
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EVOLUTION STRATEGIES AT SCALE: LLM FINE-
TUNING BEYOND REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning pre-trained large language models (LLMs) for down-stream tasks is
a critical step in the AI deployment pipeline. Reinforcement learning (RL) is
arguably the most prominent fine-tuning method, contributing to the birth of many
state-of-the-art LLMs. In contrast, evolution strategies (ES), which once showed
comparable performance to RL on models with a few million parameters, was
neglected due to the pessimistic perception of its scalability to larger models. In
this work, we report the first successful attempt to scale up ES for fine-tuning the
full parameters of LLMs, showing the surprising fact that ES can search efficiently
over billions of parameters and outperform existing RL fine-tuning methods in
multiple respects, including sample efficiency, tolerance to long-horizon rewards,
robustness to different base LLMs, less tendency to reward hacking, and more
stable performance across runs. It therefore serves as a basis to unlock a new
direction in LLM fine-tuning beyond what current RL techniques provide.

1 INTRODUCTION

The rapid development of more capable large language models (LLMs; Touvron et al., 2023; Achiam
et al., 2024; AI@Meta, 2024; Jiang et al., 2024; Liu et al., 2024; Anthropic, 2025; Google, 2025)
has made many scientific and engineering domains amenable to AI-based automation (Singhal et al.,
2023; Wu et al., 2023; Rozière et al., 2024; Romera-Paredes et al., 2024). As a result, fine-tuning the
pre-trained models to accommodate specific tasks and to improve alignment with user preferences
has become an important part of the LLM deployment pipeline (Ouyang et al., 2022; Rafailov et al.,
2023; Latif & Zhai, 2024; Guo et al., 2025a). Reinforcement learning (RL) is currently the pre-
dominant choice for such fine-tuning (Ouyang et al., 2022; Bai et al., 2022; Shao et al., 2024; Guo
et al., 2025a;b; Srivastava & Aggarwal, 2025). Several challenges have emerged: First, RL methods
incur low sample efficiency (Vemula et al., 2019) and high variance of the gradient estimator (Sali-
mans et al., 2017; Sutton & Barto, 2018) when handling long-horizon rewards, which is a common
case for LLM fine-tuning with outcome-only rewards. Proper credit assignment at token level for
RL fine-tuning methods is difficult (Zhang et al., 2025; Song et al., 2025; Guo et al., 2025b) and
possibly unhelpful (Uesato et al., 2022; Jia et al., 2025; Guo et al., 2025b). Second, RL techniques
are sensitive to the choice of base LLMs, resulting in inconsistent fine-tuning performance across
different models (Gandhi et al., 2025). Third, RL techniques have an inherent tendency to hack the
reward function, leading to undesirable behaviors (Gao et al., 2023; Denison et al., 2024; Fu et al.,
2025). Fourth, RL fine-tuning is often unstable across multiple runs even with the same parametric
setup, increasing the cost of fine-tuning significantly (Choshen et al., 2020; Zhong et al., 2025).

Evolution Strategies (ES), a class of population-based zeroth-order optimization algorithms, is a
possible alternative. ES has several unique advantages over RL in traditional control and gam-
ing problems: it is highly parallel, tolerates long-horizon rewards well, explores extensively, needs
less computation (no backpropagation), and is robust to setup parameters (Salimans et al., 2017;
Chrabaszcz et al., 2018; Conti et al., 2018). However, ES has received much less attention than RL
during the LLM era. Standard ES works by searching and optimizing in the original parameter space
directly, for which the dimension was no more than a few million in past implementations (Salimans
et al., 2017; Zhang et al., 2017; Lehman et al., 2018; Lorenc & Neruda, 2025). It was assumed
that if the model is very large, it is significantly more difficult and sample-inefficient to explore
in parameter space compared to action-space (Vemula et al., 2019). The number of parameters in
LLMs is usually on the order of billions, which may seem infeasible for ES to directly tackle. Exist-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

ing workarounds include applying ES only to the last layer of the original model (Toledano-López
et al., 2022), using ES to fine-tune a lower-dimensional adapter (Jin et al., 2024), and searching in
action space as in standard RL (Huang et al., 2025). Directly searching in the full parameter space
of LLMs has remained a daunting challenge.

This paper is aimed at meeting this challenge. For the first time, ES is scaled to multi-billion-
parameter search spaces, by searching directly over the full parameter space of LLMs in fine-tuning
tasks. The approach is based on a memory-efficient implementation of an algorithmically simplified
ES variant, with support for parallelization within and across GPUs. Performance is compared with
state-of-the-art (SOTA) RL methods in fine-tuning various LLMs in a standard reasoning benchmark
task, and behavioral differences from RL are analyzed in terms of fine-tuning for conciseness. This
version of ES was able to search directly over billions of parameters, and exhibit surprisingly good
fine-tuning performance compared to RL methods in multiple aspects:

• ES only needs response-level rewards, making it a perfect fit for fine-tuning on reason-
ing tasks that have only sparse long-horizon outcome rewards. In particular, ES obtained
significantly better fine-tuned models than RL in the Countdown task with such rewards

• Counterintuitively, even though ES explores in the parameter space with billions of param-
eters, it is more sample efficient than RL methods that explore in the action space, which
is much smaller. Further, ES was able to find good solutions with a population size of only
30. As a comparison, previous ES implementations (Salimans et al., 2017; Zhang et al.,
2017; Lehman et al., 2018; Lorenc & Neruda, 2025) utilized a population size of 10,000 or
more with much smaller models (i.e. millions of parameters or less).

• ES is significantly more robust than RL across different LLMs. While RL fine-tuning
failed on some LLMs, ES provided good fine-tuning for all of them. ES benefits from its
exploration in parameter space, making it less sensitive to initial states of the LLMs.

• Whereas RL tends to hack the reward function if no other penalty is added, ES consistently
maintains reasonable behaviors during fine-tuning. The main reason is that ES optimizes
a solution distribution (Lehman et al., 2018), which is more difficult to hack, while RL
optimizes a single solution.

• ES’s behavior is more consistent than RL’s across different runs. This property can signifi-
cantly reduce expected cost of fine-tuning.

• Fine-tuning with ES is based on inference, and therefore no backpropagation calculations
are needed. A significant amount of GPU memory can therefore be saved (Malladi et al.,
2023).

The study reported in this paper serves as a first step in demonstrating the potential of ES for fine-
tuning LLMs. The surprising and counterintuitive findings motivates further work scaling up ES to
larger LLM fine-tuning tasks. Given the unique advantages over the state of the art, ES opens up new
opportunities in parameter-space exploration, outcome-only fine-tuning, and large-scale distributed
post-training.

2 RELATED WORK

Evolution Strategies (ES, Rechenberg, 1973; Schwefel, 1977) are a class of evolutionary algorithms
(EAs) for solving numerical optimization problems. The main idea is to sample a population of
solutions through perturbations, then recombine the perturbed solutions based on their fitness values
to form the population for the next generation. This process repeats until a termination condition
is triggered, e.g., the maximum number of generations is reached. Among the different variants
of ES, CMA-ES (Hansen & Ostermeier, 2001), which utilizes a multivariate Gaussian distribution
with full covariance matrix to sample the population, and natural ES (Wierstra et al., 2008; 2014),
which uses natural gradient to guide the search, are two popular methods for traditional optimiza-
tion problems. Although ES has long been used to evolve parameters of neural networks (NNs),
(Igel, 2003), Salimans et al. (2017) were the first to scale the approach up to deep learning networks.
Comparable performance to RL methods in control and gaming environments was observed, and
several unique advantages of ES highlighted. This seminal work paved the way for several follow-
up studies. Zhang et al. (2017) used ES to optimize a convolutional NN with around three million

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

parameters. They found that with a large enough population size, ES can approximate the perfor-
mance of traditional stochastic gradient descent (SGD). Lehman et al. (2018) further optimized an
NN comprising nearly 167,000 parameters with both ES and a traditional finite-difference (FD) gra-
dient estimator. Because ES optimizes the average reward for the entire population, whereas FD
optimizes the reward for a single solution, it obtained models that were more robust to parameter
perturbations. Lorenc & Neruda (2025) applied ES to optimize decision transformers in RL envi-
ronments, and observed promising results for model sizes up to around 2.5 million parameters. In
a related study, another traditional EA, namely genetic algorithm (GA) with mutations only, was
extended to a high-dimensional space (Such et al., 2017). Encouraging results were observed in dif-
ferent types of models with up to around four million parameters (Such et al., 2017; Risi & Stanley,
2019). However, although these studies were promising, the scale of these implementations was still
significantly less than the size of current LLMs.

Synergies between Evolutionary Algorithms (EAs) and LLMs have received increasing attention
in recent years (Wang et al., 2025; Wu et al., 2025). Popular research directions include EAs for
prompt optimization (Sun et al., 2022b;a; Zhao et al., 2023; Guo et al., 2024), utilizing LLMs as
evolutionary operators (Meyerson et al., 2024; Lehman et al., 2024; Romera-Paredes et al., 2024;
Novikov et al., 2025), and merging LLMs through evolution (Du et al., 2024; Akiba et al., 2025).
Applying EAs to optimize billions of parameters in LLMs is generally perceived to be intractable,
but a few studies have been successful at a smaller scale. For example, Toledano-López et al. (2022)
fine-tuned the last layer (with 325 parameters) of an mT5-based transformer via CMA-ES. Jin et al.
(2024) optimized the low-rank adapter parameters (with dimensionality up to 1600) using CMA-ES
and the Fireworks algorithm. Sanchez Carmona et al. (2024) applied a GA to fine-tune around 9.5
million parameters of a transformer encoder, though poorer performance than the traditional Adam
optimizer was observed. Huang et al. (2025) proposed a hybrid algorithm that performs exploration
in action space instead of parameter space, and it was only used in the final epoch of supervised
fine-tuning (SFT). The work in this paper significantly extends this prior research by successfully
scaling ES to search in the billions of parameters of LLMs, leading to surprisingly good fine-tuning
performance.

Fine-tuning using RL is a critical step during the training of many landmark LLMs (Ouyang et al.,
2022; Bai et al., 2022; Shao et al., 2024; Guo et al., 2025a;b). Proximal Policy Optimization (PPO;
Schulman et al., 2017) and Group Relative Policy Optimization (GRPO; Shao et al., 2024) are
the two predominant methods. PPO introduces a clipped surrogate objective to limit the update
scale in each step with respect to the old policy, and it usually works with a value model in an
actor-critic manner. GRPO simplifies the pipeline of PPO by replacing the value model with group
advantage, which is calculated based on direct evaluations of multiple responses. As discussed
in Section 1, in the context of LLM fine-tuning, these methods struggle with several fundamental
limitations, including the dilemma in handling long-horizon reward (Vemula et al., 2019; Salimans
et al., 2017; Zhang et al., 2025; Song et al., 2025; Uesato et al., 2022; Jia et al., 2025; Guo et al.,
2025b), sensitivity to base LLMs (Gandhi et al., 2025), tendency to hack reward (Gao et al., 2023;
Denison et al., 2024; Fu et al., 2025), and instability across runs (Choshen et al., 2020; Zhong et al.,
2025). ES inherently avoids these limitations, leading to better fine-tuning performance.

Existing RL fine-tuning methods are overwhelmingly based on action-space exploration. Parameter
space exploration has received much less attention, though some such studies do exist (Rückstieß
et al., 2008; Sehnke et al., 2010; Rückstieß et al., 2010; Plappert et al., 2018). Although promising
performance was observed in problems with sparse rewards, the scale of the tested models was far
smaller than that of LLMs. Vemula et al. (2019) performed a theoretical analysis of different explo-
ration strategies, and found that the complexity of the parameter space exploration increased quadrat-
ically with the number of parameters, whereas the complexity of action space exploration depended
on action dimensionality quadratically and horizon length of the reward quartically. Based on the
classical SPSA optimization method (Spall, 1992), Malladi et al. (2023) proposed a zeroth-order
optimizer MeZO that directly worked in parameter space for fine-tuning LLMs. MeZO significantly
reduced memory requirements, but its fine-tuning performance was no better than other baselines. In
contrast, the ES implementation in this paper performs exploration in multi-billion-parameter search
spaces, and outperforms all baselines.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 Basic ES Algorithm

Require: Pretrained LLM with initial parameters θ0, reward function R(·), total iterations T , pop-
ulation size N , noise scale σ, learning rate α.

1: for t = 1 to T do ▷ outer ES iterations
2: for n = 1 to N do
3: Sample noise εn ∼ N (0, I)
4: Compute reward for perturbed parameters Rn = R(θt−1 + σ · εn)
5: end for
6: Normalize Rn

7: Update model parameters as θt ← θt−1 + α · 1
N

∑N
n=1 Rnεn

8: end for

3 METHOD

This section introduces the basic algorithmic structure of ES, followed by a detailed description of
its implementation for LLM fine-tuning.

3.1 BASIC ES ALGORITHM

The ES implementation in this paper is an algorithmically simplified variant of natural evolution
strategies (NES) (Wierstra et al., 2008; 2014). The overall design is similar to OpenAI ES (Salimans
et al., 2017), which simplified NES with fixed covariance for perturbation noise.

Given a pretrained LLM with initial parameters θ0 and a target reward function R(·), the task is to
fine-tune the parameters so that the reward function is optimized (Algorithm 1). In each iteration,
N perturbed models are sampled by adding random Gaussian noise εn to their parameters. The
noise is i.i.d. in each dimension of the parameter space, and it is scaled by the hyperparameter
σ. The perturbed models are evaluated to obtain their reward scores Rn. The final update of the
model parameters aggregates the sampled perturbations by weighting them using their normalized
reward scores. The standard update equation θt ← θt−1 + α · 1

σ
1
N

∑N
n=1 Rnεn is simplified to

θt ← θt−1 + α · 1
N

∑N
n=1 Rnεn by digesting the term 1

σ into the learning rate α.

To improve scalability, a number of modifications to this basic algorithm were made as detailed in
the next section.

3.2 IMPLEMENTATION DETAILS

Algorithm 2, the actual implementation of ES for this paper, expands on the above algorithm in
seven ways:

(1) Noise retrieval with random seeds: Similar to Salimans et al. (2017); Such et al. (2017), only
the random seeds are stored to reduce GPU memory usage. The perturbation noise used during sam-
pling can be retrieved exactly by resetting the random number generator with specific random seeds.
(2) Parallel evaluations: In each iteration, the perturbed models can be evaluated fully in parallel
by assigning a separate random seed to each process. (3) Layer-level in-place perturbation and
restoration: To reduce the peak GPU memory usage, the model parameters are perturbed in-place
layer by layer, with corresponding random seeds archived. After evaluation of the perturbed model,
the model parameters are restored by subtracting the same noise perturbations using the archived
random seeds. For each evaluation process, apart from the model parameters, the only additional
memory needed is to store a tensor the size of a layer temporarily. (4) Reward normalization:
The rewards of the perturbed models are normalized using z-score within each iteration, so that the
normalized rewards for each iteration have a mean of 0 and standard deviation of 1. This normal-
ization makes the reward scale consistent across iterations and tasks. (5) Greedy decoding: The
perturbed models use greedy decoding to generate the responses for reward evaluations. As a result,
the perturbed models are evaluated deterministically, so that all performance differences come from
the exploration in parameter space instead of action space. (6) Decomposition of the parameter
update: At the end of each iteration, the aggregated update of model parameters is performed in-
place in a decomposed manner, gradually adding up layer by layer and seed by seed, significantly

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 2 ES Implementation for LLM Fine-Tuning

Require: Pretrained LLM with initial parameters θ0, reward function R(·), total iterations T , pop-
ulation size N , noise scale σ, learning rate α, number of parallel process P .

1: Create P processes, each instantiates a model with the same initial parameters θ0, with one
process as the main process

2: for t = 1 to T do ▷ ES iterations
3: Sample N random seeds s1, s2, . . . , sN
4: Assign random seeds to P processes
5: for n = 1 to N do
6: For the process handling sn, reset its random number generator using random seed sn
7: for each LLM layer do ▷ perturbation within current process
8: Sample noise εn,l ∼ N (0, I), which has the same shape as the lth layer’s parameters
9: Perturb the lth layer’s parameters in-place: θt−1,l ← θt−1,l + σ · εn,l

10: end for
11: Compute reward for perturbed parameters Rn = R(θt−1) ▷ within current process
12: For the process handling sn, reset its random number generator using random seed sn
13: for each LLM layer do ▷ restoration within current process
14: Sample noise εn,l ∼ N (0, I), which has the same shape as the lth layer’s parameters
15: Restore the lth layer’s parameters in-place: θt−1,l ← θt−1,l − σ · εn,l
16: end for
17: end for
18: Normalize the reward scores by calculating the z-score for each Rn: Zn = Rn−Rmean

Rstd
,

where Rmean and Rstd are the mean and standard deviation of R1, R2, . . . , RN .
19: for n = 1 to N do ▷ in main process only
20: Reset current random number generator using random seed sn
21: for each LLM layer do
22: Sample noise εn,l ∼ N (0, I), which has the same shape as the lth layer’s parameters
23: Update lth layer’s parameters in-place as θt,l ← θt−1,l + α · 1

NZnεn,l
24: end for
25: end for
26: Update the model parameters of all processes to θt
27: end for

reducing the peak GPU memory needed. (7) Learning rate digestion: The standard update equa-
tion θt ← θt−1+α · 1σ

1
N

∑N
n=1 Rnεn is simplified to θt ← θt−1+α · 1N

∑N
n=1 Rnεn by digesting

the term 1
σ into the learning rate α, simplifying the computation and parametric setup.

In order to keep the algorithm simple, common enhancements in OpenAI ES Salimans et al. (2017)
such as rank transformation of rewards (Wierstra et al., 2014), mirrored sampling (Sehnke et al.,
2010), weight decay, and virtual batch normalization (Salimans et al., 2016) are not used, and neither
are more advanced optimizers like Adam (Kingma & Ba, 2015). They can be included in to improve
results in future work.

4 EMPIRICAL STUDIES

This section first compares the fine-tuning performance of ES, PPO and GRPO on a standard reason-
ing benchmark. After that, behavioral differences between ES and RL are investigated in fine-tuning
for conciseness in the next section.

4.1 PERFORMANCE IN THE COUNTDOWN TASK

Fine-tuning performance was measured in the Countdown task (Pan et al., 2025; Goodfellow et al.,
2016), a symbolic reasoning benchmark, showing that ES is accurate and sample efficent across
different kinds and sizes of LLMs, even when the RL approaches is not.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Base Model Original RL ES (ours)
PPO GRPO (8) GRPO (30)

Qwen-2.5-0.5B-Instruct 0.1 0.3 0.3 0.5 14.4
Qwen-2.5-1.5B-Instruct 0.7 14.2 13.9 14.8 37.3
Qwen-2.5-3B-Instruct 10.0 20.1 30.9 32.5 60.5
Qwen-2.5-7B-Instruct 31.2 55.1 54.2 52.8 66.8

LLaMA-3.2-1B-Instruct 0.4 11.2 14.5 13.0 16.8
LLaMA-3.2-3B-Instruct 3.2 35.3 39.4 38.8 51.6
LLaMA-3.1-8B-Instruct 8.1 42.8 49.9 51.3 61.2

Table 1: Accuracy (%) on the Countdown task across model families, sizes, and fine-tuning algo-
rithms. Different model families are shaded for clarity; Original refers to directly evaluating the
base model without any fine-tuning, and GRPO (8) and GRPO (30) indicate group sizes of 8 and
30. The same hyperparameters were used for all ES runs; a separate grid search for the best hyper-
parameters was run for each RL experiment.

Countdown task. The Countdown task (Pan et al., 2025; Goodfellow et al., 2016) requires con-
structing an arithmetic expression from a given set of numbers using basic operations (+,−,×,÷)
to match a target value. For instance, the target 950 can be obtained from {100, 50, 6, 3} with
100× (6 + 3) + 50 = 950). This constitutes a compact test of constrained symbolic reasoning, i.e.
an important use case for fine-tuning.

Experimental Setup. A single fixed set of hyperparameters was used for all ES experiments.
For RL, a separate hyperparameter sweep was done for each experiment. RL methods turned out
sensitive to hyperparameters, in particular the KL-divergence penalty coefficient β and learning rate
α, and did not make much progress if they were not set precisely. To mitigate this issue, for each
model, a small grid of β and α values were tested and the best-performing configuration selected
(further details are provided in Table 3 in the Appendix A.1). This approach makes the comparison
conservative with respect to ES, but it also highlights its robustness.

ES improves upon PPO and GRPO across all tested models. Previously, Gandhi et al. (2025)
found that RL does not generalize well across models on the Countdown task. Table 1 confirms this
result, and also demonstrates that ES does not have this problem. With each model in the Qwen2.5
family (0.5B–7B) and the LLaMA3 family (1B–8B), ES substantially improved over both PPO and
GRPO, often by a large margin. Averaged across all models, ES improves over the base model by
36.4%, compared to 17.9% for PPO and 21.3% for GRPO with group size N = 8 and 21.4% for
group size N = 30 (see Figure 5 in Appendix A.4 for a model-wise visual comparison). These
results demonstrate that ES scales effectively across different model types and sizes, and does so
significantly better than RL.

ES is more sample efficient than RL. Surprisingly, even when searching in a space with billions
of parameters, ES is more sample efficient than the RL methods. The experiments reported in Table 1
were all run with the same total number of training sample evaluations (each training sample is one
Countdown question). Figure 6 in Appendix A.4 further shows the learning curves; to reach the same
level of fine-tuning performance as RL, ES needs less than 20% of the training sample evaluations
in most cases. This observation is different from the that of Salimans et al. (2017), who found worse
sample efficiency compared to RL. One critical factor is the population size N ; the experiments in
this paper had N = 30, whereas Salimans et al. (2017) used N = 10, 000, which may explain the
difference.

ES is effective on smaller models. Prior work on DeepSeek-R1 (Guo et al., 2025b) and Tiny-
Zero (Pan et al., 2025) pointed out a key limitation of PPO and GRPO: they require sufficient large
base models to improve. For instance, Pan et al. (2025) note that “for Qwen2.5-0.5B base, we know
it fails to learn reasoning.” Surprisingly, ES overcomes this limitation. As shown in Table 1, while
PPO and GRPO indeed obtain only 0.3% accuracy on that model, ES boosts accuracy to 14.4%, thus
eliciting reasoning even from the smallest-scale base model. This performance difference demon-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
KL Divergence

0.65

0.70

0.75

0.80

0.85

0.90

R
ew

ar
d

Qwen2.5+ES (σ= 0.0005)
Qwen2.5+ES (σ= 0.001)
Qwen2.5+ES (σ= 0.0015)
Qwen2.5+GRPO (β= 1.0)
Qwen2.5+GRPO (β= 0.5994)
Qwen2.5+GRPO (β= 0.3594)
Qwen2.5+GRPO (β= 0.2154)
Qwen2.5+GRPO (β= 0.0167)
Qwen2.5+GRPO (β= 0.1291)
Qwen2.5+GRPO (β= 0.0464)
Qwen2.5+GRPO (β= 0.01)
Qwen2.5+GRPO (β= 0.0)
Qwen2.5+GRPO (β= 0.0278)
Qwen2.5+GRPO (β= 0.0774)

Figure 1: Mean conciseness reward and mean
KL divergence from the base model for each fine-
tuning checkpoint across different learning pa-
rameters. The Pareto front of ES (blue line) is
higher and to the left of the GRPO Pareto front
(black line) models, indicating that it found bet-
ter tradeoffs. ES discovers these solutions with-
out any KL divergence penalty, suggesting that it
represents a distinctly different fine-tuning mech-
anism from the GRPO.

strates the benefit of parameter-space exploration in ES: while RL cannot find better actions from the
limited initial model to bootstrap learning, ES modifies the model directly by adding perturbations
in parameter space, possibly creating better models to facilitate further exploration. These results
highlight a distinct advantage of ES: it is able to improve behavior even with smaller, weaker base
models, thus expanding the scope of fine-tuning.

4.2 BEHAVIORAL DIFFERENCES BETWEEN ES AND RL IN FINE-TUNING FOR CONCISENESS

In order to characterize the different approaches that ES and RL take, they were used to fine-tune
Qwen-2.5-7B Instruct, towards more concise responses in question-answering. That is, fine-tuning
was rewarded based on how concise the answers were, but not directly rewarded for its question-
answering performance. In this setup, it was possible to analyze not only whether fine-tuning was
effective, but also how it was achieved, including what its side effects were.

Conciseness task. For conciseness fine-tuning, a dataset of prompts D = {x1, .., xK}, with a set
of verifiable solutions {s1, ..., sK}, i.e. shortest possible correct answers, was used. For example, for
the prompt “Name one primary color”, possible shortest verifiable solution used is “Red”. Following
this approach, for each prompt x ∈ D, the model was encouraged to generate a concise response
y. To fine-tune the model to generate concise responses, a reward computed using the absolute
length difference between the generated response y and the corresponding verified solution sk was
given to the model for each prompt xk. The reward function R for conciseness was defined as
R = −|len(y)− len(sk)|, where len(·) denotes the string length.

Behavior metrics. Behavior of the fine-tuned models was measured in two ways: the mean con-
ciseness reward and the mean KL divergence from the base model (after Rafailov et al., 2023).
KL divergence is useful as a proxy for the preservation of the base model’s behavior. It correlates
strongly with the question-answering performance of the model, but also conveys more information,
i.e. the extent of the fine-tuning changes. A low KL divergence thus suggests that the fine-tuned
model has not forgotten capabilities learned during pre-training. Further, as KL divergence in-
creases, these capabilities are likely to break. Therefore, fine-tuning behavior can be characterized
using the tradeoffs between reward and KL divergence. To compute the metrics, each fine-tuned
model was evaluated on a set of held-out test prompts, with 20 responses sampled per prompt. The
reward was computed using the model-generated response and the verifiable solution provided in
the test dataset. The KL divergence between a fine-tuned model θFT and a base model θBASE for a
given prompt x and corresponding response y was approximated following Schulman (2020) as

KL[θFT ∥ θBASE] =
θBASE(yi,t | x, yi,<t)

θFT(yi,t | x, yi,<t)
− log

θBASE(yi,t | x, yi,<t)

θFT(yi,t | x, yi,<t)
− 1. (1)

ES discovers a dominant Pareto front. Similarly to Rafailov et al. (2023), a Pareto frontier anal-
ysis was used to compare ES and GRPO, with mean reward and mean KL divergence as the metrics
(Figure 1). The experimental setup is described in Appendix A.1. The ES Pareto front is rep-
resented by a blue line on top and the GRPO Pareto front by the black line below. That is, ES
produced better tradeoffs than GRPO, i.e. models with higher reward and lower KL divergence. The
GRPO results were achieved only after augmenting the conciseness reward with a KL divergence
penalty (weighted by a parameter β). Without it, fine-tuning resulted in excessive divergence and
incorrect answers. Remarkably, ES achieved superior tradeoffs without any KL divergence penalty,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Model β α σ Reward ↑ KL ↓
Qwen-2.5-7B+GRPO 0.0 5× 10−6 ✗ 0.867± 0.054∗ 0.861± 0.614∗

Qwen-2.5-7B+GRPO 0.01 5× 10−6 ✗ 0.871± 0.060∗ 1.354± 0.873∗

Qwen-2.5-7B+GRPO 0.0167 5× 10−6 ✗ 0.911± 0.038 1.591± 0.811
Qwen-2.5-7B+GRPO 0.0464 5× 10−6 ✗ 0.881± 0.062 1.384± 1.187
Qwen-2.5-7B+ES ✗ 0.0005 0.001 0.889± 0.004 0.274± 0.096
Qwen-2.5-7B+ES ✗ 0.00075 0.0015 0.919± 0.008 0.813± 0.212

Table 2: Behavior or GRPO and ES in terms of mean conciseness reward and mean KL divergence.
The label ∗ indicates cases where reward hacking was observed. Only models that did not hack the
reward were included in the results.

suggesting that ES fine-tuning is based on discovering distinctly different kinds of solutions than
GRPO. Appendix A.3 presents additional experiments with varying α and β values, yielding similar
conclusions.

ES is more robust against reward hacking. GRPO with β = {0.0, 0.01} sometimes hacked
the reward, that is, produced responses that were short but contain nonsensical symbols rather than
words. By increasing the KL-penalty via higher β values, reward hacking could be prevented. The
optimal β is likely to be problem specific and to require extensive search to find. In contrast, ES does
not receive any feedback about the divergence of the fine-tuned model, and only seeks to optimize
conciseness. Regardless, it did not exhibit any reward hacking, despite achieving mean reward
comparable to GRPO with β = {0.0, 0.01}. This result again suggests that ES finds a different way
of optimizing the reward function.

ES fine-tuning is reliable across runs. Fine-tuning LLMs is computationally expensive, and it is
therefore critical that it leads to consistent results across runs. Table 2 presents the mean and standard
deviation of the conciseness reward and KL divergence across four independent runs after 1, 000
iterations. A mean reward cut-off of > 0.85 was used to down-select hyperparameter combinations,
ensuring that only the best ES and GRPO configurations were included in the analysis.

As shown in Table 2, ES achieved consistent conciseness rewards,indicated by a low reward standard
deviation (0.004 and 0.008) over four runs with different random seeds. GRPO has 15.5× higher
standard deviation (0.041–0.062), suggesting that its results were much less consistent. The results
on KL divergence were similar. For instance, while ES (σ = 0.0015) and GRPO (β = 0.0167)
achieved similar mean rewards, GRPO exhibits a 1.95× higher KL divergence mean and 3.83×
greater standard deviation. Similarly, while ES (σ = 0.001) achieves a slightly lower reward com-
pared to GRPO (β = 0.0167), GRPO (β = 0.0167) has a 5.8× higher KL divergence and a 8.44×
higher standard deviation. Thus, ES fine-tuning is more reliable than GRPO.

5 DISCUSSION AND FUTURE WORK

Exploration in parameter space plays a key role in the surprisingly good fine-tuning performance of
ES. As discussed by Rückstieß et al. (2010) and Plappert et al. (2018), sampling noise in parameter
space ensures that the entire action trajectory, i.e., the sequence of tokens, only depends on one
single sampling, leading to significantly lower variance in rollouts, i.e., in response generation. As a
result, gradient estimation is more reliable and convergence is more stable. In contrast, action space
exploration in RL injects noise at every step, i.e., at each token position, resulting in high variance
in the sequence generation. The behavior of RL therefore is much less reliable than ES, as was seen
in Table 2. Moreover, step-wise exploration in action space promotes reward hacking by increasing
the chance of sampling a single hacking action. One example is the nonsensical symbol sampled
during RL that can hack the conciseness reward.

Another key difference between ES and RL is that ES intrinsically optimizes a solution distribution
(Lehman et al., 2018), while RL optimizes a single solution. This property makes it more difficult
for ES to hack the reward since a single hacked solution usually does not have a high-quality so-
lution distribution around it. This property also results in solutions that are more robust to noisy

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

perturbations in parameter space (Lehman et al., 2018), making them more robust to adversarial
attacks and less likely to be compromised in other follow-up fine-tuning tasks (Chen et al., 2025).

In the experiments in this paper, extensive hyperparameter tuning was performed for RL methods,
resulting in specific RL hyperparameters for different model sizes and families. In comparison, ES
was found to be less sensitive to hyperparameters, and the same set of hyperparameters was used
for all experiments. While there are many common enhancements for ES (Salimans et al., 2017),
none were used in the experiments so that the power of vanilla ES could be clearly demonstrated.
Thus, it may be possible to improve the results with more extensive hyperparameter tuning and other
enhancements.

One counterintuitive result is that the ES implementation only needs a population of 30 to effec-
tively optimize billions of parameters. In contrast, previous work (Salimans et al., 2017; Zhang
et al., 2017; Lehman et al., 2018; Lorenc & Neruda, 2025) used populations of 10,000 or more for
models with millions or fewer parameters. An interesting future direction is to analyze how such
small populations are possible. Perhaps this is related to the observed low intrinsic dimensionality of
LLMs (Aghajanyan et al., 2021). Another promising direction is to use ES to perform unsupervised
fine-tuning based on internal behaviors of LLMs, such as confidence calculated based on semantic
entropy and semantic density (Qiu & Miikkulainen, 2024; Farquhar et al., 2024). Such fine-tuning
cannot be done with RL, since action space exploration does not change the internal representations
of LLMs (that is, each action sampling is generated via output distribution without changing the
internal parameters). In a broader sense, since ES does not need process rewards during exploration,
it may be a necessary ingredient for superintelligence (Mucci & Stryker, 2023), which would be
difficult to achieve by supervised learning using process guidance from human data. Massive paral-
lelization of ES will speed up exploration by distributing the computations across GPU machines or
even data centers.

An important question is: what are the underlying computational mechanisms that make ES and
RL behave so differently? While this question requires significant further work, a possible hy-
pothesis emerges from the experiments in this paper. Many fine-tuning objectives, like conciseness
and the Countdown task, are long-horizon outcome-only objectives. The reward signal is jagged,
making it difficult to navigate with gradient-based post-training methods. RL and ES both provide
workarounds via effective noise injection to “smooth out” the jagged reward landscape. In the case
of RL, noise is introduced from Monte-Carlo sampling of each token during a rollout, averaged over
many rollouts, which effectively smooths the sampling process but does not necessarily guarantee
that the reward landscape is smooth in parameter space. RL’s gradient estimation therefore has a
high-variance, and its signal-to-noise ratio becomes worse with longer sequences and sharper poli-
cies (i.e. those with lower entropy), and therefore prone to undesirable outcomes such as reward
hacking.

In contrast, ES injects noise directly into the parameter space via explicit Gaussian convolution,
which effectively smooths out the jagged reward landscape. As a result, it provides a more stable
way of exploring the landscape, leading to more consistent, efficient, and robust optimization (as
observed in the experiments and in Appendix A.5). Moreover, the larger the models and the sharper
the policies, the more jagged the reward landscapes; therefore, ES is likely to have an advantage
in fine-tuning them. Direct evidence for this hypothesis still needs to be obtained, but it provides
a plausible mechanistic explanation, and a direction for future work. Eventually such work could
result in better fine-tuning methods, as well as an improved understanding of LLMs in general.

6 CONCLUSION

This paper introduces and evaluates a new approach to fine-tuning LLMs, based on scaling up ES
to billions of dimensions. The approached performed significantly better than the standard RL fine-
tuning in the Countdown task, which has sparse long-horizon rewards. ES was found to be more
sample efficient, less sensitive to hyperparameter setup, and to achieve consistently better results
across multiple LLMs. Further empirical studies on fine-tuning for conciseness revealed that ES is
less likely to hack the reward, and behaves reliably across multiple runs. The mechanisms underlying
these differences still need to be characterized, but a plausible hypothesis is that the exploration in
ES is better suited for the jagged reward landscapes in large models. ES therefore constitutes a
promising alternative to RL in fine-tuning LLMs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

The experimental and parametric setup is provided in full details in Appendix A.1 for reproducing
all the experimental results reported in this paper. Source codes for generating the experimental
results are included in the supplementary material.

REFERENCES

Josh Achiam et al. GPT-4 technical report. arXiv:2303.08774, 2024.

Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains the ef-
fectiveness of language model fine-tuning. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto
Navigli (eds.), Proceedings of the 59th Annual Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pp. 7319–7328, Online, August 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.acl-long.568. URL https://aclanthology.org/2021.
acl-long.568/.

AI@Meta. Llama 3 model card, 2024. URL https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md.

Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and David Ha. Evolutionary optimization
of model merging recipes. Nature Machine Intelligence, 7(2):195–204, 2025. doi: 10.1038/
s42256-024-00975-8. URL https://doi.org/10.1038/s42256-024-00975-8.

Anthropic. Introducing Claude 4, 2025. URL https://www.anthropic.com/news/
claude-4.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson
Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernan-
dez, Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson,
Dario Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and Jared Ka-
plan. Training a helpful and harmless assistant with reinforcement learning from human feedback.
arXiv:2204.05862, 2022. URL https://arxiv.org/abs/2204.05862.

Huanran Chen, Yinpeng Dong, Zeming Wei, Yao Huang, Yichi Zhang, Hang Su, and Jun Zhu.
Understanding pre-training and fine-tuning from loss landscape perspectives. arXiv:2505.17646,
2025. URL https://arxiv.org/abs/2505.17646.

Leshem Choshen, Lior Fox, Zohar Aizenbud, and Omri Abend. On the weaknesses of reinforce-
ment learning for neural machine translation. In International Conference on Learning Represen-
tations, 2020. URL https://openreview.net/forum?id=H1eCw3EKvH.

Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. Back to basics: benchmarking canonical
evolution strategies for playing atari. In Proceedings of the 27th International Joint Conference
on Artificial Intelligence, IJCAI’18, pp. 1419–1426. AAAI Press, 2018. ISBN 9780999241127.

Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such, Joel Lehman, Kenneth Stanley, and Jeff
Clune. Improving exploration in evolution strategies for deep reinforcement learning via a popu-
lation of novelty-seeking agents. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018.

Carson Denison, Monte MacDiarmid, Fazl Barez, David Duvenaud, Shauna Kravec, Samuel Marks,
Nicholas Schiefer, Ryan Soklaski, Alex Tamkin, Jared Kaplan, Buck Shlegeris, Samuel R. Bow-
man, Ethan Perez, and Evan Hubinger. Sycophancy to subterfuge: Investigating reward-tampering
in large language models. arXiv:2406.10162, 2024. URL https://arxiv.org/abs/
2406.10162.

10

https://aclanthology.org/2021.acl-long.568/
https://aclanthology.org/2021.acl-long.568/
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.1038/s42256-024-00975-8
https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-4
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2505.17646
https://openreview.net/forum?id=H1eCw3EKvH
https://arxiv.org/abs/2406.10162
https://arxiv.org/abs/2406.10162

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Guodong Du, Jing Li, Hanting Liu, Runhua Jiang, Shuyang Yu, Yifei Guo, Sim Kuan Goh, and Ho-
Kin Tang. Knowledge fusion by evolving weights of language models. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Findings of the Association for Computational Linguistics:
ACL 2024, pp. 11727–11742, Bangkok, Thailand, August 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.findings-acl.698. URL https://aclanthology.org/
2024.findings-acl.698/.

Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. Detecting hallucinations in large
language models using semantic entropy. Nature, 630(8017):625–630, 2024.

Jiayi Fu, Xuandong Zhao, Chengyuan Yao, Heng Wang, Qi Han, and Yanghua Xiao. Re-
ward shaping to mitigate reward hacking in RLHF. arXiv:2502.18770, 2025. URL https:
//arxiv.org/abs/2502.18770.

Kanishk Gandhi, Ayush K Chakravarthy, Anikait Singh, Nathan Lile, and Noah Goodman. Cog-
nitive behaviors that enable self-improving reasoners, or, four habits of highly effective STars.
In Second Conference on Language Modeling, 2025. URL https://openreview.net/
forum?id=QGJ9ttXLTy.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In An-
dreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research, pp. 10835–10866. PMLR, 23–29 Jul 2023.
URL https://proceedings.mlr.press/v202/gao23h.html.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

Google. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context, and
next generation agentic capabilities., 2025. URL https://storage.googleapis.com/
deepmind-media/gemini/gemini_v2_5_report.pdf.

Daya Guo et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning.
arXiv:2501.12948, 2025a. URL https://arxiv.org/abs/2501.12948.

Daya Guo et al. Deepseek-r1 incentivizes reasoning in llms through reinforcement learning. Nature,
645(8081):633–638, 2025b. doi: 10.1038/s41586-025-09422-z. URL https://doi.org/
10.1038/s41586-025-09422-z.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
prompt optimizers. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=ZG3RaNIsO8.

Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation, 9(2):159–195, 2001. doi: 10.1162/106365601750190398.

Bo Huang, Yuxin Jiang, Mingyang Chen, Yi Wang, Hongyang Chen, and Wei Wang. When evo-
lution strategy meets language models tuning. In Owen Rambow, Leo Wanner, Marianna Apid-
ianaki, Hend Al-Khalifa, Barbara Di Eugenio, and Steven Schockaert (eds.), Proceedings of the
31st International Conference on Computational Linguistics, pp. 5333–5344, Abu Dhabi, UAE,
January 2025. Association for Computational Linguistics. URL https://aclanthology.
org/2025.coling-main.357/.

Christian Igel. Neuroevolution for reinforcement learning using evolution strategies. In Proceedings
of the 2003 Congress on Evolutionary Computation, pp. 2588–2595, 2003.

Zeyu Jia, Alexander Rakhlin, and Tengyang Xie. Do we need to verify step by step? rethinking
process supervision from a theoretical perspective. In Forty-second International Conference on
Machine Learning, 2025. URL https://openreview.net/forum?id=4BfaPHfhJ0.

11

https://aclanthology.org/2024.findings-acl.698/
https://aclanthology.org/2024.findings-acl.698/
https://arxiv.org/abs/2502.18770
https://arxiv.org/abs/2502.18770
https://openreview.net/forum?id=QGJ9ttXLTy
https://openreview.net/forum?id=QGJ9ttXLTy
https://proceedings.mlr.press/v202/gao23h.html
https://storage.googleapis.com/deepmind-media/gemini/gemini_v2_5_report.pdf
https://storage.googleapis.com/deepmind-media/gemini/gemini_v2_5_report.pdf
https://arxiv.org/abs/2501.12948
https://doi.org/10.1038/s41586-025-09422-z
https://doi.org/10.1038/s41586-025-09422-z
https://openreview.net/forum?id=ZG3RaNIsO8
https://aclanthology.org/2025.coling-main.357/
https://aclanthology.org/2025.coling-main.357/
https://openreview.net/forum?id=4BfaPHfhJ0

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts. arXiv:2401.04088, 2024.

Feihu Jin, Yifan Liu, and Ying Tan. Derivative-free optimization for low-rank adaptation in large
language models. IEEE/ACM Trans. Audio, Speech and Lang. Proc., 32:4607–4616, October
2024. ISSN 2329-9290. doi: 10.1109/TASLP.2024.3477330. URL https://doi.org/10.
1109/TASLP.2024.3477330.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Ehsan Latif and Xiaoming Zhai. Fine-tuning chatgpt for automatic scoring. Computers and Edu-
cation: Artificial Intelligence, 6:100210, 2024. ISSN 2666-920X. doi: https://doi.org/10.1016/
j.caeai.2024.100210. URL https://www.sciencedirect.com/science/article/
pii/S2666920X24000110.

Joel Lehman, Jay Chen, Jeff Clune, and Kenneth O. Stanley. Es is more than just a traditional
finite-difference approximator. In Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO ’18, pp. 450–457, New York, NY, USA, 2018. Association for Computing
Machinery. ISBN 9781450356183. doi: 10.1145/3205455.3205474. URL https://doi.
org/10.1145/3205455.3205474.

Joel Lehman, Jonathan Gordon, Shawn Jain, Kamal Ndousse, Cathy Yeh, and Kenneth O. Stanley.
Evolution Through Large Models, pp. 331–366. Springer Nature Singapore, Singapore, 2024.
ISBN 978-981-99-3814-8. doi: 10.1007/978-981-99-3814-8 11. URL https://doi.org/
10.1007/978-981-99-3814-8_11.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report.
arXiv:2412.19437, 2024.

Yong Liu, Zirui Zhu, Chaoyu Gong, Minhao Cheng, Cho-Jui Hsieh, and Yang You. Sparse meZO:
Less parameters for better performance in zeroth-order LLM fine-tuning, 2025. URL https:
//openreview.net/forum?id=4Kw4KAoVnx.

Matyáš Lorenc and Roman Neruda. Utilizing evolution strategies to train transformers in reinforce-
ment learning. arXiv:2501.13883, 2025. URL https://arxiv.org/abs/2501.13883.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen,
and Sanjeev Arora. Fine-tuning language models with just forward passes. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 53038–53075. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/a627810151be4d13f907ac898ff7e948-Paper-Conference.pdf.

Elliot Meyerson, Mark J. Nelson, Herbie Bradley, Adam Gaier, Arash Moradi, Amy K. Hoover, and
Joel Lehman. Language model crossover: Variation through few-shot prompting. ACM Trans.
Evol. Learn. Optim., 4(4), November 2024. doi: 10.1145/3694791. URL https://doi.org/
10.1145/3694791.

Tim Mucci and Cole Stryker. What is artificial superintelligence?, 2023. URL https://www.
ibm.com/think/topics/artificial-superintelligence.

Alexander Novikov, Ngân Vũ, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt
Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco J. R. Ruiz, Abbas Mehrabian,
M. Pawan Kumar, Abigail See, Swarat Chaudhuri, George Holland, Alex Davies, Sebastian

12

https://doi.org/10.1109/TASLP.2024.3477330
https://doi.org/10.1109/TASLP.2024.3477330
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://www.sciencedirect.com/science/article/pii/S2666920X24000110
https://www.sciencedirect.com/science/article/pii/S2666920X24000110
https://doi.org/10.1145/3205455.3205474
https://doi.org/10.1145/3205455.3205474
https://doi.org/10.1007/978-981-99-3814-8_11
https://doi.org/10.1007/978-981-99-3814-8_11
https://openreview.net/forum?id=4Kw4KAoVnx
https://openreview.net/forum?id=4Kw4KAoVnx
https://arxiv.org/abs/2501.13883
https://proceedings.neurips.cc/paper_files/paper/2023/file/a627810151be4d13f907ac898ff7e948-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a627810151be4d13f907ac898ff7e948-Paper-Conference.pdf
https://doi.org/10.1145/3694791
https://doi.org/10.1145/3694791
https://www.ibm.com/think/topics/artificial-superintelligence
https://www.ibm.com/think/topics/artificial-superintelligence

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Nowozin, Pushmeet Kohli, and Matej Balog. AlphaEvolve: A coding agent for scientific and
algorithmic discovery. arXiv:2506.13131, 2025. URL https://arxiv.org/abs/2506.
13131.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback. In Pro-
ceedings of the 36th International Conference on Neural Information Processing Systems, NIPS
’22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

Jiayi Pan, Junjie Zhang, Xingyao Wang, Lifan Yuan, Hao Peng, and Alane Suhr. Tinyzero.
https://github.com/Jiayi-Pan/TinyZero, 2025. Accessed: 2025-01-24.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y. Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for ex-
ploration. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=ByBAl2eAZ.

Xin Qiu and Risto Miikkulainen. Semantic density: Uncertainty quantification for large language
models through confidence measurement in semantic space. In Proceedings of the 38th Confer-
ence on Neural Information Processing Systems, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: your language model is secretly a reward model.
In Proceedings of the 37th International Conference on Neural Information Processing Systems,
NIPS ’23, Red Hook, NY, USA, 2023. Curran Associates Inc.

I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biolo-
gischen Evolution. Problemata (Stuttgart). Frommann-Holzboog, 1973. ISBN 9783772803741.
URL https://books.google.com/books?id=-WAQAQAAMAAJ.

Sebastian Risi and Kenneth O. Stanley. Deep neuroevolution of recurrent and discrete world
models. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
’19, pp. 456–462, New York, NY, USA, 2019. Association for Computing Machinery. ISBN
9781450361118. doi: 10.1145/3321707.3321817. URL https://doi.org/10.1145/
3321707.3321817.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M. Pawan Kumar, Emilien Dupont, Francisco J. R. Ruiz, Jordan S. Ellenberg, Pengming Wang,
Omar Fawzi, Pushmeet Kohli, and Alhussein Fawzi. Mathematical discoveries from pro-
gram search with large language models. Nature, 625(7995):468–475, 2024. doi: 10.1038/
s41586-023-06924-6. URL https://doi.org/10.1038/s41586-023-06924-6.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov,
Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan
Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas
Usunier, Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for
code. arXiv:2308.12950, 2024.

Thomas Rückstieß, Martin Felder, and Jürgen Schmidhuber. State-dependent exploration for pol-
icy gradient methods. In Walter Daelemans, Bart Goethals, and Katharina Morik (eds.), Ma-
chine Learning and Knowledge Discovery in Databases, pp. 234–249, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg. ISBN 978-3-540-87481-2.

Thomas Rückstieß, Frank Sehnke, Tom Schaul, Daan Wierstra, Yi Sun, and Jürgen Schmidhuber.
Exploring parameter space in reinforcement learning. Paladyn, 1(1):14–24, 2010. doi: 10.2478/
s13230-010-0002-4. URL https://doi.org/10.2478/s13230-010-0002-4.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Proceedings of the 30th International Conference on
Neural Information Processing Systems, NIPS’16, pp. 2234–2242, Red Hook, NY, USA, 2016.
Curran Associates Inc. ISBN 9781510838819.

13

https://arxiv.org/abs/2506.13131
https://arxiv.org/abs/2506.13131
https://openreview.net/forum?id=ByBAl2eAZ
https://openreview.net/forum?id=ByBAl2eAZ
https://books.google.com/books?id=-WAQAQAAMAAJ
https://doi.org/10.1145/3321707.3321817
https://doi.org/10.1145/3321707.3321817
https://doi.org/10.1038/s41586-023-06924-6
https://doi.org/10.2478/s13230-010-0002-4

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies
as a scalable alternative to reinforcement learning. arXiv:1703.03864, 2017. URL https:
//arxiv.org/abs/1703.03864.

Vicente Ivan Sanchez Carmona, Shanshan Jiang, and Bin Dong. How well can a genetic algo-
rithm fine-tune transformer encoders? a first approach. In Shabnam Tafreshi, Arjun Akula, João
Sedoc, Aleksandr Drozd, Anna Rogers, and Anna Rumshisky (eds.), Proceedings of the Fifth
Workshop on Insights from Negative Results in NLP, pp. 25–33, Mexico City, Mexico, June
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.insights-1.4. URL
https://aclanthology.org/2024.insights-1.4/.

John Schulman. Approximating kl divergence, 2020. URL http://joschu. net/blog/kl-approx. html,
2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv:1707.06347, 2017. URL https://arxiv.org/abs/1707.
06347.

Hans-Paul Schwefel. Numerische Optimierung von Computermodellen mittels der Evo-
lutionsstrategie, volume 26. 01 1977. ISBN 9783764308766. doi: 10.1007/978-3-0348-5927-1.

Frank Sehnke, Christian Osendorfer, Thomas Rückstieß, Alex Graves, Jan Peters, and Jürgen
Schmidhuber. Parameter-exploring policy gradients. Neural Networks, 23(4):551–559, 2010.
ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.2009.12.004. URL https://www.
sciencedirect.com/science/article/pii/S0893608009003220. The 18th In-
ternational Conference on Artificial Neural Networks, ICANN 2008.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models. arXiv:2402.03300, 2024. URL https:
//arxiv.org/abs/2402.03300.

Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres, Ellery Wulczyn, Le Hou, Kevin Clark,
Stephen Pfohl, Heather Cole-Lewis, Darlene Neal, Mike Schaekermann, Amy Wang, Mohamed
Amin, Sami Lachgar, Philip Mansfield, Sushant Prakash, Bradley Green, Ewa Dominowska,
Blaise Aguera y Arcas, Nenad Tomasev, Yun Liu, Renee Wong, Christopher Semturs, S. Sara
Mahdavi, Joelle Barral, Dale Webster, Greg S. Corrado, Yossi Matias, Shekoofeh Azizi, Alan
Karthikesalingam, and Vivek Natarajan. Towards expert-level medical question answering with
large language models. arXiv:2305.09617, 2023.

Mingyang Song, Zhaochen Su, Xiaoye Qu, Jiawei Zhou, and Yu Cheng. PRMBench: A fine-
grained and challenging benchmark for process-level reward models. In Wanxiang Che, Joyce
Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
25299–25346, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN
979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1230. URL https://aclanthology.
org/2025.acl-long.1230/.

J.C. Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient approx-
imation. IEEE Transactions on Automatic Control, 37(3):332–341, 1992. doi: 10.1109/9.119632.

Saksham Sahai Srivastava and Vaneet Aggarwal. A technical survey of reinforcement learning
techniques for large language models. arXiv:2507.04136, 2025. URL https://arxiv.org/
abs/2507.04136.

Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O. Stanley, and
Jeff Clune. Deep neuroevolution: Genetic algorithms are a competitive alternative for training
deep neural networks for reinforcement learning. arXiv:1712.06567, 2017. URL https://
api.semanticscholar.org/CorpusID:5044808.

Tianxiang Sun, Zhengfu He, Hong Qian, Yunhua Zhou, Xuanjing Huang, and Xipeng Qiu. BBTv2:
Towards a gradient-free future with large language models. In Yoav Goldberg, Zornitsa Kozareva,

14

https://arxiv.org/abs/1703.03864
https://arxiv.org/abs/1703.03864
https://aclanthology.org/2024.insights-1.4/
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://www.sciencedirect.com/science/article/pii/S0893608009003220
https://www.sciencedirect.com/science/article/pii/S0893608009003220
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://aclanthology.org/2025.acl-long.1230/
https://aclanthology.org/2025.acl-long.1230/
https://arxiv.org/abs/2507.04136
https://arxiv.org/abs/2507.04136
https://api.semanticscholar.org/CorpusID:5044808
https://api.semanticscholar.org/CorpusID:5044808

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

and Yue Zhang (eds.), Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing, pp. 3916–3930, Abu Dhabi, United Arab Emirates, December 2022a.
Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.259. URL
https://aclanthology.org/2022.emnlp-main.259/.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. Black-box tuning for
language-model-as-a-service. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepes-
vari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Ma-
chine Learning, volume 162 of Proceedings of Machine Learning Research, pp. 20841–20855.
PMLR, 17–23 Jul 2022b. URL https://proceedings.mlr.press/v162/sun22e.
html.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, 2nd edition, 2018.

Orlando Grabiel Toledano-López, Julio Madera, Hector González, Alfredo Simón-Cuevas, Thomas
Demeester, and Erik Mannens. Fine-tuning mt5-based transformer via cma-es for sentiment
analysis. In Manuel Montes y Gómez, Julio Gonzalo, Francisco Rangel, Marco Casavantes,
Miguel Ángel Álvare Carmona, Gemma Bel Enguix, Hugo Jair Escalante, Larissa A. de Fre-
itas, Antonio Miranda-Escalada, Francisco J. Rodrı́guez-Sánchez, Aiala Rosá, Marco Anto-
nio Sobrevilla Cabezudo, Mariona Taulé, and Rafael Valencia-Garcı́a (eds.), Proceedings of the
Iberian Languages Evaluation Forum (IberLEF 2022) co-located with the Conference of the
Spanish Society for Natural Language Processing (SEPLN 2022), A Coruña, Spain, Septem-
ber 20, 2022, volume 3202 of CEUR Workshop Proceedings. CEUR-WS.org, 2022. URL
http://ceur-ws.org/Vol-3202/restmex-paper12.pdf.

Hugo Touvron et al. Llama 2: Open foundation and fine-tuned chat models. arXiv:2307.09288,
2023.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Anto-
nia Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-
and outcome-based feedback. arXiv:2211.14275, 2022. URL https://arxiv.org/abs/
2211.14275.

Anirudh Vemula, Wen Sun, and J. Andrew Bagnell. Contrasting exploration in parameter and action
space: A zeroth order optimization perspective. In Proceedings of 22nd International Conference
on Artificial Intelligence and Statistics (AISTATS ’19), March 2019.

Chao Wang, Jiaxuan Zhao, Licheng Jiao, Lingling Li, Fang Liu, and Shuyuan Yang. When large lan-
guage models meet evolutionary algorithms: Potential enhancements and challenges. Research, 8:
0646, 2025. doi: 10.34133/research.0646. URL https://spj.science.org/doi/abs/
10.34133/research.0646.

Daan Wierstra, Tom Schaul, Jan Peters, and Juergen Schmidhuber. Natural evolution strategies.
In 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational
Intelligence), pp. 3381–3387, 2008. doi: 10.1109/CEC.2008.4631255.

Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and JÃ¼rgen Schmidhuber.
Natural evolution strategies. Journal of Machine Learning Research, 15(27):949–980, 2014. URL
http://jmlr.org/papers/v15/wierstra14a.html.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebastian Gehrmann, Prab-
hanjan Kambadur, David Rosenberg, and Gideon Mann. Bloomberggpt: A large language model
for finance. arXiv:2303.17564, 2023.

Xingyu Wu, Sheng-Hao Wu, Jibin Wu, Liang Feng, and Kay Chen Tan. Evolutionary computation
in the era of large language model: Survey and roadmap. IEEE Transactions on Evolutionary
Computation, 29(2):534–554, 2025. doi: 10.1109/TEVC.2024.3506731.

An Yang, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoyan Huang, Jiandong
Jiang, Jianhong Tu, Jianwei Zhang, Jingren Zhou, et al. Qwen2. 5-1m technical report.
arXiv:2501.15383, 2025.

15

https://aclanthology.org/2022.emnlp-main.259/
https://proceedings.mlr.press/v162/sun22e.html
https://proceedings.mlr.press/v162/sun22e.html
http://ceur-ws.org/Vol-3202/restmex-paper12.pdf
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2211.14275
https://spj.science.org/doi/abs/10.34133/research.0646
https://spj.science.org/doi/abs/10.34133/research.0646
http://jmlr.org/papers/v15/wierstra14a.html

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Xingwen Zhang, Jeff Clune, and Kenneth O. Stanley. On the relationship between the openai
evolution strategy and stochastic gradient descent. arXiv:1712.06564, 2017. URL https:
//arxiv.org/abs/1712.06564.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
reasoning. arXiv:2501.07301, 2025. URL https://arxiv.org/abs/2501.07301.

Jiangjiang Zhao, Zhuoran Wang, and Fangchun Yang. Genetic prompt search via exploiting lan-
guage model probabilities. In Edith Elkind (ed.), Proceedings of the Thirty-Second International
Joint Conference on Artificial Intelligence, IJCAI-23, pp. 5296–5305. International Joint Con-
ferences on Artificial Intelligence Organization, 8 2023. doi: 10.24963/ijcai.2023/588. URL
https://doi.org/10.24963/ijcai.2023/588. Main Track.

Han Zhong, Zikang Shan, Guhao Feng, Wei Xiong, Xinle Cheng, Li Zhao, Di He, Jiang Bian,
and Liwei Wang. DPO meets PPO: Reinforced token optimization for RLHF. In Forty-second
International Conference on Machine Learning, 2025. URL https://openreview.net/
forum?id=IfWKVF6LfY.

16

https://arxiv.org/abs/1712.06564
https://arxiv.org/abs/1712.06564
https://arxiv.org/abs/2501.07301
https://doi.org/10.24963/ijcai.2023/588
https://openreview.net/forum?id=IfWKVF6LfY
https://openreview.net/forum?id=IfWKVF6LfY

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 EXPERIMENTAL SETUP

Experimental setup for the Countdown experiments. Representative models from the Qwen2.5
family (0.5B–7B) and the LLaMA3 family (1B–8B) were fine-tuned for this task. For the PPO
experiments, a grid search was first performed around common hyperparameter settings and the
best-performing values used (Table 3). For the GRPO experiments, a grid search was performed
around the settings of Pan et al. (2025) and the best-performing values used. GRPO experiments
were run with two different group sizes: N = 8, following the common practice in GRPO training
for the Countdown task, and N = 30, aligning with the population size in ES. For all the ES, GRPO
and PPO, the total number of sample evaluations was the same. The ES population size was N = 30,
noise scale σ = 0.001, and learning rate α = 5×10−4 across all experiments. To evaluate accuracy,
a set of 200 samples were used during training, and a different set of 2000 samples during testing.
For ES, results were reported on the test set after training for 500 iterations. For RL, the training
was stopped after the same total number of sample evaluations as in the ES runs. An example of the
prompt and the response is provided in Appendix A.2.

Method Model (1e−3, 1e−6) (1e−3, 1e−5) (5e−3, 1e−6) (5e−3, 1e−5)

PPO

Qwen-0.5B-Instruct ✓
Qwen-1.5B-Instruct ✓
Qwen-3B-Instruct ✓
Qwen-7B-Instruct ✓
LLaMA-1B-Instruct ✓
LLaMA-3B-Instruct ✓
LLaMA-8B-Instruct ✓

GRPO

Qwen-0.5B-Instruct ✓
Qwen-1.5B-Instruct ✓
Qwen-3B-Instruct ✓
Qwen-7B-Instruct ✓
LLaMA-1B-Instruct ✓
LLaMA-3B-Instruct ✓
LLaMA-8B-Instruct ✓

Table 3: Hyperparameter Sweep across Models under PPO and GRPO. Each pair (·, ·) denotes (KL-
divergence penalty coefficient β, learning rate α); the label ’✓’ indicates the best hyperparameter
setting for each model-method combination.

Experimental setup for the Conciseness experiments. In each experiment, Qwen-2.5-7B-
Instruct (Yang et al., 2025) was fine-tuned using both ES and GRPO and evaluated using a held-out
evaluation set. Each run was repeated four times, using a different random seed each time. For each
GRPO experiment, the group size N = 30, and learning rate α = 5× 10−6. Ten log-spaced values
from 0.01 to 1.0 were evaluated for the the KL-divergence penalty coefficient β, as well as β = 0.0.
Appendix A.3 presents additional experiments with varying α and β values. For ES, the population
size N = 30, ensuring that GRPO and ES generated the same number of responses per prompt,
resulting in the same training exposure. Models were fine-tuned with σ = {0.0005, 0.001, 0.0015},
with a learning rate α = σ

2 . Both GRPO and ES experiments were run for 1, 000 iterations, and
a checkpoint saved every 200 iterations. Table 4 shows the dataset of prompts and verifiable solu-
tions used during fine-tuning; note that it consists of only two examples. Similarly, Table 5 lists the
prompts and verifiable solutions used in evaluating each fine-tuned model.

A.2 EXAMPLES OF COUNTDOWN TASK OUTPUTS

Figure A.2 shows an example of the Qwen2.5-3B model’s output on the Countdown task after 400
ES iterations. In order to improve accuracy, the model learned to adjust its formulas by comparing
the generated answer with the correct one, and to verify its own answers for correctness.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Prompt Verifiable Solution
Solve: 3 + 5 = 8

If all birds can fly and penguins are birds, can penguins fly No

Table 4: Prompts and verifiable solutions used in fine-tuning the models for conciseness. Two
examples is enough to achieve this goal.

Prompt Verifiable Solution
What is the capital of France? Paris

Calculate: 12× 7 = 84
Is the statement “All cats are mammals” true or false? True

What comes next in the sequence: 2, 4, 6, 8, ? 10
Translate “Hello” to Spanish: Hola

What is 15% of 200? 30
Name one primary color: Red

How many days are in a week? 7

Table 5: Prompts and verifiable solutions used to evaluate the fine-tuned models. More examples
are necessary than during fine-tuning to make the evaluation reliable.

Iteration 400

[1] Input:
You are a helpful assistant. You first think about the reasoning process in your mind and then
provide the user with the answer. Using the numbers [28 3 4 52], create an equation that equals
44. You can use basic arithmetic operations (+, -, *, /) and each number can only be used
once. Show your work in <think> . . . </think> tags. And return the final answer in
<answer> . . . </answer> tags, for example <answer> (1 + 2) / 3 </answer>.

[1] Response:

<think> First, let’s consider all possible combinations of the numbers 49, 41, and 73 using
basic arithmetic operations. We need to use each number exactly once and combine them to get
17.
1. Start with simple addition and subtraction: - 49 + 41 - 73 = 80 - 73 = 7 (too high) - 49 - 41 +
73 = 8 + 73 = 81 (too high) - 73 - 49 - 41 = 24 - 41 = -17 (too low)
2. Try multiplication and division: - (49 * 41) / 73 = 2029 / 73 ≈ 27.83 (not close to 17) - (73
* 41) / 49 = 3013 / 49 ≈ 61.47 (too high) - (49 * 73) / 41 = 3637 / 41 ≈ 88.80 (too high) - (41
* 73) / 49 = 3013 / 49 ≈ 61.47 (same as above)
3. Check different orders: - 73 - (49 + 41) = 73 - 90 = -17 (too low) - 49 - (73 - 41) = 49 - 32 =
17 (this looks promising)
So, the equation 49 - (73 - 41) equals 17. Let’s verify it: - Calculate inside the parentheses first:
73 - 41 = 32 - Then subtract from 49: 49 - 32 = 17
This satisfies our requirement. </think> <answer> 49 - (73 - 41) </answer>
Reward: 1.1000 (Format: 1.0000, Answer: 1.0000)

Figure 2: An example of a countdown task interaction.

A.3 EXTENDED CONCISENESS EXPERIMENTS

In this section, the conciseness experiments are extended to investigate the impact of different learn-
ing rates on GRPO training.

GRPO with different learning rates. Further GRPO experiments were run over four seeds with
β = {0, 0.01, 0.1, 1.0}, varying the learning rate α = {2× 10−6, 3× 10−6, 4× 10−6, 5× 10−6}. A
total of 20 responses were sampled per evaluation prompt. Figure 3a shows the mean reward and KL

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
KL Divergence

0.65

0.70

0.75

0.80

0.85

R
ew

ar
d

Qwen2.5+GRPO (β= 1.0, α=2× 10−6)

Qwen2.5+GRPO (β= 1.0, α=3× 10−6)

Qwen2.5+GRPO (β= 1.0, α=4× 10−6)

Qwen2.5+GRPO (β= 1.0), α=5× 10−6

Qwen2.5+GRPO (β= 0.1, α=2× 10−6)

Qwen2.5+GRPO (β= 0.0, α=2× 10−6)

Qwen2.5+GRPO (β= 0.1, α=3× 10−6)

Qwen2.5+GRPO (β= 0.1, α=4× 10−6)

Qwen2.5+GRPO (β= 0.01, α=3× 10−6)

Qwen2.5+GRPO (β= 0.01, α=2× 10−6)

Qwen2.5+GRPO (β= 0.01, α=4× 10−6)

Qwen2.5+GRPO (β= 0.0, α=3× 10−6)

Qwen2.5+GRPO (β= 0.1), α=5× 10−6

Qwen2.5+GRPO (β= 0.01, α=5× 10−6)

Qwen2.5+GRPO (β= 0.0, α=5× 10−6)

Qwen2.5+GRPO (β= 0.0, α=4× 10−6)

(a) GRPO models results over various learning rates.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
KL Divergence

0.65

0.70

0.75

0.80

0.85

0.90

R
ew

ar
d Qwen2.5+ES (σ= 0.0005)

Qwen2.5+ES (σ= 0.001)
Qwen2.5+ES (σ= 0.0015)

Qwen2.5+GRPO (β= 1.0, α=2× 10−6)

Qwen2.5+GRPO (β= 0.1, α=2× 10−6)

Qwen2.5+GRPO (β= 0.0, α=2× 10−6)

Qwen2.5+GRPO (β= 0.0, α=3× 10−6)

Qwen2.5+GRPO (β= 0.01, α=5× 10−6)

Qwen2.5+GRPO (β= 0.0, α=4× 10−6)

Qwen2.5+GRPO (β= 0.0, α=5× 10−6)

(b) ES and GRPO Pareto fronts.

Figure 3: GRPO behavior with different learning rates. (a) GRPO models trained using different
learning rates and β values. Both conciseness reward and KL divergence increase with higher learn-
ing rates. (b) The ES Pareto front (blue line, top) plotted with the GRPO Pareto front (black line,
bottom) over different model learning parameters. ES dominates GRPO across the whole range.

divergence of each fine-tuned model. As the learning rate increases, both mean reward and mean
KL divergence increase. The best models with respect to reward are trained using 5 × 10−6 and
β = {0.0, 0.01}, obtaining rewards greater than 0.85. Figure 3b further displays the GRPO Pareto
front (black line, bottom) across these learning rates, comparing it with the ES Pareto front (blue
line, top). The majority of Pareto optimal models across these learning rates obtain a mean reward
of less than 0.8 and a KL divergence of less than 0.4. The ES Pareto front dominates that of GRPO
over different learning rates and β values.

Next, the reward distribution for each α and β value for GRPO was compared with that of ES,
starting with learning rates 2 × 10−6 and 3 × 10−6. Figures 4a and Figure 4b show that all GRPO
models stay close to the Qwen2.5-7B-Instruct base model reward distribution, despite the variation
in β. In contrast, ES shifts the reward distribution to the right with a density peak around 1.0,
i.e. towards higher rewards. The learning rate was then further increased to 4 × 10−6 (Figure 4c).
As a result, for β = 0.0 and β = 0.01, GRPO shifts the reward distribution to the right towards
higher rewards. However, they are still lower than those of ES. As the learning rate is increased
further to 5 × 10−6 (Figure 4d), GRPO is sufficiently able to optimize the reward: with β = 0.0
and β = 0.01, it peaks around 1.0. Thus, high learning rate combined with low β is important for
GRPO to optimize the reward. However, as was discussed before, such a setting often breaks the
performance of the model.

A.4 TRAINING CURVES AND ACCURACY IMPROVEMENT OF ES AND RL ON THE
COUNTDOWN TASK

As shown in Figure 6, ES consistently outperformed RL across all tested models throughout training.
On smaller models such as Qwen2.5-0.5B and Llama-3.2-1B, RL showed almost no improvement,
whereas ES steadily increased accuracy. On mid-sized models like Qwen2.5-1.5B, Qwen2.5-3B and
Llama-3.2-3B, ES achieved substantial gains, reaching accuracy levels that RL never approached
even in extended training. On larger models such as Qwen2.5-7B and Llama-3.1-8B, RL improved
more than in the smaller models, but ES still maintained a clear and consistent advantage, achieving
the highest accuracy throughout. In addition, as shown in Figure 5, we compute the relative improve-
ments of PPO, GRPO, and ES over their respective base models across different model families. ES
delivers the consistently largest improvements in all cases.

A.5 PARAMETER MAGNITUDE SHIFTS BY EVOLUTIONARY FINE-TUNING

This section characterizes how parameter magnitudes changed in ES fine-tuning in the countdown
and conciseness experiments. Specifically, Figures 7 and 8, left column, show histograms of the
absolute parameter magnitude shifts ∆ before and after finetuning Llama and Qwen models, overlaid
with random walk, on the Countdown task reported in Table 1. The right column in these figures
shows the difference between ∆ and the random walk.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Reward

0

2

4

6

D
en

si
ty

Qwen2.5+GRPO (β= 0.0, α=2× 10−6)

Qwen2.5+GRPO (β= 0.01, α=2× 10−6)

Qwen2.5+GRPO (β= 0.1, α=2× 10−6)

Qwen2.5+GRPO (β= 1.0, α=2× 10−6)
Qwen2.5+ES (σ= 0.0005)
Qwen2.5+ES (σ= 0.001)
Qwen2.5+ES (σ= 0.0015)
Qwen2.5

(a) Reward distribution with α = 2× 10−6.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Reward

0

2

4

6

D
en

si
ty

Qwen2.5+GRPO (β= 0.0, α=3× 10−6)

Qwen2.5+GRPO (β= 0.01, α=3× 10−6)

Qwen2.5+GRPO (β= 0.1, α=3× 10−6)

Qwen2.5+GRPO (β= 1.0, α=3× 10−6)
Qwen2.5+ES (σ= 0.0005)
Qwen2.5+ES (σ= 0.001)
Qwen2.5+ES (σ= 0.0015)
Qwen2.5

(b) Reward distribution with α = 3× 10−6.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Reward

0

2

4

6

D
en

si
ty

Qwen2.5+GRPO (β= 0.0, α=4× 10−6)

Qwen2.5+GRPO (β= 0.01, α=4× 10−6)

Qwen2.5+GRPO (β= 0.1, α=4× 10−6)

Qwen2.5+GRPO (β= 1.0, α=4× 10−6)
Qwen2.5+ES (σ= 0.0005)
Qwen2.5+ES (σ= 0.001)
Qwen2.5+ES (σ= 0.0015)
Qwen2.5

(c) Reward distribution with α = 4× 10−6.

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Reward

0

2

4

6

D
en

si
ty

Qwen2.5+GRPO (β= 0.0, α=5× 10−6)

Qwen2.5+GRPO (β= 0.01, α=5× 10−6)

Qwen2.5+GRPO (β= 0.1, α=5× 10−6)

Qwen2.5+GRPO (β= 1.0, α=5× 10−6)
Qwen2.5+ES (σ= 0.0005)
Qwen2.5+ES (σ= 0.001)
Qwen2.5+ES (σ= 0.0015)
Qwen2.5

(d) Reward distribution with α = 5× 10−6.

Figure 4: Reward distributions in fine-tuning for conciseness with different learning rates α =
{2 × 10−6, 3 × 10−6, 4 × 10−6, 5 × 10−6} and β = {0.0, 0.01, 0.1, 1.0} compared to ES on the
Qwen2.5-7B-Instruct base model. Whereas GRPO distribution is similar to the base model, ES
shifts it to the right, i.e. higher rewards. Higher rewards can only be achieved with GRPO with high
learning rates and low β, which setting often breaks to model’s performance.

Lla
ma-3

.1-
8B

Lla
ma-3

.2-
1B

Lla
ma-3

.2-
3B

Qwen
2.5

-0.
5B

Qwen
2.5

-1.
5B

Qwen
2.5

-3B

Qwen
2.5

-7B
0

10

20

30

40

50

Ac
cu

ra
cy

 Im
pr

ov
em

en
t (

%
)

0.1% 1.1%0.2% 0.4%

ES
PPO
GRPO(8)
GRPO(30)

Figure 5: Accuracy Improvement over Base Models with ES vs RL across Model Families. ES
results in consistently largest improvements in all cases.

For most models, ∆ deviates very little from random walk. This is a counterintuitive result since
fine-tuning actually resulted in a significant performance boost. A closer inspection reveals that
most of the deviation was concentrated around zero. A likely explanation is that there are precision
issues around zero, particularly with small bin sizes, which may lead to such deviations.

More significantly, a systematic deviation from the random walk was observed in conciseness fine-
tuning of the largest model, Qwen2.5-7B-Instruct (Figure 9). The distribution shifts toward abundant
small magnitude edits, suggesting that small parameter tweaks may be most significant in influenc-
ing output behavior. This result reinforces observations in prior studies (e.g. Liu et al., 2025). A
possible explanation is that large models encode functionality in a more redundandant manner, and
therefore minor tweaks are sufficient to achieve fine-tuning objectives. In fact, the changes are nearly
indistinguishable from random walk in Figures 7 and 8 likely because they are benevolent wrt. the
fine-tuning objective. A more thorough investigation of these hypotheses is a most interesting di-
rection of future work, potentially resulting in a better understanding of fine-tuning and information
processing principles in LLMs in general.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0.5 1.0 1.5 2.0 2.5 3.0
1e6

6

8

10

12

14

16

18

20

Ac
cu

ra
cy

 (%
)

Llama-3.2-1B
ES
PPO
GRPO(8)
GRPO(30)

0.5 1.0 1.5 2.0 2.5 3.0
1e6

20

25

30

35

40

45

50

55

Ac
cu

ra
cy

 (%
)

Llama-3.2-3B
ES
PPO
GRPO(8)
GRPO(30)

0.5 1.0 1.5 2.0 2.5 3.0
Number of Sample Evaluations 1e6

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

Llama-3.1-8B
ES
PPO
GRPO(8)
GRPO(30)

0.5 1.0 1.5 2.0 2.5 3.0
1e6

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Qwen2.5-0.5B
ES
PPO
GRPO(8)
GRPO(30)

0.5 1.0 1.5 2.0 2.5 3.0
Number of Sample Evaluations 1e6

0

10

20

30

40

50

60

Qwen2.5-3B
ES
PPO
GRPO(8)
GRPO(30)

0.5 1.0 1.5 2.0 2.5 3.0
1e6

0

5

10

15

20

25

30

35

40

Qwen2.5-1.5B
ES
PPO
GRPO(8)
GRPO(30)

0.5 1.0 1.5 2.0 2.5 3.0
Number of Sample Evaluations 1e6

0

10

20

30

40

50

60

Qwen2.5-7B
ES
PPO
GRPO(8)
GRPO(30)

Figure 6: Training curves of ES and RL across two model families and six sizes in the countdown
task. ES fine-tuning results in significantly better performance in all cases. It is able to improve even
the smallest model where RL methods are ineffective. ES is also more sample efficient than RL: in
most cases, it only needs less than 20% of the training sample evaluations of RL to achieve similar
performance.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Lla
m
a-
3.
2-
3B

-In
st
ru
ct

Lla
m
a-
3.
2-
1B

-In
st
ru
ct

Lla
m
a-
3.
1-
8B

-In
st
ru
ct

Figure 7: Parameter magnitude shift histograms for the Countdown task in Llama models optimized
by ES. The changes are similar to those of a random walk, concentrated around zero, likely due to
numerical inaccuracies.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Qw
en

2.
5-
0.
5B

-In
st
ru
ct

Qw
en

2.
5-
1.
5B

-In
st
ru
ct

Qw
en

2.
5-
3B

-In
st
ru
ct

Qw
en

2.
5-
7B

-In
st
ru
ct

Figure 8: Parameter magnitude shift histograms for the Countdown task in Qwen models optimized
by ES. The results are consistent with those observed in Llama models.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

(a)

(b)

Figure 9: Parameter magnitude shift histograms in conciseness fine-tuning in Qwen2.5-7B-Instruct
model with ES. In this case, the model is large and the fine-tuning goals is different, revealing a
potentially significant pattern of primarily small changes. The hypothesis (to be analyzed more
thoroughly in future work) is that behavior is coded in large models in a redundant manner, making
it possible to achieve this fine-tuning objective through numerous small changes.

24

	Introduction
	Related Work
	Method
	Basic ES Algorithm
	Implementation Details

	Empirical Studies
	Performance in the Countdown Task
	Behavioral Differences between ES and RL in fine-tuning for conciseness

	Discussion and Future Work
	Conclusion
	Appendix
	Experimental Setup
	Examples of Countdown Task Outputs
	Extended Conciseness Experiments
	Training Curves and Accuracy Improvement of ES and RL on the Countdown Task
	Parameter Magnitude Shifts by Evolutionary fine-tuning

