two shapes (see their paper for more
details). They showed similarity between
this approach and the functional map [34]
approach.

The main two differences between 2D-GEM and HOPE are: (a) HOPE completely removes their
step (1), and (b) they used the laplacian (LBO) spectrum via their proposed 2D-graph convolution
to refine the map for the Nlmks in step (3). However, as mentioned in section 3 and shown in
figure 1, using LBO descriptors loses uniqueness since vertices in similar clusters will be grouped
together, and in addition, these descriptors are not robust to non-isometric deformations as discussed
in Section 3.

A consequence of this is that, 2D-GEM[22] needed to deactivate step (2) and (3) of their algorithms
(the Nlmks refinement step) by setting ϵ = 100 as their LMD threshold when dealing with non-
isometric shapes. Hence though effective, their algorithm can be seen as two disjoint algorithms that
are used for isometric or non-isometric shapes based on the setting of ϵ. But in real life, in some
cases, it is not obvious whether the deformation used is isometric or not. On the other hand, we
propose refining the Nlmks map based on the preservation of different k-hop connectivity which is a
constraint that holds for isometric and non-isometric shapes with correlated triangulations [51, 30, 52].

Figure 4 shows a comparison between HOPE and 2D-GEM on a non-isometric pair of shapes from
TOPKIDS using the 2D-GEM ϵ parameters proposed for isometric shapes. It can be seen that when
we use the isometric parameters of 2D-GEM on non-isometric shapes, 2D-GEM fails to perform well
(the same holds when using their non-isometric parameter ϵ = 100 on isometric shapes.

4.5 Time complexity analysis

See the algorithm for HOPE in Appendix A. Given that for step (1) HOPE follows DIR[49]
and [22] in using LMD, checking the LMD takes O(n). The GMWM used to solve step (2) of
HOPE takes O(|Nlmks|2logn). Hence the total time complexity of HOPE for all t iterations is
O(t(|Nlmks|2logn+ n)).

5 Experiments

We report experimental results that validate the effectiveness, efficiency, and generalization ability of
HOPE in the matching of nearly-isometric and non-isometric 3D shapes.

5.1 Experimental Set-up

All experiments are conducted in Matlab 2023 on a Windows 11 system with 32GB RAM and Intel(R)
i5 13500 CPU @ 2.50-4.8GHz.

5.2 Datasets

We evaluate the performance of HOPE on two nearly isometric benchmark datasets TOSCA [7],
and SCAPE [3], as well as on the non-isometric dataset SHREC’16 (TOPKIDS) [26], TOPKIDS
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contains 25 shapes of the same class with up to 12K vertices, undergoing near-isometric deformations
in addition to large topological noise (such as merging hands to thighs) which results in nM ̸= nN .
TOSCA consists of 80 shapes in 8 different categories (human and animal shapes) with vertex
numbers ranging from 4k to 50k. SCAPE has 71 shapes (12,500 vertices for each) of the same person
with different poses.

Furthermore, to see the generalization abilities of HOPE, we equally used datasets SCAPE_r[9],
FAUST_r[9], and TOSCA_r[9], which are remeshed shape datasets. The SCAPE_r consists of the
same 71 shapes from the SCAPE dataset, but remeshed, while the FAUST_r (TOSCA_r) likewise
contains the same FAUST (TOSCA) datasets but remeshed. We used the same 71 test pairs SCAPE_r
as for SCAPE, and for FAUST_r and TOSCA_r we followed [9]

5.3 Evaluation Metrics

We use the geodesic error as our error metric [14, 22]. Given that the map of an algorithm maps xi ∈
M to xj ∈ N , and the true map maps xi to x∗

j , the geodesic error is defined as e(xi) =
dN (xj ,x

∗
j )

diam(N ) ,
where dN denotes the geodesic distance on N , and diam(N ) is the geodesic diameter of N .

5.4 Baselines

Following 2D-GEM [22], we compare HOPE with the following methods: EM [42], GE [25], RF
[40], PFM [39], FSPM [28], Kernel-Matching [26], and GRAMPA [14], [22], SGMDS[1], FM[34],
BIM[24], Mobius[27], Best-Conformal [24], Kernel-Matching [26], DIR-500 [49] which uses 500
eigenvectors, DIR-1000 [49] which uses 1000 eigenvectors.

5.5 Parameter Settings

On ZoomOut, we start with a functional map using the first 20 eigenvectors of the LBO, then we
iteratively add an eigenvector until we reach the 120th eigenvector after which we stop.

On all other Baselines, we follow the settings from [22].

On HOPE, on all datasets we set the LMD threshold ϵ, staring from ϵ = 100 and 10 equally spaced
values to ϵ = 0.2 i.e., we use ϵ = linespace(100, 0.2, 10) and we set t = 60. When the last value of
e is reached, it is maintained for the rest of the iterations. We equaly set kmax = 8 for all datasets.
For the LMD, we used the second ring neighborhood following [49, 22].

5.6 Performance Analysis

(a) TOPKIDS (b) SCAPE (c) TOSCA

Figure 5: Performance comparison on TOPKIDS 5(a), SCAPE 5(b), and TOSCA 5(c).

Comparison on non-isometric shapes. On the dataset with topological noise TOPKIDS (Figure 5(a)),
the top 3 methods are the noise-robust methods 2D-GEM with 96.7% vertices correctly matched,
followed by HOPE with 94.9%, and GRAMPA with accuracy of 84.5%. This shows that 2D-GEM,
HOPE, and GRAMPA are indeed adapted for non-isometric shapes. Moreover, as discussed in
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[22], GRAMPA is very time-consuming as it needs the full basis of the graph adjacencies of the
shapes, while HOPE and 2D-GEM do not. For example on a shape with 12500 vertices from SCAPE,
GRAMPA takes roughly 118 seconds on our set up while 2D-GEM and HOPE take 56 and 52 seconds
respectively. Better still HOPE is a general model as it can be seen that with the same parameter of ϵ
(see Section 5.5) for its LMD, it performs well on all datasets.

(a) FAUST_r (b) SCAPE_r (c) TOSCA_r
Figure 6: Performance comparison on FAUST_r 6(a), SCAPE_r 6(b), and TOSCA_r 6(c).

Comparison on isometric shapes. On isometric shapes, methods that enforce stronger geometric
constraints on their refinement pipelines such as 2D-GEM (with appropriate parameters), DIR, and
HOPE. HOPE outperform all other baselines. 2D-GEM achieves 92.54% accuracy at geodesic error
0 on the TOSCA dataset, as well as 74.8% accuracy on the SCAPE dataset, while HOPE achieves
80.11% on SCAPE and 92.54% on TOSCA using no matrix decomposition. Third is DIR-1000[49]
with 1000 eigenvectors which achieves around 69.5% accuracy at geodesic error 0 on SCAPE, and
59.8% accuracy at geodesic error 0 on TOSCA. Moreover, unlike DIR (and 2D-GEM,), HOPE
generalizes to this isometric setting using the same parameters (see Section 5.5).

Comparison on remeshed shapes. On the remeshed datasets FAUST_r, SCAPE_r and TOSCA_r in
figure 6, methods that enforce stronger geometric constraints such as DIR performed poorly, while
those that are more robust to noise such as 2D-GEM (with appropriate parameters), ZoomOut and
HOPE perform relatively well. Though 2D-GEM does not outperform ZoomOut in this setting
(probably due to differences in the mesh connectivity), HOPE still outperforms ZoomOut though by
a smaller margin than on datasets with similar mesh connectivity amongst pairs.

Figure 7: Time Comparison on TOSCA showing HOPE, 2D-GEM, and ZoomOut.

Time Comparison. Here we compare the time usage per shape for both 2D-GEM, HOPE, and
ZoomOut on the TOSCA dataset. It can be seen from figure 7 that HOPE is relatively faster
than 2D-GEM, and even ZoomoOut (for the given parameters of ZoomOut that we used for our
experiments).

6 Limitations

The main limitation of this work is the reliance on correlated triangulations between the pair of
shapes to be matched as outlined in Section 4.2. One can see this drawback on figures 6 which show
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that though HOPE still performs well on remeshed shapes (shapes where the triangulations are not
very correlated), and even outperforms other baselines, it nonetheless does not perform as well as on
figures 5(b), 5(a) and 5(c) where the triangulations of the pairs matched are strongly correlated. This
is a major drawback because triangulations are often hard and expensive to get, especially consistent
triangulations between shapes.

7 Conclusion

We introduced an effective and easy-to-implement map refinement strategy consisting of; (a) detecting
poorly matched vertices (nodes) using the concept of local map distortion (LMD), and (b) improving
the map of these poorly matched vertices via noise robust k-hop pairwise descriptors. We then
conducted a series of experiments to show that our framework is effective and generalizable to
different shape datasets. We also discussed the main limitation of our work (the fact that it is reliant
on the triangulation consistency between the shapes matched).

8 Broader Impact

This work proposes a map refinement strategy for shape matching that is based on matching different
k-hop neighborhoods of vertices. It then validates the effectiveness of this strategy on several shape
matching datasets. This can spark new research on the importance of large neighborhood statistics
for shape matching and other related tasks. As we focus solely proposing a framework for map
refinement for shape matching, we do not see clear negative impact of this work.
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EHOPE: Shape Matching Via Aligning Different
K-hop Neighbourhoods

Appendices:

A HOPE Algorithm

In this section, we present the algorithm for HOPE. This is given in algorthm 1

Algorithm 1 : HOPE
0. input An initial map T 0, distance matrices dM and dN , LMD threshold ϵ, maximum iteration
t, and the maximum hop kmax and k = 1
while 0 ≤ i ≤ t do

1. build AM,k and AM,k

2. set k = k + 1
if k > kmax then

3. k = 1,
end if
4. Given T i, use the LMD to locate well-matched points lmks and poorly-matched points
Nlmks,
5. Use these Nlmks pairs to update the T i(Nlmks) by using the GMWM to solve equation (7),

end while
return T t.

B Ablation and Parameter Sensitivity Studies

In this section, we conduct parameter and ablation studies. We use the following settings:

• HOPE: the hope algortithm as in algorithm 1, with t = 60 and ϵ = linespace(100, 0.2, 10)
as in the experiments in Section 5 in the main paper,

• HOPE-M: where we reduce the number of iterations to t = 20 in algorithm 1,
• HOPE-th: where we set ϵ = linespace(1, 0.2, 10) in algorithm 1,
• HOPE-fixhop: where we simply solve equation 6 with k = 1 and k = 2 alternatively per

iteration as in algorithm 1,
• HOPE-LMDvaryhop: where use kmax = 2 in algorithm 1,
• HOPE-varyhop: where we simply solve equation 6 with k = [1, 2, · · · , 8] alternatively per

iteration, as in algorithm 1.

It can be observed from figure 8 that the best model overall is HOPE-th which is best on isometric
(figure 8(b)) shapes and non-isometric shapes (figure 8(a)) and performaing comparatively to other
variants on remeshed shapes (figure 8(c)). This is followed by HOPE. This indicates that the ϵ
we used for our main experiments in Section 5 is sub-optimal since we randomly selected the
range to be linspace(100, 0.2, 10) without any parameter tuning to demonstrate the effectiveness
and generalizability of HOPE. We notice that the variants without the LMD (HOPE-varyhop and
HOPE-fixhop) all struggled on the isometric shape (figure 8(b)) validating our observation that the
k-hop neighborhood of nodes may not be very unique especially when there are symmetries, and as
such using a stronger constraint like the LMD is beneficial in such settings (Section 3 and 4)

C Different Initializations

In this section, we conduct studies on the effects of different initializations on HOPE. We use the
following settings:
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• HOPE-SHOT: where we use SHOT[45] descriptors to initialize t0 in algorithm 1,
• HOPE-HKS: where we use Heat Kernel Signatures (HKS)[8] descriptors to initialize t0 in

algorithm 1,
• HOPE-WKS: where we use Wave Kernel Signatures (WKS)[4] descriptors to initialize t0 in

algorithm 1.

Figure 9 shows that indeed SHOT [45] which is commonly used in practice is a robust and good
descriptor to use as initialization. On the other hand while both the HKS [8] and WKS [4] provided an
initialization that could be enhanced by HOPE relatively well on the isometric shape (figure 9(b)), only
WKS and SHOT were suitable for the remeshed shape (figure 9(c)), while only SHOT initializations
where relatively okay in terms of accuracy on the non-sometric shape (figure 9(a)).

D Partial Shape Matching

In this section, we show the performance of HOPE on partial shape matching where we match the full
shapes to the partial shapes. Here we used the SHREC16 HOLES and SHREC16 CUTS following
Cao et al. [9]. Figure 10 shows that although HOPE was not designed specifically for the partial
shape setting, it nonetheless performs relatively well on average as seen by the average geodesic
curve.

E Non-Isometric Shape Matching

In this section, we show the performance of HOPE on another non-isometric shape dataset SMAL_r
Cao et al. [9], where we perform intra-class matching of 298 pairs of shapes. Figure 11 shows
that HOPE again outperforms other baselines even when the mesh triangulations are not strongly
correlated (due to noise).

F Visual Comparisons

In this section, we show the visual comparisons between HOPE and other baselines, on SCAPE_r
(figure 12), SHREC16 (figure 13), and TOPKIDS (figure 14).
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(a) TOPKIDS

(b) SCAPE

(c) TOSCA_r
Figure 8: Ablation and sensitivity studies on TOPKIDS 8(a), SCAPE 8(b), and TOSCA_r 8(c).
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(a) TOPKIDS

(b) SCAPE

(c) TOSCA_r
Figure 9: Different initialzations on TOPKIDS 9(a), SCAPE 9(b), and TOSCA_r 9(c).

(a) SHREC16 HOLES (b) SHREC16 CUTS
Figure 10: Performance comparisons on SHREC16 HOLES 10(a), SHREC16 CUTS 9(b), and
TOSCA_r 10(b).
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Figure 11: Comparison on intra-class matching on SMAL_r using 298 pairs of shape. Figure showing
HOPE, 2D-GEM, ZoomOut, and DIR.

Figure 12: Sample shape from SCAPE_r. Figure showing HOPE, 2D-GEM, ZoomOut, and DIR.

Figure 13: Sample shape from SHREC16-cuts. Figure showing HOPE, 2D-GEM, ZoomOut, and
DIR.

Figure 14: Sample shape from TOPKIDS. Figure showing HOPE, 2D-GEM, ZoomOut, and DIR.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper set out to propose the SLNC problem, show that existing baseline
GNNs do not perform well in this setting, and propose ELI to improve GNNs performance
in SLNC. These were all shown and demonstrated in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: See Sections 7 and 6
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: See Sections 3 and Appendix 4.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 5 and attached code.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: See attached code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Anonymous authors, no plagiarism and other ethical concerns from https:
//neurips.cc/public/EthicsGuidelines where followed.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Section 8
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This does not apply to our task
Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We implemented the code and cite all packages and dataset used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide the code and readme file on how to use it.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: This does not apply to our work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This does not apply to our work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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