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ABSTRACT

It is generally perceived that Dynamic Sparse Training opens the door to a new era
of scalability and efficiency for artificial neural networks at, perhaps, some costs in
accuracy performance for the classification task. At the same time, Dense Train-
ing is widely accepted as being the ”de facto” approach to train artificial neural
networks if one would like to maximize their robustness against image corrup-
tion. In this paper, we question this general practice. Consequently, we claim that,
contrary to what is commonly thought, the Dynamic Sparse Training methods can
consistently outperform Dense Training in terms of robustness accuracy, partic-
ularly if the efficiency aspect is not considered as a main objective (i.e., sparsity
levels between 10% and up to 50%), without adding (or even reducing) resource
cost. We validate our claim on two types of data, images and videos, using several
traditional and modern deep learning architectures for computer vision and three
widely studied Dynamic Sparse Training algorithms. Our findings reveal a new
yet-unknown benefit of Dynamic Sparse Training and open new possibilities in
improving deep learning robustness beyond the current state of the art.

1 INTRODUCTION

If one would like to maximize as much as possible the robustness of a deep learning model on noisy
more realistic data (e.g., image corruption, out of distribution), what would be the typical approach?
Would one train directly a dense neural network (referred further as Dense Training) or a sparse neu-
ral network (referred further as Sparse Training)? Of course, there are many techniques to enhance
the model robustness, but still they would be applied on top of a basic optimization process which
usually requires training an artificial neural network. In order to give an answer to the previously
posed question, we would need to quantify the research and practitioner community perception,
which is a hard problem in itself. Yet, given the large body of literature on the topic, it is safely
to assume that the usual answer would be ”Yes, Dense Training is the typical solution to maximize
the model robustness.”. Nevertheless, the reader can answer to this question by themselves, while
further in this manuscript we would like to bring more clarity and some new perspectives on this
topic.

With respect to Dense Training, recent studies have demonstrated that over-parameterized neural
networks, can achieve impressive generalizability on test data even without explicit regularizers
Zhang et al. (2021). This phenomenon is partly explained by the implicit regularization1 induced by
the optimization algorithm used during training, such as stochastic gradient descent (SGD) Zhang
et al. (2021); Keskar et al. (2017); Li & Liang (2018). Despite ongoing efforts to understand the
robustness behavior of deep neural network models, researchers always favor larger models, trained
densely, due to their perceived robustness to unexpected variations in input data, such as additional
noise, contrast changes, and weather conditions, to a certain extent Hendrycks & Dietterich (2019);
Hendrycks et al. (2021). However, larger over-parameterized models do not necessarily gain more
robustness Algan & Ulusoy (2021); Wang et al. (2023).

1In older neural network literature, regularization referred specifically to a penalty term added to the loss
function to prevent overfitting. Recently, as in Goodfellow et al. (2016), regularization is broadly defined as
“any modification to a learning algorithm intended to reduce test error without increasing training error.”
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Figure 1: (Left) Robustness accuracy gain (%) in a sparsified ResNet34 trained with SET (sparsity
ratio=0.5) compared to its dense counterpart, tested on CIFAR100-C with various corruption types
shown on the Y-axis. Positive values indicate better performances of SET method. (Right) concep-
tual representation of model density during training across different DST algorithms: (a) SET, (b)
RigL (Note: In the regrow step, RigL requires full gradient calculations.), (c) MEST and (d) GraNet.

With respect to sparse training, there are static sparse training Liu & Wang (2023) and Dynamic
Sparse Training (DST) Mocanu et al. (2018); Bellec et al. (2018); Mostafa & Wang (2019); Evci
et al. (2020); Yuan et al. (2021); Liu et al. (2021a), which maintain just a fraction of the parameters’
budget throughout the entire training process. Static sparse training involves sparsifying the network
before training and keeps the topology fixed during training. DST, a recent and efficient sparse-to-
sparse training approach, starts with a sparse neural network and simultaneously optimizes both its
weight values and connectivity. This optimization process is known as dynamic sparsity. Conse-
quently, it is mainly seen as an approach that can maximize deep learning scalability and efficiency,
at least in theory, as in practice, it is a difficult research problem to fully utilize sparsity during
training Nowak et al. (2023). Nevertheless, it is often overlooked that DST frequently achieves
performance comparable to, or even surpassing, that of its dense or static sparse counterparts Chen
et al. (2022b); Xiao et al. (2022); Graesser et al. (2022); Sokar et al. (2022); Atashgahi et al. (2022);
Liu et al. (2023); Sokar et al. (2023).

By connecting the dots, an intuitive research question arises: Is somehow DST implicitly improving
model robustness, and no one knew about this yet?

Although several studies have investigated the impact of pruning model from Dense Training, lottery
ticket hypothesis methods Frankle & Carbin (2019); Frankle et al. (2020); Renda et al. (2020) on
image corruption robustness Liebenwein et al. (2021); Diffenderfer et al. (2021) and adversarial
robustness Liao et al. (2022), other research shows that static sparsified networks, when increased
width and depth to maintain capacity, can also improve robustness Timpl et al. (2022). However,
a closer look at current DST research reveals a literature gap: the overlooked evaluation of DST
models under various unexpected image corruptions. In an attempt to respond to this, we examined
one of the classical DST algorithms, Sparse Evolutionary Training (SET) Mocanu et al. (2018), as
illustrated in Figure 1 (Left). We find that SET (with a sparsity ratio of 0.5) can markedly improve
model robustness against 18 out of 19 image corruptions, compared to Dense Training. In light of
the strong performance of the DST method (e.g., SET) against common corruptions , we propose
the Dynamic Sparsity Corruption Robustness (DSCR) Hypothesis.

DSCR Hypothesis. Dynamic Sparse Training at low sparsity levels helps to improve model robust-
ness against image corruption in comparison with Dense Training.

We summarize our main contributions as follows:

• This study questions the typical approach of using Dense Training to maximize model
robustness and proposes Dynamic Sparse Training as a more capable alternative.

• Formally, we propose the DSCR hypothesis which is validated in a wide range of corrup-
tion scenarios (i.e., corruption type and severity), using different types of data (i.e., image
and video), DST algorithms (i.e., SET, RigL, MEST and GraNet) and deep learning archi-
tectures (i.e., VGG, ResNet, EfficientNet, DeiT and 3D ConvNet) (Section 4).

• We give insights, from both spatial and spectral perspectives, on the underlying factors
that explain the superior performance of DST. Our analysis shows that the dynamic spar-
sity process in DST acts as an implicit regularization mechanism, enabling the model to
automatically focus on more important features (e.g., low-frequency components) while
reducing its attention to less important ones (e.g., high-frequency components) (Section 5).
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2 RELATED WORK

2.1 RELEVANT METHODS FOR CORRUPTION ROBUSTNESS

Deep neural networks (DNNs) are susceptible to unseen changes in their inputs, a scenario com-
monly encountered in practical applications, such as common corruptions like Gaussian noise, defo-
cus blur, etc Hendrycks & Dietterich (2019). To enhance robustness against these common corrup-
tions, many methods have been developed, primarily focusing on data augmentation, for example,
AugMix Hendrycks* et al. (2020), AugMax Wang et al. (2021), PRIME Modas et al. (2022). These
approaches aim to reduce the distribution gap between the training and testing datasets. Alterna-
tively, other strategies to enhance corruption robustness concentrate on developing resilient learning
approaches, such as contrastive learning Chen et al. (2020), or on designing specialized network
components, like the push-pull layer Strisciuglio et al. (2020). Recent research has revealed that
LTH-based sparse models can provide enhanced robustness to common corruptions compared to
their denser counterparts Diffenderfer et al. (2021); Chen et al. (2022a). Additionally, Bair et al.
(2024) introduces an adaptive sharpness-aware pruning method, which regularizes the model to-
wards flatter regions, thereby improving robustness against image corruption. However, these meth-
ods are typically built on dense models either at the start or throughout training, often overlooking
the aspect of resource-aware training.

2.2 DYNAMIC SPARSE TRAINING

Dynamic Sparse Training (DST) Mocanu et al. (2018); Bellec et al. (2018); Mostafa & Wang (2019);
Evci et al. (2020); Chen et al. (2021); Yuan et al. (2021); Liu et al. (2021a), as a sparse-to-sparse
training paradigm, starts from scratch and maintains partial parameters throughout training, pro-
viding a promising approach to significantly improve training and inference efficiency while still
preserving accuracy. Recent research has focused on deciphering the mechanisms of DST Liu et al.
(2021c); Evci et al. (2022; 2019), and has broadened its application in various domains, such as con-
tinuous learning Sokar et al. (2023), reinforcement learning Graesser et al. (2022); Tan et al. (2023),
feature selection Sokar et al. (2022); Atashgahi et al. (2022), time series classification Xiao et al.
(2022), network architecture design Liu et al. (2023), and vision transformers Chen et al. (2021).

Moreover, recent studies have concentrated on developing improved DST algorithms Dettmers &
Zettlemoyer (2019); Mostafa & Wang (2019); Yuan et al. (2021); Jayakumar et al. (2020); Liu et al.
(2021b). For instance, Dettmers & Zettlemoyer (2019) introduced a technique to regrow weights
based on the momentum of existing weights, while Yuan et al. (2021) proposed a method that utilizes
both weight and gradient information for pruning. More recently, it has been demonstrated that DST
can enhance the performance of DNNs on biased data Zhao et al. (2023) and adversarial samples
Chen et al. (2022b). However, the majority of DST research relies on pristine benchmark datasets,
leaving the robustness of DST models against image corruption relatively unexplored. This paper
aims to systematically investigate the robustness behavior of DST when exposed to various image
corruptions.

3 PRELIMINARIES

3.1 PROBLEM DEFINITION

Given the i.i.d. training samples {(xtr
i , y

tr
i )}

ntr

i=1 from a training distribution ptr(x, y), our goal is to
predict the labels ŷte

i of test examples {(xte
i , yte

i )}
nte
i=1 drawn from a test distribution pte (x, y). Here

i identifies each individual sample in both the training and test sets. We decompose ptr(x, y) and
pte (x, y) into the marginal distribution and the conditional probability distribution, that is:

ptr(x, y) = ptr(x)ptr(y | x),

pte (x, y) = pte (x)pte(y | x).
ptr (x) ̸= pte (x), and ptr(y | x) = pte(y | x), in our setting. To evaluate the performance of the
models in the aforementioned problem setting, we utilize standard image benchmark datasets such
as CIFAR10 Krizhevsky et al. (2009), CIFAR100 Krizhevsky et al. (2009), TinyImageNet Le &
Yang (2015) and ImageNet Deng et al. (2009) for training. Then, we evaluate the performance

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(robustness accuracy) of the models on the corresponding corruption benchmark datasets, including
CIFAR10-C, CIFAR100-C, TinyImageNet-C and ImageNet- C/C̄/3DCC. More details of datasets
can be found in Appendix A.2.

3.2 DYNAMIC SPARSE TRAINING

Consider a dense neural network fθ, the sparsification of fθ can be formulated as: fθ⊙M 7→ fθ′ ,
where M is a set of binary masks and ⊙ denotes element-wise multiplication. The sparsity ratio S

of the resulting subnetwork, fθ′ , is defined as S = 1− ∥θ′∥0

∥θ∥0
, where ∥ · ∥0 represents the L0 norm,

counting the number of non-zero elements. The target memory budget (or density) ratio b is given by
∥θ′∥0

∥θ∥0
. The topology of the sparse network is dynamically updated during training every ∆t iterations

through a parameters remove-regrow process. Specifically, connections with low importance are
removed, and new connections are regrown based on criteria like gradient information Evci et al.
(2020) or randomly Mocanu et al. (2018). Dynamic sparse models are the resulting models from
DST. In our study, we explore various DST approaches as follows:

• DST with fixed memory budget in forward: To the best of our knowledge, SET is pio-
neering work in DST. SET follows a magnitude-based removal and random regrow strategy,
maintaining a fixed the memory budget, that is ∥θ′∥0

∥θ∥0
≡ b, throughout the entire training

process, as shown in Figure 1 (right (a)). RigL Evci et al. (2020) regrows weights based
on the gradient information of all weights, while maintaining a constant memory budget
during the forward phase of training, as shown in Figure 1 (right (b)). In both approaches,
the mask M is updated every ∆t iterations.

• DST with soft memory budget in forward: Memory-Economic Sparse Training (MEST)
Yuan et al. (2021), with Soft Memory Bound Elastic Mutation, starts with a sparse model
having a memory budget of ∥θ′∥0

∥θ∥0
= b + bs, where bs > 0 represents the soft memory

bound that decays during training. Subsequently, at intervals of ∆t, weights are removed
based on magnitude and gradient information, reducing the memory budget to b, and then
regrown it to b + bs, as illustrated in Figure 1 (right (c)). The soft memory constraint bs,
gradually decays to zero, allowing the model to reach the target memory budget b by the
end of training.

• DST with flexible memory budget in forward: GraNet Liu et al. (2021a) starts with a
denser neural network (i.e., ∥θ′∥0

∥θ∥0
< 1). During training, at intervals of ∆t, it removes

weights based on magnitude and regrows connections using gradient information, similar
to RigL. The main difference is that fewer connections are regrown than those removed.
This process dynamically updates the mask M throughout training, gradually reaching the
target memory budget ratio b by the end, as shown in Figure 1 (right (d)).

In this paper, for simplicity in analysis, we use a unified magnitude-based removal approach and
implement either random ((·)r) or gradient-based (i.e., re-growing the weights with the highest
magnitude gradients)((·)g) regrow strategy across different DST methods. Unlike their original
papers Yuan et al. (2021); Liu et al. (2021a), where MEST utilized random regrow and GraNet
employed gradient-based regrow, we explore both strategies for each model. Thus, for random
regrow DST, our analysis includes SET, MESTr, and GraNetr, while for gradient-based regrow
DST, we examine RigL, MESTg , and GraNetg . This approach allows us to consistently evaluate the
robustness of DST models under varying memory budget constraints, such as fixed, soft, or flexible,
during training.

4 CAN DST IMPROVE ROBUSTNESS AGAINST IMAGE CORRUPTION?

In this section, we aim to carry out extensive experiments to verify the DSCR Hypothesis across a
wide variety of DST methods, models and data. To this end, we conduct a comprehensive set of
experiments to evaluate the robustness accuracy of DST models with different sparsity ratios in the
presence of image corruption.
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To comprehensively validate the DSCR Hypothesis, our study embarks on an extensive analysis
evaluating the robustness behavior of sparsely trained models. We train using several representative
DST algorithms, including SET, Rigging the Lottery (RigL) Evci et al. (2020), Memory-Economic
Sparse Training (MEST) Yuan et al. (2021), and Gradual Pruning with zero-cost Neuroregeneration
(GraNet) Liu et al. (2021a), across a wide range of model architectures (i.e., VGG Simonyan &
Zisserman (2015), 2D/3D ResNet He et al. (2016), EfficientNet Tan & Le (2019), DeiT Touvron
et al. (2021) and Two-Stream Inflated 3D ConvNet (I3D) Carreira & Zisserman (2017)).

Our analysis spans a range of image corruption benchmarks—CIFAR10-C Hendrycks & Dietterich
(2019), CIFAR100-C Hendrycks & Dietterich (2019), TinyImageNet-C Hendrycks & Dietterich
(2019), ImageNet-C Hendrycks & Dietterich (2019), ImageNet-C̄ Mintun et al. (2021), ImageNet-
3DCC Kar et al. (2022) and corrupted UCF101 Soomro et al. (2012) —covering 19 types of im-
age corruptions for CIFAR10/100-C, 15 types for TinyImageNet-C and ImageNet-C, 10 types for
ImageNet-C̄ and 11 types for ImageNet-3DCC, with each corruption tested across five severity lev-
els. The corrupted UCF101 dataset includes 16 corruption types with four severity levels. This anal-
ysis provides a comprehensive perspective on the robustness evaluation of sparsely trained models.
Detailed dataset descriptions and implementation setup can be found in Appendix A.1 and A.3.1.

Figure 2: Robustness accuracy (%) for (a) VGG16 on CIFAR10-C, (b) ResNet34 on CIFAR100-
C and (c) EfficientNet-B0 on TinyImageNet-C, comparing different DST algorithms with dense
training. Left: Results for DST algorithms with random regrow strategy, including SET, MESTr,
and GraNetr. Right: Results for DST algorithms with gradient-based regrow strategy, such as RigL,
MESTg , and GraNetg .

4.1 OVERALL PERFORMANCE

Figure 2 showcases the average robust accuracy across various types of corruption, with severity
levels ranging from 1 to 5, on the CIFAR10/100-C and TinyImageNet-C datasets. We can find that
DST models outperform their Dense training counterparts (as indicated by the blue line in Figure 2)
in terms of robustness accuracy across multiple sparsity ratios. This trend is evident in both the
random regrow (Figure 2, left) and gradient-based regrow (Figure 2, right) strategies. Specifically,
for CIFAR100-C and TinyImageNet- C, DST models with sparsity ratios ranging from 0.3 to 0.7
generally show encouraging improvements in robustness. For CIFAR10-C, at certain sparsity ratios,
such as 0.4, the overall DST methods achieve decent robust performance against image corruptions.
Moreover, based on our experimental setup, at least 40% of both training computational and memory
costs can be saved while simultaneously enhancing corruption robustness. Details on FLOPs and
parameter counts are available in the Appendix A.3.2. This finding substantiates our DSCR Hypoth-
esis across different DST methods, varying sparsity ratios, and architectures (i.e., VGG, ResNet, and
EfficientNet).

4.2 PERFORMANCE ON CORRUPTION TYPES

We further evaluate the DST methods across various corruption types with different severities. Fig-
ure 3 provides detailed relative robustness gains 2 for each type of corruption in ImageNet-C and
ImageNet-C̄ Mintun et al. (2021), compared to their dense model counterparts. It is worth mention-
ing that the X-axis in Figure 3 represents different types of corruption, which are ordered according
to the amount of high-frequency information they contain, as in Saikia et al. (2021). Intriguingly,
on ImageNet-C and ImageNet-C̄ 3, DST models show significant potential in enhancing robustness

2Defined as (Accs,sl − Accd,sl)/Accd,sl, where Accs,sl and Accd,sl represent the accuracies of models
trained using DST and dense training, respectively, at a severity level of sl.

3Our experiments primarily focus on DST with a gradient-based regrow strategy when training on Ima-
geNet. As our implementation is based on PyTorch, the gradient-based regrow approach tends to achieve

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

against specific corruptions, such as impulse, Gaussian, and shot noise on ImageNet-C, as well as
brownish, Perlin, plasma, and blue noise on ImageNet-C̄. It is worth noting that these corruptions
are typically characterized by relatively high-frequency information.

This finding is consistent on CIFAR10-C, CIFAR100-C, and TinyImageNet-C, and due to page
limitations, the results for these datasets are detailed in Appendix A.4.

Figure 3: Relative robustness accuracy gain (%) on ImageNet-C (top) and ImageNet-C̄ (bottom) for
ResNet50, trained using DST with gradient-based strategies (i.e., (a) RigL, (b) MESTg , (c) GraNetg)
at a sparsity ratio of 0.1, compared to a dense baseline (which has a mean robustness accuracy of
38.38% on ImageNet-C and 40.38% on ImageNet-C̄). Positive values reflect better performance by
the sparse models compared to the dense baseline. The five bars, ranging from light to dark shades,
correspond to corruption severity levels from 1 to 5 for each corruption type. The title indicates the
mean robustness accuracy for each corresponding DST method.

Additionally, we observe that DST models exhibit a more pronounced advantage in robustness over
Dense Training models under high severity levels, particularly with noise corruptions. Specifically,
as shown in Figure 3 (top (b)), the robustness performance of MESTg at severity level 5 for impulse
noise and Gaussian noise demonstrates nearly a 25% improvement. This finding is also evident
in CIFAR10-C, CIFAR100-C, and TinyImageNet-C; more details can be found in Appendix A.4.
This observation highlights the potential of models trained with DST to tackle high-frequency cor-
ruptions, especially in harsher scenarios, offering the potential to enhance DNNs’ robustness in
complex corruption-prone environments.

4.3 ROBUSTNESS OF DST MODELS: IS TRUE FOR OTHER DATASETS, TASKS, AND
ARCHITECTURES?

Herein, we evaluate the robustness of DST models using a more realistic corruption dataset (e.g.,
ImageNet-3DCC Kar et al. (2022)), and across different tasks (e.g., video classification), with mod-
ern architectures (transformer-based, e.g., DeiT-base Touvron et al. (2021)).

Evaluation on ImageNet-3DCC. We evaluate DST models on the ImageNet-3DCC, a challenging
dataset with realistic corruptions. The ImageNet-3DCC dataset introduces corruptions aligned with
3D scene geometry, simulating real-world shifts including camera motion, weather conditions, oc-
clusions, depth of field, and lighting variations. The improved average test accuracy on ImageNet-
3DCC, as shown in Table 1, indicates that DST models excel not only at handling synthetic dis-
tortions, as discussed in Section 4.1 and Section 4.2, but also at adapting to practical, real-world
corruptions.

strong performance on ImageNet more quickly with this framework Liu et al. (2021a); Nowak et al. (2023).
However, it is worth noting that the random-based approach has also shown significant improvements when
implemented in JAX Lee et al. (2023), which we plan to explore in future work.
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Table 1: The robustness accuracy (%) of dense and DST
models on ImageNet-3DCC and UFC101 datasets.

Dataset Model Dense RigL MESTg GraNetg

ImageNet-3DCC ResNet50 43.62 44.08 43.87 44.46

UCF101 3D ResNet50 51.14 52.71 53.00 53.57
I3D 53.58 55.00 56.30 55.21

Evaluation on video classification.
We extended our exploration to
video data using the UCF101 dataset
Soomro et al. (2012), an action
recognition dataset containing 101
categories and approximately 13K
videos. Following the settings de-
scribed in Schiappa et al. (2023), we compared the performance of dense training and DST at a
sparsity level of 0.1 on two architectures: 3D ResNet50 and Two-Stream Inflated 3D ConvNet (I3D)
Carreira & Zisserman (2017). Further details are provided in Appendix A.3.1. Both models were
trained from scratch for 100 epochs on UCF101. Our analysis, based on a test set featuring 16 cor-
ruptions across severity levels 1 to 4, as shown in Table 1, revealed that DST models consistently
achieved superior robust accuracy compared to their dense counterparts, even within the context of
video data.

Figure 4: Relative robustness accuracy gain (%) on ImageNet-C for a DeiT-base, dynamically
trained with gradient-based methods (i.e., (a) RigL, (b) MESTg , (c) GraNetg) at a sparsity ratio
of 0.1, compared to a dense baseline (with a robustness accuracy of 54.68% on ImageNet-C). Posi-
tive values indicate superior performance by the sparse models.

Evaluation on transformer-based architecture. We evaluate the relative robustness accuracy gain
of various sparse and dense DeiT-base models on ImageNet-C across different corruption types,
as shown in Figure 4. Following the experimental settings in Chen et al. (2021), we conducted
training from scratch over 200 epochs. The results show that DST models generally outperform
their dense counterparts, with a particularly better advantage in handling noise corruptions. This
finding, consistent with our observations in CNNs discussed in previous sections, suggests that the
robustness benefits of DST models are applicable to alternative architectures, including transformer-
based model.

In summary, our empirical findings indicate that DST methods can surpass Dense Training models in
robustness performance across various datasets at specific sparsity ratios, without (or even reduce)
extra resource cost 4. Furthermore, DST models tend to perform better against different types of
corruption, particularly those with more high-frequency information. The mystery behind these
observations will be further explored in the following sections.

5 WHAT IS BEHIND THE CORRUPTION ROBUSTNESS GAIN IN DST?

Building on the previous empirical results, where DST showed improved robustness against com-
mon corruptions, we are motivated to explore the inner reasons for the robustness of DST models.
Our focus is on analyzing how DST and Dense Training models utilize their parameters in the spatial
domain and process the input in the spectral domain.

5.1 ANALYSIS THROUGH SPATIAL DOMAIN

Traditionally, the constraints on weight values, such as L2 regularization, during dense training have
been an effective method to mitigate the problem of overfitting. In contrast, DST imposes sparsity
constraints, enabling the selective removal of parameters. In this section, we aim to intuitively

4We use a binary masking operation to simulate the sparisty, the computation cost of binary masking oper-
ation is negligible or even reduced when the hardware support sparse matrix product.
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investigate how DST affects the location of non-zero weights. To achieve this, we performed a
visualization analysis to pinpoint the locations of sparse parameters for DST models. Figure 5
showcases the non-zero weight counts and the sum of weight magnitudes (i.e., absolute values) for
each kernel in a specific layer.

Figure 5: Visualization of the non-zero weight count (1st row) and the sum of weight magnitudes
(2nd row) within a 3×3 kernel from the #layer3.3.conv2 of ResNet34 after training on the CIFAR100
using dense training or different DST methods (with a sparsity ratio of 0.5). Each value in the figure
is derived from calculations within the kernel, with lighter colors indicating larger values.

Interestingly, the heatmaps in Figure 5 show dark vertical and horizontal lines, indicating a concen-
tration of either sparsified weights or weights with smaller magnitudes in the filters corresponding
to specific input or output channels (features). While both dense and DST models exhibit such a
concentration phenomenon, in the case of the dense model, this concentration is solely due to the
adjustment of weight magnitudes. These magnitudes tend to converge near, but not exactly at, zero,
as indicated by the consistently non-zero weight count of 9 in Figure 5 (1st row (a)). In contrast, the
dynamic sparse model attributes this phenomenon to both the adjustment of weight magnitudes and
the allocation of sparsified weights, as shown in Figure 5 (1st row (b, c, d, e)), where the non-zero
weight count approaches zero. The findings are consistently evident in other layers, particularly in
deeper layers, and across different models. More visualizations can be found in the Appendix A.5.
Compared to dense training, we suggest that dynamic sparsity in DST introduces a form of implicit
regularization. This leads to the prominence of sparsified weights on particular filters, indicating a
reduced connectivity to specific features that are determined to be less crucial.

Furthermore, based on the empirical results in Section 4.2, we observed that DST models are sur-
prisingly more effective at countering corruptions rich in high-frequency information compared
to their dense training counterparts. We assume that the improved robustness of DST models
against these corruptions stems from their inherent tendency to de-emphasize high-frequency fea-
tures. This selective focus on specific frequency ranges enhances the network’s robustness against
high-frequency corruptions, thereby providing a distinct advantage in handling noise corruptions
rich in high-frequency information. Further analysis will be provided in the following section.

5.2 ANALYSIS FROM SPECTRAL DOMAIN

Fourier spectrumFourier spectrum

Figure 6: Illustration of high-
frequency ahigh, and low-
frequency alow attenuation. Gray
areas indicate the removed fre-
quency components, with low
frequencies near the center.

Motivated by previous work Yin et al. (2019), which examines
ImageNet accuracy after low-pass and high-pass filtering to
understand how neural networks utilize frequency information
for image recognition, and building on the observations and
assumptions from the previous section, we will further explore
dynamic sparse models from a spectral perspective.

In this section, we explore how the test accuracy of both DST
and Dense Training models is affected by the removal of high
and low-frequency components from the test data after train-
ing. In detail, the test images are first transformed into the
Fourier spectrum, followed by a frequency attenuation opera-
tion. The attenuation is applied in two forms: high-frequency
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attenuation ahigh and low-frequency attenuation alow, each controlled by an attenuation radius r. A
larger r leads to more information being filtered out, as depicted in Figure 6.

We define Acchigh(M, r) and Acclow(M, r) as the test accuracies of a model M ∈ M, when tested
on datasets processed with high-frequency attenuation ahigh and low-frequency attenuation alow
respectively, using an attenuation radius r. Here, M represents the set of all considered models.
The Radius-Accuracy (RA) curves for ahigh and alow illustrate the relationship between frequency
attenuation range and test accuracy:

CM,high := {(r, Acchigh(M, r)) | M ∈ M, r ∈ R}, (1)
CM,low := {(r, Acclow(M, r)) | M ∈ M, r ∈ R}, (2)

where R denotes the set of attenuation radius. Figure 7 (left) illustrates a toy example of ImageNet
with attenuated high and low-frequency information at different attenuation radius, and provides the
RA Curves CM,high and CM,low colored with orange and blue, respectively. In detail, with high-
frequency attenuation, images appear blurred but remain recognizable to the human. In contrast,
low-frequency attenuation leaves only the basic outlines of objects visible. Figure 7 (right) shows
the detailed RA curves for both dense and dynamic sparse models across different datasets. These
models are tested on the CIFAR100, TinyImageNet, and ImageNet test sets, each processed with
high- and low-frequency attenuation at varying radius.

Figure 7: (Left) A toy example demonstrating the impact of high- and low-frequency attenuation
on dense ResNet50 model using the ImageNet test set. (Right-top) High-frequency attenuation
performance: (a) ResNet34 (sparsity 0.5) on CIFAR100, (b) EfficientNet-B0 (sparsity 0.5) on Tiny-
ImageNet, and (c) ResNet50 (sparsity 0.1) on ImageNet. (Right-bottom) Low-frequency attenuation
performance for the same models and datasets. The x-axis represents the attenuation radius, and the
y-axis shows test accuracy.

Observation 1: Equal attention for low-frequency information. Given models M ∈ M and the
set of attenuation radius r ∈ R, it is observed that CM,low lie below the CM,high. This reveals that
attenuating low-frequency information significantly degrades classification accuracy, highlighting
the crucial role of low-frequency information in image recognition tasks, consistent with findings
in Yin et al. (2019). Under low-frequency attenuation alow, both DST and Dense Training models
exhibit similar performance, as shown in Figure 7 (right, 2nd row), suggesting that DST models
allocate attention to low-frequency information in a manner comparable to their Dense Training
counterparts.

Observation 2: Less attention to high-frequency information: When subjected to high-frequency
attenuation ahigh, DST models consistently outperform Dense Training models across all evaluated
datasets, as shown in Figure 7 (right, 1st row). This suggests that high-frequency attenuation has
less impact on DST models, indicating they are less sensitive to high-frequency information. This
finding further supports the robustness of dynamic sparse models against common image corruptions
rich in high-frequency content, as discussed in Section 5.1.

Based on the above observation, we conclude that DST introduces a form of implicit regularization,
reducing the focus on high-frequency information. This selective attention in dynamic sparse models
enhances their robustness, especially in handling corrupted images with high-frequency content,
such as noise corruption.

9
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6 FURTHER ANALYSIS AND DISCUSSION

6.1 DSCR HYPOTHESIS IN RECENT DST ALGORITHMS

Table 2: Robustness accuracy (%) on Fashion MNIST-C.
Dense Dynamic Sparse Training

Training Sparsity SET RigL CHTs+CSTI CHTs+BSW

19.82 ± 0.32 97% 23.44 ± 1.79 25.23 ± 1.39 24.50 ± 1.03 26.64 ± 1.06
95% 25.55 ± 0.32 25.03 ± 1.11 27.38 ± 0.25 27.13 ± 0.33

In this paper, we primarily investi-
gate the robustness of fundamental
DST models initialized from random
sparse networks with the basic re-
moval and regrowth criteria, to vali-
date our DSCR hypothesis in commonly used settings. With the emergence of other recent and
promising DST methods, we also include an initial exploration to further validate our hypothesis
on these methods, such as Cannistraci-Hebb soft training (CHTs) Zhang et al. (2024b;a), which
employ more complex growth criteria and topology initialization. We compare dense training with
CHTs using Correlated Sparse Topological Initialization (CHTs+CSTI) and bipartite small-world
networks (CHTs+BSW) on robustness accuracy, using the Fashion-MNIST corrupted dataset with
an MLP model, as shown in Table 2. More training details are provided in Appendix A.3.1. The
results indicate that the recent DST method (i.e., CHTs) achieves even more inspiring robustness
performance, further validating our DSCR hypothesis on the robustness of DST.

6.2 DISCUSSION AND LIMITATION

Our study questions the conventional approach of using “de facto” dense training for model robust-
ness in favor of sparse training. Due to the page constraint, we also analyze the complementarity
between DST and data augmentation (e.g., Mixup Zhang et al. (2018)) in Appendix A.6, and further
explore DST’s robustness with Out-Of-Domain (OOD) data and Grad-CAM Selvaraju et al. (2017)
in Appendix A.7 and A.8, respectively. In the future, it is worth moving beyond the basic fact
revealed in this paper, i.e., vanilla DST outperforms vanilla Dense Training for model robustness,
and to devise new DST methods for model robustness especially in the high sparsity regime, and
to replace Dense Training with DST in the current state-of-the-art techniques for model robustness.
Additionally, while we empirically analyze robustness behaviors between dense and sparse train-
ing and provide insights from both spatial and frequency domains, further work on the theoretical
understanding of this phenomenon, along with a fine-grained exploration of different components
of DST (e.g., topology initialization, regrowth methods and regrowth weight initialization), could
provide deeper insights for the development of more robust and efficient networks. This would be a
promising direction for future research.

7 CONCLUSION

Table 3: Summary of the main results presenting the 9 sce-
narios studied in this paper. The table takes a snapshot at
a particular sparsity level and presents the robustness accu-
racy (%) of the gradient-based regrow DST methods. The
bold values represent the best performer between Dense
Training and each DST method taken separately.

Data Dataset Model Dense Dynamic Sparse Training
type Training Sparsity RigL MESTg GraNetg

images

CIFAR10-C VGG16 73.32 0.4 73.64 73.47 73.32
CIFAR100-C ResNet34 51.65 0.4 52.56 52.56 51.78

TinyImageNet-C EfficientNet-B0 15.42 0.4 16.46 16.5 15.82
ImageNet-C ResNet50 38.38 0.1 38.70 38.64 38.72
ImageNet-C̄ ResNet50 40.38 0.1 41.44 40.50 41.07

ImageNet-3DCC ResNet50 43.62 0.1 44.08 43.87 44.46
ImageNet-C DeiT 54.68 0.1 54.73 55.15 54.94

videos UCF101 3D ResNet50 51.14 0.1 52.71 53.00 53.57
UCF101 I3D 53.58 0.1 55.00 56.3 55.21

Total wins 0 9

This paper questioned the typical ap-
proach of using ”de facto” Dense
Training to maximize model robust-
ness in deep learning, and revealed
an unexpected finding. That is: ”Dy-
namic Sparse Training at low spar-
sity levels can train more robust mod-
els against image corruption than
Dense Training.”. This finding has
been confined formally in the DSCR
Hypothesis and rigorously validated
on nine scenarios (as summarized in
Table 3 where a striking observation
can be made - all DST algorithms
studied outperform Dense Training in all scenarios). To understand what factors contribute to this
compelling and intriguing DST behaviour, to the end, we present a deeper analyze. We show that
the dynamic sparsity process performs a form of implicit regularization which makes the model to
automatically learn to focus on the more informative features (e.g., rich in low-frequency), while
paying less attention to the less informative ones (e.g., rich in high-frequency).
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A APPENDIX

A.1 DATASET INTRODUCTION

A.1.1 CORRUPTION DATASET

Image corruptions refer to visible distortions in images that lead to data distribution shifts from that
of the original data. They are common in practical applications when models are deployed in the real
world. Typical corruptions include Gaussian noise, impulse noise, defocus blur, etc. In Figure 8, we
display the common image corruptions on the CIFAR-10 dataset.

Brightnesscontrast

defoucs blur

elastic_transformfrog frost

gussian blur

gussian nosie

glass blur

impluse nosie

jpeg compression

motion blur

pixelate saturate

shot nosie snow

spatter

speckle noise

zoom blur

Figure 8: Visualization of the common image corruptions on CIFAR10 dataset.

A.2 RELATED BENCHMARKS

• CIFAR-10/100-C Hendrycks & Dietterich (2019) is synthetically generated on top of the
test set of CIFAR-10/100 dataset. It includes 19 sub-datasets, each corrupted with a type
of image corruption (Gaussian noise, impulse noise, shot noise, speckle noise, defocus
blur, Gaussian blur, glass blur, motion blur, zoom blur, brightness, fog, frost, snow, spatter,
contrast, elastic transform, JPEG compression, pixelate, saturate). Each corruption dataset
contains five subsets, which have images corrupted with five severity levels. The higher the
severity, the more influence the corruption has on the test images.

• Tiny-ImageNet-C Hendrycks & Dietterich (2019) consists of 15 types of common image
corruptions, and is synthetically generated from Tiny-ImageNet dataset as well. The types
of corruption are Gaussian noise, impulse noise, shot noise, defocus blur, glass blur, motion
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blur, zoom blur, brightness, fog, frost, snow, contrast, pixelate, elastic transform, and JPEG
compression, with 5 severity levels.

• ImageNet-C Hendrycks & Dietterich (2019) consists of 15 types of common image corrup-
tions, and is synthetically generated from ImageNet dataset as well. The types of corruption
are Gaussian noise, impulse noise, shot noise, defocus blur, glass blur, motion blur, zoom
blur, brightness, fog, frost, snow, contrast, pixelate, elastic transform, and JPEG compres-
sion, with 5 severity levels.

• ImageNet-C̄ Mintun et al. (2021) are perceptually dissimilar to ImageNet-C in our trans-
form feature space, consists of 10 types of common image corruptions. The types of corrup-
tion are blue noise, brownish noise, caustic refraction, checkerboard cutout, cocentric sine
waves, inverse sparkles, perlin noise, plasma noise, single frequency greyscale, sparkles,
with 5 severity levels.

• ImageNet-3DCC Kar et al. (2022): addresses several aspects of the real world, such as
camera motion, weather, occlusions, depth of field, and lighting. It consists of 11 types of
common image corruptions: near focus, far focus, fog 3d, flash, color quant, low light, xy
motion blur, z motion blur, iso noise, bit error, h265 abr, with 5 severity levels.

• Corrupted UCF101 Soomro et al. (2012): a realistic action recognition dataset featuring
videos collected from YouTube, spanning 101 different action categories. It consists of 16
corruptions: motion blur, compression, defocus blur, gaussian noise, shot noise, impulse
noise, zoom blur, rotate, static rotate, speckle noise, sampling, reverse sampling, jumble,
box jumble, freeze, translate, with 4 severity levels.

A.3 EXPERIMENT SETUP

A.3.1 IMPLEMENTATION DETAILS

For CIFAR10, CIFAR100, and TinyImageNet, the codes were implemented in Python using PyTorch
and executed on a single NVIDIA A100 GPU. Each was run three times using three fixed random
seeds. The ImageNet experiments were run using distributed computing on four NVIDIA A100
GPUs. A batch size of 64 was utilized for each task, resulting in a combined total batch size of
256. For the UCF101 dataset, we followed the settings described in Schiappa et al. (2023) utilizing
the codebase 5. For the FashionMNIST dataset, we followed the training settings detailed in Zhang
et al. (2024b;a), using the codebase 6.

Table 4: The experiment hyperparameters setting. The hyperparameters include Learning Rate (LR),
Batch Size (BS), LR Schedule (LRS), Optimizer (Opt), Weight Decay (WD), Sparsity Distribution
(Sparsity Dist), Topology Update Interval (∆T ), Pruning Rate Schedule (Sched), Initial Pruning
Rate (P).

Model Data # Epoch LR BS LRS Opt WD Sparsity Dist 2 ∆T Sched 3 P

VGG16 CIFAR10 160 0.1 100 Cosine SGD 4 5e-4 Uniform 500 polynomial 0.1
ResNet34 CIFAR100 160 0.1 100 Cosine SGD 5e-4 Uniform 500 polynomial 0.1

EfficientNet-B0 TinyImageNet 100 0.1 128 Cosine SGD 5e-4 Uniform 100 polynomial 0.1
ResNet50 ImageNet 90 0.1 256 Step 1 SGD 1e-4 ERK 2000 polynomial 0.1

3D ResNet50/I3D UCF101 80 0.1 8 Cosine SGD 1e-3 ERK 300 polynomial 0.1
MLP Fashion-MNIST 100 0.025 8 Cosine SGD 5e-4 ERK 300 polynomial 0.1

1 Step denotes a schedule that the learning rate decayed by 10 at every 30 epochs until 90 epochs.
2 For the uniform distribution, the sparsity ratio of each layer is the same (i.e. Si = 1− ∥θ′

i∥0/∥θi∥0), where θi is the parameters in i-th
layer. ERK distribution allocates higher sparsities to layers with more parameters, while assigning lower sparsities to smaller layers. In
ERK, the number of parameters of the sparse convolutional layers is scaled proportionally to 1 − ni−1+ni+wi+hi

ni−1×ni×wi×hi
, where ni−1 and ni

are the number of input channels and output channels in i-th layer, wi and hi are the width and the height of the kernel.
3 The remove and regrow ratio is decayed according to a polynomial strategy: p×

(
1− stepcurrent

steptotal

)0.01

, where stepcurrent is the current step
and steptotal is the total number of training steps.

4 SGD optimizer with momentum 0.9.

5https://github.com/Maddy12/ActionRecognitionRobustnessEval
6https://github.com/biomedical-cybernetics/Cannistraci-Hebb-training
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A.3.2 THE COMPUTATIONAL AND MEMORY CONSUMPTION

In this section, we present the computational cost in terms of Floating-Point Operations (FLOPs)
for training and inference, as well as the memory cost in terms of the number of parameters, for
different models across different sparsity ratios.

CIFAR-10: For the CIFAR10 dataset, we train VGG16 for 160 epochs. The soft memory bound
for MEST is set to 10% of the target density. For example, if the sparse network’s density is 0.3,
then the soft memory bound is 0.03, resulting in an initial model density of 0.33. This soft memory
bound is decayed to 0 using a polynomial strategy. The initial density of GraNet is set at 0.8. Every
500 training steps, it prunes weights to achieve a density described by the formula: di − (di −
dt)

(
1− t−t0

n∆t

)3
, where di is the initial density, dt is the target density, and n∆t is set to half of the

total training time.

Table 5: Training FLOPs (TrFLOPs, ×1016), Inference FLOPs (InFLOPs, ×109), and the number
of model parameters (Param, ×106) for VGG16 on CIFAR10 at various sparsity ratios (S) using
different sparsified algorithms.

TrFLOPs (×1016) TeFLOPs (×108) Param (×106)

density 0.3 0.4 0.5 0.6 0.7 1.0 0.3 0.4 0.5 0.6 0.7 1.0 0.3 0.4 0.5 0.6 0.7 1.0

Dense - - - - - 1.51 - - - - - 6.30 - - - - - 15.25
SET / RigL 0.46 0.61 0.76 0.91 1.06 - 1.92 2.55 3.17 3.80 4.42 - 4.95 6.43 7.89 9.37 10.81 -

MESTr / MESTg 0.51 0.67 0.84 1.00 1.17 - 1.92 2.55 3.17 3.80 4.42 - 4.95 6.43 7.89 9.37 10.81 -
GraNetr / GraNetg 0.68 0.73 0.85 0.97 1.09 - 1.92 2.55 3.17 3.80 4.42 - 4.95 6.43 7.89 9.37 10.81 -

AC/DC 0.89 1.03 1.11 1.19 1.27 - 1.92 2.55 3.17 3.80 4.42 - 4.95 6.43 7.89 9.37 10.81 -

CIFAR-100: For the CIFAR100 dataset, we train ResNet-34 for 160 epochs. The soft memory
bound for MEST is set to 10% of the target density. For example, if the sparse network’s density
is 0.3, then the soft memory bound is 0.03, resulting in an initial model density of 0.33. This soft
memory bound is decayed to 0 using a polynomial strategy. The initial density of GraNet is set
at 0.8. Every 500 training steps, it prunes weights to achieve a density described by the formula:
di − (di − dt)

(
1− t−t0

n∆t

)3
, where di is the initial density, dt is the target density, and n∆t is set to

half of the total training time.

Table 6: Training FLOPs (TrFLOPs, ×1016), Inference FLOPs (InFLOPs, ×109), and the number
of model parameters (Param, ×106) for ResNet34 on CIFAR100 at various sparsity ratios (S) using
different sparsified algorithms.

TrFLOPs (×1016) InFLOPs (×109) Param (×106)

density 0.3 0.4 0.5 0.6 0.7 1.0 0.3 0.4 0.5 0.6 0.7 1.0 0.3 0.4 0.5 0.6 0.7 1.0

dense - - - - - 5.57 - - - - - 2.32 - - - - - 21.33
SET / RigL 1.68 2.24 2.79 3.35 3.90 - 0.67 0.93 1.18 1.40 1.62 - 6.45 8.57 10.70 12.82 14.95 -

MESTr / MESTg 1.85 2.46 3.07 3.68 4.29 - 0.67 0.93 1.18 1.40 1.62 - 6.45 8.57 10.70 12.82 14.95 -
GraNetr / GraNetg 2.51 2.68 3.13 3.63 4.02 - 0.67 0.93 1.18 1.40 1.62 - 6.45 8.57 10.70 12.82 14.95 -

AC/DC 3.51 3.80 4.10 4.39 4.68 - 0.67 0.93 1.18 1.40 1.62 - 6.45 8.57 10.70 12.82 14.95 -

TinyImageNet: For the TinyImageNet dataset, we train EfficientNet-B0 for 100 epochs. The soft
memory bound for MEST is set to 10% of the target density. For example, if the sparse network’s
density is 0.3, then the soft memory bound is 0.03, resulting in an initial model density of 0.33. This
soft memory bound is decayed to 0 using a polynomial strategy. The initial density of GraNet is set
at 0.8. Every 500 training steps, it prunes weights to achieve a density described by the formula:
di − (di − dt)

(
1− t−t0

n∆t

)3
, where di is the initial density, dt is the target density, and n∆t is set to

half of the total training time.

ImageNet: For the ImageNet dataset, we train ResNet50 for 90 epochs. The soft memory bound
for MEST is set to 0.2, and the sparse network’s density is 0.9, then the soft memory bound is
0.92, resulting in an initial model density of 0.92. This soft memory bound is decayed to 0 using a
polynomial strategy. The initial density of GraNet is set at 0.95. Every 2000 training steps, it prunes
weights to achieve a density described by the formula: di − (di − dt)

(
1− t−t0

n∆t

)3
, where di is the

initial density, dt is the target density, and n∆t is set to half of the total training time.

The Resource Consumption and Robustness. Even if it is outside of the scope of this paper, in
the traditional DST style, we provide an overview of the relationship between resource efficiency
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Table 7: Training FLOPs (TrFLOPs, ×1015), Inference FLOPs (InFLOPs, ×109), and the number
of model parameters (Param, ×106) for EfficientNet-B0 on TinyImageNet at various sparsity ratios
(S) using different sparsified algorithms.

TrFLOPs (×1015) InFLOPs (×109) Param (×106)

density 0.3 0.4 0.5 0.6 0.7 1.0 0.3 0.4 0.5 0.6 0.7 1.0 0.3 0.4 0.5 0.6 0.7 1.0

Dense - - - - - 1.98 - - - - - 6.63 - - - - - 4.26
SET/ RigL 0.66 0.85 1.04 1.23 1.42 - 2.21 2.85 3.48 4.12 4.75 - 1.89 2.29 2.68 2.68 3.08 -

MESTr / MESTg 0.72 0.92 1.13 1.34 1.55 - 2.21 2.85 3.48 4.12 4.75 - 1.89 2.29 2.68 2.68 3.08 -
GraNetr / GraNetg 0.89 1.02 1.15 1.32 1.46 - 2.21 2.85 3.48 4.12 4.75 - 1.89 2.29 2.68 2.68 3.08 -

AC/DC 1.19 1.30 1.42 1.53 1.65 - 2.21 2.85 3.48 4.12 4.75 - 1.89 2.29 2.68 2.68 3.08 -

Table 8: Training FLOPs (TrFLOPs, ×1018), Inference FLOPs (InFLOPs, ×109), and the number
of model parameters (Param, ×106) for ResNet50 on ImageNet at various sparsity ratios (S) using
different sparsification algorithms.

TrFLOPs (×1018) InFLOPs (×109) Param (×106) Init density → Final density

Dense 2.28 8.21 25.56 1.0
RigL 2.17 7.80 23.00 0.9 → 0.9

MESTg 2.18 7.80 23.00 0.92 → 0.9
GraNetg 2.20 7.80 23.00 0.95 → 0.9
AC/DC 2.26 7.80 23.00 1.0 → 0.9

and the model’s robustness against common corruption. Figure 9 showcases the computational
cost (i.e. training FLOPs and model sizes) and robustness of dense and dynamic sparse models on
TinyImageNet-C (results for other datasets can be found in the above.

Figure 9: The comparison of
training FLOPs, parameter count
(represented by the area of each
circle), and robustness accuracy
of the dense and dynamic sparse
EfficientNet-B0 on TinyImageNet.
Each point represents the result for
a specific sparsity ratio.

We can find that the dense model, with the highest resource
usage (e.g., FLOPs and parameter count), does not necessar-
ily lead to better robustness. In the end, we also investigate
other training paradigms: iterative dense and sparse training,
represented by AC/DC Peste et al. (2021) algorithm. AC/DC
begins with a dense warm-up, then starts alternating dense and
sparse training, returning accurate sparse-dense model pairs
at the end of the training process. We find that AC/DC also
exhibits decent robustness, as in Figure 9. However, in most
cases, AC/DC tends to require more training FLOPs compared
with DST methods.

It is worth noting that the computational costs in this work are
theoretical and not fully realized gains on current hardware in-
frastructures. This is a common limitation in the literature on
sparse training methods, as most current hardware and soft-
ware systems are optimized for dense matrix operations rather
than sparse ones. However, recent advancements in model
sparsity are increasingly aligning with hardware and software
developments to fully leverage the benefits of sparsity. For ex-
ample, NVIDIA’s A100 GPU supports 2:4 sparsity Zhou et al. (2021), and other innovations are
making strides toward efficient sparse implementations Chen et al. (2019); Ashby et al. (2019). Si-
multaneously, software libraries such as Liu et al. (2021b); Mocanu et al. (2018) are emerging to
enable truly sparse network implementations. These advancements are paving the way for future
deep neural networks to achieve greater efficiency in terms of computation, memory, and energy
use.

A.4 THE ROBUSTNESS ACCURACY FOR DIFFERENT CORRUPTION TYPES AND SERVERITIES

Figure 10, 11, 12, 13 14 and 15 showcase the relative gains7 in robustness at each of these severity
levels. We observe that dynamic sparse models exhibit a more pronounced advantage in robustness
over dense models, particularly under high severity levels of high-frequency corruption.

7Defined as (Accs,l −Accdense)/Accd,l, where Accs,l and Accd,l represent the accuracies of dynamic
sparse and dense models, respectively, under severity level l.
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Figure 10: Compared with the the dense model, the relative robustness gain of different dynamic
sparse models with sparsity 0.5 trained by (a) RigL, (b) MESTr, (c) GraNetr under different severi-
ties of CIFAR10-C.

Figure 11: Compared with the the dense model, the relative robustness gain of different dynamic
sparse models with sparsity 0.5 trained by (a) RigL, (b) MESTg , (c) GraNetg under different sever-
ities of CIFAR10-C.

Figure 12: Compared with the the dense model, the relative robustness gain of different dynamic
sparse models with sparsity 0.5 trained by (a) RigL, (b) MESTr, (c) GraNetr under different severi-
ties of CIFAR100-C.

Figure 13: Compared with the the dense model, the relative robustness gain of different dynamic
sparse models with sparsity 0.5 trained by (a) RigL, (b) MESTg , (c) GraNetg under different sever-
ities of CIFAR100-C.
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Figure 14: Compared with the the dense model, the relative robustness gain of different dynamic
sparse models with sparsity 0.5 trained by (a) RigL, (b) MESTr, (c) GraNetr under different severi-
ties of TinyImageNet-C.

Figure 15: Compared with the the dense model, the relative robustness gain of different dynamic
sparse models with sparsity 0.5 trained by (a) RigL, (b) MESTg , (c) GraNetg under different sever-
ities of TinyImageNet-C.

A.5 ANALYSIS THROUGH THE LENS OF FILTER

Figure 16 and 17 showcases the non-zero weight counts and the sum of weight magnitudes (i.e.,
absolute values) for each kernel in a specific layer of dynamic sparse VGG16 and ResNet34 trained
on CIFAR10 and CIFAR100, respectively.

Table 9: Robustness accuracy (%) on
CIFAR100 dataset with and without
Mixup.

w/ mixup Dense training SET
× 51.68 52.60
✓ 54.75 54.93

Additionally, we investigated the accuracy of test data
subject to high-frequency or low-frequency information
attenuation during dense or dynamic sparse training . In
Figure 18, the results indicate that at the beginning of
training, the superiority of dynamic sparse models in han-
dling high-frequency information removal starts to ap-
pear, becoming more evident as training progresses. Con-
sidering the phenomenon of sparse weight concentration
on the filter after training, it becomes evident that dynamic sparse training dynamically allocates
computational resources to prioritize relevant low-frequency features during the learning process.

A.6 HOW DATA AUGMENTATION INTERACTS WITH DST?

Table 10: Average classification accu-
racy (%) on ImageNet-R dataset. The
bold highlights result that are better than
the dense model.

Dense RigL MESTg GraNetg
37.84 40.04 38.33 38.46

We extend our analysis to explore how data augmentation
(e.g., Mixup Zhang et al. (2018)) interacts with dynamic
sparse training in comparison to dense training. From Ta-
ble 9, we observe: In general, data augmentation helps
improve model generalization by providing increased in-
put variability. For DST, combining data augmentation
with dynamic sparse training can lead to even greater ro-
bustness compared to dense training, suggesting that dynamic sparse training (e.g., SET) interacts
with data augumentation in a complementary way.
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Figure 16: Visualizing non-zero weight count (1st row) and the sum of weight magnitudes (2nd row)
in filters of VGG16 (#layer feature.20, #layer feature.30 and #layer feature.40 with kernel size 3×3)
after training on CIFAR100 using different sparsification algorithms: (b) SET, (c) RigL, (d) MESTr

and (e) GraNetr, compared with (a) dense counterpart. Each point represents the corresponding
value of a filter.

A.7 THE PERFORMANCE OF DST ON OUT-OF-DOMAIN (OOD) TEST DATA

ImageNet-R Hendrycks et al. with 30,000 images of art, cartoons, and other 14 renditions from 200
ImageNet classes, presents a notable domain shift from the original dataset. We report the average
test accuracy on ImageNet-R for dense and DST models trained on the original ImageNet.

ImageNet-v2 Recht et al. is a valuable dataset for evaluating the generalization of models trained on
original ImageNet dataset. ImageNet-v2 contains three test subsets: Top-images, Threshold-0.7, and
Matched-frequency. Each subset comprises ten images per class, selected from a pool of candidates
according to various selection frequencies.

As shown in Table 10 and 11, the results from ImageNet-R and ImageNet-v2 correspond to the
evaluation on domain adaptation and generalization, respectively. The results show that DST models
reliably surpass dense models on ImageNet-R and exhibit superior performance in the majority of
scenarios on ImageNet-v2. This suggests that models trained with DST not only handle common
data corruptions effectively but also excel in the face of significant domain shifts.
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Figure 17: Visualizing non-zero weight count (1st row) and the sum of weight magnitudes (2nd
row) in filters of ResNet34 (#layer2.0.conv2, #layer2.1.conv1 and #layerlayer3.3.conv2 with kernel
size 3× 3) after training on CIFAR100 using different sparsification algorithms: (b) SET, (c) RigL,
(d) MESTr and (e) GraNetr, compared with (a) dense counterpart. Each point represents the corre-
sponding value of a filter.

A.8 GRAD-CAM

Table 11: Average robustness accuracy (%) on
ImageNet-v2 dataset. The bold highlights result
that are better than the dense model.

Dense RigL MESTg GraNetg
Top-images 77.80 77.88 78.33 78.21

Threshold-0.7 72.95 72.81 73.23 73.58
Matched-frequency 64.62 64.23 64.14 64.60

Avg. accuracy 71.79 71.64 71.90 72.13

Grad-CAM (Gradient-weighted Class Activa-
tion Mapping) Selvaraju et al. (2017) gener-
ates a heatmap highlighting important regions
by weighting the feature maps based on the gra-
dient values. It provides practitioners with a vi-
sual indication of the areas on which the net-
work focuses when making predictions. We vi-
sualize and compare the Grad-CAM outputs of
both dense models and dynamic sparse models, as shown in Figure 19. We present different cases,
including clean background ((a) and (b)), and complex background (c). Interestingly, we observe
that the highlighting region of dynamic sparse models is smaller than that of the dense model. In
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Figure 18: The impact of high-frequency (top) and low-frequency attenuation (bottom) on TinyIm-
ageNet during training. Test accuracy for (a) dense model, (b) dynamic sparse model from SET. (c)
The accuracy difference between sparse and dense models, where a positive value indicates that the
sparse models perform better.

Figure 19 (a), the dynamic sparse models focus on the face of the cat for prediction, while the dense
models pay attention to both the face and body of the cat. In Figure 19 (b), the dynamic sparse
models specifically emphasize the wings of the eagle. In contrast, the dense models primarily con-
centrate on a single wing while also capturing irrelevant contexts, leading to larger attention regions.
In the case of a more complex background (In Figure 19 (c)), the dynamic sparse models tend to al-
locate some attention to the surrounding elements. However, the attention regions are still relatively
smaller and primarily focused on the face of the panda, especially in the sparse model sparsified by
SET.

These visualizations provide further support for our hypothesis that dynamic sparse models effec-
tively allocate limited resources to the most crucial features. As a result, dynamic sparse models can
be robust against image common corruptions, making them a promising approach for addressing
real-world challenges.

B IMPACT STATEMENT

In an era dominated by over-parameterized models and the pervasive presence of image corruption,
the design of resource-aware and robust AI models is of increasing importance. Gaining insight
into the robust behavior of dynamic sparse models against image corruption paves the way for em-
bracing these environmentally friendly models in challenging environments. This holds significant
implications across various domains, including medical diagnosis, robotics, autonomous vehicles,
and other AI applications. Furthermore, our insights into the inner workings of sparse models help
us understand the reasoning behind their robust decisions. Overall, we advance our fundamental
understanding of dynamic sparse training and provide future perspectives for scalable, efficient, and
trustworthy AI. We do not anticipate any negative societal impacts resulting from this research.
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Figure 19: Grad-CAM for TinyImageNet-C. The images are corrupted by different corruptions with
clean background (a) and (b), and complex background (c).
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