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ABSTRACT

Federated learning (FL) enables multiple clients to collaboratively train models
without sharing private data, but practical FL is hindered by both data heterogene-
ity and model heterogeneity. Existing Heterogeneous FL (HtFL) methods often
suffer from inadequate representation alignment and limited knowledge transfer,
especially under fine-grained distribution shifts, thus limiting both personalization
and generalization. To remedy this, we propose FedARC, a novel HtFL frame-
work with Adaptive Residual Compensation. FedARC adaptively fuses local and
global representations through a trainable projector and applies dynamic residual
correction to mitigate feature-level distribution mismatches. Moreover, FedARC
incorporates semantic anchor alignment to further reduce inter-client feature di-
vergence, thereby stabilizing knowledge transfer and aggregation. We theoret-
ically prove FedARC converges with a non-convex convergence rate O(1/T ).
Extensive experiments on five public benchmarks demonstrate that FedARC sur-
passes nine state-of-the-art HtFL baselines by up to 2.63% in average accuracy,
while maintaining efficient communication and computation.

1 INTRODUCTION

Federated learning (FL) enables multiple clients to train collaboratively without sharing raw data.
In practice, however, classical algorithms such as FedAvg (McMahan et al., 2016) assume a single
architecture across clients, while real deployments exhibit mixed data distributions, device capabil-
ities, and model designs. Specifically, client data are often non-IID (Lu et al., 2024), devices range
from phones to edge servers with disparate compute/communication budgets (Yi et al., 2022), and
organizations maintain proprietary architectures to meet internal or IP constraints (Shao et al., 2023).
These factors jointly make a “one-size-fits-all” global model brittle (Qi et al., 2023).

Rather than enforcing a single global architecture, heterogeneous federated learning (HtFL) (Tan
et al., 2021; Zhang et al., 2025) embraces architectural diversity and non-IID data, enabling col-
laboration via transferable knowledge, thus is widely regarded as a more realistic and increasingly
mainstream paradigm in FL. Existing HtFL approaches can be broadly grouped into three categories:
(i) Knowledge-distillation (KD)–based methods transfer logits/representations using public or proxy
data or summary statistics (Morafah et al., 2024; Park et al., 2023; Wu et al., 2021; Zhu et al., 2021);
they reduce coupling to a shared architecture but often suffer from limited or biased proxies, added
communication or server-side computation, and potential privacy risks. (ii) Model-split methods
share only a homogeneous part (e.g., a header or an extractor) while keeping heterogeneous parts
local (Yi et al., 2023); fixed partitioning can constrain expressiveness and may leak architectural pri-
ors (Yang et al., 2024). (iii) Mutual-learning methods co-train a large heterogeneous model together
with a small homogeneous proxy per client and aggregate only the proxy (Shen et al., 2020; Weng
et al., 2025); yet capacity mismatch and insufficient calibration leave knowledge transfer suboptimal
and increase compute and communication costs (Yi et al., 2024a). However, a shared failure mode
persists across these categories: batch-level distribution shifts and fine-grained feature misalignment
are often under-addressed, causing misaligned class centers and overlapping clusters that hurt both
generalization and personalization. As illustrated in Fig. 1(a,c), features from conventional HtFL
scatter and drift across clients, inducing domain bias and unstable aggregation.
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(a) Other HtFLs. (b) FedARC. (c) Other HtFLs (t-SNE visualization). (d) FedARC (t-SNE visualization).

Figure 1: Comparison between other HtFL and FedARC.

To address these limitations, we propose FedARC—Federated learning with Adaptive Residual
Compensation—an HtFL framework that fuses local and global representations via a trainable pro-
jector and performs dimension-wise residual compensation to correct distribution shifts within and
across clients. A semantic-anchor alignment module further reduces inter-client divergence and sta-
bilizes aggregation. As illustrated in Fig. 1a,c, conventional HtFL misaligns local semantic centers
(client means), leading to scattered or overlapping features and domain bias that hampers cross-
client transfer. In contrast, FedARC (Fig. 1b,d) explicitly compensates local representation shifts
with residual vectors and anchors each client’s overall feature mean to a global semantic anchor,
yielding compact, well-separated clusters in a shared semantic space while maintaining global con-
sistency. Consequently, FedARC achieves a balanced trade-off between personalization and gener-
alization by preserving local semantics while aligning to global anchors. The fusion mechanism,
combined with residual compensation, adaptively bridges the heterogeneity gap, whereas semantic-
anchor alignment provides a stable cross-client target.

Our main contributions are summarized as follows:

• We introduce a residual compensation for fine-grained fusion and bidirectional knowledge trans-
fer, enabling effective batch-level personalization in the presence of data and model heterogene-
ity. By aligning representations with global semantic anchors, FedARC reduces inter-client fea-
ture divergence and stabilizes aggregation, further enhancing generalization.

• We provide a theoretical analysis showing that FedARC achieves a non-convex convergence rate
of O(1/T ) under standard smoothness and bounded-variance assumptions.

• Extensive experiments on five benchmark datasets under both statistical and model heterogene-
ity settings demonstrate that FedARC outperforms nine state-of-the-art HtFL methods by up to
2.63% in average accuracy, while maintaining communication and computation efficiency.

2 RELATED WORK

Existing HtFL methods can be broadly classified as (i) partially heterogeneous, where clients ex-
tract submodels from a unified template via pruning or reconfiguration (e.g., EMO (Wu et al., 2025),
FCCL+ (Huang et al., 2023), InCo (Chan et al., 2023), FedSA-LoRA (Guo et al., 2024), DepthFL
(Kim et al., 2023)); or (ii) fully heterogeneous, where each client uses a distinct architecture, requir-
ing specialized knowledge fusion strategies, which can be further divided as follows:

Knowledge distillation (KD)-based HtFL. Existing KD strategies for HtFL fall into three cate-
gories: (i) Statistical transfer: Methods such as FD (Jeong et al., 2018), FedProto (Tan et al., 2021),
PLADA (Fang et al., 2024), FedTGP (Zhang et al., 2024b), FedHCD (Feng et al., 2024), and FedSA
(Zhou et al., 2025) exchange only summary statistics or prototypes, reducing bandwidth but still
risking membership inference. (ii) Proxy logit synchronization: Systems such as FedGD (Zhang
et al., 2023), FZSL (Sun et al., 2024), DFRD (Luo et al., 2023), and FedDTG (Gong et al., 2023)
generate synthetic anchors for alignment, but face extra optimization, mode collapse, and privacy
leakage if synthetic data memorize local features. (iii) Synthetic data distillation: Approaches like
Fed-ET (Cho et al., 2022), FSFL (Huang et al., 2022), KRR-KD (Park et al., 2023), and TAKFL
(Morafah et al., 2024) synchronize soft outputs using a proxy dataset, but this incurs high commu-
nication and exposes models to privacy attacks (e.g., PLI (Takahashi et al., 2023)).
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Model Split-based HtFL. These methods split each local model into a feature extractor and a task-
specific header. In FedRep (Collins et al., 2021), FedPAC (Xu et al., 2023), FedAS (Yang et al.,
2024), and FedAlt/FedSim (Pillutla et al., 2022), aggregate homogeneous headers while keeping
heterogeneous extractors. Others, such as FedClassAvg (Jang et al., 2022), LG-FedAvg (Liang et al.,
2020), FedGen (Zhu et al., 2021), FedGH (Yi et al., 2023), and CHFL (Liu et al., 2022), aggregate
homogeneous extractors for consistent representation while keeping headers private. However, par-
tial model sharing may inadvertently reveal architectural priors and constrain task adaptability.

Mutual learning-based HtFL. These methods co-train each client’s full-size heterogeneous model
with a lightweight homogeneous auxiliary; the auxiliary enables server-side aggregation while the
large model preserves local inductive bias (Xu et al., 2024; Zhang et al., 2024a; Louizos et al.,
2024). Representative systems (pFedES (Yi et al., 2025), FedKD (Wu et al., 2021), FedMRL (Yi
et al., 2024b)) verify the idea but roughly double compute/communication. Variants (FedAPEN
(Qin et al., 2023), FedSKD (Weng et al., 2025), pFedAFM (Yi et al., 2024a)) improve aggregation
flexibility yet still transfer low-dimensional or indirect signals, limiting fusion fidelity.

Distinctly, our FedARC framework keeps both data and local heterogeneous models on client, aggre-
gating only a lightweight homogeneous extractor at the server, enabling robust global fusion while
preserving personalization. Crucially, FedARC bridges heterogeneity via fine-grained residual com-
pensation with batch-wise anchor alignment, dynamically aligning global and local representations.

3 PRELIMINARIES

FedAvg (McMahan et al., 2016) is the canonical FL algorithm, where a central server coordinates
N clients. At the beginning of each communication round, the server randomly selects a fraction
ρ of N clients, yielding an active set S with cardinality K = ρ · N . The server broadcasts the
current global model, denoted asF(ω) (F(·) is model structure and ω its parameters). Each selected
client k trains the received model on its local dataset Dk ∼ Pk (Dk obeys distribution Pk, datasets
across clients are generally non-IID). Using gradient descent, the parameters are updated as ωk ←
ω−η∇ℓ (F (xi;ω) , yi), where ℓ(·, ·) is the sample-wise loss for (xi, yi) ∈ Dk. After local training,
each client uploads the updated model parameters ωk to the server. The server refines the global
model by weighted aggregation, ω =

∑
k∈S

nk

n ωk (nk = |Dk| is the number of data samples on
client k, n =

∑N−1
k=0 nk is the number of total data samples on all clients).

FedAvg assumes identical architectures and minimizes the average loss of the global model F(ω),

min
ω∈Rd

N−1∑
k=0

nk

n
Lk

(
F(ω);Dk

)
, (1)

where d is the parameter dimension of ω, and Lk is the average loss of global model F(ω) on Dk.

In this work, all clients tackle the same prediction task, yet each maintains its own distinct local
model with different architecture, Fk(·) with personalized model parameters ωk. Our FedARC
framework aims to minimize the cumulative loss of these personalized models on their local data:

min
ωk∈Rdk

N−1∑
k=0

Lk

(
Fk (ωk) ;Dk

)
, (2)

where the dimensionality dk vary across all clients.

4 THE PROPOSED FEDARC APPROACH

To enable effective knowledge transfer under HtFL, we assign a lightweight global homogeneous
model G(θ) (G(·) is the structure, θ denotes parameters) to all clients.

Homogeneous Feature Extractor Structure. Assigning a homogeneous feature extractor ensures
computational tractability on clients and supports global knowledge consolidation. As intermediate
features capture richer semantics than output logits, we use a compact CNN-based extractor as the
global shared module. Only the extractor’s parameters are exchanged and aggregated at the server,
enabling effective knowledge fusion while keeping other model components local and private.

3
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Figure 2: Workflow of FedARC.

4.1 OVERVIEW

Each communication round t in FedARC is as follows:

1. The server randomly samples K clients from N participants and broadcasts the latest global
homogeneous feature extractor Gex(θex,t−1) to each selected client in St.

2. Each participating client k jointly trains its local heterogeneous extractor Fex
k (ωex,t−1

k )
and the received global homogeneous extractor Gex(θex,t−1) on local dataset (xi, yi) from
Dk. For each batch, both extractors generate their respective feature representations. These
representations are then separately fed into the local header Fhd

k (ωhd,t−1
k ) for the hetero-

geneous branch and the global header Ghd(θhd,t−1) for the homogeneous branch.

3. Once local training concludes, only the updated homogeneous feature extractor Gex(θex,tk )
is uploaded to the server. The server performs a weighted aggregation to update the global
homogeneous feature extractor Gex(θex,t).

These steps repeat until all clients’ heterogeneous local models Fk(ωk) converge. During inference,
only each client’s personalized local heterogeneous model is used. Further details are provided in
Algorithm 1 (Appendix).

Building on Eq.(2), the training objective is reformulated as minimizing the sum of the loss of the
combined model Ck(εk) = Fk(ωk) ◦ G(θ) across all clients:

min
ω0,...,ωN−1,θ

N−1∑
k=0

Lk

(
Ck(ωk ◦ θ);Dk

)
. (3)

4.2 FEATURE REPRESENTATION FUSION

Motivation. A straightforward approach is to feed global and local feature representations into their
respective headers and jointly optimize them by minimizing the sum of their losses. However, this
suffers from two issues: (1) Low-quality representations from the global extractor might exacerbate
misalignment with local features; (2) The absence of feature calibration allows local representation
bias to accumulate over time, hindering effective knowledge transfer and generalization. To address
this, FedARC employs adaptive residual compensation and semantic anchor alignment for fine-
grained alignment and fusion of local and global knowledge at the feature level.

4.3 ADAPTIVE RESIDUAL COMPENSATION

Given a training sample (xi, yi)∈Dk, xi is processed by the heterogeneous extractor Fex
k (ωex,t−1

k )

and the global homogeneous extractor Gex(θex,t−1
k ) to obtain two respective representations,

ZFk
i = Fex

k (xi;ω
ex,t−1
k ), ZG

i = Gex(xi; θ
ex,t−1), (4)

4
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where ZFk
i ∈ Rd1 contains personalized local knowledge specific to the client’s data distribution,

ZG
i ∈ Rd2 contains generalized knowledge beneficial across all clients. Inspired by widely used

knowledge fusion methods (Yi et al., 2024b;a), we concatenate local and global feature representa-
tions and project them via a learnable projector Pk(φ

t−1
k ):

Zi = Pk

(
ZFk

i ◦ ZG
i ;φ

t−1
k

)
, Pk : Rd1+d2 → Rd1 (5)

Due to significant heterogeneity in both data and model architectures, direct feature concatenation
may still leave latent semantic discrepancies. To explicitly mitigate this, we consider client-level
adaptive residual vectors, R̄Fk

i ∈Rd1 and R̄G
i ∈Rd2 , learned during training to adjust each client’s

representation space:
Z̃Fk

i = Z1:d1
i + R̄Fk

i , Z̃G
i = Z1:d2

i + R̄G
i . (6)

The local heterogeneous headers takes the full fused Z1:d1
i ∈ Rd1 , while the homogeneous headers

operates on its prefix subspace Z1:d2
i ∈ Rd2 with d1 > d2. This nested slicing preserves a shared

subspace for global alignment without disjointly splitting features. These residual compensations are
jointly optimized with model parameters, enabling each client to flexibly align fused representations
with their unique local semantic spaces Rd1 ,Rd2 . Each client’s heterogeneous prediction header
Fhd

k (ωhd
k ) and the global homogeneous prediction header Ghd(θhd) output logits in RL (L is the

label dimension):

ŷFk
i = Fhd

k (Z̃Fk
i ;ωhd,t−1

k ), ŷGi = Ghd(Z̃G
i ; θ

hd,t−1). (7)

The prediction losses (cross-entropy (Zhang et al., 2018)) are computed separately for each branch:

ℓFk
i = ℓce(ŷ

Fk
i , yi), ℓGi = ℓce(ŷ

G
i , yi). (8)

4.4 SEMANTIC ANCHOR ALIGNMENT

To mitigate semantic drift and further separate Zi and R̄i, we propose a semantic anchor alignment
that explicitly constrains the learnable projector to produceZi by a client-invariant mean, in contrast
to the client-specific mean encoded in R̄Fk

i .

Concretely, we regularize the means Z̄Fk
i ∈ Rd1 and Z̄G

i ∈ Rd2 by aligning them with a
global consensus mean Z̄g for each feature dimension independently. The global mean Z̄g =(∑N

k=1nk

)−1 ∑N
k=1nk Z̄g

k , ∀Z̄g ∈ Rd1 , is determined during the FL initialization phase. We mea-
sure the similarity between each client’s mean (Z̄Fk

i , Z̄G
i ) and the global anchor (Z̄g,1:d1 ∈ Rd1 ,

Z̄g,1:d2 ∈ Rd2 ) by the mean squared error (MSE) (Tüchler et al., 2002), with hyperparameter λ con-
trolling regularization strength. Empirically, this yields the following objective, updating Eq. (8):

ℓFk
i = ℓce(ŷ

Fk
i , yi) + λ · ℓmse(Z̄Fk

i , Z̄g,1:d1), ℓGi = ℓce(ŷ
G
i , yi) + λ · ℓmse(Z̄G

i , Z̄
g,1:d2). (9)

In the above, the semantic anchor terms require empirical mean estimates. For each client, we
calculate Z̄Fk

i : ˆ̄ZFk
i = 1

ni

∑ni

j=1 Fex
k (xij ;ω

ex
k ) and Z̄G

i : ˆ̄ZG
i = 1

ni

∑ni

j=1 Gex(xij ; θ
ex) over the

entire local dataset. However, SGD only accesses mini-batches in each forward pass, we utilize
a moving average strategy to approximate these statistics, following (Li et al., 2019; Zhang et al.,
2014) we obtain:

ˆ̄ZFk
i = (1− κ) · ˆ̄ZFk,t−1

i + κ · ˆ̄ZFk,t
i , ˆ̄ZG

i = (1− κ) · ˆ̄ZG,t−1
i + κ · ˆ̄ZG,t

i , (10)

where ˆ̄ZFk,t−1
i , ˆ̄ZG,t−1

i are from the previous batch, and ˆ̄ZFk,t
i , ˆ̄ZG,t

i are from the current batch, κ
serves as a momentum coefficient that balances historical and current batch statistics. Since the two
feature extractors are updated locally but may be reset between global rounds, these averages are
recomputed at the start of each communication round and not carried across rounds.

Finally, we compute the total loss by weighting the two branches using coefficients αFk
i and αG

i :

ℓi = αFk
i · ℓ

Fk
i + αG

i · ℓ
G
i . (11)
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By default, both weights are set to αFk
i = αG

i = 1 to ensure equal contribution. The composite
loss ℓi is jointly optimized for the heterogeneous local model, global feature extractor, and projector
using SGD following FedAvg,

ωt
k ← ωt−1

k − ηω∇ℓi, θtk ← θt−1 − ηθ∇ℓi, φt
k ← φt−1

k − ηφ∇ℓi, (12)

where the learning rates ηω, ηθ, ηφ are set identically to ensure convergence stability. This unified
training procedure encourages representations to be simultaneously generalizable and personalized.

5 CONVERGENCE ANALYSIS

We denote notations following (Yi et al., 2025; 2024b). Let t denote the communication round,
and e ∈ {0, 1, ..., E} the iterations of local training within each round. At the start of round t + 1
(iteration tE + 0), client k receives the global homogeneous feature extractor Gex(θex,t) from the
server. The e-th local update is indexed by tE + e, and tE + E indicates the completion of local
training in round t+ 1, after which the client uploads its updated Gex(θex,t+1

k ) for aggregation. We
modify client k’s combined local model as Ck(εk) = (Fk(ωk) ◦ G(θ)|Pk(φk)), where Fk(ωk) is
the local heterogeneous model, G(θ) is the global small homogeneous model, and Pk(φk) is the
learnable projector. The learning rate for each component is η = {ηω, ηθ, ηφ}.
Assumption 1. Lipschitz Smoothness. The gradients of client k’s combined local heterogeneous
model εk are L1–Lipschitz smooth (Tan et al., 2021),∥∥∇Lt1

k

(
εt1k ;x, y

)
−∇Lt2

k

(
εt2k ;x, y

)∥∥ ⩽ L1

∥∥εt1k − εt2k
∥∥ , (13)

∀t1, t2 > 0, k ∈ {0, 1, . . . , N − 1}, (x, y) ∈ Dk.

The above formulation can be re-expressed as:

Lt1
k − Lt2

k ⩽
〈
∇Lt2

k ,
(
εt1k − εt2k

)〉
+

L1

2

∥∥εt1k − εt2k
∥∥2

2
. (14)

Assumption 2. Unbiased Gradient and Bounded Variance. For each client k, the stochastic gra-
dient gtε,k = ∇Lt

k(ε
t
k;Btk) computed over mini-batch Btk is unbiased:

EBt
k
⊆Dk

[
gtε,k

]
= ∇Lt

k

(
εtk
)
, (15)

and the variance of gtε,k is bounded by:

EBt
k
⊆Dk

[∥∥∇Lt
k

(
εtk;Bt

k

)
−∇Lt

k

(
εtk
)∥∥2

2

]
⩽ σ2. (16)

Given the above assumptions, we obtain the following results (proofs provided in the Appendix).
Lemma 1. Under Assumptions 1 and 2, for arbitrary client, the loss during local iterations
{0, 1, ..., E} in the t+ 1-th training round is bounded by:

E
[
L(t+1)E

]
≤LtE+0 +

(
L1η

2

2
− η

) E∑
e=0

∥∇LtE+e∥22 +
L1Eη2σ2

2
. (17)

Theorem 1. Non-convex Convergence Rate of FedARC. Based on the above assumptions and
lemma, for any client and an arbitrary constant ϵ > 0:

1

T

T−1∑
t=0

E−1∑
e=0

∥∇LtE+e∥22 ≤
1
T

∑T−1
t=0

(
LtE+0 − E(L(t+1)E+0)

)
η − L1η2

2

+
L1Eη2σ2

2
+ ηδ2

η − L1η2

2

< ϵ,

s.t. η <
2
(
ϵ− δ2

)
L1 (ϵ+ Eσ2)

(18)

Consequently, under the conditions outlined above, for any client’s local model in FedARC is guar-
anteed to achieve a non-convex convergence rate of ϵ ∼ O(1/T ), provided that the learning rates
for the local heterogeneous model, homogeneous feature extractor, and learnable projector satisfy
the specified constraints.

6
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Table 1: Average test accuracy (%) on four datasets in cross-silo and cross-device settings under
label skew using HtFEimg

8.

Settings Cross-silo (N=10, ρ=100%, β=0.1) Cross-device (N=50, ρ=20%, β=0.1)

Datasets Cifar10 Cifar100 Flowers102 Tiny* Cifar10 Cifar100 Flowers102 Tiny*

FD 87.78±0.14 42.67±0.07 53.31±0.65 25.95±0.07 84.07±0.15 39.62±0.09 47.82±0.54 24.57±0.12
FedProto 84.04±0.19 36.12±0.10 40.12±0.18 19.31±0.12 67.89±0.41 20.82±0.07 35.08±0.19 18.73±0.21
FedTGP 87.64±0.12 40.69±0.19 55.57±0.23 27.43±0.08 80.57±0.24 37.34±0.10 47.57±0.26 25.64±0.17

LG-FedAvg 86.47±0.10 40.16±0.07 46.39±0.39 26.08±0.06 83.07±0.28 38.01±0.08 41.21±0.42 24.56±0.05
FedGen 85.34±0.23 38.68±0.15 45.05±0.16 20.68±0.08 80.89±0.33 36.18±0.12 41.27±0.21 18.86±0.13
FedGH 86.07±0.16 41.61±0.08 47.31±0.15 25.41±0.12 82.91±0.23 37.63±0.09 42.85±0.21 25.18±0.15

pFedES 87.54±0.28 42.37±0.26 51.42±0.26 26.87±0.31 83.64±0.32 38.77±0.35 47.77±0.46 25.33±0.33
FedKD 87.64±0.14 41.91±0.21 50.48±0.25 26.26±0.16 83.16±0.17 38.36±0.11 44.86±0.23 24.93±0.19
FedMRL 87.20±0.26 42.57±0.32 51.65±0.21 27.37±0.28 83.78±0.31 38.93±0.33 45.65±0.24 25.43±0.30

FedARC 89.22±0.07 44.21±0.05 57.67±0.11 29.91±0.14 86.14±0.14 42.25±0.07 50.18±0.15 27.10±0.16

Table 2: The test accuracy (%) on Cifar100 under the cross-device setting with various model hetero-
geneity. ∆: The largest accuracy difference among HtFEimg

2, HtFEimg
3, HtFEimg

5 and HtFEimg
9

Settings Heterogeneous Feature Extractors Heterogeneous Models

HtFEimg
2 HtFEimg

3 HtFEimg
5 HtFEimg

9 ∆ Res34-HtCimg
4 HtFEimg

8-HtCimg
4 HtMimg

10

FD 42.88±0.15 40.92±0.36 39.98±0.13 36.62±0.31 6.26 41.27±0.15 38.76±0.08 39.82±0.05
FedProto 35.63±0.22 29.89±0.48 27.75±0.64 21.91±0.28 13.72 28.62±0.21 21.75±0.71 32.26±0.13
FedTGP 42.14±0.29 37.97±0.57 37.66±0.42 36.84±0.61 5.30 42.21±0.36 39.35±0.17 38.71±0.18

LG-FedAvg 41.22±0.13 40.59±0.42 39.66±0.23 35.39±0.11 5.83 - - -
FedGen 40.05±0.54 38.47±0.29 38.48±0.28 34.67±0.12 5.38 - - -
FedGH 40.11±0.18 39.82±0.21 38.14±0.18 34.38±0.31 5.73 - - -

pFedES 42.16±0.12 40.69±0.57 38.93±0.31 36.47±0.48 5.69 41.07±0.38 38.96±0.27 40.04±0.25
FedKD 42.19±0.09 40.53±0.07 37.47±0.21 35.82±0.25 6.37 37.57±0.45 37.89±0.48 37.63±0.13
FedMRL 42.27±0.09 40.76±0.61 39.42±0.24 36.55±0.42 5.72 41.21±0.42 39.58±0.25 39.73±0.21

FedARC 44.36±0.12 42.72±0.08 41.28±0.06 37.28±0.18 7.08 42.91±0.09 40.39±0.13 39.74±0.10

6 EXPERIMENTAL EVALUATION

Datasets. We evaluate our approach on five widely used image-classification datasets, including
Cifar10/100 (Krizhevsky, 2009), Flowers102 (Nilsback et al., 2008), Tiny-ImageNet (Chrabaszcz
et al., 2017), and DomainNet (Peng et al., 2018).

Statistical/Model heterogeneity. To simulate statistical heterogeneity, we partition client data using
a Dirichlet distribution as in prior works (Li et al., 2021b;a; Zhang et al., 2025). Specifically, for each
class c and client k, qc,k ∼ Dir(β) (with β = 0.1 by default) determines the proportion of samples
from class c assigned to client k. Each client’s local data is split 75% for training and 25% for
testing, and evaluation is performed on the test set. To simulate model heterogeneity among clients,
we follow FedTGP (Zhang et al., 2024b), where each client is equipped with a heterogeneous model
architecture. This setting is denoted as “HtFEimg

X”, with X indicating the number of different
feature extractor architectures in the FL. Each client k is assigned the (k mod X)-th architecture
from the pool. Specifically, for the ”HtFEimg

8” setting in our main experiments, we employ eight
diverse architectures: 4-layer CNN (McMahan et al., 2016), GoogLeNet (Szegedy et al., 2014),
MobileNetV2 (Sandler et al., 2018), and ResNet18/34/50/101/152 (He et al., 2015). To ensure
feature dimension consistency across architectures, we append an average pooling layer after each
feature extractor, resulting in a unified output dimension d1 (set to 512 by default, d2 set to 256).
The homogeneous model used for all clients is a 4-layer CNN.

Implementation details. We benchmark FedARC against 9 best baseline methods, each represent-
ing a prominent approach from the three main branches of fully model-heterogeneous FL, as detailed
in the Related Work section. Knowledge distillation: FD (Jeong et al., 2018), FedProto (Tan et al.,
2021) and FedTGP (Zhang et al., 2024b). Model split: LG-FedAvg (Liang et al., 2020), FedGen
(Zhu et al., 2021) and FedGH (Yi et al., 2023). Mutual learning: pFedES (Yi et al., 2025), FedKD
(Wu et al., 2021) and FedMRL (Yi et al., 2024b). We consider two widely used FL settings, the
cross-silo and the cross-device setting (Kairouz et al., 2019). In the cross-silo setting, we employ
a federation of 10 clients, all of which participate in each communication round (i.e., participation

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: Test accuracy (%) on Cifar100 in the cross-silo
setting using HtFEimg

8 with large local training epochs E.

Table 3: Ablation studies on the key
components of FedARC on Cifar100
in the HtFEimg

8 setting. FRF: feature
representation fusion. ARC: adaptive
residual compensation. SAA: seman-
tic anchor alignment.

FRF ARC SAA Acc(%)
√

40.13
√ √

43.64 (↑ 3.51)√ √
41.39 (↑ 1.26)√ √ √
44.21 (↑ 4.08)

Table 4: Test accuracy (%) on Cifar100 in HtFEimg
8 with different λ and κ (default: λ = 1,

κ = 0.1).

Different λ Different κ

0.1 1 5 10 0.05 0.1 0.5 1

Acc. 42.92 44.21 43.15 42.46 43.65 44.21 41.87 40.46

ratio ρ = 1). In the cross-device setting, we increase the number of clients to 50, with a random
subset of 20% (i.e., ρ = 0.2) selected in each round. The cross-device setting serves as the primary
focus of our study, as it closely mirrors practical federated deployments involving heterogeneous,
resource-constrained edge devices. Unless explicitly specified, we follow previous work (Zhang
et al., 2024b), each selected client performs a single local epoch of training per round, utilizing a
mini-batch size of 10 and a unified learning rate of ηω = ηθ = ηφ = 0.01. All experiments run for
1,000 communication rounds and are repeated three times.

6.1 COMPARISON RESULTS

Average Accuracy. As shown in Table 1, FedARC achieves the best average accuracy across all
benchmarks, outperforming 9 state-of-the-art HtFL baselines by up to 2.63% in both cross-silo and
cross-device settings. While the gap with the competitive baseline (FD) on Tiny*(Tiny-ImageNet)
is small, Appendix Figure 1 visualizes the accuracy curves of FedARC and FD on Cifar10/100,
showing that FedARC not only converges to higher final accuracy, but also matches or exceeds
FD in convergence speed. By aligning auxiliary and local embeddings in a shared subspace and
regularizing class means, FedARC corrects feature misalignment that logit-only distillation (e.g.,
FD, FedKD) overlooks under data and model heterogeneity. Compared with prototype methods
(e.g., FedProto, FedTGP), its anchor-based first-order alignment avoids enforcing a single global
prototype, adapts to client drift, and improves accuracy and convergence. All further experiments
focus on the more challenging Cifar10/100 datasets to rigorously evaluate HtFL performance.

Impact of Model Heterogeneity. As shown in Table 2, FedARC achieves the best performance in
the cross-device settings under both statistical and model heterogeneity. Compared to FD, which
distills from averaged global logits without addressing feature misalignment, FedARC leverages
projection-based fusion and residual compensation to better align semantics across clients. FedTGP
improves separability via prototypes, but its fixed anchors adapt poorly as heterogeneity increases.
FedGH is efficient but the backbone–head decoupling hurts generalization. The best mutual learn-
ing baselines (e.g., FedMRL, pFedES) align predictions but not structure, risking representation
collapse. In contrast, FedARC explicitly aligns heterogeneous representations, enabling more stable
and transferable learning under both data and model heterogeneity.

Impact of Local Training Epochs. Increasing the number of client-side local epochs (E) can re-
duce the number of communication rounds in FL. As shown in Figure 3, mutual learning methods
(e.g., pFedES and FedKD) degrade as E grows. We attribute this to their reliance on an auxiliary
model: longer local training amplifies client-specific bias in the auxiliary branch, which then prop-
agates during aggregation. In contrast, FedMRL and FedARC mitigate this by fusing features from
the auxiliary and local models. Moreover, FedARC leverages residual compensation and anchor
alignment to regularize client features, yielding the highest accuracy across all E.

8
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Table 5: Communication and computation costs on Ci-
far100 using HtFEimg

8. MB (megabytes), s (seconds).

Items Comm. (MB) Computation (s)

Up. Down. Client Server

FD 0.52 0.89 6.54 0.04
FedProto 3.17 5.01 6.68 0.05
FedTGP 3.17 5.01 6.61 7.91

LG-FedAvg 5.81 5.81 6.22 0.05
FedGen 5.81 30.22 5.79 3.02
FedGH 3.17 4.81 9.75 0.41

pFedES 39.87 39.87 17.63 0.07
FedKD 43.24 43.24 8.14 0.08
FedMRL 50.75 50.75 8.27 0.08

FedARC 39.87 39.87 7.83 0.08

Figure 4: Test accuracy (%) on Cifar100 in
the Dirichlet setting using HtFEimg

8 with
varying feature dimensions d1.

Figure 5: Test accuracy (%) on DomainNet under the feature shift scenario using HtFEimg
5.

Ablation and Hyperparameter Analysis. Table 3 shows ablation results on the key modules of
FedARC. ARC on the top of FRF brings a significant accuracy gain (+3.51%), while SAA further
improves performance (+1.26%). Combining all components achieves the best result (44.21%),
highlighting complementary roles of ARC and SAA. Table 4 analyzes hyperparameter sensitivity
under cross-silo setting. The optimal accuracy is reached with λ = 1 and κ = 0.1; either too large
or too small values degrade performance, demonstrating that FedARC is robust across broad hyper-
parameter range and consistently outperforms other HtFL methods even in less optimal settings.

Communication and Computation Costs. We measure communication overhead as the total up-
load and download bytes per round using the float32 data type in PyTorch, and computation as
the average GPU time for each client and server on idle GPUs. From Table 5, we observe: (1)
Mutual learning methods, despite transmitting smaller models, still incur high communication, and
SVD in FedKD does not bring notable savings. (2) KD-based methods are communication-efficient
but limited by the lower information capacity of prototypes/logits, resulting in lower accuracy. (3)
FedGen and FedTGP involve extra server-side training and multiple rounds, leading to higher com-
putational power consumption on the server than other HtFLs. Overall, FedARC offers the best
trade-off—highest accuracy with no higher communication than other mutual learning methods.

Impact of Feature Dimensions. Figure 4 shows that accuracy generally improves as the feature
dimension d1 increases from 64 to 256. Partial parameter–sharing methods (LG-FedAvg, FedGen)
deviate from this trend. Most methods peak at d1 = 256, whereas FedMRL and FedGH continue
to rise at d1 = 1024, while others (e.g., FD, FedProto) plateau or decline, suggesting that exces-
sively large feature spaces can complicate optimization or invite overfitting—especially for standard
aggregation or KD-based methods. Notably, FedARC remains best across all d1.

Performance in the Feature Shift Setting. From Figure 5, FedARC delivers the superior results,
surpassing FD and LG-FedAvg. Prototype-sharing methods degrade notably under cross-domain
features, while mutual learning baselines cluster in a similar mid-range. FedProto shows a signifi-
cant performance gap, as large cross-domain style gaps, feature means diverge, making the global
prototypes biased and prone to drift without explicit alignment.

7 CONCLUSION

This paper proposed a novel HtFL approach, FedARC, based on sharing homogeneous feature ex-
tractors with efficient privacy preservation, and communication and computational cost savings. It
enables each client to alternatively train a homogeneous feature extractor and heterogeneous lo-
cal model to exchange global and local knowledge. Aggregating the homogeneous local feature
extractors from clients fuses knowledge across heterogeneous clients. Theoretical analysis and ex-
periments demonstrate its effectiveness and efficiency in both communication and computation.

9
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