
Under review as submission to TMLR

Analyzing Deep PAC-Bayesian Learning with Neural Tan-
gent Kernel: Convergence, Analytic Generalization Bound,
and Efficient Hyperparameter Selection

Anonymous authors
Paper under double-blind review

Abstract

PAC-Bayes is a well-established framework for analyzing generalization performance in ma-
chine learning models. This framework provides a bound on the expected population error
by considering the sum of training error and the divergence between posterior and prior
distributions. In addition to being a successful generalization bound analysis tool, the
PAC-Bayesian bound can also be incorporated into an objective function for training prob-
abilistic neural network,s which we refer to simply as Deep PAC-Bayesian Learning. Deep
PAC-Bayesian learning has been shown to achieve competitive expected test set error and
provide a tight generalization bound in practice at the same time through gradient descent
training. Despite its empirical success, theoretical analysis of deep PAC-Bayesian learning
for neural networks is rarely explored. To this end, this paper proposes a theoretical con-
vergence and generalization analysis for Deep PAC-Bayesian learning. For a deep and wide
probabilistic neural network, our analysis shows that PAC-Bayesian learning corresponds to
solving a kernel ridge regression when the probabilistic neural tangent kernel (PNTK) is used
as the kernel. We leverage this result to obtain an analytic and guaranteed PAC-Bayesian
generalization bound for the first time. Finally, drawing insight from our theoretical results,
we propose a proxy measure for efficient hyperparameter selection, which is proven to be
time-saving on various benchmarks. Our work not only provides a better understanding of
the theoretical underpinnings of Deep PAC-Bayesian learning, but also offers practical tools
for improving the training and generalization performance of these models.

1 Introduction

Deep learning has demonstrated powerful learning capability due to its over-parameterization structure, in
which various network architectures have been responsible for its significant leap in performance (LeCun
et al., 2015). However, deep neural networks often suffer from over-fitting and complex hyperparameters,
making the design of generalization guarantees a crucial research goal (Zhang et al., 2021). One recent
breakthrough in this area is the development of a learning framework called Deep PAC-Bayesian learning,
which trains a probabilistic neural network using an objective function based on PAC-Bayesian bounds
(Bégin et al., 2016; Dziugaite & Roy, 2017; Neyshabur et al., 2017b; Raginsky et al., 2017; Neyshabur et al.,
2017a; London, 2017; Smith & Le, 2017; Pérez-Ortiz et al., 2020; Guan & Lu, 2022). Deep PAC-Bayesian
learning provides a tight generalization bound while achieving competitive expected test set error (Ding
et al., 2022). Furthermore, this generalization bound can be computed from the training data, obviating the
need to split data into training, testing, and validation sets, which is highly applicable when working with
limited data (Pérez-Ortiz et al., 2020; Grünwald & Mehta, 2020).

The success of PAC-Bayesian learning has led to their widespread application in different deep neural network
architectures, including convolutional neural networks (Zhou et al., 2018; Pérez-Ortiz et al., 2020), binary
activated multilayer networks (Letarte et al., 2019), partially aggregated neural networks (Biggs & Guedj,
2020), and graph neural networks (Liao et al., 2020; Ju et al., 2023); different learning frameworks such
as meta-learning (Amit & Meir, 2018; Rothfuss et al., 2021; Flynn et al., 2022), adversarial training and

1

Under review as submission to TMLR

robustness Wang et al. (2022), contrastive unsupervised learning (Nozawa et al., 2020). These advancements
have enabled significant improvements in the generalization performance of deep neural networks, making
PAC-Bayesian learning an essential tool for training robust and reliable models.

The remarkable empirical success of PAC-Bayesian learning has generated growing interest in understanding
its theoretical properties. However, theoretical investigations have been largely limited to specific variants of
the technique, such as Entropy-SGD, which minimizes an objective indirectly by approximating stochastic
gradient ascent on the so-called local entropy (Dziugaite & Roy, 2018a), and differential privacy (Dziugaite
& Roy, 2018b). Other investigations have relied heavily on empirical exploration (Neyshabur et al., 2017a;
Dziugaite et al., 2020). To the best of our knowledge, there has been no systematic investigation into why
PAC-Bayesian learning is successful and why the PAC-Bayesian bound is tight on unseen data after training.
For example, it is still unclear when applying gradient descent to PAC-Bayesian learning:

Q1: How effective is gradient descent training on a training set?

Q2: How tight is the generalization bound after convergence on the unseen dataset?

These questions are particularly important because understanding the strengths and weaknesses of PAC-
Bayesian learning can help improve its theoretical foundations and practical applications. For instance,
answering the first question can shed light on the training dynamics and optimization challenges of PAC-
Bayesian learning, while answering the second question can provide insights into the generalization perfor-
mance of this learning framework.

Answering the questions posed earlier can be challenging due to the inherent non-convexity of optimization
in neural networks (Jain & Kar, 2017), the additional randomness introduced by probabilistic neural net-
works (Specht, 1990), and the challenges brought by the Kullback-Leibler divergence between posterior/prior
distribution pairs. However, recent advances in deep learning theory with over-parameterized settings offer
a promising approach to tackling these challenges. It has been shown that wide networks optimized with
gradient descent can achieve near-zero training error, and the neural tangent kernel (NTK) plays a critical
role in the training process. The NTK remains unchanged during gradient descent training (Jacot et al.,
2018), providing a guarantee for achieving a global minimum (Du et al., 2019; Allen-Zhu et al., 2019). In
the PAC-Bayesian framework, the NTK is calculated based on the gradient of the distribution parameters
of the weights, rather than the derivative of the weights themselves. We refer to this as the Probabilistic
NTK (PNTK), which we use to develop a convergence analysis for characterizing the optimization process of
PAC-Bayesian learning. Furthermore, we obtain an explicit solution for optimization analysis and formulate
the generalization bound of PAC-Bayesian learning after convergence for the first time.

We summarize our contributions as follows:

• We provide a detailed characterization of the gradient descent training process of the PAC-Bayesian
objective function and show that the final solution corresponds to kernel ridge regression with its
kernel being the PNTK.

• Based on the optimization solution, we derive an analytical and guaranteed PAC-Bayesian bound for
deep networks after training for the first time. Our bound is completely independent of computing
the distribution of the posterior, which differs from other PAC-Bayesian bounds that require the
distribution of the posterior.

• We design a training-free proxy based on our theoretical bound to select hyperparameters efficiently,
which is effective and time-saving. Our training-free proxy can help alleviate the computational
burden of hyperparameter selection, which is critical for practical applications of PAC-Bayesian
learning.

• Our technique of analyzing optimization and generalization of probabilistic neural networks through
over-parameterization has a wide range of applications, such as the Variational Auto-encoder
(Kingma & Welling, 2013; Rezende et al., 2014) and deep Bayesian networks (MacKay, 1992; Neal,
2012). We believe that our technique can provide the basis for the analysis of over-parameterized
probabilistic neural networks.

2

Under review as submission to TMLR

2 Related Work

PAC-Bayes Bound The Probably Approximately Correct (PAC) Bayes framework (McAllester, 1999a;b)
is a useful tool for providing a test performance (generalization) guarantee by incorporating knowledge
about the learning algorithm and probability distribution over a set of hypotheses. This framework has
been extended to the analysis of generalization bounds for probabilistic neural networks using the PAC-
Bayesian method (Langford & Caruana, 2002b). While the original PAC-Bayes theory only works with
bounded loss functions, Haddouche et al. (2021) expanded the PAC-Bayesian theory to learning problems
with unbounded loss functions. Furthermore, several improved PAC-Bayesian bounds suitable for different
scenarios have been introduced by Bégin et al. (2014; 2016). The flexibility and generalization properties of
the PAC-Bayes framework make it a popular tool for analyzing complex, non-convex, and overparameterized
optimization problems, particularly for over-parameterized neural networks (Guedj, 2019). In the context
of feedforward neural networks with ReLU activations, Neyshabur et al. (2017b) presented a generalization
bound based on the product of the spectral norm of the layers and the Frobenius norm of the weights. This
bound has been used as a benchmark for evaluating the generalization performance of various neural network
architectures and training methods.

PAC-Bayesian Learning. Obtaining a numerical bound on generalization is just as important as achiev-
ing a theoretical analysis for the generalization properties of deep learning. One method for computing an
error upper bound is by training a Bayesian neural network and using a refined PAC-Bayesian bound, as
introduced by Langford & Caruana (2002a). Building on this work, Neyshabur et al. (2017a) developed a
training objective function derived from a relaxed PAC-Bayesian bound to train deep neural networks.

In standard PAC-Bayes, the prior is often chosen to be a spherical Gaussian centered at the origin. However,
this approach might not be effective in cases where the KL divergence is unreasonably large due to a lack of
information about the data. To address this issue, a growing body of literature proposes to obtain localized
PAC-Bayes bounds via distribution-dependent priors informed by the data (Ambroladze et al., 2007; Negrea
et al., 2019; Dziugaite et al., 2020; Perez-Ortiz et al., 2021). Additionally, Dziugaite & Roy (2018b); Tinsi
& Dalalyan (2022) showed how a differentially private data-dependent prior can yield a valid PAC-Bayes
bound in situations where the data distribution is unknown.

Recently, researchers have been focused on providing PAC-Bayesian bounds for more complex and realistic
neural network architectures, such as convolutional neural networks (Zhou et al., 2018), binary activated
multilayer networks (Letarte et al., 2019), partially aggregated neural networks (Biggs & Guedj, 2020),
attention-based neural networks (Wang et al., 2022), and graph neural networks (Liao et al., 2020; Ju et al.,
2023). In this work, our goal is to demystify the success of deep PAC-Bayesian Learning by exploring the
role of the Probabilistic Neural Tangent Kernel (PNTK) in achieving a tight generalization bound.

3 Preliminary

Notation. In this paper, we use bold-faced letters for vectors and matrices (e.g., x and W), and non-
bold-faced letters for scalars (e.g., n and t). We use ∥ · ∥2 to denote the Euclidean norm of a vector and
the spectral norm of a matrix, while ∥ · ∥F denotes the Frobenius norm of a matrix. For a neural network,
we use σ(x) to denote the activation function, which applies an element-wise nonlinearity to its input. We
denote the set 1, 2, . . . , n as [n], and we use λ0(A) = λmin(A) to denote the least eigenvalue of matrix A.
Throughout the paper, we will also use other common notation, such as O(·) for asymptotic notation and
E[·] for the expected value of a random variable. We will define any additional notation as needed.

3.1 Deep probabilistic neural network

In PAC-Bayesian learning, we use probabilistic neural networks (PNNs) instead of deterministic networks.
In PNNs, the weights follow a certain distribution, and in this work, we use the Gaussian distribution. We
define an L-layer PNN f governed by the following recursive expression:

x(l) = 1√
m

σ
(
W(l)x(l−1)), 1 ≤ l ≤ L − 1; f = 1√

m
W(L)x(L−1), (1)

3

Under review as submission to TMLR

where m is width of hidden layers, x(0) = x ∈ Rd is the input with d being the input dimension, W(1) ∈ Rm×d

is the weight matrix at the first layer, W(l) ∈ Rm×m is the weight at the l-th layer for 2 ≤ l ≤ L − 1, and
W(L) ∈ Rm×1 is the weight at the output layer.

To ensure that the weights follow a Gaussian distribution during gradient descent training, we use the
re-parameterization trick (Kingma & Welling, 2013; Kingma et al., 2015):

W(l) = W(l)
µ + W(l)

σ ⊙ ξ(l), ξ(l) ∼ N (0, I), 1 ≤ l ≤ L, (2)

where ⊙ denotes the element-wide product operation. In this expression, for all 1 ≤ l ≤ L, ξ(l) share the
same size as their corresponding weight matrix or vector. The re-parameterization trick involves sampling
ξ(l) for 1 ≤ l ≤ L from a normal distribution N (0, I).

We randomly initialize the mean weights as follows: W(l)
µ ∼ N (0, c2

µ · I) for l ∈ [1, L]. Here, we omit the size
of the mean 0 and variance I, which is determined by the corresponding weight matrix. For the variance
weights, we use an absolute constant to initialize them, namely, W(l)

σ = c2
σ · 1, where 1 is a matrix or vector

with all elements equal to 1.

3.2 PAC-Bayes bound

Suppose we have a set of n i.i.d. samples S = {(xi, yi)}n
i=1 drawn from a non-degenerate distribution D. Let

H denote the hypothesis space and h(x) the prediction of hypothesis h ∈ H for input x. The generalization
error of classifier h with respect to D is denoted by RD(h) = E(x,y)∼D[ℓ(y, h(x))], where ℓ(·) is a given loss
function. The empirical error of classifier h with respect to S is denoted by RS(h) = 1

n

∑n
i=1 ℓ(yi, h(xi)).

In PAC-Bayes, the prior distribution Q(0) ∈ H represents the distribution over the hypothesis space H
before training, and the posterior distribution Q ∈ H represents the distribution of parameters after train-
ing. The expected population risk and empirical error are defined as RD(Q) = E(x,y)∼D,h∼Q[ℓ(y, h(x))] =
Eh∼Q[RD(h)] and RS(Q) = Eh∼Q[RS(h)], respectively. The PAC-Bayes theory (Langford & Seeger, 2001;
Seeger, 2002; Maurer, 2004) provides the following theorem:

Theorem 3.1. For any δ ∈ (0, 1], the following inequality holds uniformly for all posteriors distributions
Q ∈ H with a probability of at least 1 − δ,

kl
(
RS(Q)∥RD(Q)

)
≤

KL(Q∥Q(0)) + log 2
√

n
δ

n
, (3)

where KL(Q∥Q(0)) = EQ

[
ln Q

Q(0)

]
is the Kullback-Leibler (KL) divergence and kl(q∥q′) = q log(q

q′) + (1 −
q) log(1−q

1−q′) is the binary KL divergence.

Furthermore, by combining Pinsker’s inequality for binary KL divergence, kl(p̂∥p) ≥ (p − p̂)2/(2p), , where
p̂ < p, we can obtain the following bound:

RD(Q) − RS(Q) ≤

√
2RD(Q)

KL(Q∥Q(0)) + log 2
√

n
δ

n
. (4)

Equation (4) is a classical result. This result can be further combined with the inequality
√

ab ≤ 1
2 (λ̄a + b

λ̄
),

for all λ̄ > 0, which leads to a PAC-Bayes-λ bound in Theorem 3.2, as proposed by Thiemann et al. (2017):

Theorem 3.2. Let Q(0) ∈ H be some prior distribution over H. Then for any δ ∈ (0, 1], the following
inequality holds uniformly for all posteriors distributions Q ∈ H with a probability of at least 1 − δ

RD(Q) ≤ RS(Q)
1 − λ̄/2

+
KL(Q∥Q(0)) + log 2

√
n

δ

nλ̄(1 − λ̄/2)
. (5)

4

Under review as submission to TMLR

3.3 Deep PAC-Bayesian learning

In this work, we aim to use PAC-Bayes theory to design the training objective for PNNs, inspired by previous
work such as Catoni (2007); Rivasplata et al. (2019). Specifically, we choose Equation (5) as the training
objective, which is a PAC-Bayes bound that guarantees generalization error. It is worth noting that the
original interest of Theorem 3.2 in (Thiemann et al., 2017) was to allow the optimization of a quasiconvex
objective with respect to both λ̄ and Q. However, since our main goal is to study the optimization and
generalization properties of PNNs, we set λ̄ = 1 and omit the factor of two. This leads us to define the
objective function as:

L(Q) = RS(Q) + λ
KL(Q∥Q(0))

n
= Eξ

[
1
n

n∑
i=1

ℓ (yi, f (xi))
]

+ λ
KL(θ(t)∥θ(0))

n
, (6)

where λ is a hyperparameter introduced in a heuristic manner to make the method more flexible, θ is the
collection of all weights. To simplify the objective function, we ignore the constant term involving δ. We set
ℓ to be the squared loss in the training objective function, which has the advantage of providing an explicit
solution for the output function in the infinite-width limit. To train the PNN, we use the reparameterization
trick to update the mean and variance of the weight matrices and vectors. Specifically, the update rule for
W(l)

µ and W(l)
σ with 1 ≤ l ≤ L at iteration t is given by:

W(l)
µ (t + 1) = W(l)

µ (t) − η
∂L(Q)

∂W(l)
µ (t)

; W(l)
σ (t + 1) = W(l)

σ (t) − η
∂L(Q)

∂W(l)
σ (t)

, (7)

where η is the learning rate. In our theoretical analysis, we consider the gradient flow instead of gradient
descent, but the same results can be extended to the gradient descent case with a careful analysis.

4 Main Theoretical Results

In this section, Theorem 4.2 gives a precise characterization of how the objective function without KL
divergence decreases to zero. We then extend the convergence characterization to the full objective, and find
the final solution is a kernel ridge regression, as demonstrated by Theorem 4.3. As a consequence, we are
able to establish an analytic generalization bound through Theorem 4.4.

4.1 Optimization analysis

We begin by simplifying the analysis to focus on optimizing probabilistic neural networks of the form (1)
with the objective function RS(Q), neglecting the KL divergence term for now. We show that the results
obtained for this simplified setting can be extended to the target function with KL divergence in the next
section. In particular, the objective function can be expressed as follows:

RS(Q; t) = 1
2n

∥∥∥y − f̂(X; t)
∥∥∥2

2
, (8)

where f̂(t) ≜ Eξ[f(ξ; t)]. Given this premise, we start by establishing that, for a L-layer probabilistic neural
network of the form (1), the gradient flow of expected output function admits the following dynamics:

df̂(X; t)
dt

= ∂f̂(X; t)
∂θµ

∂θµ

∂t
+ ∂f̂(X; t)

∂θσ

∂θσ

∂t
= 1

n

(
y − f̂(X; t)

)
(Θµ(X, X; t) + Θσ(X, X; t)) , (9)

where θµ ≜ ({W(l)
µ }L

l=1), and θσ ≜ ({W(l)
σ }L

l=1) are collection of mean weights and variance weights. Fur-
thermore, Θµ(X, X; t) ∈ Rn×n and Θσ(X, X; t) ∈ Rn×n are probabilistic neural tangent kernels (PNTKs),
which are defined as follows:

5

Under review as submission to TMLR

Definition 4.1 (Probabilistic Neural Tangent Kernel). The tangent kernels associated with the expected
output function f̂(X; t) at parameters θµ and θσ are defined as,

Θµ(X, X; t) = ∂f̂(X; t)
∂θµ

(
∂f̂(X; t)

∂θµ

)⊤

=
L∑

l=1
∇W(l)

µ
f̂(X; t)∇W(l)

µ
f̂(X; t)⊤,

Θσ(X, X; t) = ∂f̂(X; t)
∂θσ

(
∂f̂(X; t)

∂θσ

)⊤

=
L∑

l=1
∇W(l)

σ
f̂(X; t)∇W(l)

σ
f̂(X; t)⊤.

(10)

A few remarks on Definition 4.1 are in order. Unlike standard (deterministic) neural networks, a probabilistic
network has two sets of parameters, namely, θµ and θσ, which lead to two corresponding tangent kernels.
We introduce the expected output function f̂(t) in the definition to correspond to the expected empirical
loss RS(Q) (8), which helps us to address the additional randomization problem caused by PNNs.

One of the key contributions of this work is the observation that the PNTKs Θµ(X, X) and Θσ(X, X)
both converge to limiting deterministic kernels, at initialization and during training when m is sufficiently
large. Specifically, we have limm→∞ Θµ(X, X) = Θ∞

µ (X, X) and limm→∞ Θσ(X, X) = Θ∞
σ (X, X). This

result is important because it implies that the training dynamics of PNNs can be analyzed in terms of the
corresponding deterministic kernels.

Thanks to the convergence of the PNTKs to deterministic kernels as the network width goes to infinity, the
gradient flow dynamics of the output function become linear in the infinite-width limit. Specifically, the
dynamics take the form:

df̂(X; t)
dt

= 1
n

(
y − f̂(X; t)

) (
Θ∞

µ (X, X) + Θ∞
σ (X, X)

)
. (11)

This key finding allows us to establish our main convergence theory for deep probabilistic neural networks,
which we state formally below.
Theorem 4.2 (Convergence of probabilistic networks with large width). Suppose σ(·) is H-Lipschitz, β-
Smooth. Assume σ(·) and its partial derivative ∂σ(x)

∂x are continuous in x, λ0(K(L)
∞) > 0, and the network’s

width is of m = Ω
(

2O(L) max
{

n2 log(Ln/δ)
λ2

0(K(L)
∞)

, n
δ , n4

λ4
0(K(L)

∞)

})
. Then, with a probability of at least 1 − δ over the

random initialization, we have,

RS(Q(t)) ≤ exp
(

− λ0(K(L)
∞)t

)
RS(Q(0)), (12)

where we define NNGP kernel and its derivative as K
(l)
ij ≜ (x̂(l)

i)⊤x̂(l)
j with x̂(l) = Eξ(l)

1√
m

σ
(
W(l)x̂(l−1)),

and in the infinite-width limit K(l)
ij,∞ ≜ limm→∞ K(l)

ij for 1 ≤ l ≤ L.

The proof sketch of Theorem 4.2 can be found in Section 5.1 and all the detailed proof are shown in Appendix
A. Our main convergence theory for deep probabilistic neural networks is based on the insight that in the
infinite-width limit, the dynamics of the output function with gradient flow is linear. Specifically, if m is large
enough, our theorem establishes that the expected training error converges to zero at a linear rate, with the
least eigenvalue of the NNGP kernel governing the convergence rate. Furthermore, we find that the change
of weight is bounded during training, as shown in Lemma A.6, which is consistent with the requirement of
the PAC-Bayes theory that the loss function is bounded.

4.2 Training with KL divergence

We expand the KL-divergence in the objective function (6) with θ(t) ∼ N (θµ(t), θσ(t)):

KL(θ(t)∥θ(0)) = 1
2n

P∑
i=1

(
log θσ,i(0)

θσ,i(t)
+ (θµ,i(t) − θµ,i(0))2

θσ,i(0)2 + θσ,i(t)
θσ,i(0) − 1

)
, (13)

6

Under review as submission to TMLR

where P is the number of parameters. Furthermore, we assume that the variance weights are fixed during
training, which is empirically verified in Appendix C.2. With this assumption, the objective function (6)
reduces to:

L(Q) = 1
2n

∥∥∥y − f̂(X; t)
∥∥∥2

2
+ λ

2nc2
σ

∥θµ(t) − θµ(0)∥2
2 , (14)

where θµ(t) = ({W(l)
µ (t)}L

l=1, vµ(t)) is the collection of mean weights at time t, and cσ is a constant that
controls the scale of variance weights. By analyzing the objective function (14), we arrive at the conclusion
that in the infinite-width limit, a probabilistic neural network performs kernel ridge regression, as stated in
the following theorem:
Theorem 4.3. Suppose m ≥ poly(n, 1/λ0, 1/δ, 1/E) and the objective function follows the form (14), for
any test input xte ∈ Rd with probability at least 1 − δ over the random initialization, we have

f̂
(
xte; t

)
|t=∞ = Θ∞

µ (x, X)
(
Θ∞

µ (X, X) + λ/c2
σI
)−1y ± E , (15)

where E is a small error term between output function of finite-width PNN and infinite-width PNN.

The detailed proof is provided in Section 5.2 and Appendix B. Theorem 4.3 sheds light on the regularization
effect of the KL term in PAC-Bayesian learning and provides an explicit expression for the convergence of
the output function.

4.3 Generalization analysis

We adopt a general and suitable loss function ℓ ∈ [0, 1] to evaluate the PNN’s generalization, while using
squared loss for training. Theorem 3.2 provides the PAC-Bayesian bound concerning the distribution at
initialization and after optimization. By combining this result with Theorem 4.3, we can provide a general-
ization bound for PAC-Bayesian learning under ultra-wide conditions.
Theorem 4.4 (PAC-Bayesian bound with NTK). Suppose that S = {(xi, yi)}n

i=1 are i.i.d. samples from a
non-degenerate distribution D, and m ≥ poly(n, λ−1

0 , δ−1). Consider any loss function ℓ : R×R → [0, 1] that
is 1-Lipschitz in the first argument such that ℓ(y, y) = 0. Then with a probability of at least 1 − δ over the
random initialization and the training samples, the probabilistic neural network (PNN) trained by gradient
descent for T ≥ Ω(1

ηλ0
log n

δ) iterations has population risk RD(Q) that is bounded as follows:

RD(Q) ≤
y⊤(Θ∞

µ (X, X) + λ/c2
σI)−1y

nc2
σ

+ λ

c2
σ

√
y⊤(Θ∞

µ (X, X) + λ/c2
σI)−2y

n
+ O

(log 2
√

n
δ

n

)
. (16)

The proof can be found in Section 5.3. Theorem 4.4 provides a generalization bound for the PAC-Bayesian
learning framework under the ultra-wide condition, combining results from Theorem 3.2 and Theorem 4.3.
Note that the generalization ability of kernel ridge regression has been studied in standard neural networks
Hu et al. (2019); Nitanda & Suzuki (2020). In this work, the bound is analytic and computable, in contrast to
the PAC-Bayes bound (5), thus providing a theoretical guarantee for the PAC-Bayesian learning approach.

5 Proof Sketch

5.1 Proof of Theorem 4.2

To prove Theorem 4.2, we observe that if Θµ and Θσ converge to a deterministic kernel, then the dynamics
of output function admit a linear system, which is tractable during evolution. In this paper we focus on
Θ(L) = Θ(L)

µ + Θ(L)
σ , the gram matrix induced by the weights from L-th layer for simplicity at the cost of

a minor degradation in convergence rate. Before demonstrating the main steps, we introduce the expected
neural network model, which is recursively expressed as follows:

x̂(l) = Eξ(l)
1√
m

σ
(
W(l)x̂(l−1)), 1 ≤ l ≤ L − 1; f̂ = Eξ(L)

1√
m

W(L)x̂(L−1).

7

Under review as submission to TMLR

Note that this definition is in contrast to the definition as expected empirical loss (8) in PAC-Bayes. The
Neural Network Gaussian Process (NNGP) for PNN (Lee et al., 2017) is defined as follows:

K
(l)
ij = (x̂(l)

i)⊤x̂(l)
j , K

(l)
ij,∞ = lim

m→∞
K

(l)
ij ,

where subscript i, j denote the index of input samples. We aim to show that Θ(L) is close to K(L)
∞ in large

width. In particular, to prove Theorem 4.2, three core steps are:

Step 1 Show at initialization λ0
(
Θ(L)(0)

)
≥ λ0(K(L)

∞)
2 and the required condition on m.

Step 2 Show during training λ0
(
Θ(L)(t)

)
≥ λ0(K(L)

∞)
2 and the required condition on m.

Step 3 Show during training the expected empirical loss RS(Q) has a linear convergence rate.

In our proof, we mainly focus on deriving the condition on m by analyzing λ0
(
Θ(L)(0)

)
at initialization

through Lemma A.2 and Lemma A.3. For step 2, we construct Lemma A.4 Lemma A.5 and Lemma A.6 to
demonstrate that λ0

(
Θ(L)(t)

)
≥ λ0(K(L)

∞)
2 . This leads to the required condition on m during train. Finally,

we summarize all the previous lemmas and conclude that the expected training error converges at a linear
rate through Lemma A.7:

d

dt
RS(t) = 1

2
d

dt

∥∥∥f̂(X; t) − y
∥∥∥2

2

= −
(

y − f̂(X, t)
)⊤

(Θµ(t) + Θσ(t))
(

y − f̂(X, t)
)

≤ −λ0 (Θµ(t) + Θσ(t))
∥∥∥y − f̂(X; t)

∥∥∥2

2

≤ −λ0

(
Θ(L)

µ (t) + Θ(L)
σ (t)

)∥∥∥y − f̂(X; t)
∥∥∥2

2

≤ −λ0

(
K(L)

∞

)∥∥∥y − f̂(X; t)
∥∥∥2

2
.

Note our proof framework is similar to Du et al. (2019); Arora et al. (2019)’s. However, the main difference
is that our network architecture is much more complex (e.g. probabilistic network contains two sets of
parameters) and each set involves its own randomness which requires bounding many terms more elaborately.
The detailed proof can be found in Appendix A.

5.2 Proof of Theorem 4.3

The proof of Theorem 4.3 utilizes an argument of linearization of the network model in the infinite-width limit.
This allows us to obtain an ordinary differential equation for output function. According the linearization
rules for infinitely-wide networks (Lee et al., 2019), the output function can be expressed as,

f̂∞(x, t) = ϕµ(x)⊤(θµ(t) − θµ(0)) + ϕσ(x)⊤(θσ(t) − θσ(0)),

where ϕµ(x) = ∇θµ
f̂(x; 0), and ϕσ(x) = ∇θσ

f̂(x; 0). Recall that we assume that θσ does not change during
training, then the KL divergence reduces to KL = 1

2nc2
σ

∥θµ(t) − θµ(0)∥2
2 . Then the gradient flow equation

for θµ becomes,

dθµ(t)
dt

= ∂L(t)
∂θµ(t) =

(
Θ∞

µ + λ/c2
σI
) (

θ(µ)(t) − θ(µ)(0)
)

+ ϕµ(X)
(

f̂∞(X; 0) − y
)

,

which is an ordinary differential equation, and the solution is,

θµ(t) = ϕµ(X)⊤(Θ∞
µ (X, X) + λ/c2

σI
)−1(I − e−(Θ∞

µ (X,X)+λ/c2
σI)t
)
y.

8

Under review as submission to TMLR

Plug this result into the linearization of expected output function, we have,

f̂∞(x; t) = Θ∞
µ (x, X)(Θ∞

µ (X, X) + λ/c2
σI)−1(I − e−(Θ∞

µ (X,X)+λ/c2
σI)t)y.

Then we take the time to be infinity and have:

f̂∞(x)|t=∞ = Θ∞
µ (x, X)(Θ∞

µ (X, X) + λ/c2
σI)−1y.

The next step is to show the difference between finite-width neural network and infinitely-wide network:∣∣∣f̂(xte) − f̂∞(xte)
∣∣∣ ≤ O(E),

where E = Einit +
√

nEΘ
λ0+β with

∥∥∥f̂ (xte; 0)
∥∥∥

2
≤ Einit and ∥Θ∞

µ − Θµ(t)∥2 ≤ EΘ. Note the expression of output

function in the infinite-width limit can be rewritten as f̂∞(xte) = ϕ(xte)⊤β and the solution to this equation
can be further written as the result of applying gradient flow on the following kernel ridge regression problem

min
β

n∑
i=1

1
2n

∥∥ϕ(xi)⊤β − xi

∥∥2
2 + λ/c2

σ ∥β∥2
2 ,

with initialization β(0) = 0. We use β(t) to denote this parameter at time t trained by gradient flow and
f̂∞ (xte, β(t)) be the predictor for xte at time t. With these notations, we rewrite

f̂∞(xte) =
∫ ∞

t=0

df̂(β(t), xte)
dt

dt,

where we have used the fact that the initial prediction is 0. We thus can analyze the difference between the
PNN predictor and infinite-width PNN predictor via this integral form. The details to complete the proof
are given in Appendix B.

5.3 Proof of Theorem 4.4

Proof of Theorem 4.4. Our proof is based on a characterization of the empirical error and KL divergence
term via the explicit solution found in Theorem 4.3. The generalization bound consists two terms, one is
the empirical error, and another is KL divergence.

(i) We first bound the empirical error
√∑n

i=1(f̂∞(xi, t = ∞) − yi)2 with following inequality,√√√√ n∑
i=1

(f̂∞(xi, t = ∞) − yi)2 =
∥∥∥∥Θ∞

µ (X, X)(Θ∞
µ (X, X) + λ/c2

σI)−1y − y
∥∥∥∥

2

=
∥∥∥∥λ/c2

σ

(
Θ∞

µ (X, X) + λ/c2
σI
)−1y

∥∥∥∥
2

= λ/c2
σ

√
y⊤
(
Θ∞

µ (X, X
)

+ λ/σ2
0I)−2y.

Then we bound the error term as follows:
1
n

n∑
i=1

ℓ
(
f̂∞(xi

)
, yi) = 1

n

n∑
i=1

[
ℓ(f̂∞(xi), yi) − ℓ(yi, yi)

]

≤ 1
n

n∑
i=1

∣∣∣f̂∞(xi) − yi

∣∣∣
≤ 1√

n

√√√√ n∑
i=1

∣∣∣f̂∞(xi) − yi

∣∣∣2

≤ λ

c2
σ

√
y⊤(Θ∞

µ (X, X) + λ/c2
σI)−2y

n
.

9

Under review as submission to TMLR

(ii) The next step is to calculate the KL divergence. According to the solution of differential equation in
Theorem B.1, we have:

θµ(t)|t=∞ − θµ(0) = ϕµ(x)⊤(Θ∞
µ (X, X) + λ/c2

σI
)−1y

Therefore, the KL divergence is,

KL = 1/c2
σ · y⊤(Θ∞

µ (X, X) + λ/c2
σI
)−1Θ∞

µ (X, X)
(
Θ∞

µ (X, X) + λ/c2
σI
)−1y

≤ 1
c2

σ

y⊤(Θ∞
µ (X, X) + λ/c2

σI
)−1y.

Finally, by Equation 5, we achieve the PAC-Bayesian generalization bound,

RD(Q) ≤
y⊤(Θ∞

µ (X, X) + λ
c2

σ
I
)−1y

nc2
σ

+ λ

c2
σ

√
y⊤
(
Θ∞

µ (X, X) + λ
c2

σ
I
)−2y

n
+ O

(log 2
√

n
δ

n

)
.

6 Experiments

As an extension of our finding of the PAC-Bayesian bound in Theorem 4.4, we present a training-free metric
to approximate the PAC-Bayesian bound using PNTK, which can be used to select the best hyper-parameters
without the need for additional training and eliminate excessive computation time. Besides, we provide a
empirical verification of our theory in Appendix C.1 to further demonstrate the correctness of theoretical
analysis.

6.1 Experimental setup

In all experiments, we initialize the PNN parameters using the NTK parameterization as given in Equation
(1). The initial mean weights θµ are sampled from a truncated Gaussian distribution with mean 0 and
standard deviation 1, truncated at two standard deviations. To ensure positivity, the initial variance weights
θσ are set by transforming the specified value of cσ through the formula cσ = log(1 + exp(ρ0)).

In Section 6.2, we conduct experiments on the MNIST and CIFAR-10 datasets to demonstrate the effective-
ness of our training-free PAC-Bayesian network bound for hyperparameter search under different network
architectures. We consider both fully connected and convolutional neural networks, with a 3-layer fully
connected network with 600 neurons on each layer and a 13-layer convolutional architecture with around 10
million learnable parameters. We adopt a data-dependent prior, which is a practical and popular method
(Perez-Ortiz et al., 2021; Fortuin, 2022), pre-trained on a subset of the total training data with empirical
risk minimization, and the networks for posterior training are initialized by the weights learned from the
prior. To compute the generalization bound, we use Equation (5), with the relevant settings from the work
by Pérez-Ortiz et al. (2020), such as confidence δ for the risk certificate (5) and 150,000 Monte Carlo samples
to estimate the risk certificate.

6.2 Selecting hyperparameters via training-free metric

The PAC-Bayesian learning framework provides competitive performance with non-vacuous generalization
bounds. However, the tightness of this generalization bounds heavily depends on the hyperparameters used,
such as the proportionality of data used for the prior, the initialization of ρ0, and the KL penalty weight
(λ). As these values remain fixed during the training process, selecting optimal hyperparameters is a critical
and computationally challenging task. Grid search is one possible approach, but it can be prohibitively
expensive due to the significant computational resources needed to compute the generalization bounds for
each combination of hyperparameters.

10

Under review as submission to TMLR

Figure 1: The first row shows correlation results between the generalization bound and the proportion of
prior data, the coefficient of the KL penalty, and ρ0 for the FCN structure on the MNIST dataset. We
find high Kendall-tau correlations of 0.89, 0.89, and 0.93. Similar results are obtained in the second row for
the CNN structure on the CIFAR10 dataset, where the Kendall-tau correlations are 0.89, 0.83, and 0.57,
respectively.

To this end, we propose an approach using “training-free” metric to approximate the generalization bound
without performing a time-consuming training process based on a generalization bound developed in theorem
4.4 via NTK. As PNTK is constant during training, we can predict the generalization bound by this proxy
metric, which can be formulated as follows:

PA = Tr

 (Θ̂ + λ/c2
σI)−1 · yy⊤

c2
σ · n

+ λ

c2
σ

√
(Θ̂ + λ/c2

σI)−2 · yy⊤

n

 , (17)

where Θ̂ is an empirical NTK measured on a finite-width neural network at initialization, and yy⊤ is a
n × n label similarity matrix, where a joint entry is one if two data points have the same label, and zero
otherwise. We note that the proposed proxy metric in Equation (17) is similar in spirit to kernel alignment,
a label similarity metric, that is widely used in deep active learning (Wang et al., 2021), model selection for
fine-tuning (Deshpande et al., 2021), and neural architecture search (NAS) (Mok et al., 2022). We should
also mention that training-free methods for searching neural architectures are not new, and can be found in
NAS (Chen et al., 2021; Deshpande et al., 2021), MAE Random Sampling (Camero et al., 2021), pruning at
initialization (Abdelfattah et al., 2021). To the best of our knowledge, this is the first training-free method
for selecting hyperparameters in the PAC-Bayesian framework, which we consider to be one of the novelties
of this paper.

To demonstrate the computational practicality of this training-free metric, we compute PA using a subset
of the data for each class (325 per class for FCN and 75 per class for CNN). Figure 1 demonstrates a
strong correlation between PA and the actual generalization bound. Importantly, we show that using PA to
search for hyperparameters can yield a result that is comparable to the best generalization bound, but with
significantly reduced computational time. We compare the performance of three hyperparameter search

11

Under review as submission to TMLR

Setup Risk cert. Computation time (hours)

Data Method Network ℓx-e ℓ01 Single Total

MNIST

Exhaustive
Search

FCN .0010 .0212 0.50 324.00

CNN .0059 .0110 16.92 10964.16

Bayesian
Search

FCN .0010 .0212 0.50 18.00

CNN .0059 .0110 16.92 609.12

PA
FCN .0010 .0264 0.03 19.44

CNN .0085 .0160 0.03 19.44

CIFAR10

Exhaustive
Search

FCN .174 0.5377 1.09 706.32

CNN .0142 .1969 45.00 29,160.00

Bayesian
Search

FCN .174 0.5377 1.09 39.24

CNN .0142 .1969 45.00 1,620.00

PA
FCN .178 0.5490 0.03 19.44

CNN .0142 .1970 0.03 19.44

Table 1: The performance of our training-free method, PA, is compared with two other hyperparameter
search methods, exhaustive search and Bayesian search, on two datasets (MNIST and CIFAR10) and two
neural network structures (FCN and CNN). The evaluation is based on the risk certificates (cross-entropy
ℓx-e and accuracy ℓ01) and computation time. The best and second-best values of risk certificates and
computation time are highlighted in boldface and underlining, respectively.

methods (exhaustive search, Bayesian search, and PA) on two architectures (FCN and CNN) and two
datasets (MNIST and CIFAR10) in Table 1. Exhaustive search evaluates 648 hyperparameter combinations
(9 data-dependent prior with different subsets data for prior training, 9 different values of KL penalty, and
8 different values of ρ0), while Bayesian search takes only 36 iterations to find the lowest bound, but still
requires significant computation time when training a large and complex model. For instance, under the
CIFAR10 dataset, it takes 45 hours to train a CNN with the bound. In contrast, using PA saves 83.33
times the computational time to find a bound that is close to the lowest risk certificate in accuracy. The
results show that the PA method achieves comparable performance to the other methods while requiring
significantly less computation time.

7 Conclusion and Discussion

In this work, we have made several important contributions to the theoretical analysis and practical imple-
mentation of deep probabilistic neural networks trained using objectives derived from PAC-Bayes bounds.
Specifically, we have shown that the learning dynamics of these networks in an over-parameterized setting
can be exactly described by the PNTK, and we have confirmed this through empirical investigation. We
have also demonstrated that the expected output function trained with a PAC-Bayesian bound converges
to the kernel ridge regression, leading to an explicit generalization bound. Moreover, we have proposed a
training-free method called the PAC-Bayesian bound score, which can effectively select hyper-parameters
and lead to lower generalization bounds without the excessive computational cost of brute-force grid search.
Our work opens up several promising directions for future research. One such direction is the study of
PAC-Bayesian learning with data-dependent priors using PNTK. We hope that our contributions will help
advance the understanding of Deep PAC-Bayesian Learning and implementation of deep probabilistic neural
networks and their potential applications.

12

Under review as submission to TMLR

References
Mohamed S Abdelfattah, Abhinav Mehrotra, Łukasz Dudziak, and Nicholas D Lane. Zero-cost proxies for

lightweight nas. arXiv preprint arXiv:2101.08134, 2021.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, pp. 242–252. PMLR, 2019.

Amiran Ambroladze, Emilio Parrado-Hernández, and John Shawe-Taylor. Tighter pac-bayes bounds. Ad-
vances in neural information processing systems, 19:9, 2007.

Ron Amit and Ron Meir. Meta-learning by adjusting priors based on extended pac-bayes theory. In Inter-
national Conference on Machine Learning, pp. 205–214. PMLR, 2018.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of optimization and
generalization for overparameterized two-layer neural networks. In International Conference on Machine
Learning, pp. 322–332. PMLR, 2019.

Luc Bégin, Pascal Germain, François Laviolette, and Jean-Francis Roy. Pac-bayesian theory for transductive
learning. In Artificial Intelligence and Statistics, pp. 105–113. PMLR, 2014.

Luc Bégin, Pascal Germain, François Laviolette, and Jean-Francis Roy. Pac-bayesian bounds based on the
rényi divergence. In Artificial Intelligence and Statistics, pp. 435–444. PMLR, 2016.

Felix Biggs and Benjamin Guedj. Differentiable pac-bayes objectives with partially aggregated neural net-
works. arXiv preprint arXiv:2006.12228, 2020.

Andrés Camero, Hao Wang, Enrique Alba, and Thomas Bäck. Bayesian neural architecture search using a
training-free performance metric. Applied Soft Computing, 106:107356, 2021.

Olivier Catoni. Pac-bayesian supervised classification: the thermodynamics of statistical learning. arXiv
preprint arXiv:0712.0248, 2007.

Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural architecture search on imagenet in four gpu
hours: A theoretically inspired perspective. arXiv preprint arXiv:2102.11535, 2021.

Aditya Deshpande, Alessandro Achille, Avinash Ravichandran, Hao Li, Luca Zancato, Charless Fowlkes,
Rahul Bhotika, Stefano Soatto, and Pietro Perona. A linearized framework and a new benchmark for
model selection for fine-tuning. arXiv preprint arXiv:2102.00084, 2021.

Nan Ding, Xi Chen, Tomer Levinboim, Beer Changpinyo, and Radu Soricut. Pactran: Pac-bayesian
metrics for estimating the transferability of pretrained models to classification tasks. arXiv preprint
arXiv:2203.05126, 2022.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global minima of
deep neural networks. In International Conference on Machine Learning, pp. 1675–1685. PMLR, 2019.

Gintare Karolina Dziugaite and Daniel Roy. Entropy-sgd optimizes the prior of a pac-bayes bound: Gen-
eralization properties of entropy-sgd and data-dependent priors. In International Conference on Machine
Learning, pp. 1377–1386. PMLR, 2018a.

Gintare Karolina Dziugaite and Daniel M. Roy. Computing nonvacuous generalization bounds for deep
(stochastic) neural networks with many more parameters than training data. CoRR, abs/1703.11008,
2017. URL https://arxiv.org/abs/1703.11008.

Gintare Karolina Dziugaite and Daniel M Roy. Data-dependent pac-bayes priors via differential privacy.
arXiv preprint arXiv:1802.09583, 2018b.

Gintare Karolina Dziugaite, Kyle Hsu, Waseem Gharbieh, and Daniel M Roy. On the role of data in pac-bayes
bounds. arXiv preprint arXiv:2006.10929, 2020.

13

https://arxiv.org/abs/1703.11008

Under review as submission to TMLR

Hamish Flynn, David Reeb, Melih Kandemir, and Jan Peters. Pac-bayesian lifelong learning for multi-armed
bandits. Data Mining and Knowledge Discovery, 36(2):841–876, 2022.

Vincent Fortuin. Priors in bayesian deep learning: A review. International Statistical Review, 2022.

Peter D Grünwald and Nishant A Mehta. Fast rates for general unbounded loss functions: From erm to
generalized bayes. J. Mach. Learn. Res., 21:56–1, 2020.

Jiechao Guan and Zhiwu Lu. Fast-rate pac-bayesian generalization bounds for meta-learning. In International
Conference on Machine Learning, pp. 7930–7948. PMLR, 2022.

Benjamin Guedj. A primer on pac-bayesian learning. arXiv preprint arXiv:1901.05353, 2019.

Maxime Haddouche, Benjamin Guedj, Omar Rivasplata, and John Shawe-Taylor. Pac-bayes unleashed:
generalisation bounds with unbounded losses. Entropy, 23(10):1330, 2021.

Wei Hu, Zhiyuan Li, and Dingli Yu. Simple and effective regularization methods for training on noisily
labeled data with generalization guarantee. arXiv preprint arXiv:1905.11368, 2019.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization
in neural networks. arXiv preprint arXiv:1806.07572, 2018.

Prateek Jain and Purushottam Kar. Non-convex optimization for machine learning. arXiv preprint
arXiv:1712.07897, 2017.

Haotian Ju, Dongyue Li, Aneesh Sharma, and Hongyang R Zhang. Generalization in graph neural networks:
Improved pac-bayesian bounds on graph diffusion. arXiv preprint arXiv:2302.04451, 2023.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparameterization
trick. Advances in neural information processing systems, 28:2575–2583, 2015.

John Langford and Rich Caruana. (not) bounding the true error. In T. Dietterich, S. Becker, and Z. Ghahra-
mani (eds.), Advances in Neural Information Processing Systems, volume 14. MIT Press, 2002a.

John Langford and Rich Caruana. (not) bounding the true error. Advances in Neural Information Processing
Systems, 2:809–816, 2002b.

John Langford and Matthias Seeger. Bounds for averaging classifiers. 2001.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444, 2015.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and Jascha Sohl-
Dickstein. Deep neural networks as gaussian processes. arXiv preprint arXiv:1711.00165, 2017.

Jaehoon Lee, Lechao Xiao, Samuel S Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-Dickstein, and
Jeffrey Pennington. Wide neural networks of any depth evolve as linear models under gradient descent.
arXiv preprint arXiv:1902.06720, 2019.

Gaël Letarte, Pascal Germain, Benjamin Guedj, and François Laviolette. Dichotomize and generalize: Pac-
bayesian binary activated deep neural networks. arXiv preprint arXiv:1905.10259, 2019.

Renjie Liao, Raquel Urtasun, and Richard Zemel. A pac-bayesian approach to generalization bounds for
graph neural networks. arXiv preprint arXiv:2012.07690, 2020.

Ben London. A pac-bayesian analysis of randomized learning with application to stochastic gradient descent.
arXiv preprint arXiv:1709.06617, 2017.

David JC MacKay. A practical bayesian framework for backpropagation networks. Neural computation, 4
(3):448–472, 1992.

14

Under review as submission to TMLR

Andreas Maurer. A note on the pac bayesian theorem. arXiv preprint cs/0411099, 2004.

David A McAllester. Pac-bayesian model averaging. In Proceedings of the twelfth annual conference on
Computational learning theory, pp. 164–170, 1999a.

David A McAllester. Some PAC-Bayesian theorems. Machine Learning, 37(3):355–363, 1999b.

Jisoo Mok, Byunggook Na, Ji-Hoon Kim, Dongyoon Han, and Sungroh Yoon. Demystifying the neural
tangent kernel from a practical perspective: Can it be trusted for neural architecture search without
training? In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
11861–11870, 2022.

Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science & Business Media,
2012.

Jeffrey Negrea, Mahdi Haghifam, Gintare Karolina Dziugaite, Ashish Khisti, and Daniel M Roy. Information-
theoretic generalization bounds for sgld via data-dependent estimates. arXiv preprint arXiv:1911.02151,
2019.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nathan Srebro. Exploring generalization
in deep learning. arXiv preprint arXiv:1706.08947, 2017a.

Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A pac-bayesian approach to spectrally-
normalized margin bounds for neural networks. arXiv preprint arXiv:1707.09564, 2017b.

Atsushi Nitanda and Taiji Suzuki. Optimal rates for averaged stochastic gradient descent under neural
tangent kernel regime. arXiv preprint arXiv:2006.12297, 2020.

Kento Nozawa, Pascal Germain, and Benjamin Guedj. Pac-bayesian contrastive unsupervised representation
learning. In Conference on Uncertainty in Artificial Intelligence, pp. 21–30. PMLR, 2020.

María Pérez-Ortiz, Omar Rivasplata, John Shawe-Taylor, and Csaba Szepesvári. Tighter risk certificates for
neural networks. CoRR, abs/2007.12911, 2020. URL https://arxiv.org/abs/2007.12911.

Maria Perez-Ortiz, Omar Rivasplata, Benjamin Guedj, Matthew Gleeson, Jingyu Zhang, John Shawe-Taylor,
Miroslaw Bober, and Josef Kittler. Learning pac-bayes priors for probabilistic neural networks. arXiv
preprint arXiv:2109.10304, 2021.

Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex learning via stochastic gradient
langevin dynamics: a nonasymptotic analysis. In Conference on Learning Theory, pp. 1674–1703. PMLR,
2017.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. In International conference on machine learning, pp. 1278–1286.
PMLR, 2014.

Omar Rivasplata, Vikram M Tankasali, and Csaba Szepesvari. Pac-bayes with backprop. arXiv preprint
arXiv:1908.07380, 2019.

Jonas Rothfuss, Vincent Fortuin, Martin Josifoski, and Andreas Krause. Pacoh: Bayes-optimal meta-learning
with pac-guarantees. In International Conference on Machine Learning, pp. 9116–9126. PMLR, 2021.

Matthias Seeger. Pac-bayesian generalisation error bounds for gaussian process classification. Journal of
machine learning research, 3(Oct):233–269, 2002.

Samuel L Smith and Quoc V Le. A bayesian perspective on generalization and stochastic gradient descent.
arXiv preprint arXiv:1710.06451, 2017.

Donald F Specht. Probabilistic neural networks. Neural networks, 3(1):109–118, 1990.

15

https://arxiv.org/abs/2007.12911

Under review as submission to TMLR

Niklas Thiemann, Christian Igel, Olivier Wintenberger, and Yevgeny Seldin. A strongly quasiconvex pac-
bayesian bound. In International Conference on Algorithmic Learning Theory, pp. 466–492. PMLR, 2017.

Laura Tinsi and Arnak Dalalyan. Risk bounds for aggregated shallow neural networks using gaussian priors.
In Conference on Learning Theory, pp. 227–253. PMLR, 2022.

Haonan Wang, Wei Huang, Andrew Margenot, Hanghang Tong, and Jingrui He. Deep active learning by
leveraging training dynamics. arXiv preprint arXiv:2110.08611, 2021.

Zifan Wang, Nan Ding, Tomer Levinboim, Xi Chen, and Radu Soricut. Improving robust generalization by
direct pac-bayesian bound minimization. arXiv preprint arXiv:2211.12624, 2022.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–115, 2021.

Wenda Zhou, Victor Veitch, Morgane Austern, Ryan P Adams, and Peter Orbanz. Non-vacuous generaliza-
tion bounds at the imagenet scale: a pac-bayesian compression approach. arXiv preprint arXiv:1804.05862,
2018.

A Proof of Theorem 4.2

Theorem A.1 (Restatement of Theorem 4.2). Suppose σ(·) is H-Lipschitz, β-Smooth. Assume σ(·)
and its partial derivative ∂σ(x)

∂x are continuous in x, λ0(K(L)
∞) > 0, and the network’s width is of

m = Ω
(

2O(L) max
{

n2 log(Ln/δ)
λ2

0(K(L)
∞)

, n
δ , n5 log(2/δ)10

λ2
0(K(L)

∞)

})
. Then, with a probability of at least 1−δ over the random

initialization, we have,

RS(Q(t)) ≤ exp
(

− λ0(K(L)
∞)t

)
RS(Q(0)),

Proof Sketch of Theorem A.1. To study the behavior of output function under gradient flow, we first write
down its dynamics

df̂(X; t)
dt

= 1
n

(y − f̂(X; t))(Θµ(X, X; t) + Θσ(X, X; t)),

where Θµ and Θσ are the PNTKs of the PNN. We observe that if Θµ and Θσ converge to a deterministic
kernel, then the dynamics of output function admit a linear system, which is tractable during evolution. In
this paper we focus on Θ(L) = Θ(L)

µ + Θ(L)
σ , the gram matrix induced by the weights from L-th layer for

simplicity at the cost of a minor degradation in convergence rate. Before demonstrating the main steps, we
introduce the expected neural network model, which is recursively expressed as follows:

x̂(l) = Eξ(l)
1√
m

σ
(
W(l)x̂(l−1)), 1 ≤ l ≤ L − 1; f̂ = Eξ(L)

1√
m

W(L)x̂(L−1).

Note that this definition is in inordinate to the the definition as expected empirical loss (8) in PAC-Bayes.
a Neural Network Gaussian Process (NNGP) for PNN (Lee et al., 2017), which is defined as follows:

K
(l)
ij = (x̂(l)

i)⊤x̂(l)
j , K

(l)
ij,∞ = lim

m→∞
K

(l)
ij ,

where subscript i, j denote the index of input samples. We aim to show that Θ(L) is close to K(L)
∞ in large

width. In particular, to prove Theorem A.1, three core steps are:

Step 1 Show at initialization λ0
(
Θ(L)(0)

)
≥ λ0(K(L)

∞)
2 and the required condition on m.

Step 2 Show during training λ0
(
Θ(L)(t)

)
≥ λ0(K(L)

∞)
2 and the required condition on m.

16

Under review as submission to TMLR

Step 3 Show during training the expected empirical loss RS(Q) has a linear convergence rate.

In our proof, we mainly focus on deriving the condition on m by analyzing λ0
(
Θ(L)(0)

)
at initialization

through Lemma A.2 and Lemma A.3. For step 2, we construct Lemma A.4 Lemma A.5 and Lemma A.6 to
demonstrate that λ0

(
Θ(L)(t)

)
≥ λ0(K(L)

∞)
2 . This leads to the required condition on m during train. Finally,

we summarize all the previous lemmas and conclude that the expected training error converges at a linear
rate through Lemma A.7.

A.1 Step 1. Bounding least eigenvalue of PNTK at initialization

We first study the behavior of tangent kernels with an ultra-wide condition, namely m = poly(n, 1/λ0, 1/δ)
at initialization. Lemmas A.2 and A.3 demonstrate that if m is large, then the feature of each layer is approx-
imately normalized, Θµ(0) + Θσ(0) have a lower bound on the smallest eigenvalue with a high probability.

Lemma A.2 (Initial norm at initialization). Suppose σ(·) is H-Lipschitz. If m = Ω
(

nLgC (L)2

δ

)
, where

C ≜ (c2
µ +c2

σ)H(2|σ(0)|
√

2
π +2H), and the geometric series function gC(l) =

∑l−1
i=0 Ci. Then with probability

at least 1 − δ over random initialization, for each l ∈ [L] and i ∈ [n], we have:

1
2 ≤ ∥x̂(l)

i (0)∥2 ≤ 2.

Lemma A.3 (PNTK at initialization). Suppose σ(·) is H-Lipschitz. If m = Ω
(

n2 log(Ln/δ)2O(L)

λ2
0(K(L)

∞)

)
, then

with probability at least 1 − δ, we have:

λ0(Θ(L)(0)) ≥ 3
4λ0(K(L)

∞).

Proof of Lemma A.2. The proof is by induction method. The induction hypothesis is that with probability
at least 1 − (l − 1) δ

nL over W(1)
µ (0), . . . , W(l−1)

µ (0), for every 1 ≤ l′ ≤ l − 1, we have

1
2 ≤ 1 − gC(l′)

2gC(L) ≤ ∥x̂(l′)
i (0)∥2 ≤ 1 + gC(l′)

2gC(L) ≤ 2,

where we define the geometric series function as gC(l) =
∑l−1

i=0 Ci.

According to the feed-forward expression, we know that

∥x̂(l)
i (0)∥2

2 = 1
m

m∑
r=1

Eξ(l)σ((w(l)
µ,r(0) + c2

σξ(l))⊤x̂l−1
i (0))2.

Then we have the expectation:

E
[
∥x̂(l)

i (0)∥2
2

]
= Ew,ξ(l)

[
σ((w(l) + c2

σξ(l))⊤x̂(l−1)
i (0))2

]
= (c2

µ + c2
σ)EZ∼N (0,1)σ(∥x̂(l−1)∥2Z)2.

Here we have used the fact that w(l)(0) + c2
σξ(l) ∼ (c2

µ + c2
σ)N (0, I) where w(l)(0) ∼ c2

µN (0, I).

17

Under review as submission to TMLR

Because σ(·) is H-Lipschitz, for 1
2 ≤ α ≤ 2, we have∣∣EZ∼N (0,1)
[
σ(αZ)2]− EZ∼N (0,1)

[
σ(Z)2]∣∣

≤ EZ∼N (0,1)
[
|σ(αZ)2 − σ(Z)2|

]
≤ H|α − 1| · EZ∼N (0,1)

[
|Z(σ(αZ) + σ(Z))|

]
≤ H|α − 1| · EZ∼N (0,1)

[
|Z|(|2σ(0)| + H|(α + 1)Z|)

]
≤ H|α − 1| · (2|σ(0)|EZ∼N (0,1)[|Z|] + H|α + 1| · EZ∼N (0,1)[Z2])

= H|α − 1| · (2|σ(0)|
√

2
π

+ H|α + 1|)

≤ C

c2
µ + c2

σ

|α − 1|,

where we define C ≜ (c2
µ + c2

σ)H(2σ(0)
√

2
π + 2H). For the variance we have:

Var
[
∥x̂(l)

i (0)∥2
2

]
= Var

[
σ(w(l)

r (0)⊤x̂(l)
i (0))

2]
≤ 1

m
Ew(l),ξ(l)

[
σ((w(l) + c2

σξ(l))⊤x̂(l)
i (0))4

]
≤

(c2
σ + c2

µ)2

m
Ew∼N (0,I)

[(
|σ(0)| + H|w⊤x̂(l)

i (0)|
)4
]

≤ C2

m
,

where C2 ≜ (c2
σ + c2

µ)2(σ(0)4 + 8|σ(0)|3H
√

2/π + 24σ(0)2H2 + 64σ(0)H3
√

2/π + 512H4), and the last
inequality we used the formula for the first four absolute moments of Gaussian.

Applying Chebyshev’s inequality and plugging in our assumption on m, we have with probability 1 − δ
nL

over W(l)
µ , ∣∣∣∣∥∥x̂(l)

i (0)
∥∥2

2 − E
∥∥x̂(l)

i (0)
∥∥2

2

∣∣∣∣ ≤ 1
2gC(L) .

Thus with probability 1 − d δ
nL over W(1)

µ , . . . , W(l)
µ ,∣∣∣∣∥∥x̂(l)

i (0)
∥∥

2 − 1
∣∣∣∣ ≤

∣∣∣∣∥∥x̂(l)
i (0)

∥∥2
2 − 1

∣∣∣∣
≤ CgC(l − 1)

2gC(L) + 1
2g(L)

= gC(l)
2gC(L) .

Using union bounds over i ∈ [n], we complete the proof of lemma.

Proof of Lemma A.3. For a weight matrix, we decompose it into m weight vectors, namely W(l) =
[w(l)

1 , w(l)
2 , · · · , w(l)

m]. Then the derivative of the expected output over the parameters w(l)
µ,r and w(l)

σ,r can be
expressed as

∂f̂(xi)
∂w(l)

µ,r

= Eξ

[
1√
m

∂f̂(xi)
∂x̂

(l)
i,r

σ′((w(l)
r)⊤x̂(l−1))x̂(l−1)

]
,

∂f̂(xi)
∂w(l)

σ,r

= Eξ

[
1√
m

∂f̂(xi)
∂x̂

(l)
i,r

σ′((w(l)
r)⊤x̂(l−1))x̂(l−1) ⊙ ξ(l)

r

]
,

(18)

18

Under review as submission to TMLR

where we have interchanged integration and differentiation over activation σ(·). According to the definition
4.1 of PNTK for each layer can be expressed as:

Θ(l)
µ =

m∑
r=1

∇w(l)
µ,r

f̂(X; t)⊤∇w(l)
µ,r

f̂(X; t), Θ(l)
σ =

m∑
r=1

∇w(l)
σ,r

f̂(X; t)⊤∇w(l)
σ,r

f̂(X; t).

Through a standard calculation we show that:

Θ(L)
µ,ij(0) =

m∑
r=1

Eξ(L−1)

[
1√
m

σ((w(L−1)
r)⊤x̂(L−2)

i)
]
Eξ(L−1)

[
σ((w(L−1)

r)⊤x̂(L−2)
j)

]
, (19)

Θ(L)
σ,ij(0) =

m∑
r=1

E
ξ(L−1),ξ

(L)
r

[
1√
m

σ((w(L−1)
r)⊤x̂(L−2)

i)ξ(L)
r

]
E

ξ(L−1),ξ
(L)
r

[
1√
m

σ((w(L−1)
r)⊤x̂(L−2)

j)ξ(L)
r

]
. (20)

Bounding Θ(L)
µ . The proof is by induction. By analyzing Equation 19, we find that for all pairs of i, j,

Θ(L)
µ,ij(0) is the average of m i.i.d. random variables, with the expectation:

K(L)
ij,∞ = c2

µ · Ew∼N (0,I)

[
Eξ

[
1√
m

σ(w + c2
σξ)⊤x̂(L−1))

]
Eξ

[
1√
m

σ((w + c2
σξ)⊤x̂(L−1))

]]
.

Then we find the difference between Θ(L)
µ,ij(0) and K(L)

ij,∞ can be recursively calculated through an induction

method. The induction hypothesis is that with probability 1 − δ over the
{

W(l)
µ

}L−1

l=1
, for any 1 ≤ l ≤

L − 1, 1 ≤ i, j ≤ n, ∥∥∥∥∥ 1
m

m∑
r=1

(x̂(l)
i,r)⊤x̂(l)

j,r − K
(l)
ij

∥∥∥∥∥
∞

≤ CL

√
log(Ln/δ)

m
, (21)

where C is a constant.

We start from the first layer:

E

[
1
m

m∑
r=1

x̂(1)
i,r x̂(1)⊤

j,r

]
=K

(1)
ij,∞.

We can apply standar Hoeffding bound and obtain the following concentration inequalities. With probability
at least 1 − δ

L , we have

max
i,j

∥∥∥∥∥ 1
m

m∑
i=1

x̂(1)
i x̂(1)⊤

j − K
(1)
ij,∞

∥∥∥∥∥
∞

≤
√

2 log(4Ln2)2/δ)
m

.

Now we prove the induction step. In the following, by E(l) we mean taking expectation over w(l) ∼ N (0, c2
µI).

Suppose that Equation (21) holds for 1 ≤ l′ ≤ l with probability at least 1 − l
L δ, then we want to show

the equations holds for l + 1 with probability at least 1 − δ/L conditioned on previous layers satisfying
Equation 21. Same as the base case, applying concentration inequalities, we have with probability at least
1 − δ/L,

max
ij

∥∥∥E(l)K
(l)
ij − K

(l)
ij

∥∥∥
∞

≤
√

2 log(4Ln2)2/δ)
m

.

Now it remains to bound the differences:

max
ij

∥∥∥E(l)K
(l)
ij − K

(l)
ij,∞

∥∥∥
∞

≤ ∥E(u(l),v(l))∼AEZσ(u(l) + c2
σZ)EZσ(v(l) + c2

σZ)

− E(u(l),v(l))∼A∞EZσ(u(l) + c2
σZ)EZσ(v(l) + c2

σZ)
(a)
≤ C∥A − A∞∥F

≤ 2C∥A − A∞∥∞

≤ C1 max
ij

∥K
(l−1)
ij − K

(l−1)
ij,∞ ∥∞,

19

Under review as submission to TMLR

where A =
[

K
(l−1)
ii K

(l−1)
ij

K
(l−1)
ji K

(l−1)
jj

]
and A∞ =

[
K

(l−1)
ii,∞ K

(l−1)
ij,∞

K
(l−1)
ji,∞ K

(l−1)
jj,∞

]
, (a) is by property of activation function and

Taylor’s Theorem, and C1 and C2 are positive constants.

Thus by matrix perturbation theory we have,

∥∥∥Θ(L)
µ − K(l)

∞

∥∥∥
2

≤
∑

ij

∣∣∣Θ(L)
µ,ij − K(l)

ij,∞

∣∣∣ ≤ CLn

√
log(Ln/δ)

m
.

Bounding Θ(L)
σ (0). By analyzing Equation (20), the independent random variable ξ

(L)
r yields:

Θ(L)
σ,ij(0) =

m∑
r=1

E
ξ,ξ

(L)
r

[
1√
m

σ((w(L−1)
r)⊤x(L−2)

i)ξ(L)
r

]
E

ξ,ξ
(L)
r

[
1√
m

σ((w(L−1)
r)⊤x(L−2)

j)ξ(L)
r

]
= 0.

Therefore, at initialization and during, the Θ(L)
σ (0) keeps zero.

Finally, if m = Ω
(

n2 log(Ln/δ)2O(L)

λ2
0(K(L)

∞)

)
, then with probability at least 1 − δ,

∥∥∥∥Θ(L)(0) − K(L)
∞

∥∥∥∥
2

=
∥∥∥∥Θ(L)

µ (0) − K(L)
∞

∥∥∥∥
2

≤ λ0(K(L))
4 ,

which completes the proof.

A.2 Step 2. Bounding least eigenvalue of PNTK during training.

The next problem is that PNTKs are time-dependent matrices, thus varying during training. To account
for this problem, we establish following lemmas stating that if the weights during training are close to their
initialization, then the corresponding PNTK is close to their initialization.

Lemma A.4. Suppose for every l ∈ [L],
∥∥W(l)

µ (0)
∥∥

2 ≤ cµ,0
√

m,
∥∥x̂(l)(0)

∥∥
2 ≤ cx,0 and

∥∥W(l)
µ (t) −

W(l)
µ (0)

∥∥
F

≤
√

mR for some constant cµ,0, cx,0 > 0 and R ≤ cµ,0. If σ(·) is H-Lipschitz, then with
probability at least 1 − δ, we have ∥∥x̂(l)(t) − x̂(l)(0)

∥∥
2 ≤ cx,0HRgcx

(l),

where cx = 2Hcµ,0.

Lemma A.5. Suppose σ(·) is H−Lipschitz and β−smooth. Suppose for l ∈ [L],
∥∥W(l)

µ (0)
∥∥

2 ≤ cµ,0
√

m,
1

cx,0
≤
∥∥x̂(l)(0)

∥∥
2 ≤ cx,0. If

∥∥W(l)
µ (t)−W(l)

µ (0)
∥∥

F
≤

√
mR where R ≤ cgcx

(L)−1λ0(K(L)
∞)n−1 for some small

constant c and cx = 2√
cσHcµ,0 then with probability at least 1 − δ, we have:∥∥∥∥Θ(L)(t) − Θ(L)(0)

∥∥∥∥
2

≤ λ0(K(L)
∞)

4 .

Lemma A.6. If RS(t′) ≤ exp(−λ0(K(L)
∞)t′)RS(0) holds for 0 ≤ t′ ≤ t, we have for any 0 ≤ t′ ≤ t,∥∥∥W(l)

µ (t′) − W(l)
µ (0)

∥∥∥
F

≤ R′√m,

where R′ = 16cx,0(cx)L√
n∥y−f̂(X,0)∥2

λ0(K(L)
∞)

√
m

, for some small constant c with cx = max{2√
cσLcµ,0, 1}.

Proof of Lemma A.4. The proof sketch is by induction method.

20

Under review as submission to TMLR

For l = 0, where the target is input which is fixed, thus satisfying the hypothesis. Now suppose the induction
hypothesis holds for l′ = 0, . . . , l − 1, we consider l′ = l.∥∥∥x̂(l)(t) − x̂(l)(0)

∥∥∥
2

= 1√
m

∥∥∥Eξ(l)σ(W(l)(t)x̂(l−1)(t)) − Eξ(l)σ(W(l)(0)x̂(l−1)(0))
∥∥∥

2

≤ 1√
m

∥∥∥∥Eξ(l)σ(W(l)(t)x̂(l−1)(t)) − Eξ(l)σ(W(l)(t)x̂(l−1)(0))
∥∥∥∥

2

+ 1√
m

∥∥∥∥Eξ(l)σ(W(l)(t)x̂(l−1)(0)) − Eξ(l)σ(W(l)(0)x̂(l−1)(0))
∥∥∥∥

2

≤ 1√
m

H
(∥∥∥Eξ(l)W(l)(0)

∥∥∥
2

+
∥∥∥Eξ(l)W(l)(t) − Eξ(l)W(l)(0)

∥∥∥
F

)
·
∥∥∥∥x̂(l−1)(t) − x̂(l−1)(0)

∥∥∥∥
2

+ 1√
m

H

(∥∥∥Eξ(l)W(l)(t) − Eξ(l)W(l)(0)
∥∥∥

F

)∥∥x̂h−1(0)
∥∥

2

≤ 1√
m

H
(
cµ,0

√
m + R

√
m
)

HRcx,0gcx
(l − 1) + 1√

m
H

√
mRcx,0

≤HRcx,0 (cxgcx
(l − 1) + 1)

≤HRcx,0gcx
(l).

Proof of Lemma A.5. For simplicity, we define zi,r(t) = w(L−1)
r (t)⊤x̂(L−2)

i (t).

Now we bound the distance between Θ(L)
µ,ij(t) and Θ(L)

µ,ij(0) through the following inequality:∣∣∣∣Θ(L)
µ,ij(t) − Θ(L)

µ,ij(0)
∣∣∣∣

=
∣∣∣∣ 1
m

m∑
r=1

Eξ(l−1)σ (zi,r(t))Eξ(l−1)σ (zj,r(t)) − 1
m

m∑
r=1

Eξ(l−1)σ (zi,r(0))Eξ(l−1)σ (zj,r(0))
∣∣∣∣

≤ 1
m

m∑
r=1

∣∣∣∣Eξ(l−1)σ (zi,r(t))Eξ(l−1)σ (zj,r(t)) − Eξ(l−1)σ (zi,r(t))Eξ(l−1)σ (zj,r(0))
∣∣∣∣

+ 1
m

m∑
r=1

∣∣∣∣Eξ(l−1)σ (zi,r(t))Eξ(l−1)σ (zj,r(0)) − Eξ(l−1)σ (zi,r(0))Eξ(l−1)σ (zj,r(0))
∣∣∣∣

≤βH

m

(
m∑

r=1
Eξ(l−1) |zi,r(t) − zi,r(0)| + Eξ(l−1) |zj,r(t) − zj,r(0)|

)

≤ βH√
m

√√√√ m∑
r=1

∣∣Eξ(l−1)zi,r(t) − Eξ(l−1)zi,r(0)
∣∣2

≤nβHcx,0gcx
(L)R.

where we have used the result in Lemma A.4. Therefore we can bound the perturbation:∥∥∥Θ(L)
µ (t) − Θ(L)

µ (0)
∥∥∥

F
=

√√√√ n∑
i,j=1

∣∣∣Θ(L)
µ,ij(t) − Θ(L)

µ,ij(0)
∣∣∣2 ≤ βHcx,0gcx

(L)R.

Recall the bound on R, which is R ≤ cgcx(L)−1λ0(K(L)
∞)n−1, we have the desired result:∥∥∥Θ(L)(t) − Θ(L)(0)
∥∥∥

2
≤ λ0(K(L)

∞)
4 .

21

Under review as submission to TMLR

Proof of Lemma A.6. We first consider the derivative of W(l)
µ and have:∥∥∥∥ d

ds
W(l)

µ (s)
∥∥∥∥

F

=η

∥∥∥∥(1
m

)L−l+1
2 n∑

i=1
(yi − f̂(xi; s))x̂(l−1)

i (s)Eξ(k)

(
L∏

k=l+1
J(k)

i (s)W(k)(s)
)

J(l)
i (s)

∥∥∥∥
F

≤η

(
1
m

)L−l+1
2 n∑

i=1

∣∣yi − f̂(xi; s)
∣∣∥∥x̂(l−1)

i (s)
∥∥

2

L∏
k=l+1

∥∥Eξ(k)W(k)(s)
∥∥

2HL−l+1,

where

J(l′) ≜ diag
(

σ′
(

(w(l′)
1)⊤x(l′−1)

)
, . . . , σ′

(
(w(l′)

m)⊤x(l′−1)
))

∈ Rm×m

are the derivative matrices induced by the activation function and we have used
∥∥J(k)(s)

∥∥
2 ≤ H.

To bound
∥∥x̂(l−1)

i (s)
∥∥

2, by Lemma A.4 we get:∥∥x̂(l−1)
i (s)

∥∥
2 ≤ Hcx,0gcx(l)R + cx,0 ≤ 2cx,0.

To bound
∥∥Eξ(k)W(k)(s)

∥∥
2 =

∥∥W(k)
µ (s)

∥∥
2, we have:

L∏
k=l+1

∥∥W(k)
µ (s)

∥∥
2 ≤

L∏
k=l+1

(∥∥W(k)
µ (0)

∥∥
2 +

∥∥W(k)
µ (s) − W(k)

µ (0)
∥∥

2

)

≤
L∏

k=l+1
(cµ,0

√
m + R′√m)

= (cµ,0 + R′)L−l
m

L−l
2

≤ (2cµ,0)L−l
m

L−l
2 .

Plugging in these two bounds back, we obtain∥∥∥∥ d

ds
W(l)

µ (s)
∥∥∥∥

F

≤4ηcx,0cL
x

n∑
i=1

|yi − f̂(xi; s)|

≤4ηcx,0cL
x

√
n
∥∥∥y − f̂(X; s)

∥∥∥
2

≤e−λ0sηλ0(K(L)
∞)R′√m.

Integrating the derivative of weights, we obtain:∥∥∥∥W(l)
µ (s) − W(l)

µ (0)
∥∥∥∥

F

≤
∫ s

s′=0

∥∥∥∥ d

ds′ W(l)
µ (s′)

∥∥∥∥
F

≤ R′√m.

A.3 Setp 3. Towards linear convergence rate of expected empirical loss

Now we process to analyze the convergence rate of expected empirical error. Combined with fact that least
eigenvalue of PNTKs and change of weights are bounded during training, the behavior of the loss is traceable.
To finalize the proof for Theorem 4.2, we show:

22

Under review as submission to TMLR

Lemma A.7. If R′ < R, we have RS(t) ≤ exp(−λ0(K(L)
∞)t)RS(0).

Proof of Lemma A.7. According to the gradient flow of output function, we have:

df̂(xi, t)
dt

=
L∑

l=1

(〈
∂f̂(xi; t)
∂W(l)

µ

,
dW(l)

µ (t)
dt

〉
+
〈

∂f̂(x; t)
∂W(l)

σ

,
dW(l)

σ (t)
dt

〉)

=
n∑

j=1
(yi − f̂(xj))

L∑
l=1

(〈
∂f̂(xi)
∂W(l)

µ

,
f̂(xj)
∂W(l)

µ

〉
+
〈

∂f̂(xi)
∂W(l)

σ

,
∂f̂(xj)
∂W(l)

σ

〉)

=
n∑

j=1
(yj − f̂(xj ; t))(Θµ,ij + Θσ,ij).

Then the dynamics of loss can be calculated:

d

dt
RS(t) = 1

2
d

dt

∥∥∥f̂(X; t) − y
∥∥∥2

2

= −
(

y − f̂(X, t)
)⊤

(Θµ(t) + Θσ(t))
(

y − f̂(X, t)
)

≤ −λ0 (Θµ(t) + Θσ(t))
∥∥∥y − f̂(X; t)

∥∥∥2

2

≤ −λ0

(
Θ(L)

µ (t) + Θ(L)
σ (t)

)∥∥∥y − f̂(X; t)
∥∥∥2

2

≤ −λ0

(
K(L)

∞

)∥∥∥y − f̂(X; t)
∥∥∥2

2
,

where we have used the condition R′ < R and λ0(Θ(L)
µ (t) + Θ(L)

σ (t)) ≤ λ0(Θµ(t) + Θσ(t)). Therefore, we
have the desired result:

RS(t) ≤ exp(−λ0(K(L)
∞)t)RS(0).

Finally, we provide a bound for R̂S(Q(0)):

∥∥∥y − f̂(X, 0)
∥∥∥2

2
=

n∑
i=1

(
y2

i + yif̂(xi, 0) + f(xi, 0)2
)

=
n∑

i=1
(1 + O(1)) = O(n).

Recall that in Lemma A.5 and Lemma A.6:

R ≤ cgcx
(L)−1λ0(K(L)

∞)n−1, R′ = 16cx,0 (cx)L √
n∥y − f̂(X, 0)∥2

λ0(K(L)
∞)

√
m

.

Thus R′ < R yields m = Ω
(

n42O(L)

λ4
0(K(L)

∞)

)
.

B Proof of Theorem 4.3

Theorem B.1 (Restatement of Theorem 4.3). Suppose m ≥ poly(n, 1/λ0, 1/δ, 1/E) and the objective func-
tion follows the form (14), for any test input xte ∈ Rd with probability at least 1 − δ over the random
initialization, we have

f̂
(
xte; t

)
|t=∞ = Θ∞

µ (x, X)
(
Θ∞

µ (X, X) + λ/c2
σI
)−1y ± E , (22)

where E is a small error term between output function of finite-width PNN and infinite-width PNN.

23

Under review as submission to TMLR

Proof of Theorem B.1. To proceed the proof, we first establish the result of kernel ridge regression in the
infinite-width limit, and then bound the perturbation on the predict. According the linearization rules for
infinitely-wide networks (Lee et al., 2019), the output function can be expressed as,

f̂∞(x, t) = ϕµ(x)⊤(θµ(t) − θµ(0)) + ϕσ(x)⊤(θσ(t) − θσ(0)),

where ϕµ(x) = ∇θµ
f̂(x; 0), and ϕσ(x) = ∇θσ

f̂(x; 0). Recall that we assume that θσ does not change during
training, then the KL divergence reduces to

KL = 1
2nc2

σ

∥θµ(t) − θµ(0)∥2
2 .

Then the gradient flow equation for θµ becomes,

dθµ(t)
dt

= ∂L(t)
∂θµ(t) =

(
Θ∞

µ + λ/c2
σI
) (

θ(µ)(t) − θ(µ)(0)
)

+ ϕµ(X)
(

f̂∞(X; 0) − y
)

,

which is an ordinary differential equation, and the solution is,

θµ(t) = ϕµ(X)⊤(Θ∞
µ (X, X) + λ/c2

σI
)−1(I − e−(Θ∞

µ (X,X)+λ/c2
σI)t
)
y.

Plug this result into the linearization of expected output function, we have,

f̂∞(x; t) = Θ∞
µ (x, X)(Θ∞

µ (X, X) + λ/c2
σI)−1(I − e−(Θ∞

µ (X,X)+λ/c2
σI)t)y.

Then we take the time to be infinity and have:

f̂∞(x)|t=∞ = Θ∞
µ (x, X)(Θ∞

µ (X, X) + λ/c2
σI)−1y.

The next step is to show the difference between finite-width neural network and infinitely-wide network:∣∣∣f̂(xte) − f̂∞(xte)
∣∣∣ ≤ O(E),

where E = Einit +
√

nEΘ
λ0+β with

∥∥∥f̂ (xte; 0)
∥∥∥

2
≤ Einit and ∥Θ∞

µ − Θµ(t)∥2 ≤ EΘ. Note the expression of output

function in the infinite-width limit can be rewritten as f̂∞(xte) = ϕ(xte)⊤β and the solution to this equation
can be further written as the result of applying gradient flow on the following kernel ridge regression problem

min
β

n∑
i=1

1
2n

∥∥ϕ(xi)⊤β − xi

∥∥2
2 + λ/c2

σ ∥β∥2
2 ,

with initialization β(0) = 0. We use β(t) to denote this parameter at time t trained by gradient flow and
f̂∞ (xte, β(t)) be the predictor for xte at time t. With these notations, we rewrite

f̂∞(xte) =
∫ ∞

t=0

df̂(β(t), xte)
dt

dt,

where we have used the fact that the initial prediction is 0.

24

Under review as submission to TMLR

We thus can analyze the difference between the PNN predictor and infinite-width PNN predictor via this
integral form as follows:∥∥∥f̂∞(xte) − f̂ (xte)

∥∥∥
2

≤
∥∥∥f̂(θµ(0), xte)

∥∥∥
2

+

∥∥∥∥∥
∫ ∞

t=0

(
df̂(θµ(t), xte)

dt
− df̂∞(β(t), xte)

dt

)
dt

∥∥∥∥∥
2

=
∥∥∥f̂ (θ(0), xte)

∥∥∥
2

+
∥∥∥∥− 1

n

∫ ∞

t=0
(Θ∞

µ (xte, X)⊤(f̂∞(t) − y) − Θµ(xte, X; t)⊤(f̂(t) − X))dt

− λ/c2
σ

∫ ∞

t=0
(ϕ∞(xte)⊤β(t) − ϕµ(xte; t)⊤θ(t)dt

∥∥∥∥
2

≤Einit +
∥∥∥∥ 1

n

∫ ∞

t=0
(Θµ(xte, X; t) − Θ∞(xte, X))⊤ (f̂(t) − X)dt + β

∫ ∞

t=0
(ϕµ(xte, t) − ϕ∞(xte))⊤

β(t)dt

∥∥∥∥
2

+
∥∥∥∥ 1

n

∫ ∞

t=0
Θ∞

µ (xte, X)⊤(f̂∞(t) − f̂(t))dt + λ/c2
σ

∫ ∞

t=0

(
ϕ∞

µ (xte)
)⊤ (β(t) − θµ(t))dt

∥∥∥∥
2

≤Einit +
(

max
0≤t≤∞

∥∥Θµ(xte, X; t) − Θ∞
µ (xte, X)

∥∥
2

∫ ∞

t=0

∥∥∥f̂(t) − y
∥∥∥

2
dt

+ λ/c2
σ max

0≤t≤∞

∥∥ϕµ(xte; t) − ϕ∞
µ (xte)

∥∥
2

∫ ∞

t=0
∥β∥2dt

)
+
(

max
0≤t≤∞

∥Θ∞
µ (xte, X)∥2

∫ ∞

t=0
∥f̂(t) − f̂∞(t)∥2dt

+ λ/c2
σ max

0≤t≤∞

∥∥ϕ∞
µ (xte)

∥∥
2

∫ ∞

t=0
∥β(t) − θµ(t)∥2dt

)
≜Einit + I2 + I3,

where θµ(t) = θµ(t) − θµ(0). For the second term I2, we know that ∥f̂(t) − y∥2
2 + β∥θµ∥2

2 ≤ exp(−(λ0 +
λ/c2

σ)t)∥f̂(0) − y∥2
2.

Therefore, we can bound: ∫ ∞

0
∥f̂(t) − y∥2 + β∥θµ(t)∥2dt

≤
∫ ∞

t=0
exp(−(λ0 + λ/c2

σ)t)(∥f̂(0) − y∥2)dt

=O

(√
n

λ0 + λ/c2
σ

)
.

As a result, we have I2 = O
(√

nEΘ
λ0+λ/c2

σ

)
. To bound I3, we have∫ ∞

0
∥f̂(t) − f̂∞(t)∥2 + λ/c2

σ∥β − θµ∥2dt

≤
∫ ∞

0
∥f̂(t) − y∥2 + λ/c2

σ∥θµ∥2dt +
∫ ∞

0
∥f̂∞(t) − X∥2 + λ/c2

σ∥β∥2dt

≤O

(√
n

λ0 + λ/c2
σ

)
.

As a result, we have I3 = O
(√

nEΘ
λ0+λ/c2

σ

)
. Lastly, we put things together and get

|f̂(t) − f̂∞(t)| ≤ O

(
Einit + EΘ

√
n

λ0 + β

)
.

25

Under review as submission to TMLR

Figure 2: Relative Frobenius norm change in µ and σ respectively during training with MSE loss which is
derived from the classic PAC-Bayesian bound, where m is the width of the network.

Figure 4: Comparison between the norm of derivative of output to mean and variance weights.

C Additional Experiments

This section contains additional experimental results. Training is performed with a server with a CPU with
5,120 cores, and a 32 GB Nvidia Quadro V100.

C.1 Validation of theoretical results

We first provide empirical support showing that the training dynamics of wide probabilistic neural networks
using the training objective derived from a PAC-Bayes bound are captured by PNTK, which validates Lemma
A.6.

Consider a three hidden layer ReLU fully-connected network of the training objective derived from the PAC-
Bayesian lambda bound in Equation (5), using an ordinary MSE function as loss. The neural network is
trained with a full-batch gradient descent using learning rates equal to one on a fixed subset of MNIST
(|D| = 128) of ten classifications. A random initialized prior with no connection to data is used since it is
in line with our theoretical setting and we only intend to observe the change in parameters rather than the
performance of the actual bound.

After T = 217 steps of gradient descent updates from different random initialization, we plot the changes
of W(l)

µ and W(l)
σ of input/output/hidden layer with respect to width m for each layer on Figure 2. We

observe that the relative Frobenius norm change in the input/output layer’s weights scales as 1/
√

m while
the hidden layers’ weight scales is 1/m during the training, which verifies Lemma A.6.

26

Under review as submission to TMLR

Figure 5: Correlation between aggregated proxy PA and generalization bound.

C.2 Comparison of gradient norm with respect to mean weight and variance weight

We then conduct an experiment to compare the gradient of norm with respect to θµ and θσ. The result is
shown in Figure 4. We can see that the gradient norm of ∇θµ

f(x) is much larger than that of ∇θσ
f(x),

which implies that θσ is effectively fixed during gradient descent training.

C.3 Correlation between generalization bound proxy metric and generalization bound

In Figure 1, we observe a positive and significant correlation between PA and generalization bound held
among different values of a selected hyperparameter while fixing other hyperparameters. Furthermore, we
provide a Figure 5 presenting the correlation for aggregated values of ρ0 and λ, under the circumstance where
50% data is used for prior training. We can clearly see that lower PA corresponds to the lower bound, with
a strong positive Kendall-tau correlation of 0.7.

C.4 Grid search

For selecting hyperparameters, we conduct a grid search over ρ0, percent of prior data, and KL penalty
λ. Notably, we do grid sweep over the data for prior training with different proportion in [0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9] since 0.2 is the minimum proportion required for obtaining a reasonably lower value
generalization bound (Dziugaite et al., 2020). For the rest, we run over ρ0 at value [0.03, 0.05, 0.07, 0.09,
0.1, 0.3, 0.5, 0.7] for FCN ([0.05, 0.07, 0.09, 0.1, 0.3, 0.5, 0.7, 0.9] for CNN) and KL penalty at [0.0001,
0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1] for both structures.

27

	Introduction
	Related Work
	Preliminary
	Deep probabilistic neural network
	PAC-Bayes bound
	Deep PAC-Bayesian learning

	Main Theoretical Results
	Optimization analysis
	Training with KL divergence
	Generalization analysis

	Proof Sketch
	Proof of Theorem 4.2
	Proof of Theorem 4.3
	Proof of Theorem 4.4

	Experiments
	Experimental setup
	Selecting hyperparameters via training-free metric

	Conclusion and Discussion
	Proof of Theorem 4.2
	Step 1. Bounding least eigenvalue of PNTK at initialization
	Step 2. Bounding least eigenvalue of PNTK during training.
	Setp 3. Towards linear convergence rate of expected empirical loss

	Proof of Theorem 4.3
	Additional Experiments
	Validation of theoretical results
	Comparison of gradient norm with respect to mean weight and variance weight
	Correlation between generalization bound proxy metric and generalization bound
	Grid search

