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Abstract

Nature evolves creatures with a high complexity of morphological and behavioral
intelligence, meanwhile computational methods lag in approaching that diversity
and efficacy. Co-optimization of artificial creatures’ morphology and control in
silico shows promise for applications in physical soft robotics and virtual character
creation; such approaches, however, require developing new learning algorithms
that can reason about function atop pure structure. In this paper, we present Diffuse-
Bot, a physics-augmented diffusion model that generates soft robot morphologies
capable of excelling in a wide spectrum of tasks. DiffuseBot bridges the gap
between virtually generated content and physical utility by (i) augmenting the
diffusion process with a physical dynamical simulation which provides a certificate
of performance, and ii) introducing a co-design procedure that jointly optimizes
physical design and control by leveraging information about physical sensitivities
from differentiable simulation. We showcase a range of simulated and fabricated
robots along with their capabilities.

1 Introduction

Designing dynamical virtual creatures or real-world cyberphysical systems requires reasoning about
complex trade-offs in system geometry, components, and behavior. But, what if designing such sys-
tems could be made simpler, or even automated wholesale from high-level functional specifications?
Freed to focus on higher-level tasks, engineers could explore, prototype, and iterate more quickly,
focusing more on understanding the problem, and find novel, more performant designs. We present
DiffuseBot , a first step toward efficient automatic robotic and virtual creature content creation, as
an attempt at closing the stubborn gap between the wide diversity and capability of Nature vis-a-vis
evolution, and the reiterative quality of modern soft robotics.

Specifically, we leverage diffusion-based algorithms as a means of efficiently and generatively
co-designing soft robot morphology and control for target tasks. Compared with with previous ap-
proaches, DiffuseBot ’s learning-based approach maintains evolutionary algorithms’ ability to search
over diverse forms while exploiting the efficient nature of gradient-based optimization. DiffuseBot is
made possible by the revolutionary progress of AI-driven content generation, which is now able to
synthesize convincing media such as images, audio, and animations, conditioned on human input.
However, other than raw statistical modeling, these methods are typically task- and physics-oblivious,
and tend to provide no fundamental reasoning about the performance of generated outputs. We
provide the first method for bridging the gap between diffusion processes and the morphological
design of cyberphysical systems, guided by physical simulation, enabling the computational creative
design of virtual and physical creatures.

⇤This work was supported by the NSF EFRI Program (Grant No. 1830901), DSO grant DSOCO2107,
DARPA Fellowship Grant HR00112110007, and MIT-IBM Watson AI Lab. † indicates equal advising.
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Figure 1: DiffuseBot aims to augment diffusion models with physical utility and designs for high-level functional
specifications including robot geometry, material stiffness, and actuator placement.

While diffusion methods can robustly sample objects with coherent spatial structure from raw noise
in a step-by-step fashion, several roadblocks preventing existing generative algorithms from being
directly applied to physical soft robot co-design. First, while existing diffusion methods can generate
2D or 3D shapes, useful for, say, sampling robot geometry, they do not consider physics, nor are
they directly aligned with the robotic task performance. As an alternative approach, one might
consider learning a diffusion model supervised directly on a dataset of highly-performant robot
designs mapped to their task performance. This leads us to the second roadblock, that is, that no such
dataset exists, and, more crucially, that curating such a dataset would require a prohibitive amount of
human effort and would fail to transfer to novel tasks outside that dataset.

To tackle these challenges, we propose using physical simulation to guide the generative process of
pretrained large-scale 3D diffusion models. Diffusion models pretrained for 3D shapes provide an
expressive base distribution that can effectively propose reasonable candidate geometries for soft
robots. Next, we develop an automatic procedure to convert raw 3D geometry to a representation
compatible with soft body simulation, i.e. one that parameterizes actuator placement and specifies
material stiffness. Finally, in order to sample robots in a physics-aware and performance-driven
manner, we apply two methods that leverage physically based simulation. First, we optimize the
embeddings that condition the diffusion model, skewing the sampling distribution toward better-
performing robots as evaluated by our simulator. Second, we reformulate the sampling process that
incorporates co-optimization over structure and control. We showcase the proposed approach of
DiffuseBot by demonstrating automatically synthesized, novel robot designs for a wide spectrum of
tasks, including balancing, landing, crawling, hurdling, gripping, and moving objects, and demonstrate
its superiority to comparable approaches. We further demonstrate DiffuseBot ’s amenability to
incorporating human semantic input as part of the robot generation process. Finally, we demonstrate
the physical realizability of the robots generated by DiffuseBot with a proof-of-concept 3D printed
real-world robot, introducing the possibility of AI-powered end-to-end CAD-CAM pipelines.

In summary, we contribute:
• A new framework that augments the diffusion-based synthesis with physical dynamical simulation

in order to generatively co-design task-driven soft robots in morphology and control.
• Methods for driving robot generation in a task-driven way toward improved physical utility by

optimizing input embeddings and incorporating differentiable physics into the diffusion process.
• Extensive experiments in simulation to verify the effectiveness of DiffuseBot, extensions to text-

conditioned functional robot design, and a proof-of-concept physical robot as a real-world result.

2 Method

In this section, we first formulate the problem (Section 2.1) and then describe the proposed Diffuse-
Bot framework, which consists of diffusion-based 3D shape generation (Section 2.2), a differentiable
procedure that converts samples from the diffusion models into soft robots (Section 2.3), a technique
to optimize embeddings conditioned by the diffusion model for improved physical utility (Section 2.4),
and a reformulation of diffusion process into co-design optimization (Section 2.4).

2.1 Problem Formulation: Soft Robot Co-design

Soft robot co-design refers to a joint optimization of the morphology and control of soft robots. The
morphology commonly involves robot geometry, body stiffness, and actuator placement. Control is
the signal to the actuators prescribed by a given robot morphology. It can be formally defined as,
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Figure 2: The DiffuseBot framework consists of three modules: (i) robotizing, which converts diffusion samples
into physically simulatable soft robot designs (ii) embedding optimization, which iteratively generate new robots
to be evaluated for training the conditional embedding (iii) diffusion as co-design, which guides the sampling
process with co-design gradients from differentiable simulation. Arrow (A): evaluation of robots to guide data
distribution. (B): differentiable physics as feedback.

min
 ,�

L( ,�) = min
 ,�

L({uh(sh;�, ), sh}h2[1,H]), where sh+1 = f(sh,uh) (1)

where  is robot morphology that includes geometry  geo, stiffness  st, and actuator placement  act;
uh is actuation with the controller’s parameters � and dependency on the robot morphology  , sh
is the simulator state, f is the environmental dynamics (namely the continuum mechanics of soft
robots), and H is robot time horizon (not to be confused with the later-on mentioned diffusion time).
Co-design poses challenges in optimization including complex interdependencies between body
and control variables, ambiguity between competing morphology modifications, trade-offs between
flexibility and efficacy in design representations, etc. [61]. In this work, we aim at leveraging the
generative power of diffusion models in searching for optimal robot designs with (1) the potential to
synthesize highly-diverse robots and (2) inherent structural biases in the pre-trained 3D generative
models learned from large-scale 3D datasets to achieve efficient optimization.

2.2 3D Shape Generation with Diffusion-based Models

Diffusion-based generative models [24, 52] aim to model a data distribution by augment-
ing it with auxiliary variables {xt}Tt=1 defining a Gaussian diffusion process p(x0) =R
p(xT )

Q
T

t=1 p(xt�1|xt)dx1:T with the transition kernel in the forward process q(xt|xt�1) =
N (xt;

p
1� �txt�1,�tI) for some 0 < �t < 1. For sufficiently large T , we have p(xT ) ⇡ N (0, I).

This formulation enables an analytical marginal at any diffusion time xt =
p
↵̄tx0+

p
1� ↵̄t✏ based

on clean data x0, where ✏ ⇠ N (0, I) and ↵̄t =
Q

t

i=1 1 � �i. The goal of the diffusion model (or
more precisely the denoiser ✏✓) is to learn the reverse diffusion process p(xt�1|xt) with the loss,

min
✓

Et⇠[1,T ],p(x0),N (✏;0,I)[||✏� ✏✓(xt(x0, ✏, t), t)||2] (2)

Intuitively, ✏✓ learns a one-step denoising process that can be used iteratively during sampling to
convert random noise p(xT ) gradually into realistic data p(x0). To achieve controllable generation
with conditioning c, the denoising process can be slightly altered via classifier-free guidance [25, 12],

✏̂✓,classifier-free := ✏✓(xt, t,?) + s · (✏✓(xt, t, c)� ✏✓(xt, t,?)) (3)

where s is the guidance scale, ? is a null vector that represents non-conditioning.

2.3 Robotizing 3D Shapes from Diffusion Samples

We adopt Point-E [39] as a pre-trained diffusion model that is capable of generating diverse and
complex 3D shapes, providing a good prior of soft robot geometries. However, the samples from the
diffusion model xt are in the form of surface point cloud and are not readily usable as robots to be
evaluated in the physics-based simulation. Here, we describe how to robotize the diffusion samples
xt 7!  and its gradient computation of the objective dL

dxt

= @L
@ geo

@ geo
@xt

+ @L
@ st

@ st
@xt

+ @L
@ act

@ act
@xt

.
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Algorithm 1 Training: Embedding Optimization

Initialize: D  ;, c ?
while within maximal number of epochs do

Generate data with the diffusion model: x0 ⇠ p✓(x0|c).
Evaluate samples with physics-based simulation: l(x0) = L( (x0),�).
Aggregate and update datasets: D  Filter(D [ {x0, l}).
Optimize the embedding c on D using the objective (5).

end while

Solid Geometry. We use a Material Point Method (MPM)-based simulation [61], which takes solid
geometries as inputs. This poses two obstacles: (1) conversion from surface point clouds into solid
geometries, and (2) the unstructuredness of data in the intermediate samples xt, t 6= 0. The second
issue arises from the fact that the diffusion process at intermediate steps may produce 3D points that
do not form a tight surface. First, we leverage the predicted clean sample at each diffusion time t,

x̂0 =
xt �

p
1� ↵̄t · ✏✓(xt, t)p

↵̄t

(4)

This approach is used in denoising diffusion implicit model (DDIM) [53] to approximate the unknown
clean sample x0 in the reverse process p(xt�1|xt, x̂0). Here, we use it to construct a better-structured
data for simulation. Hence, we break down the robotizing process into xt 7! x̂0 7!  with gradient
components as @ ·

@x̂0

@x̂0
@xt

, where @x̂0
@xt

can be trivially derived from (4). To convert the predicted surface
points x̂0 into solid geometry, we first reconstruct a surface mesh from x̂0, and then evenly sample
a solid point cloud  geo within its interior. For mesh reconstruction, we modify the optimization
approach from Shape As Points [40], which provides a differentiable Poisson surface reconstruction
that maps a control point set Vctrl to a reconstructed surface mesh with vertices Vmesh. We calculate
a modified Chamfer Distance loss indicating similarity between Vmesh and x̂0:

Lrecon =
�mesh

|Vmesh|
X

v2Vmesh

d(v, x̂0) +
�tagret

|x̂0|
X

v2x̂0

w(v)d(v,Vmesh),

in which d(·, ·) denotes minimal Euclidean distance between a point and a point set, and w(v)
denotes a soft interior mask, with w(v) = 1 for v outside the mesh, and w(v) = 0.1 for v inside.
The introduced mask term w(v) aims to lower the influence of noisy points inside the mesh, which
is caused by imperfect prediction of x̂0 from noisy intermediate diffusion samples. The weight
parameters are set to �mesh = 1 and �target = 10. We back-propagate @Lrecon

@Vmesh
to @Lrecon

@Vctrl
through the

differentiable Poisson solver, and then apply an Adam optimizer on Vctrl to optimize the loss Lrecon.
After mesh reconstruction, the solid geometry  geo represented by a solid interior point cloud is
then sampled evenly within the mesh, with sufficient density to support the MPM-based simulation.
Finally, to integrate the solidification process into diffusion samplers, we still need its gradient @ geo

x̂0
.

We adopt Gaussian kernels on point-wise Euclidean distances as gradients between two point clouds:
@u

@v
=

exp(�↵ku� vk2)P
v02x̂0

exp(�↵ku� v0k2) ,u 2  geo,v 2 x̂0.

Intuitively, under such Gaussian kernels gradients, each solid point is linearly controlled by predicted
surface points near it. In practice, this backward scheme works well for kernel parameter ↵ = 20.

Actuators and Stiffness. A solid geometry does not make a robot; in order for the robot to behave,
its dynamics must be defined. After sampling a solid geometry, we thus need to define material
properties and actuator placement. Specifically, we embed actuators in the robot body in the form
of muscle fibers that can contract or expand to create deformation; further, we define a stiffness
parameterization in order to determine the relationship between deformation and restorative elastic
force. We adopt constant stiffness for simplicity since it has been shown to trade off with actuation
strength [61]; thus we have  st(x̂0) = const and @ st

@x̂0
= 0. Then, we propose to construct actuators

based on the robot solid geometry  act( geo(x̂0)) via clustering; namely, we perform k-means with
pre-defined number of clusters on the coordinates of 3D points from the solid geometry  geo. The
gradient then becomes @ act

@ geo

@ geo
@x̂0

@x̂0
@xt

, where @ act
@ geo

⇡ 0 as empirically we found the clustering is
quite stable in terms of label assignment, i.e., with � geo being small, � act ! 0. Overall, we keep
only the gradient for the robot geometry as empirically it suffices.
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Algorithm 2 Sampling: Diffusion As Co-design

Initialize: initial sample xT ⇠ N (0, I)
while within maximal number of diffusion steps t � 0 do

Perform regular per-step diffusion update: xt ( xt+1.
if perform co-design then

while within K steps do
Run update in (6) and (7) to overwrite xt.

end while
end if

end while

2.4 Physics Augmented Diffusion Model
Embedding Optimization. To best leverage the diversity of the generation from a large-scale
pre-trained diffusion models, we propose to (1) actively generate new data from model and maintain
them in a buffer, (2) use physics-based simulation as a certificate of performance, (3) optimize
the embeddings conditioned by the diffusion model under a skewed data distribution to improve
robotic performance in simulation. Curating a training dataset on its own alleviates the burden of
manual effort to propose performant robot designs. Optimizing the conditional embeddings instead
of finetuning the diffusion model eliminates the risk of deteriorating the overall generation and saves
the cost of storing model weights for each new task (especially with large models). We follow,

min
c

Et⇠[1,T ],p✓(x0|c),N (✏;0,I)[||✏� ✏✓(xt(x0, ✏, t), t, c)||2] (5)

Note the three major distinctions from (2): (i) the optimization variable is the embedding c not ✓ (ii)
the denoiser is conditioned on the embeddings ✏✓(. . . , c) and (iii) the data distribution is based on the
diffusion model p✓ not the inaccessible real data distribution p and is conditioned on the embeddings
c. This adopts an online learning scheme as the sampling distribution is dependent on the changing
c. The procedure is briefly summarized in Algorithm 1, where Filter is an operation to drop the
oldest data when exceeding the buffer limit. In addition, during this stage, we use fixed prescribed
controllers since we found empirically that a randomly initialized controller may not be sufficiently
informative to drive the convergence toward reasonably good solutions; also, enabling the controller
to be trainable makes the optimization prohibitively slow and extremely unstable, potentially due
to the difficulty of the controller required to be universal to a diverse set of robot designs. After the
embedding optimization, we perform conditional generation that synthesizes samples corresponding
to robot designs with improved physical utility via classifier-free guidance as in (3).

Diffusion as Co-design. While the optimized embedding already allows us to generate performant
robots for some target tasks, we further improve the performance of individual samples by reformulat-
ing the diffusion sampling process into a co-design optimization. As described in Section 2.3, we can
convert the intermediate sample at any diffusion time xt to a robot design  , rendering an evolving
robot design throughout the diffusion process. However, regular diffusion update [24] much less
resembles any gradient-based optimization techniques, which are shown to be effective in soft robot
design and control with differentiable simulation [26, 2]. Fortunately, there is a synergy between
diffusion models and energy-based models [54, 15, 14], which allows a more gradient-descent-like
update with Markov Chain Monte Carlo (MCMC) sampling [14]. Incorporating the soft robot
co-design optimization with differentiable physics [61] into the diffusion sampling process, we have

Design Optim.: x(k)
t

= x(k�1)
t

+
�
2

2

⇣
✏✓(x

(k�1)
t

, t)� r
x(k�1)
t

L( (x(k�1)
t

),�k�1
t

)
⌘
+ �

2
✏ (6)

Control Optim.: �(k)
t

= �
(k�1)
t

+ �r
�
(k�1)
t

L( (x(k�1)
t

),�k�1
t

) (7)

where ✏ ⇠ N (0, I), x(0)
t

= x(K)
t�1,  is the ratio between two types of design gradients, K is the

number of MCMC sampling steps at the current diffusion time, � is the weight for trading off design
and control optimization, and �

(0)
t

can be either inherited from the previous diffusion time �
(K)
t�1 or

reset to the initialization �
(0)
T

. We highlight the high resemblance to gradient-based co-optimization
with xt as the design variable and �t as the control variable. This procedure is performed once every
M diffusion steps (Algorithm 2), where M is a hyperparameter that trade-offs "guidance" strength
from physical utility and sampling efficiency. Intuitively, the entire diffusion-as-co-design process is
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Balancing Landing Crawling Hurdling Moving A BoxGripping

Figure 3: We consider passive dynamics tasks (balancing, landing), locomotion tasks (crawling, hurdling), and
manipulation tasks (gripping, moving a box).

Table 1: Improved physical utility by augmenting physical simulation with diffusion models.
Embed.
Optim.

Diffusion as
Co-design

Passive Dynamics Locomotion Manipulation
Balancing Landing Crawling Hurdling Gripping Moving a Box

0.081.164 0.832.217 0.011.012 0.014.020 0.014.008 0.019.020

X 0.556.127 0.955.032 0.048.007 0.019.014 0.025.006 0.040.018

X X 0.653.107 0.964.029 0.081.018 0.035.030 0.027.004 0.044.021

guided by three types of gradients: (i) ✏✓(x
(k�1)
t

, ·) provides a direction for the design toward feasible
3D shapes based on the knowledge of pre-training with large-scale datasets (and toward enhanced
physical utility with the optimized embeddings via classifier-free guidance using ✏̂✓(x

(k�1)
t

, ·, c)),
(ii)rxt

L( (xt), ·) provides a direction for the design toward improving co-design objective L via
differentiable simulation, and (iii)r�t

L(·,�t) provides a direction for the controller toward a better
adaption to the current design xt that allows more accurate evaluation of the robot performance.

3 Experiments
3.1 Task Setup
We cover three types of robotics tasks: passive dynamics, locomotion, and manipulation (Figure 3).
• Passive Dynamics tasks include balancing and landing. Balancing initializes the robot on a stick-

like platform with small contact area with an upward velocity that introduces instability; the robot’s
goal is to passively balance itself after dropping on the platform. Landing applies an initial force to
the robot toward a target; the robot’s goal is to passively land as close to the target as possible.

• Locomotion tasks include crawling and hurdling. Crawling sets the robot at a rest state on the
ground; the robot must actuate its body to move as far away as possible from the starting position.
Hurdling places an obstacle in front of the robot; the robot must jump over the obstacle.

• Manipulation tasks include gripping and moving objects. Gripping places an object underneath the
robot; the goal of the robot is to vertically lift the object. Box Moving places a box on the right end
of the robot; the robot must move the box to the left.

Please refer to the appendix Section D for more detailed task descriptions and performance metrics.

3.2 Toward Physical Utility In Diffusion Models
Physics-augmented diffusion. In Table 1, we examine the effectiveness of embedding optimization
and diffusion as co-design for improving physical utility. For each entry, we draw 100 samples
with preset random seeds to provide valid sample-level comparison (i.e., setting the step size of
co-design optimization to zero in the third row will produce almost identical samples as the second
row). We report the average performance with standard deviation in the superscript. First, we
observe increasing performance across all tasks while incorporating the two proposed techniques,
demonstrating the efficacy of DiffuseBot. Besides, the sample-level performance does not always
monotonically improve, possibly due to the stochasticity within the diffusion process and the low
quality of gradient from differentiable simulation in some scenarios. For example, in gripping, when
the robot fails to pick up the object in the first place, the gradient may be informative and fails to bring
proper guidance toward better task performance; similarly in moving a box. In addition, we found it
necessary to include control optimization during the diffusion sampling process, since, at diffusion
steps further from zero, the predicted clean sample x̂0 (derived from the intermediate sample xt) may
differ significantly from the clean sample x0, leaving the prescribed controller largely unaligned.

Comparison with baselines. In Table 2, we compare with extensive baselines of soft robot design
representation: particle-based method has each particle possessing its own distinct parameterization
of design (geometry, stiffness, actuator); similarly, voxel-based method specifies design in voxel
level; implicit function [37] uses use a shared multi-layer perceptron to map coordinates to design;
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Table 2: Comparison with baselines.

Methods Passive Dynamics Locomotion Manipulation
Balancing Landing Crawling Hurdling Gripping Moving a Box

Particle-based 0.040.000 0.863.005 0.019.001 0.006.001 -0.010.001 0.043.027

Voxel-based 0.040.000 0.853.002 0.024.000 0.027.000 -0.009.000 0.025.022

Implicit Function [37] 0.106.147 0.893.033 0.043.024 0.044.063 0.006.012 0.033.030

Diff-CPPN [18] 0.091.088 0.577.425 0.055.023 0.019.029 0.007.008 0.022.017

DiffAqua [35] 0.014.023 0.293.459 0.027.015 0.022.011 0.010.001 0.007.008

DiffuseBot 0.706.078 0.965.026 0.092.016 0.031.011 0.026.002 0.047.019
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Figure 4: Examples of DiffuseBot evolving robots to solve different tasks.

DiffCPPN [18] uses a graphical model composed of a set of activation function that takes in coor-
dinates and outputs design specification; DiffAqua [35] computes the Wasserstein barycenter of a
set of aquatic creatures’ meshes and we adapt to use more reasonable primitives that include bunny,
car, cat, cow, avocado, dog, horse, and sofa. These baselines are commonly used in gradient-based
soft robot co-design [26, 56, 61]. For each baseline method, we run the co-optimization routine
for the same number of steps as in the diffusion-as-co-design stage in DiffuseBot. To avoid being
trapped in the local optimum, we run each baseline with 20 different random initializations and
choose the best one. Since DiffuseBot is a generative method, we draw 20 samples and report the
best; this is sensible an applications-driven perspective since we only need to retrieve one performant
robot, within a reasonable sample budget. We observe that our method outperforms all baselines.
DiffuseBot leverages the knowledge of large-scale pre-trained models that capture the “common
sense” of geometry, providing a more well-structured yet flexible prior for soft robot design.

Soft robots bred by DiffuseBot. In Figure 5, we demonstrate the generated soft robots that excel
in locomotion and manipulation tasks. We highlight the flexibility of DiffuseBot to generate highly
diverse soft robot designs that accommodate various purposes in different robotics tasks. Furthermore,
in Figure 4, we show how robots evolve from a feasible yet non-necessarily functional design to
an improved one that intuitively matches the task objective. By manually inspecting the evolving
designs, we found that the role of the embedding optimization is to drive the diverse generations
toward a converged, smaller set with elements having higher chance to succeed the task; on the other
hand, the role of diffusion as co-design brings relatively minor tweaks along with alignment between
the control and design. Due to space limit, we refer the reader to our project page for more results.
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1st Frame 30th Frame 60th Frame 80th Frame 100th Frame

Figure 5: Examples of robots bred by DiffuseBot to achieve the desired tasks.
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Performance

MT 0.016.014

FT 0.031.024

Ours 0.048.007

Table 3: Ablation on em-
bedding optimization. MT
means manually-designed
text. FT means finetuning
models. Figure 6: Varying starting point and strength of diffusion as co-design.
3.3 Ablation Analysis
In this section, we conduct a series of ablation studies to provide a deeper understanding of the
proposed method. For simplicity, all experiments in this section are done with the crawling task.

Embedding optimization. In Table 3, we compare the optimization of the embedding conditioned by
the diffusion models with other alternatives. The pre-trained diffusion model [39] that DiffuseBot is
built upon uses CLIP embeddings [43], which allows for textual inputs. Hence, a naive approach is
to manually design text for the conditional embedding of the diffusion model. The result reported
in Table 3 uses “a legged animal or object that can crawl or run fast”. We investigated the use of
text prompts; in our experience, text was difficult to optimize for functional robot design purposes.
This is expected since most existing diffusion models perform content generation only in terms of
appearance instead of physical utility, which further strengthens the purpose of this work. In addition,
with exactly the same training objective as in (5), we can instead finetune the diffusion model itself.
However, this does not yield better performance, as shown in the second entry in Table 3. Empirically,
we found there is a higher chance of the generated samples being non-well-structured with fractured
parts. This suggests that finetuning for physical utility may deteriorate the modeling of sensible 3D
shapes and lead to more unstable generations.

Diffusion as co-design. Recall that the co-design optimization can be seamlessly incorporated into
any diffusion step. In Figure 6, we examine how the strength of the injected co-design optimization
affects the task performance in terms of where to apply throughout the diffusion sampling process
and how many times to apply. In the left figure of Figure 6, we sweep through the maximal diffusion
time of applying diffusion as co-design, i.e., for the data point at t = 400, we only perform co-design
from t = 400 to t = 0. We found that there is a sweet spot of when to start applying co-design
(at t ⇡ 200). This is because the intermediate samples at larger diffusion time xt, t � 0 are
extremely under-developed, lacking sufficient connection to the final clean sample x0, hence failing
to provide informative guidance by examining its physical utility. Furthermore, we compare against
post-diffusion co-design optimization, i.e., run co-design based on the final output of the diffusion
(0.064 vs ours 0.081). We allow the same computational budget by running the same number of
times of differentiable simulation as in DiffuseBot. Our method performs slightly better, potentially
due to the flexibility to alter the still-developing diffusion samples. Also note that while our method is
interleaved into diffusion process, it is still compatible with any post-hoc computation for finetuning.

3.4 Flexibility To Incorporate Human Feedback
Crawler + Human Feedback 

“A Unicorn”
Crawler From DiffuseBot

Figure 7: Incorporating human textual feedback.

Beyond the generative power, diffusion models
also provide the flexibility to composite different
data distributions. This is especially useful for
computational design since it empowers to eas-
ily incorporate external knowledge, e.g. from
human. We follow the compositionality tech-
niques introduced in [34, 14], which can be di-
rectly integrated into our diffusion as co-design
framework. In Figure 7, we demonstrate incorporating human feedback in textual form as “a unicorn”
into a crawling robot generated by DiffuseBot. We can see the emergence of the horn-like body part.

3.5 From Virtual Generation To Physical Robot
We further fabricate a physical robot for the gripping task as a proof-of-concept to demonstrate the
possibility of real-world extension. We use a 3D Carbon printer to reconstruct the exact geometry
of a generated design and fill the robot body with a Voronoi lattice structure to achieve softness.
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For actuators, we employ tendon transmission to realize the contraction force utilized in the soft
robot gripper. In our project page, we demonstrate the robots generated by DiffuseBot are capable
of picking up an object. Note that physical robot fabrication and real-world transfer have countless
non-trivial challenges including stiffness and actuator design, sim-to-real gap, etc. Hence, this
experiment is only meant to demonstrate the potential instead of a general, robust pipeline toward
physical robots, which is left to future work. We refer the reader to the appendix for more details.

4 Related Work
Heuristic Search For Soft Robot Co-Design. Heuristic searches are simple but useful tools for co-
designing soft robots. A long line of work has focused on evolutionary algorithms [7, 8, 10], with some
including physical demonstrations [22, 31, 32] and recent benchmarks incorporating neural control
[5]. These methods are often powered by parameterized by compositional pattern-producing networks
[58], which parameterize highly expressive search spaces akin to neural networks [50, 51]. Similar
to [5], [47] combines a heuristic approach with reinforcement learning, and demonstrates resulting
designs on physical hardware. Other notable methods include particle-filter-based approaches [11]
and simulated annealing [60]. Heuristic search methods tend to be less efficient than gradient-based
or learning-based algorithms, but can reasoning about large search spaces; our approach employs the
highly expressive diffusion processes, while leveraging the differentiable nature of neural networks
and physical simulation for more efficient and gradient-directed search.

Gradient-Based Soft Robot Co-Optimization. A differentiable simulator is one in which useful
analytical derivatives of any system variable with respect to any other system variable is efficiently
queryable; the recent advent of soft differentiable simulation environments [26, 56, 13, 33, 41, 42, 61]
has accelerated the exploration of gradient-based co-optimiation methods. [26, 56] demonstrated
how differentiable simulators can be used to co-optimize very high-dimensional spatially varying
material and open-loop/neural controller parameters. [38] presented gradient-based search of shape
parameters for soft manipulators. Meanwhile, [61] showed how actuation and geometry could be
co-optimized, while analyzing the trade-offs of design space complexity and exploration in the search
procedure. DiffuseBot borrows ideas from gradient-based optimization in guiding the design search
in a physics-aware way, especially in the context of control.

Learning-Based Soft Robot Co-Design Methods. Though relatively nascent, learning-based ap-
proaches (including DiffuseBot ) can re-use design samples to build knowledge about a problem.
Further, dataset-based minibatch optimization algorithms are more robust to local minima than
single-iterate pure optimization approaches. [57] demonstrated how gradient-based search could be
combined with learned-models; a soft robot proprioceptive model was continually updated by simula-
tion data from interleaved control/material co-optimization. Other work employed learning-based
methods in the context of leveraging available datasets. [35] learned a parameterized representation
of geometry and actuators from basis shape geometries tractable interpolation over high-dimensional
search spaces. [55] leveraged motion data and sparsifying neurons to simultaneously learn sensor
placement and neural soft robotic tasks such as proprioception and grasp classification.

Diffusion Models for Content Generation. Diffusion models [24, 52] have emerged as the de-facto
standard for generating content in continuous domains such as images [44, 46], 3D content [66, 65],
controls [28, 9, 1], videos [23, 49, 16], and materials [63, 62, 48]. In this paper, we explore how
diffusion models in combination with differentiable physics may be used to design new robots. Most
similar to our work, [64] uses differentiable physics to help guide human motion synthesis. However,
while [64] uses differentiable physics to refine motions in the last few timesteps of diffusion sampling,
we tightly integrate differentiable physics wih sampling throughout the diffusion sampling procedure
through MCMC. We further uses differentiable simulation to define a reward objective through which
we may optimize generative embeddings that represent our desirable robot structure.

5 Conclusion
We presented DiffuseBot, a framework that augments physics-based simulation with a diffusion
process capable of generating performant soft robots for a diverse set of tasks including passive
dynamics, locomotion, and manipulation. We demonstrated the efficacy of diffusion-based generation
with extensive experiments, presented a method for incorporating human feedback, and prototyped a
physical robot counterpart. DiffuseBot is a first step toward generative invention of soft machines,
with the potential to accelerate design cycles, discover novel devices, and provide building blocks for
downstream applications in automated computational creativity and computer-assisted design.
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A Background On Point-E

Point-E [39] is a diffusion-based generative model that produces 3D point clouds from text or
images. The Point-E pipeline consists of three stages: first, it generates a single synthetic view
using a text-to-image diffusion model; second, it produces a coarse, low-resolution 3D point cloud
(1024 points) using a second diffusion model which is conditioned on the generated image; third,
it upsamples/“densifies” the coarse point cloud to a high-resolution one (4096 points) with a third
diffusion model. The two diffusion models operating on point clouds use a permutation invariant
transformer architecture with different model sizes. The entire model is trained on Point-E’s curated
dataset of several million 3D models and associated metadata which captures a generic distribution
of common 3D shapes, providing a suitable and sufficiently diverse prior for robot geometry. The
diffused data is a set of points, each point possessing 6 feature dimensions: 3 for spatial coordinates
and 3 for colors. We ignore the color channels in this work. The conditioning for the synthesized
image in the first stage relies on embeddings computed from a pre-trained ViT-L/14 CLIP model;
in the embedding optimization of DiffuseBot, the variables to be optimized is exactly the same
embedding. Diffusion as co-design is only performed in the second stage (coarse point cloud
generation) since the third stage is merely an upsampling which produces only minor modifications
to robot designs. We refer the reader to the original paper [39] for more details.

B Theoretical Motivation

Online learning in embedding optimization. In Section 2.4, we discuss how to online collect a
dataset to optimize the embedding toward improved physical utility. Given a simplified version of (5)

min
c

Ep✓(x0|c)[g(x0, c)] (8)

where, for notation simplicity, we drop t ⇠ [1, T ], N (✏;0, I) in the sampling distribution, and
summarize [||✏� ✏✓(xt(x0, ✏, t), t, c)||2] as g(x, c). We can rewrite the expectation term as,

Z
p✓(x0)

p✓(c|x0)

p✓(c)
g(x0, c)dx (9)

which allows to sample from p✓(x0) (i.e., generating samples from the diffusion model) and reweight
the loss with p✓(c|x0)

p✓(c)
; the latter scaling term is essentially proportional to a normalized task perfor-

mance. Empirically, we can maintain a buffer for the online dataset and train the embedding with the
sampling distribution biased toward higher task performance; we use a list to store samples with top-k
performance in our implementation (we also tried reshaping the sampling distribution like prioritized
experience replay in reinforcement learning but we found less stability and more hyperparameters
required in training compared to our simpler top-k approach).

Connection to MCMC. In diffusion sampling, the simplest way to perform reverse denoising process
as in Section 2.2 follows [24],

p✓(xt�1|xt) = N
✓

1
p
↵t

(xt �
�tp
1� ↵̄t

✏✓(xt, t)),
1� ↵̄t�1

1� ↵̄t

�tI

◆
(10)

Here, the denoising term can either be unconditional ✏✓(xt, t) or conditional via classifier-free
guidance ✏̂✓,classifier-free(xt, t, c) as in (3). We use the latter to incorporate the optimized embedding.
To further leverage physics-based simulation, we aim to introduce physical utility during diffusion
sampling process. One possibility is to utilize classifier-based guidance [12],

✏̂✓,classifier-based := ✏✓(xt, t)� s ·
p
1� ↵̄trxt

log p(c|xt) (11)

where p(c|xt) can be conceptually viewed as improving physical utility and rxt
log p(c|xt) can be

obtained using differentiable physics and the unconditional score. Note that we slightly abuse the
notation here by overloading c with conditioning from differentiable simulation during sampling
other than the classifier-free guidance using the optimized embedding. However, combining (10) and
(11) much less resembles any gradient-based optimization techniques, which are shown to be effective
in soft robot co-design with differentiable simulation [26, 2]. Fortunately, drawing a connection to
energy-based models [54, 15, 14], yet another alternative to incorporate conditioning in diffusion
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Table 4: Configuration of embedding optimization.
Balancing Landing Crawling Hurdling Gripping Moving a Box

Buffer Size 600 600 60 600 60 60
Min. Buffer Size 60 60 60 60 60 60

Num. Samples / Epoch 60 60 60 60 60 60
Train Iter. / Epoch 1 1 1 1 1 1

Buffer Top-K 12 12 6 6 6 6
Batch Size 6 6 6 6 6 6

Table 5: Configuration of diffusion as co-design.
Balancing Landing Crawling Hurdling Gripping Moving a Box

tmax 400 150 400 400 400 400
tmin 0 0 0 0 0 0
�t 50 25 50 50 50 50
K 3 3 5 5 5 5
� 10�4 · � 10�4 · � 10�4 · � 10�4 · � 10�4 · � 10�4 · �
 104 104 104 104 104 104

� - - 0.01 0.001 0.001 0.001
Renorm Scale 10 10 10 10 10 10

models is Markov Chain Monte Carlo (MCMC) sampling [14], where we use Unadjusted Langevin
Dynamics,

xt = x(K)
t

, where x(k)
t
⇠ N

✓
x(k)
t

;x(k�1)
t

+
�
2

2
rx log p(c|x(k�1)

t
),�2I

◆
(12)

where K is the number of samples in the current MCMC with k as indexing, �2 is a pre-defined
variance, and x(0)

t
= xt�1. In the context of diffusion models, this procedure is commonly performed

within a single diffusion step to drive the sample toward higher-density regime under the intermediate
distribution p(xt) =

R
q(xt|x0)p(x0)dx0 at diffusion time t. Inspired by its resemblance to gradient

ascent with stochasticity from the added Gaussian noise of variance �
2, we establish a connection

to design optimization, reformulating diffusion process as co-design optimization as in (6) and (7).
Specifically, we can apply Bayes rule to decompose the score of p(c|x(k�1)

t
),

rx log p(c|xt) = rx log p(xt|c)�rx log p(xt) (13)

where rx log p(xt) is simply the denoiser output ✏✓(xt, t) and rx log p(xt|c) is the gradient of
task performance with respect to the intermediate sample of the diffusion model from differentiable
physical simulation and robotizing process. Overall, this leads to (6).

C Implementation Details In Algorithm

In this section, we provide more implementation details and experimental configurations of Diffuse-
Bot and other baselines. In Table 4, we list the configurations of the embedding optimization. With
respect to Algorithm 1, “buffer” refers to the online dataset D.

• Buffer Size is the capacity of the dataset.
• Min. Buffer Size is the minimum of data filled in the buffer before training starts.
• Num. Samples / Epoch is number of new samples collected in each epoch, where epoch here refers

to a new round of data collection in online learning.
• Train Iter. / Epoch is number of training iterations per epoch.
• Buffer Top-K is the number of datapoints with top-k performance being retained in the Filter step

atop the most up-to-date data.
• Batch Size is the batch size in the embedding optimization.
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Direct SDF DiffuseBot

Figure 8: Comparison between Direct SDF and DiffuseBot on conversion to solid geometry for robotizing.

In Table 5, we list the configurations of diffusion as co-design. We follow (6)(7) for:

• K is number of MCMC sampling steps at the current diffusion time.
• � is the standard deviation related to the MCMC step size.
•  is the ratio between two types of design gradients.
• � is the weight for trading off design and control optimization.
• tmax and tmin are the maximal and minimal diffusion time to perform diffusion as co-design,

respectively.
• �t is the diffusion time interval to perform diffusion as co-design.

For baselines, we use learning rates for control optimization following � in Table 5; for particle-based
and voxel-based approaches, we use learning rate 0.01 for design optimization; for implicit function
and diff-CPPN, we use learning rate 0.001 for design optimization. For the inputs of implicit function
and diff-CPPN, we use x, y, z coordinates in the local workspace, the distance to the workspace center
on the xy, xz, yz planes, and the radius from the center. For the network architecture of implicit
function, we use a 2-layer multilayer perceptron with hidden size 32 and Tanh activation. For the
network architecture of diff-CPPN, we use Sin, Sigmoid, Tanh, Gaussian, SELU, Softplus, Clamped
activations with 5 hidden layers and 28 graph nodes in each layer.

Hyperparameters are chosen mostly based on intuition and balancing numerical scale with very little
tuning. In the following, we briefly discuss the design choices of all hyperparameters listed in Table 5
and Table 4. For min buffer size, samples per epoch, training iteration per epoch, and batch size, we
roughly make sufficiently diverse the data used in the optimization and use the same setting for all
tasks. For buffer size, we start with 60 and if we observe instability in optimization, we increase
to 10 times, 600 (similar to online on-policy reinforcement learning); note that buffer size refers to
the maximal size and increasing this won’t affect runtime. For buffer Top-K, we start with 6 and
if we observe limited diversity of generation throughout the optimization (or lack of exploration),
we double it. For tmax, tmin, and �t, we roughly inspect how structured the generation in terms
of achieving the desired robotic task to determine tmax and modify �t accordingly to match the
similar number of performing MCMC sampling (e.g., tmax/�t: 400/50 ⇡ 150/25). For the number
of MCMC steps K, we simply set 3 for passive tasks and 5 for active tasks by intuition. For �, we
simply follow one of the settings in [14]. For the guidance scale  and renorm scale, we check the
numerical values between ✏ and gradient from differentiable simulation and try to make them roughly
in the similar magnitude, and set the same scale for all tasks for simplicity. For �, we set 0.001 for
trajectory optimization and 0.01 for parameterized controllers based on our experience of working
with differentiable physics. Overall, from our empirical findings, the only hyperparameters that may
be sensitive include buffer size and buffer Top-K for optimization stability and generation diversity,
and guidance scales, which need to be tuned to match the numerical magnitude of other terms so as
to take proper effect.

D Details In Task Setup

In this section, we provide more details of all tasks setup including environment configuration and
prescribed actuator and controller if any (as mentioned in Section 2.4; it is fixed during embedding
optimization and will be co-optimize during diffusion as co-design). We select tasks that

1. can cover a wide spectrum of existing robotics tasks: we briefly categorize tasks into passive dy-
namics, locomotion, and manipulation. Note that passive dynamics tasks are explicitly considered
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here since there is no active control of robot bodies, making optimization on robot design a direct
factor toward physical utility.

2. only involve lower-level control/motion without the complications of long-term or higher-level
task planning: we select tasks that mostly involve few motor skills, e.g., in manipulation, instead
of pick and place, we simply aim at picking up/gripping an object.

3. are commonly considered in other soft robot co-design literature: all proposed active tasks are
widely used in the soft robot community, including crawling [8, 10, 47, 61], hurdling/jumping
[26, 59, 3], and manipulating objects [5, 11, 38].

4. may induce more visible difference in robot designs between the performing and the non-
performing ones to facilitate evaluation and algorithmic development: we select tasks more
based on heuristics and intuition, e.g., in crawling, we expect leg-like structures may outperform
other random designs.

We build our environments on top of SoftZoo [61] and employ the Material Point Method for
simulation. Each environment is composed of boundary conditions that include impenetrable ground,
and, in the case of fixed objects or body parts, glued particles. All tasks use units without direct
real-world physical correspondence and last for 100 steps with each step consisting of 17 simulation
substeps. In the following, when describing the size of a 3D shape without explicitly mentioning the
axis, we follow the order: length (x, in the direction when we talk about left and right), height (y,
parallel with the gravity direction), and width (z). All tasks are demonstrated in Figure 3 in the main
paper.

Balancing. The robot is initialized atop a stick-like platform of shape 0.02-unit ⇥ 0.05-unit ⇥
0.02-unit. The robot is givenan initial upward velocity of a 0.5-unit/second and allowed to free fall
under gravity. The goal is for the robot to passively balance itself after dropping again on the platform;
the performance is measured as the intersection over union (IoU) between the space occupied by the
robot during the first simulation step and the space occupied by the robot during the last simulation
step. The robot geometry is confined to a 0.08-unit ⇥ 0.08-unit ⇥ 0.08-unit workspace. There is no
prescribed actuator placement or controller (passive dynamics).

Landing. The robot is initialized to be 0.08-unit to the right and 0.045-unit above the landing
target with size of 0.02-unit ⇥ 0.05-unit ⇥ 0.02-unit. The robot is given an initial velocity of 0.5-
unit/second to the right. The goal of the robot is to land at the target; the performance is measured
as the exponential to the power of the negative distance between the target and the robot in the last
frame e

�||pobject
H

�p
robot
H

||, where p
·
H

is the position of the robot or object at the last frame with horizon
H . The robot geometry is confined to a 0.08-unit ⇥ 0.08-unit ⇥ 0.08-unit workspace. There is no
prescribed actuator placement or controller (passive dynamics).

Crawling. The robot is initialized at rest on the ground. The goal of the robot is to actuate its body to
move as far away as possible from the starting position; the performance is measured as the distance
traveled ||px,robot

H
� p

x,robot
0 ||, where px,robot

· is the position of the robot in the x axis at a certain frame
with horizon H . The robot geometry is confined to a 0.08-unit ⇥ 0.08-unit ⇥ 0.08-unit workspace.
The actuator placement is computed by clustering the local coordinates of the robot centered at its
average position in the xz (non-vertical) plane into 4 groups. Each group contains an actuator with
its direction parallel to gravity. The prescribed controller is a composition of four sine waves with
frequency as 30hz, amplitude as 0.3, and phases as 0.5⇡, 1.5⇡, 0, and ⇡ for the four actuators.

Hurdling. An obstacle of shape 0.01-unit ⇥ 0.03-unit ⇥ 0.12-unit is placed in 0.07-unit front of
the robot. The goal of the robot is to jump as far as possible, with high distances achieved only
by bounding over the obstacle. The performance is measured as the distance traveled. The robot
geometry is confined to a 0.08-unit ⇥ 0.08-unit ⇥ 0.08-unit workspace. The actuator placement is
computed by clustering the local coordinates of the robot centered at its average position in the length
direction into 2 groups. Each group contains an actuator aligned parallel to gravity. The prescribed
controller takes the form of open-loop, per-step actuation sequences, set to linearly-increasing values
from (0.0, 0.0) to (1.0, 0.3) between the first and the thirtieth frames and zeros afterward for the two
actuators (the first value of the aforementioned actuation corresponds to the actuator closer to the
obstacle) respectively.

Gripping. An object of shape 0.03-unit ⇥ 0.03-unit ⇥ 0.03-unit is placed 0.08-unit underneath
the robot. The goal of the robot is to vertically lift the object; the performance is measured as the
vertical distance of the object being lifted ||py,object

H
� p

y,object
0 ||, where p

y,object
· is the position of the
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object in the y axis at a certain frame with horizon H . Within a 0.06-unit ⇥ 0.08-unit ⇥ 0.12-unit
workspace, we decompose the robot into a base and two attached submodules, and we set the output
of DiffuseBot or other robot design algorithms as one of the submodules and make constrain the
other submodule to be a mirror copy; conceptually we design “the finger of a parallel gripper.” The
base is clamped/glued to the upper boundary in z and given a large polyhedral volume to serve
as the attachment point of the gripper finger submodules. The actuator placement is computed by
clustering the local coordinates of the robot centered at its average position in the length direction
into 2 groups; each submodule has one pair of actuators. Each actuator is aligned parallel to gravity.
Overall, one pair of actuators comprises the "inner" part of the gripper and the other comprises the
"outer" part. Suppose the actuation of the two pairs of actuators is denoted in the format of (actuation
of the outer part, actuation of the inner part), the prescribed controller is per-frame actuation, set to (i)
linearly-increasing values from (0.0, 0.0) to (0.0, 1.0) between the first and the fiftieth frames, and (ii)
then linearly-decreasing values from (1.0, 0.0) to (0.0, 0.0) between the fiftieth and the last frames.

Moving a box. A 0.03-unit ⇥ 0.03-unit ⇥ 0.03-unit cube is placed on the right end of the robot (half
a body length of the robot to the right from the robot center). The goal of the robot is to move the
box to the left; the performance is measured as the distance that the box is moved to the right with
respect to its initial position ||px,object

H
� p

x,object
0 ||, where p

x,object
· is the position of the object in the x

axis at a certain frame with horizon H . The robot geometry is confined to a 0.16-unit ⇥ 0.06-unit ⇥
0.06-unit workspace. The actuator placement is computed by clustering the local coordinates of the
robot centered at its average position in the height direction into 2 groups. Each group contains an
actuator aligned parallel to the ground. The prescribed controller is per-frame actuation, initialized to
linearly-increasing values from (0.0, 0.0) to (1.0, 0.0) between the first and last frame for the lower
and the upper actuator respectively.

E Analysis On Robotizing

As mentioned in Section 2.3, Material Point Method simulation requires solid geometry for simulation;
thus, we need to convert the surface point cloud from Point-E [39] to a volume. The most direct
means of converting the point cloud to a solid geometry is to compute the signed distance function
(SDF), and populate the interior of the SDF using rejection sampling. We refer to this baseline as
Direct SDF. Here, we use a pretrained transformer-based model provided by Point-E as the SDF. In
Figure 8, we compare Direct SDF with our approach described in Section 2.3 Solid Geometry. We
perform robotizing on intermediate samples at t=300. We observe that Direct SDF fails to produce
well-structured solid geometry since it is trained with watertight on geometry, and thus the conversion
cannot gracefully handle generated point clouds that do not exhibit such watergith structure. This is
specifically common in the intermediate diffusion sample xt as xt is essentially a Gaussian-noise-
corrupted version of the clean surface point cloud. In contrast, the robotizing of DiffuseBot produces
a much well-structured solid geometry since it explicitly handles the noisy interior 3D points by
introducing a tailored loss as in Shape As Points optimization [40] (see Section 2.3). In addition, a
better-structured robot geometry is critical to obtain not only a more accurate evaluation of a robot
design at the forward pass of the simulation but also the gradients from differentiable physics at
the backward pass. In Figure 8, we further perform co-optimization on the two robots obtained by
Direct SDF and DiffuseBot; we observe a more stably increasing trend of task performance in our
approach, demonstrating that the gradient is usually more informative with a better-structured robot.
Empirically, while Direct SDF sometimes still provides improving trend with unstructured robots in
co-design optimization, the performance gain is not as stable as DiffuseBot.

F Additional Visualizations Of Experiments

In this section, we show more visualization for a diverse set of the experimental analysis. Please visit
our project page (https://diffusebot.github.io/) for animated videos.

Generated robots performing various tasks. In Figure 9, we display a montage of a generated
robot’s motion for each task; this is the unabridged demonstration of Figure 5 in the main paper.

Physics-guided robot generation In Figure 10, we show how DiffuseBot evolves robots throughout
the embedding optimization process; this is the full demonstration of Figure 4 in the main paper. Note
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Figure 9: Examples of robots bred by DiffuseBot to achieve the all presented tasks.

that DiffuseBot is a generative algorithm and thus results presented are for demonstration purposes
and reflect only a single fixed random seed.

Diffusion process of robot generation. In Figure 11, we show how robots evolve throughout
the diffusion process at different diffusion time via xt with t from T to 0; not to be confused
by Figure 10 where all generations are obtained via a full diffusion sampling x0 and different
conditioning embeddings c. This figure demonstrates the robotized samples across diffusion times,
gradually converging to the final functioning robots as t approaches 0.

Comparison with baselines. In Figure 12, we present robots generated from different baselines. Note
that Point-E is essentially DiffuseBot without embedding optimization and diffusion as co-design.

Incorporating human feedback. In Figure 13, we showcase more examples of incorporating human
textual feedback to the generation process of DiffuseBot. As briefly mentioned in Section 3.4 in
the main paper, we leverage the compositionality of diffusion-based generative models [34, 14].
Specifically, this is done by combining two types of classifier-free guidance as in (3); one source
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Figure 10: Examples of DiffuseBot evolving robots to solve all presented tasks.

of guidance is derived from the task-driven embedding optimization while the other is derived
from embeddings from human-provided textual descriptions. These two conditional scores, namely
✏✓(xt, t, cphysics) and ✏✓(xt, t, chuman), can then be integrated into the diffusion as co-design framework
as in (6). We refer the reader to the original papers for more details and theoretical justification. We
demonstrate examples of: the balancing robot with additional text prompt "a ball", the crawling robot
with additional text prompt "a star", the hurdling robot with additional text prompt "a pair of wings",
and the moving-a-box robot with additional text prompt "thick". Interestingly, human feedback is
introduced as an augmented "trait" to the original robot. For example, while the hurdling robot keeps
the tall, lengthy geometry that is beneficial for storing energy for jumping, a wing-like structure
appears at the top of the robot body instead of overwriting the entire geometry. This allows users to
design specific parts for composition while also embedding fabrication and aesthetic priorities and
constraints through text. We leave future explorations of these ideas for future work.
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Figure 11: Demonstrations of generations changing from noises to robots with physical utility throughout the
diffusion sampling process. We present snapshots at diffusion times t = 600, 400, 200, 0 for all presented tasks.

G Hardware Design and Fabrication

To create a real-world counterpart of the DiffuseBot, we fabricated a proof-of-concept physical
robot gripper, as illustrated in Figure 14(a). The gripper was designed to match the shape of the
digital gripper and successfully demonstrated its ability to grasp objects, as shown in Figure 15. A
video demonstrating the grasping process can be found on our project page (https://diffusebot.
github.io/).

During the translation from the simulated design to a physical robot, we aimed to minimize differences
between the simulated and physical designs. However, due to hardware and fabrication limitations,
certain modifications were necessary.

One such challenge involved replicating the arbitrary contraction force at the particles from the
simulation in the physical world. To address this, we employed tendon transmission as the actuation
method for the real-world gripper, which was found to be suitable for emulating interaction forces
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Figure 12: Comparison of robots generated by different baselines.

from the digital world without introducing significant discrepancies. To enhance the stability of the
tendon-driven actuation, we incorporated a rigid base ("Base" in Figure 14(a)) above the gripper
itself ("Gripper" in Figure 14(a)). This base was designed to withstand the reaction force generated
by the tendon-driven actuation. Furthermore, we added four tendon routing points (represented by
small dotted circles in Figure 14(b)) on each finger to securely fix the tendon path. By utilizing four
Teflon tubes (shown in Figure 14(b)), we were able to position complex components such as motors,
batteries, and controllers away from the gripper, reducing its complexity.

The actuation strategy of the simulated gripper applies equal contraction force to both fingers simulta-
neously. To replicate this strategy, we employed underactuated tendon routing in the development
of the gripper. This approach eliminates the need for four separate actuators, thereby reducing the
complexity of the robot. We used tendon-driven actuators specifically designed for underactuated
tendon-driven robots as they solve practical issues such as size and friction issues that commonly
arise in such systems [30].
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Figure 13: More examples of incorporating human textual feedback into robot generation by DiffuseBot.
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Figure 14: (a) shows a fabricated proof-of-concept physical robot gripper; (b) describes detailed robot configura-
tion; (c) represents interior structure design used to soften the robot body.

The soft gripper was 3D-printed using a digital light projection (DLP) type 3D printer (Carbon M1
printer, Carbon Inc.) and commercially available elastomeric polyurethane (EPU 40, Carbon Inc.). To
enhance the softness of the robot body beyond the inherent softness of the material itself, we infilled
the finger body with a Voronoi lattice structure, a metamaterial useful for creating a soft structure
with tunable effective isotropic stiffness [20, 36]. We generated a Voronoi lattice foam with point
spacing of 2.5mm, and a beam thickness of 0.4 mm as shown in the red boundary of Fig. 14(c).
Finally, we tested the soft gripper, designed and fabricated as described above, to verify its ability to
grasp an object, as shown in Figure 15.

More discussion on fabrication. Although, at present, the compilation of the virtual robot to a
physical, digitally fabricated counterpart involves manual post-processing of algorithm’s output, most,
if not all of these steps could be automated. Our method outputs a point cloud (defining geometry),
actuator placements, and an open-loop controller, along with a prescribed stiffness. Since we can
easily convert the point cloud into a 3D triangle mesh, the geometry can be created by almost any 3D
printing method. In order to realize an effective stiffness and material behavior, stochastic lattices,
specifically Voronoi foams, have been used [36, 20] in the past and employed here in order to match
target material properties. Given the actuator placement, tendons [27, 30] can be aligned with the
prescribed (contiguous) regions. Since a lattice is used, threading tendons through the robot body is
simple, and we note that even more complex routings have been studied in detail in the literature [4].
Creating attachment points for the tendons is a relatively simple geometry processing problem [6].
Thus, converting a virtual robot to a specification that incorporates geometry, material, and actuation
can be automated in a straightforward way.
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(a) (b) (c)

Figure 15: Grasping motion of the real-world soft gripper from DiffuseBot. Time order from (a) to (c). The
demo video can be seen at our project page.

We note that when controlled, the physical robot may not always match the virtual robot’s motion.
This is the sim-to-real gap, and is significantly harder to overcome in our case than translating the
virtual robot to physical hardware. Significant literature has been invested in specifically tackling
the sim-to-real gap, and in our case would require its own dedicated project; however, we note that
often hardware can be adapted to work by modifying only the control policies using feedback from
real-world experiments, often even with little human intervention [21].

Quantitative analysis. In Figure 16, we provide a detailed analysis on the gap between simulation
and physical robot. In order to explore the quantitative gap between the behavior of the physical
robot and the simulated robot, we conducted an experiment with the following conditions, where
similar setups are commonly adopted in soft robot literature [17]. The objective was to measure the
change in distance between two tips when we pull/release two tendons - one for closing the gripper
(flexion) and the other for opening it (extension). The tendons were pulled or released in increments
and decrements of 2mm.

When contracting the tendon to flex or extend the fingers, both simulation and real robot results show
log-shaped graphs. The pattern in the physical robot plot is a commonly observed phenomenon called
hysteresis. However, the main difference between the simulation and real-world cases can be seen
when releasing the tendon from a fully contracted state. In the real robot experiment, the tip distance
changes rapidly, while in the simulation, the opposite effect is observed.

One plausible explanation for this disparity could be attributed to the friction direction and elongation
of the tendons. During the transition from tendon contraction to tendon release, the tension of the
tendon at the end-effector may change suddenly due to the change of the friction direction. Also,
since we only control the motor position (not the tendon position) to pull/release the tendon with 2mm
step, the exact tendon length may not be exactly the same when we consider the tendon elongation.

Additional real robots. In Figure 17, we show two other fabricated robots for the moving a box task
and the crawling task. For moving a box, we can achieve similar motion as in the simulation; the only
slight difference occurs when the stiffness in the physical robot is not as soft as that in the simulation,
falling a bit short to perform the extremely curly motion in the simulation. For crawling, we found
a more significant sim-to-real gap where the physical robot cannot achieve at all the galloping-like
motion in the simulation; instead, the robot crawls more alike a inchworm movement, pushing the
body in a quasi-static way. The major reason is the damping of the material (elastomeric polyurethane,
EPU 40, Carbon Inc.) prohibit from releasing sufficient energy for dynamical motion.

Potential solutions. Given that the gap between simulation and real robot performance seems to
originate from the actuation/transmission method, our future work will focus on developing a tendon-
driven actuation simulation framework. This framework aims to address the differences and improve
the accuracy of our simulations. We are exploring other possible explanations for the sim-to-real gap
and will investigate any additional factors that may contribute to the observed discrepancies. Overall,
as for a high-level general solution, we believe (1) adjusting parameters based on observed sim to real
gap and repeat the design process or (2) building a more accurate physics-based simulation (which
can be straightforwardly plug-and-played in DiffuseBot) can largely bridge the sim-to-real gap of
fabricating physical robots; or more interestingly, connecting generative models to commercial-level
design and simulation softwares.
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Figure 16: Quantitative analysis of behavior between simulation and physical robots.

Moving a Box Crawling

Figure 17: Other proof-of-concept real robot fabrication for moving a box and crawling.

H More Discussions

H.1 Limitation

The major limitation of DiffuseBot is that we make a simplification in the parameterization of
actuators and stiffness; we make dependencies of the two design specifications on robot geometry
(check more technical details in Section 2.3 paragraph Actuators and Stiffness. This works well
with properly-crafted mapping from geometry to the others yet limits the potential by human prior
with little use of the generative power. While this may be reasonable as properly-set actuators and
stiffness based on geometry (hand-tuned empirically in this work) roughly reflects task performance,
a more flexible parameterization can definitely lead to improved performance. Potential remedy can
be using part-based 3D generative models for actuators and direct optimization for stiffness. Another
limitation is the gap between simulated results and real robots. While the hardware experiment has
shown as a proof-of-concept that minimally demonstrates the potential, physical robot fabrication
and real-world transfer have countless non-trivial challenges including stiffness and actuator design,
sim-to-real gap, etc. This may require studies on more high-fidelity physics-based simulation, which
can be straightforwardly plugged into DiffuseBot.

H.2 Conditioning Beyond Text

The use of textual inputs additional to the embeddings optimized toward physical utility is achieved
by both being able to be consumed by the diffusion model to produce guidance for the diffusion
process . More concretely speaking, in DiffuseBot, we use the CLIP feature extractor as in Point-E
and it allows to extract embedding for both text and image modalities, which can then be used as a
condition in the diffusion model. Thus, we can also incorporate images as inputs and perform the
exact same procedure as that of the textual inputs. Theoretically, the textual inputs are incorporated
via following the intuition in end of the paragraph Diffusion as Co-design in Section 2.4, where the
textual inputs additionally provide gradients toward following the textual specification. Similarly,
the image inputs can also be processed to provide gradients since CLIP embeddings live in a joint
space of images and languages. More interestingly, if we build DiffuseBot on models other than
Point-E, which can consume embeddings for other modalities like audio as conditioning, we can
then straightforwardly perform robot design generation guided by the other corresponding input
formats (and meanwhile, toward physical utility). Note that this critical feature of compositionality
across different sources of guidance throughout the reverse diffusion process is one of the biggest
advantages of using diffusion-based models as opposed to other types of generative models.
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H.3 Connection To Text Inversion

There is some synergy between text inversion in [19] and embedding optimization in DiffuseBot. Both
of them aim at tuning the embedding toward reflecting certain properties of the output generation, i.e.,
describing the output generated images in [19] and toward improved physical utility in DiffuseBot.
The major difference lies in the nuance of the data/samples used to carry out the optimization. Text
inversion performs a direct optimization using latent diffusion model loss (Eq. (2) in [19]), which
computes losses on noisy samples/latents corrupted from the real dataset. On the other hand, it is
tricky to think about real dataset in robot design (as discussed in the second paragraph of Section 1
and the paragraph Embedding Optimization in Section 2.4), embedding optimization in DiffuseBot
computes losses on noisy samples corrupted from self-generated data filtered by robot performance
(as in Algorithm 1 and Section 2.4). Conceptually, it is more like a mixture of diffusion model
training and online imitation learning like DAGGER [45].

H.4 Connection To Diffusion Models With Physical Plausibility

A potential and interesting way to adapt DiffuseBot to other applications like motion planning
or control [28, 1] is to view a generated robot as one snapshot/frame of a motion/state sequence
and the physics prior can be the dynamics constraint across timesteps (e.g., robot dynamics or
contact dynamics that enforce non-penetration). The physics prior can be injected similarly to
diffusion as co-design that propagates the enforcement of physical plausibility of generated states
from differentiable physics-based simulation to diffusion samples. For example, considering states
in two consecutive timesteps, we can compute loss in the differentiable simulation to measure the
violation of physical constraints regarding robot dynamics or interaction with the environment. Then,
we can compute gradients with respect to either control or design variables; for gradients in control,
this will essentially augment works like [28, 1] with classifier-based guidance to achieve physical
plausibility; for gradients in design, this will much resemble optimizing toward the motion sequence
of a shape-shifting robot.

H.5 Parameterization Of Actuator And Stiffness

The goal of DiffuseBot is to demonstrate the potential of using diffusion models to generate soft robot
design and to leverage the knowledge of the pre-trained generative models learned from a large-scale
3D dataset. Under this setting, the generated output of the diffusion model can only provide the
geometry information of robot designs, leading to our design choice of having full dependency of
actuator and stiffness on the geometry. This may be a reasonable simplification as prior works [48]
have shown geometry along with properly-set actuator and stiffness (we take manual efforts to design
proper mapping from geometry to actuator and stiffness in this work) roughly reflect the performance
of a soft robot design. For better generality, one potential remedy is to optimize actuator and stiffness
independently from the geometry generated by the diffusion model, i.e., apply DiffuseBot and do
direct optimization on actuator and stiffness afterward or at the same time. Another interesting
direction may be, for actuators, to leverage part-based models [29] to decompose a holistic geometry
into parts (or different actuator regions in soft robots).
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