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ABSTRACT

Generative models, particularly diffusion models, have been utilized as world
models in offline reinforcement learning (RL) to generate synthetic data, enhancing
policy learning efficiency. Current approaches either train diffusion models once
before policy learning begins or rely on online interactions for alignment. In this
paper, we propose a novel offline RL algorithm, Adaptive Diffusion World Model
for Policy Evaluation (ADEPT), which integrates closed-loop policy evaluation
with world model adaptation. It employs an uncertainty-penalized diffusion model
to iteratively interact with the target policy for evaluation. The uncertainty of
the world model is estimated by comparing the output generated with different
noises, which is then used to constrain out-of-distribution actions. During policy
training, the diffusion model performs importance-sampled updates to progressively
align with the evolving policy. We analyze the performance of the proposed
method and provide an upper bound on the return gap between our method and
the real environment under the target policy. The results shed light on various
key factors affecting learning performance. Evaluations on the D4RL benchmark
demonstrate significant improvement over state-of-the-art baselines, especially
when only suboptimal demonstrations are available – thus requiring improved
alignment between the world model and offline policy evaluation.

1 INTRODUCTION

Offline Reinforcement Learning (RL) methods have garnered much attention recently (Levine et al.,
2020; Prudencio et al., 2023), due to their abilities to train policies based on offline datasets collected
by a behavior policy, rather than relying on costly and sometimes risky online interactions (Kiran
et al., 2021). With only limited data of transitions or trajectories available, it is prone to overestimating
the reward from out-of-distribution states and actions as the learned policy gradually deviates from
the behavior policy used for collecting the data. This issue, known as the distributional shift (Kumar
et al., 2019), is one of the key challenges in offline RL.

To address this, various solutions have been proposed, such as augmenting the dataset by building
world models (Yu et al., 2021; Rigter et al., 2022; Matsushima et al., 2020), and policy regularization
approaches (Kumar et al., 2019; Rashidinejad et al., 2021). The key idea of building world models is
to learn the transition dynamics of the underlying Markov Decision Process (MDP). Once trained on
the offline dataset, the policy can interact with the world model and generate additional synthetic
trajectories. Existing works include world models generated by VAE (Ha & Schmidhuber, 2018;
Hafner et al., 2023; Ozair et al., 2021), GAN (Eysenbach et al., 2022), Transformers (Janner et al.,
2021), and more recently Diffusion (Ding et al., 2024a; Lu et al., 2023). However, most of these works
either train a world model one-time prior to policy learning (Yu et al., 2020; Kidambi et al., 2020;
Janner et al., 2019) or require additional online interaction data to adapt the world model (Kaiser
et al., 2019; Hafner et al., 2019). Neither approach effectively mitigates distributional shifts, relying
solely on offline data. Furthermore, the return gap between world models (e.g., diffusion models) and
the real environment in such offline RL algorithms remains to be analyzed.

This paper proposes a novel approach to offline RL, integrating policy evaluation and world-model
adaptation, namely the Adaptive Diffusion World Model for Policy Evaluation (ADEPT). ADEPT
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encompasses two collaborative components: (i) a guided diffusion world model with uncertainty
estimation, which generates uncertainty-penalized synthetic trajectories by evaluating the target policy
step-by-step; and (ii) importance-sampled updates, based on the offline dataset, to align the world
model with the evolving policy. These two components operate in a closed loop throughout training.
Existing works in RL typically treat diffusion world models as synthesizers for data augmentation (Lu
et al., 2023), policy representation (Wang et al., 2022; Chen et al., 2022), or multistep planners (Janner
et al., 2022; Ding et al., 2024a). These approaches generate additional synthetic trajectories with a
fixed world model throughout the policy improvement iterations. In contrast, ADEPT continually
adapts the diffusion model using importance sampling with respect to the distributional shift between
the target policy πk and the behavior policy πb. The updated diffusion model is then used to evaluate
πk for policy improvement, with a sequence of actions drawn from πk used as the conditional input
to the world model. We note that ADEPT requires alterations between next-state generation using the
guided diffusion world model and next-action sampling from the target policy.

Furthermore, we analyze the performance of the proposed ADEPT algorithm theoretically and
empirically. We provide the bound of the return gap between the policy under actual environment
and that under the diffusion world model, and show that the monotonic improvement of return can be
guaranteed when the one-step policy update under the world model is larger than this bound. We
further decompose the bound into three factors: model transition error, reward prediction error and
policy shift, and discuss how ADEPT lowers these factors and addresses other significant issues such
as distributional shift problem to enhance the performance. To the best of our knowledge, this is
the first analysis for offline RL with diffusion world models. The proposed algorithm is evaluated
on D4RL benchmark (Fu et al., 2020) in multiple MuJoCo environments. We notice that ADEPT
works best with datasets consisting of mainly suboptimal demonstrations, where the distributional
shift becomes more severe as target policy moves toward optimum. The results show that ADEPT
significantly improves the baseline SAC method (Haarnoja et al., 2018), and largely outperforms
other SOTA offline RL methods including model-free, model-based, and diffusion-based algorithms
with up to 20% improvement on average.

The contributions of this work can be summarized as follows:

1. We propose a novel model-based offline RL algorithm, ADEPT, with closed-loop operations
of policy evaluation and improvement based on an uncertainty-penalized diffusion model
and world model adaptation with importance sampling.

2. We provide theoretical proof of bounding the return gap between the diffusion world model
and actual environment under the same policy, and discuss how ADEPT narrows the bound
and solves the key issues to enhance the performance.

3. We evaluate our method on the D4RL benchmarks and demonstrate significant improvement
over the state-of-the-art baselines, especially on suboptimal datasets.

2 RELATED WORKS

Offline RL. Offline RL faces the distributional shift problem (Kumar et al., 2020) due to data
collected using a specific behavior policy. Various methods have been proposed to regularize an
offline RL policy and address this issue. In particular, model-based offline RL methods such as
MOReL (Kidambi et al., 2020), MOPO (Yu et al., 2020), RAMBO (Rigter et al., 2022) and COMBO
(Yu et al., 2021) train an extra MLP to mimic the dynamics and develop different ways to penalize
the reward or value function in unseen state and action pairs to address the out-of-distribution
issues. Other model-free methods, including BCQ (Fujimoto et al., 2019), IQL (Kostrikov et al.,
2021), CQL (Kumar et al., 2020), and TD3+BC (Fujimoto & Gu, 2021), add different regularization
mechanisms that are defined on action or value function, forcing the policy to act more conservatively.
Our proposed ADEPT framework can be combined with any of these offline RL algorithms.

World Models for RL. The use of world models to generate synthetic data for RL was first
proposed by Ha & Schmidhuber (2018), as an extension of traditional model-based RL methods,
utilizing VAE and RNN for predicting environmental transitions. Following this approach, various
world models with advanced capabilities of fitting desired distributions have been proposed, including
convolutional U-networks (Kaiser et al., 2019), vector-quantized autoencoders (Ozair et al., 2021),
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generative adversarial networks (Eysenbach et al., 2022), energy-based models (Boney et al., 2020),
transformers (Janner et al., 2021), and diffusion (Ding et al., 2024a; Lu et al., 2023). These world
models are mainly used for trajectory synthesis with limited adaptability.

The Use of Diffusion Models in RL. Diffusion is a state-of-the-art technique for generating
synthetic samples of images, videos or texts (Ho et al., 2020). It was first introduced by Janner et al.
(2022) as a multistep planner in offline RL, where the diffusion model directly generates trajectories
that are used for decision-making. This is further extended to conditional actions (Ajay et al., 2022),
meta-RL (Ni et al., 2023), hierarchical tasks (Li et al., 2023), multitask problems (He et al., 2023),
multi-agent tasks (Zhu et al., 2023) and safe planning (Xiao et al., 2023). Diffusion models are also
employed for policy expression (Wang et al., 2022; Chen et al., 2022), imitation learning (Hegde
et al., 2024) and reward modeling (Nuti et al., 2023). Lu et al. (2023) adopted the diffusion model as
a data synthesizer to generate additional synthetic data based on offline datasets before policy training.
Later, a conditional diffusion world model was proposed to generate trajectories from current state
and action, to support offline value-based RL (Ding et al., 2024a) and policy-based RL (Jackson
et al., 2024). However, these methods don’t fully solve the distributional shift issue since the shift
problem in world model is not considered. Different from these existing works, our method ADEPT
utilizes the essence of diffusion model to estimate uncertainty for policy regularization, and adapt
the diffusion model through importance sampling inspired by previous methods in online RL(Wang
et al., 2023). The theoretical analysis of the return gap between ADEPT and the actual environment
under the optimal policy is also provided.

3 PRELIMINARIES

Offline RL using World Models We consider an unknown MDP, referred to as the environ-
ment. Supposing the MDP is fully observable with discrete time, it could be defined by the tuple
M = (S,A, P,R, µ0, γ). S and A are the state and action spaces, respectively. P (s′|s, a) is the
transition probability with s, s′ ∈ S, a ∈ A, and R : S × A → R is the reward function. µ0

is the initial state distribution and γ is the discount factor. We consider an agent that acts within
the environment based on a policy π(a|s) repeatedly. In each time step t, the agent receives a
state st and samples an action via its policy at ∼ π(·|st). The environment transforms into a new
state st+1 ∼ P (·|st, at) and returns a reward rt = R(st, at). After a whole episode of interac-
tions, a trajectory τ = (s0, a0, r0, . . . , sT−1, aT−1, rT−1, sT ) will be generated, which contains
states, actions and rewards of maximum length T . Based on that, the goal of RL is to learn an
optimal policy π∗ to maximize the expectation of discounted cumulative rewards from this MDP:
π∗ = argmaxπ E(s,a)∼π(

∑T−1
t=0 γtrt).

Specifically in offline model-based RL, only a dataset of trajectories D is available, and a prediction
model of the environment is introduced, denoted as world model M̂ = (S,A, P̂ , R̂, µ0, γ), to
improve sample efficiency for further learning and planning. Commonly, the world model learns a
single-step transition approximating the real dynamics P of the environment in a supervised method
based on D. Hence, once a world model has been trained, it could replace the real environment to
generate synthetic trajectories. Similar to standard RL, an initial state s0 is sampled first from datasets,
and based on that the interactions start. After certain length of steps H , referred as horizon, a synthetic
trajectory τ̂ = (ŝ0, â0, r̂0, ..., ŝH−1, âH−1, r̂H−1, ŝH) is generated, in which ŝt+1 ∼ P̂ (·|ŝt, ât) and
r̂t = R̂(st, at). These imaginary trajectories are added into the replay buffer for policy optimization.

Diffusion Model The purpose of the diffusion model is to learn an underlying data distribution
q(x0) from a dataset D = {xi}. In DDPM (Nichol & Dhariwal, 2021), the synthetic data generation
is conducted by denoising real data x0 from noises N (0, I) with K steps. During training, a
forward process q (xk|xk−1) = N

(√
αk−1xk−1,

√
1− αk−1I

)
is adopted to add noise on real data

step by step, leading the final distribution towards Gaussian noises. The diffusion model learns a
parameterized reverse process pθ (xk−1|xk) = N (µθ(xk),Σk) to denoise the real data from the
Gaussian noise N (0, I). By defining ᾱk =

∏k
i=1 αi, µθ and Σk can be rewritten as follows:

µθ(xk) =
1
√
ak

(
xk −

βk√
1− ᾱk

ϵθ(xk, k)

)
and Σk = βk

1− ᾱk−1

1− ᾱk
I. (1)
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Figure 1: An overview of our ADEPT algorithm. Thin arrows denote the data flows, while thick
arrows represent the key steps in ADEPT. It iteratively leverages an uncertainty-penalized diffusion
world model to directly evaluate the target policy with actions drawn from it and optimize the policy
with the collected data, and then performs an importance-sampled world model update to adaptively
align the world model with the updated policy.

Here, ϵθ is the parameterized noise prediction model to be trained. Therefore, the loss function of
the diffusion model is defined as: L(θ) = Ek∼[1,K],x0∼q,ϵ∼N(0,I)(∥ϵ− ϵθ(xk, k)∥2), where ϵ is the
real noise added in each step. When generating the synthetic data x̂0, beginning with x̂K sampled
from N (0, I), ϵθ predicts noise possibly added in each step until reaching x̂0. Specifically in this
work, the noise prediction model is conditioned by the current state and action to predict the next
state, denoted as ϵθ(st+1,k, (st, at), k). We adopt the classifier-free method (Ho & Salimans, 2022)
to train the diffusion model.

4 METHODOLOGY

In this section, we illustrate the details of ADEPT. As shown in Figure 1, the two key components
in ADEPT are policy evaluation on a guided diffusion world model and importance-sampled world
model updates. They work in a closed-loop operation through the whole training process, The
explanations of these two components are covered in Section 4.1 and Section 4.2, respectively. In
Section 4.3, we provide theoretical derivation to bound the return gap of the proposed method.

4.1 POLICY EVALUATION USING GUIDED DIFFUSION MODEL

Before the policy iteration, we first utilize the offline dataset to initialize the guided diffusion world
model M̂θ,η, consisting of noise prediction model ϵθ and a two-layer MLP rη, to simulate the
conditional distribution of the one-step transition P (st+1|st, at) and reward function R(st, at),
respectively. We denote the simulated transition probability via ϵθ as Pθ. The offline dataset is
normalized by linearly mapping each dimension of the state and action spaces to have 0 mean
and 1 standard deviation. While training the diffusion model, we sample a minibatch of tuples
(st, at, rt, st+1) consisting of the state, action, reward, and next state from the normalized offline
datasets in each iteration. As mentioned in Section 3, we follow DDPM and adopt the classifier-free
method to learn the conditional probabilities of the state transition based on current state st and action
at. Since the reward function plays a significant role in RL training, the model should emphasize
more on its accuracy and decouple the reward function from state transition dynamics. Therefore, we
separately train rη(st, at, st+1) to predict the reward function and the terminal signal. Introducing
st+1 as an extra input significantly improves the accuracy of reward prediction, and in evaluation
st+1 is replaced by ŝt+1, which is sampled from Pθ(ŝt+1|st, at).

However, a naive model-based RL method directly using initialized M̂θ,η for planning could suffer
from the inaccuracy brought by out-of-distribution states and actions, i.e., the model may over-
estimate the rewards in state-action pairs not included in the dataset. To deal with the distributional
shift problem, previous methods mainly use the ensemble of learned models to estimate the uncer-
tainty (Lowrey et al., 2019; Yu et al., 2020; Kidambi et al., 2020). For the diffusion model, since
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(a) Traditional World Model 
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(b) Adaptable World Model with Importance Sampling
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Loop

Figure 2: Comparison of traditional world model and adaptable world model in ADEPT. Each curve
refers to the trajectory expectation under a certain policy. Blue points refer to samples in the offline
dataset, while darker points are given higher weight in loss calculation. Each circle indicates a
distribution of the generated samples under the world model M̂ with relatively lower uncertainties.
The existing algorithms as shown in (a) use a fixed world model in offline RL. Our proposed approach,
as illustrated in (b), works in a loop between policy evaluation and model adaption.

each output is denoised from Gaussian noise, the uncertainty could be directly estimated from the
discrepancy of multiple denoised samples with the same condition:

dθ(st, at) = max
i,j
∥ŝt+1,i − ŝt+1,j∥, (2)

in which ŝt+1,i, ŝt+1,j ∼ Pθ(st+1|st, at). This uncertainty will be used to determine the terminal
signal dt, and be added as a penalty to the predicted reward r̂t.

Algorithm 1: Policy Evaluation using Guided Diffusion Model (PE)

Randomly select a state st from (st, at, rt, st+1) ∈ D ∪ D̂ as ŝ0.
for t = 0→ H do

ât ∼ πϕ(·|ŝt)
for i = 0→ Nd do

xK ∼ N (0, I)
for k = K − 1→ 0 do

xk ∼ N (µθ(xk+1|ŝt, ât),Σk), in which µθ and Σk are defined in equation 1.
ŝt+1,i = x0

dθ(ŝt, ât) = maxi,j ∥ŝt+1,i − ŝt+1,j∥; ŝt+1 = average({ŝt+1,i}Nd−1
i=0 )

r̂t = rη(ŝt, ât, ŝt+1)− λrdθ(ŝt, ât); dt = δ(dθ(ŝt, ât) > λ0)
If dt == 1 then break

Return the trajectory τ̂ = (ŝ0, â0, r̂0, ŝ1, . . . ŝt, âr, r̂t, ŝt+1)

The process of policy evaluation and improvement based on the uncertainty-penalized diffusion model
is summarized in Algorithm 1. After initialization, M̂θ,η interacts with the current policy πϕ and
generates data for evaluation, and saves it in the replay buffer D̂. At the beginning of each evaluating
iteration, M̂θ,η randomly samples a state from D ∪ D̂ to be the start state ŝ0, even though it may
appear as a middle state in the real trajectory. Based on the current state ŝt, an action ât ∼ πϕ(ŝt) is
sampled given target policy. Conditioned by ŝt and ât, the diffusion model generates Nd possible
next states {ŝt+1,i}Nd−1

i=0 after K denoising steps each via ϵθ. Next, the average and discrepancy of
the states are calculated as the next predicted state ŝt+1 and the estimated uncertainty, respectively.
The final reward is a combination of rη(ŝt, ât, ŝt+1) and uncertainty penalty. If the uncertainty is
larger than a threshold λr or the next state satisfies known termination conditions, a terminal signal
dt will be activated. Such an iteration continues till when dt is true or t reaches horizon H .

4.2 IMPORTANCE-SAMPLED WORLD MODEL UPDATE

Once the policy is updated, there is a policy shift between πϕ and the behavior policy πD that
collected D. The estimation from M̂θ,η could lose accuracy under the new distribution brought by
the policy update. To handle this, we adopt the importance-sampling technique to update M̂θ,η with

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

offline dataset, guiding D̂ towards the accurate distribution under the current policy. This is achieved
by re-weighting the loss function of multiple samples to reduce the discrepancy between πϕ and
πD. Even if πD is not available, it’s not hard to estimate the behavior policy from the offline dataset
via behavior cloning (BC) (Nair et al., 2018). For each transition {(siti , a

i
ti , r

i
ti , s

i
ti+1)}Ni=1 in the

training batch, given the importance weight as ωi, the individual loss function as li(θ, η), which is
later defined in Algorithm 2, then the total loss L(θ, η) of the whole training batch is calculated as:

L(θ, η) = 1

N

N∑
i=1

ωili(θ, η) =
1

N

N∑
i=1

πϕ(a
i
ti |s

i
ti)

πD(aiti |s
i
ti)

li(θ, η). (3)

Generally, the state-action pairs that have more probabilities under the current policy are associated
with a larger weight in loss calculation.

Algorithm 2: Framework for ADEPT algorithm

Input: offline dataset D, diffusion world model M̂θ,η

Initialize target policy πϕ, replay buffer D̂ = ∅; Normalized the dataset D
Initialize M̂θ,η with D and πD till convergence: IWU(πD,D, θ, η)
while not converged do

for j = 0→ Ne do
D̂ ← D̂ ∪ PE(M̂θ,η, πϕ)

Sample B = {(siti , a
i
ti , r

i
ti , s

i
ti+1)}

Bp

i=1 ∼ D ∪ D̂
Update ϕ with B via offline RL methods
IWU(πϕ,D, θ, η)

Subroutine: Importance-Sampled World-Model Update (IWU):
Sample batch {(siti , a

i
ti , r

i
ti , s

i
ti+1)}

Bm
i=1 ∼ D

for i = 0→ Bm do
k ∼ Uniform({1, 2, . . . ,K}); ϵ ∼ N (0, I)
snoise =

√
ᾱks

i
ti+1 +

√
1− ᾱkϵ

Get Importance-sampling weight ωi under π via equation 3
li = ∥ϵ− ϵθ(snoise, (s

i
ti , a

i
ti), k)∥

2 + ∥rt − rη(s
i
ti , a

i
ti , s

i
ti+1)∥2

Calculate L(θ, η) via equation 3 and take gradient step on it.

The complete training procedure of ADEPT is illustrated in Algorithm 2, in which policy evaluation
and world-model update alternate iteratively until convergence. The meaning and selection of each
hyperparameter are further discussed in the appendix. In this work, we adopt the traditional off-policy
algorithm SAC (Haarnoja et al., 2018) as the offline RL method to show the performance with no
extra policy regularization methods. The results of combining ADEPT with other model-free offline
RL methods are included in the appendix.

4.3 RETURN GAP ANALYSIS

In this section, we give a sketch of our theory and display the detailed proof in the Appendix, which is
inspired by previous works (Yu et al., 2020; Kidambi et al., 2020; Janner et al., 2019), especially for
Lemma A.1 and Lemma A.2. However, the uniqueness of our analysis is that we not only quantify the
effects of uncertainty-based penalty and truncation in our theory, but also justify the use of importance
sampling for optimizing the world model on a tighter bound compared to previous methods. Finally,
we summarize three sources of errors that determine the return gap, and demonstrate how ADEPT is
different on dealing with them.

To show that the improvement on expected return J(π) = E(st,at)∼π|M
∑T

t=0 γ
trt could be guaran-

teed when adopting diffusion model as the world model to optimize the policy π, we wish to provide
a bound C of the return gap between the performance of π under the real environment and that under
the diffusion world model. Unlike traditional model-based RL methods, ADEPT samples the initial
state from the whole dataset and utilizes an uncertainty threshold to truncate the rollout. Thus, we first
define Γ(π) as the expected time step that the policy choose a state and action pair with a discrepancy
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larger than λ0:
Γ(π) = E(st,at)∼π|M[min t|dθ(st, at) ≤ λ0] (4)

Next, instead of the whole trajectory, we focus on the return gap of the truncated parts. More
specifically, we seek a bound C of the return gap between the real environment and the world model
under the same policy:

J(π)− γΓ(π̂)JΓ(π̂)(π) ≥ Ĵθ,η(π)− C. (5)

Here, J(π) and Ĵθ,η(π) are the expected returns of π under the real environment and the uncertainty-
penalized diffusion world model M̂θ,η , respectively. JΓ(π)(π) = E(st,at)∼π|M[

∑T
t=Γ(π) γ

t−Γ(π)rt]

is the expectation of returns starting from the distribution of time step Γ(π).

Once C is obtained, we could guarantee policy improvement under the actual environment if the
returns of π under the world model are promoted by at least C. Furthermore, C is expected to be
expressed in terms of the error and uncertainty quantities of the world model. We denote the reward
prediction error as ε̂r, the model transition error as ε̂m, and policy distributional shift error as ε̂p.
Their detailed definitions are presented as follows:
Definition 4.1. We define ε̂r(π) to be the maximal expectation of half the absolute difference between
predicted reward and true reward under the policy π.

ε̂r(π) = max
t

E(st,at)∼π|M

[
1

2
|R(st, at)− rη(st, at)|

]
. (6)

Although in practice the reward prediction MLP takes ŝt+1 as an extra input to improve accuracy,
we can still consider the combination of diffusion model and MLP as the theoretical reward model:
rη,θ(st, at) =

∑
s′ rη(st, at|s′)Pθ(s

′|st, at), which doesn’t affect the derivation.
Definition 4.2. ε̂m(π) is defined as the maximal expected total-variation distance (TV-distance) of
the probabilities between predicted next state and true value under π.

ε̂m(π) = max
t

E(st,at)∼π|M [DTV (P (st+1|st, at)∥Pθ(st+1|st, at))] , (7)

Definition 4.3. ε̂p(π) is defined as the maximal TV-distance of π and the behavior policy πD that
collects the offline dataset. This error measures how the target policy π has shifted from the behavior
policy πD.

ε̂p(π) = max
s

DTV (π(a|s)∥πD(a|s)). (8)

Besides, we assume that the discrepancy dθ(st, at) could be used as an uncertainty estimator.
Assumption 4.4. We assume dθ(st, at) to be an admissible error estimator for both the model
transition error and the reward prediction error, under appropriately selected parameters αm and αr,
respectively. It follows that for any policy π during training, these conditions are satisfied:

E(st,at)∼π|M [DTV (P (st+1|st, at)∥Pθ(st+1|st, at))] ≤ αmE(st,at)∼π|M [ dθ(st, at)] , (9)

E(st,at)∼π|M

[
1

2
|R(st, at)− rη(st, at)|

]
≤ αrE(st,at)∼π|M [ dθ(st, at)] . (10)

While lacking theoretical guarantees, using the standard deviation to estimate the uncertainty have
already been applied in many existing works(Rajeswaran et al., 2022; Kurutach et al., 2018; Yu et al.,
2020), and supported by the experiments in the appendix. This assumption is mainly used as the
justification of uncertainty penalty, and doesn’t involve much in the derivation of return gap. With
the errors and the assumption listed above, we provide the main theorem with a bound C based on
ε̂m(π) and ε̂r(π) to show the return gap under the true environment and the world model. Besides,
we also provide a corollary with a softer bound C ′ based on ε̂m(πD) and ε̂r(πD), and ε̂p(π), which
is mainly used by the previous algorithms.
Theorem 4.5. Given ε̂r, ε̂m, the bound C between the true return and the ADEPT model return can
be expressed as follows:

C =

Γ(π)−1∑
t=0

γt

(
(2− λr

αr
)ε̂r(π) + 2rmax(t+ 1)ε̂m(π)

)
(11)
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Corollary 4.6. A softer bound C ′ is obtained, which can be expressed by ε̂r(πD), ε̂m(πD) and ε̂p(π)
as follows:

C ′ =

Γ(π)−1∑
t=0

γt

(
4rmax(t+ 1)ε̂p(π) + (2− λr

αr
)ε̂r(πD) + 2rmax(t+ 1)ε̂m(πD)

)
(12)

In previous works, the world model is trained before the policy optimization, with a loss function
measuring the mean square error (MSE) between the predictions and true values in the offline dataset:
L = E(st,at)∼π|M [|R(st, at)− rη(st, at)|]+E(st,at)∼π|M [DTV (P (st+1|st, at)∥Pθ(st+1|st, at))].
Thus, ε̂r(πD) and ε̂m(πD) in equation 12 is minimized. However, ε̂p(π) is never optimized by the
world model, which can cause the distributional shift problem during policy evaluation. As the target
policy deviated from the behavior policy, the bound C ′ grows larger, and the monotonic improvement
can’t be guaranteed. On the contrary, a fundamental difference in our algorithm is to consider minimiz-
ing a tighter bound C. We adopt importance sampling to estimate ε̂r(π) and ε̂r(π) on offline datasets,
and design our loss function based on L1 = E(st,at)∼πD|M

[
π(st,at)
πD(st,at)

[DTV (R(st, at)∥rη(st, at))]
]

and L2 = E(st,at)∼πD|M

[
π(st,at)
πD(st,at)

[DTV (P (st+1|st, at)∥Pθ(st+1|st, at))]
]
. These two loss func-

tion are taking over samples drawn from the behavior policy, but with importance sampling re-
weighting π(st,at)

πD(st,at)
, thus minimizing the return gap C directly.

With this theorem, the monotonic improvement of the true return J(π) is guaranteed theoretically
when the returns under uncertainty-penalized diffusion world model Ĵθ,η(π) is improved by more
than C. However, practically the monotonic improvement could face trouble due to the following
limitations:

• The compounding error: Though the diffusion model has lower prediction error after
training on D than traditional MLPs, the state transition error in each step accumulates as
the compounding error, decreasing long-term planning accuracy.

• Out of distribution: While using the diffusion world model for policy evaluation, the action
derived from the policy can drive the state out of the distribution represented by D. In that
case, the generated state and reward become unstable, causing the overestimation of returns
from unknown state-action pairs.

• Aleatory uncertainty: In this method, the uncertainty estimator could have trouble to
distinguish the aleatory uncertainty and the epistemic uncertainty. Though such a method is
competitive to determined MDPs or MDPs with Lipschitz transitions, further study should
be considered before moving to stochastic environments.

To handle these, we set H and λ0 small enough to limit the accumulating prediction errors, while
randomly choosing the initial state from the whole dataset and replay buffer. To avoid overestimating
out-of-distribution state-action pairs, we choose proper uncertainty-based threshold and penalty
parameters, preventing the policy from visiting these pairs. Finally, to solve the aleatory uncertainty
issue, there has been work using a similar idea with a single diffusion model and a Bayesian hyper-
network (Chan et al.), which we consider for future work.

5 EXPERIMENTS

Our experiments are designed to evaluate: 1. The performance of ADEPT with adaptive diffusion
world model and offline RL updates, compared with other SOTA algorithms, including diffusion-
based methods. 2. The effectiveness of the proposed importance sampling and uncertainty penalty
techniques in ADEPT. We train and test our method on multiple environments and datasets in D4RL
(Fu et al., 2020) to show the quantitative results, and further analyze our method with ablation study.

5.1 NUMERICAL EVALUATION

In this section, we evaluate our proposed ADEPT algorithm over multiple MuJoCo environments
including Locomotion (halfcheetah, walker2d, and hopper) with 4 different datasets (random, medium,
medium-replay and medium-expert), Maze2d, AntMaze and Adroit (pen-human, pen-cloned). We
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select a number of SOTA algorithms as baselines, including model-free methods TD3+BC (Fujimoto
& Gu, 2021), CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2021), model-based methods such as
RAMBO (Rigter et al., 2022), MOPO (Yu et al., 2020), COMBO (Yu et al., 2021), and diffusion-
based methods as SyntheER (Lu et al., 2023) and Diffuser (Janner et al., 2022), as well as behavior
cloning. All experiments are conducted with the same training hyperparameters. The comparison is
summarized in Table 1.

Environment Dataset TD3+BC CQL IQL RAMBO MOPO COMBO SynthER Diffuser ADEPT(Ours)
halfcheetah

rnd
11.3± 0.8 35.4± 0.9 12.5± 1.2 33.5± 2.6 35.4± 2.5 38.8± 3.7 17.2± 3.4 3.6± 2.5 34.5± 1.1

walker2d 0.6± 0.3 7.0± 1.2 5.4± 0.8 0.2± 0.6 13.6± 2.6 7.0± 3.6 4.2± 0.3 3.5± 1.4 10.3± 2.2

hopper 8.6± 0.3 10.8± 0.1 7.5± 0.2 15.5± 9.4 11.7± 0.4 17.9± 1.4 7.7± 0.1 6.3± 0.8 31.7± 0.9

halfcheetah
med

48.1± 0.2 44.4± 0.3 47.4± 0.1 71.0± 3.0 42.3± 1.6 54.2± 1.5 49.6± 0.3 42.8± 0.3 62.1± 0.5

walker2d 82.7± 5.5 79.2± 8.3 78.3± 5.4 89.1± 2.7 17.8± 19.3 81.9± 2.8 84.7± 5.5 79.6± 0.6 97.2± 2.5

hopper 60.4± 4.0 58.0± 10.8 66.3± 6.0 91.2± 16.3 28.0± 12.4 97.2± 2.2 72.0± 4.5 74.3± 1.4 107.7± 1.5

halfcheetah
med-rep

44.8± 0.7 46.2± 1.1 44.2± 0.4 67.0± 1.5 53.1± 2.0 55.1± 1.0 46.6± 0.2 37.7± 0.5 56.8± 1.2

walker2d 85.6± 4.6 26.7± 2.6 94.7± 8.0 88.5± 4.0 39.0± 9.6 56.0± 8.6 83.3± 5.9 70.6± 1.6 101.5± 1.4

hopper 64.4± 24.8 48.6± 0.9 73.9± 13.5 97.6± 3.4 67.5± 24.7 89.5± 1.8 103.2± 0.4 93.6± 0.4 103.4± 3.7

halfcheetah
med-exp

90.8± 7.0 62.4± 3.9 86.7± 0.2 79.3± 2.9 63.3± 38.0 90.0± 5.6 93.3± 2.6 88.9± 0.3 94.6± 1.1

walker2d 110.0± 0.4 98.7± 13.1 109.6± 0.6 63.1± 31.3 44.6± 12.9 103.3± 5.6 111.4± 0.7 106.9± 0.2 111.5± 1.9

hopper 101.1± 10.5 111.0± 1.2 91.5± 6.1 89.5± 11.1 23.7± 6.0 111.1± 2.9 90.8± 17.9 103.3± 1.3 113.3± 2.3

Average 59.0± 4.9 52.4± 3.7 59.8± 3.5 65.5± 7.4 36.6± 11.0 66.8± 3.4 63.7± 3.5 59.3± 0.9 77.1± 1.7

Table 1: The evaluation of ADEPT compared with other SOTA offline RL algorithms, on D4RL
MuJoCo environments with random (rnd), medium (med), medium-replay (med-rep) and medium-
expert (med-exp) datasets. We show the mean and standard deviation of the performance over 5
different seeds. The statistically significant results are noted in bold.

From our experimental result, ADEPT outperforms the existing SOTA offline RL algorithms in
most of the environments, especially in medium dataset. This is consistent with our hypothesis
that world model adaptation is more critical when there is a lack of expert demonstrations, and the
distributional shift becomes more severe as target policy moves toward optimum. Compared to
model-free method which performs poorly due to lack of policy regularization, the diffusion model
generated data has significantly improved its performance. This is because the uncertainty penalty
and importance-sampled adaption could be viewed as a conservative regularization method. For
out-of-distribution situations, the diffusion model generates more relevant state transition results and
corresponding pessimistic reward function with uncertainty penalty, which mitigates overestimation.

8 16 24
TD3+BC

CQL
IQL

RAMBO
MOPO

COMBO
SynthER
Diffuser

ADEPT(Ours)
random

20 40 60 80

medium

45 60 75

medium-replay

25 50 75 100

medium-expert

Aggregated Normalized Return

Figure 3: Aggregate performance over D4RL MuJoCo environments. Mean return is marked with
standard error highlighted.

Figure 3 shows the aggregate performance over the three environments. Compared with the highest
score of other SOTA algorithms, our method gains an average of 20.1% improvement over the SOTA
algorithm on random dataset and achieves significant improvement over nearly all baselines on
medium and medium-replay datasets, while the improvement is limited in medium-expert dataset.
Such a result shows that with a lack of expert demonstration and plenty of sub-optimal data, a closed-
loop iterative algorithm for diffusion world model adaptation and offline policy improvement could
become more advantageous than using diffusion models as multistep planner like Diffuser (Janner
et al., 2022), or generating synthetic dataset one time before training as SynthER (Lu et al., 2023).
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5.2 ABLATION STUDY

In the ablation study, we intend to validate the necessity of uncertainty estimation and the effectiveness
of importance sampling in the close-loop ADEPT algorithm. To accomplish this, we compare our
methods under different settings: (1) SAC: Using original SAC with no generated data used; (2)
ADEPT w/o IS: Model-based RL with diffusion model trained one-time before training, so no
importance sampling technique; (3) ADEPT w/o UE: removing uncertainty estimation and reward
penalty from the diffusion model. These three settings show the importance of adaptive diffusion
world model with importance sampling and uncertainty estimation, respectively. We also perform
additional experiments on the hyperparameters which work as a trade-off between performance and
efficiency, combination of the uncertainty-penalized diffusion model and other offline model-free RL
algorithms. The results are shown in the Appendix.

15 20 25
SAC

ADEPT w/o UE
ADEPT w/o IS

ADEPT
random

0 25 50 75

medium

0 25 50 75

medium-replay

0 30 60 90

medium-expert

Normalized Return

(a) Aggregated results of different behavior policies

20 40 60
SAC

ADEPT w/o UE
ADEPT w/o IS

ADEPT
halfcheetah

0 25 50 75

walker2d

0 25 50 75

hopper

Normalized Return

(b) Aggregated results of different environments

Figure 4: Ablation study on key components in ADEPT

Figure 4 shows the aggregated results of the modified methods in MuJoCo environments. With
no synthetic data, the original SAC algorithm fails in all the datasets except the random, while
its performance in other datasets is even lower than behavior cloning. The use of diffusion world
model largely enhances the performance of SAC by providing plausible results of out-of-distribution
samples to avoid overestimation. Besides, we noticed that without uncertainty penalty, the training
process is unstable and faces severe performance drops. Also, adopting importance sampling for
diffusion model adaptation improves the performance of SAC substantially in all but medium and
medium-expert dataset. Its limited effects on these datasets are consistent with the hypothesis that
samples in the suboptimal dataset are more scattered, so the diffusion world model adaptation could
have a higher impact on the generated distribution, aligning the world model with the target policy.

6 CONCLUSION

This paper proposes a new model-based offline RL algorithm ADEPT adopting (i) an uncertainty-
penalized diffusion world model to directly evaluate and optimize the target policy in offline re-
inforcement learning and (ii) an importance-sampled world model update to adaptively align the
world model with the evolving policy, in a closed-loop operation. These two key components enable
ADEPT to significantly reduce the distributional shift problem and avoid reward overestimation under
out-of-distribution state and action pairs. Our theoretical analysis of the algorithm provides an upper
bound on the return gap and illuminates key factors affecting the learning performance. Experimental
results on the D4RL benchmark show that ADEPT significantly improves the total performance and
training stability of SAC, and substantially outperforms other state-of-the-art offline RL baselines
in almost all tasks. Compared to the best scores of other algorithms, ADEPT achieves an average
advantage of 15.4%, with 20.1% on random dataset, and 6.2% on medium dataset. Our work provides
important insights into the use of diffusion-based world model in offline RL. Exciting future research
could extend uncertainty-penalized diffusion model to a multistep planner, or generalize it to more
complicated scenes such as partial observable, multi-agent or stochastic environments.
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A PROOF OF THE THEOREM

We show the complete proof for the return gap bound proposed in the main paper, inspired by Yu
et al. (2020), Kidambi et al. (2020), and Janner et al. (2019).

Lemma A.1. For any 2 different joint distribution of states and actions Pπ(s, a) under π andM,
and P̂ π̂(s, a) under π̂ and M̂, we have

DTV (P
π(s, a)∥P̂ π̂(s, a)) ≤ DTV (P

π(s)∥P̂ π̂(s)) + max
s

DTV (π(a|s)∥π̂(a|s)).
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Proof.

DTV (P
π(s, a)∥P̂ π̂(s, a)) =

1

2

∑
s,a

|Pπ(s, a)− P̂ π̂(s, a)|

=
1

2

∑
s,a

|Pπ(s)π(a|s)− P̂ π̂(s, a)π̂(a|s)|

=
1

2

∑
s,a

|Pπ(s)π(a|s)− Pπ(s)π̂(a|s) + Pπ(s)π̂(a|s)− P̂ π̂(s, a)π̂(a|s)|

≤ 1

2

∑
s,a

Pπ(s)|π(a|s)− π̂(a|s)|+ 1

2

∑
s,a

|Pπ(s)− P̂ π̂(s)|π̂(a|s)

= Es∼Pπ [DTV (π(a|s)∥π̂(a|s))] +
1

2

∑
s

|Pπ(s)− P̂ π̂(s)|

= Es∼Pπ [DTV (π(a|s)∥π̂(a|s))] +DTV

(
Pπ(s)∥P̂ π̂(s)

)
≤ DTV

(
Pπ(s)∥P̂ π̂(s)

)
+max

s
DTV (π(a|s)∥π̂(a|s)).

To be noted that this equation can be extended to conditional probabilities, such as:

DTV (P
π(s′, a′|s, a)∥P̂ π̂(s′, a′|s, a)) ≤ DTV (P (s′|s, a)∥P̂ (s′|s, a))+max

s′
DTV (π(a

′|s′)∥π̂(a′|s′)).

Here with a little abuse of notation, we simplify Pπ
t (s

′, a′|st−1 = s, at−1 = a) as Pπ(s′, a′|s, a),
and P̂ π̂

t (s
′, a′|st−1 = s, at−1 = a) as P̂ π̂(s′, a′|s, a), which is also used in the rest of the paper.

Note that t can be omitted since we are considering a Markov process.

Lemma A.2. For two joint distributions of states and actions at time step t noted as Pπ
t (s, a) under

π and M, and P̂ π̂
t (s, a) under π̂ and M̂ , given the same initial state distribution as Pπ

0 (s) =

P̂ π̂
0 (s) = µ0(s),∀s, and there exists δ s.t.

max
t

E(s,a)∼Pπ
t
DTV (P

π(s′, a′|s, a)∥P̂ π̂(s′, a′|s, a)) ≤ δ. (13)

Then we have

DTV (P
π
t (s, a)∥P̂ π̂

t (s, a)) ≤ tδ +DTV (P
π
0 (s, a)∥P̂ π̂

0 (s, a)). (14)

Proof.

∣∣∣Pπ
t (s

′, a′)− P̂ π̂
t (s

′, a′)
∣∣∣ = ∣∣∣∣∣∑

s,a

(
Pπ
t−1(s, a)P

π(s′, a′|s, a)− P̂ π̂
t−1(s, a)P̂

π̂(s′, a′|s, a)
)∣∣∣∣∣

≤
∑
s,a

∣∣∣(Pπ
t−1(s, a)P

π(s′, a′|s, a)− P̂ π̂
t−1(s, a)P̂

π̂(s′, a′|s, a)
)∣∣∣

=
∑
s,a

∣∣∣(Pπ
t−1(s, a)

(
Pπ(s′, a′|s, a)− P̂ π̂(s′, a′|s, a)

))
+ P̂ π̂(s′, a′|s.a)

(
Pπ
t−1(s, a)− P̂ π̂

t−1(s, a)
)∣∣∣

≤
∑
s,a

(
Pπ
t−1(s, a)

∣∣∣Pπ(s′, a′|s, a)− P̂ π̂(s′, a′|s.a)
∣∣∣+ P̂ π̂(s′, a′|s, a)

∣∣∣Pπ
t−1(s, a)− P̂ π̂

t−1(s, a)
∣∣∣)

= E(s,a)∼Pπ
t−1

∣∣∣Pπ(s′, a′|s, a)− P̂ π̂(s′, a′|s, a)
∣∣∣+∑

s,a

P̂ π̂(s′, a′|s, a)
∣∣∣Pπ

t−1(s, a)− P̂ π̂
t−1(s, a)

∣∣∣ .
14
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Therefore, we have:

DTV (P
π
t (s, a)∥P̂ π̂

t (s, a)) =
1

2

∑
s′,a′

∣∣∣Pπ
t (s

′, a′)− P̂ π̂
t (s

′, a′)
∣∣∣

≤ 1

2

∑
s′,a′

(
Es,a∼Pπ

t−1

∣∣∣Pπ(s′, a′|s, a)− P̂ π̂(s′, a′|s, a)
∣∣∣+∑

s,a

P̂ π̂(s′, a′|s, a)
∣∣∣Pπ

t−1(s, a)− P̂ π̂
t−1(s, a)

∣∣∣)

= E(s,a)∼Pπ
t−1

DTV (P
π(s′, a′|s, a)∥P̂ π̂(s′, a′|s, a)) + 1

2

∑
s′,a′

∑
s,a

P̂ π̂(s′, a′|s, a)
∣∣∣Pπ

t−1(s, a)− P̂ π̂
t−1(s, a)

∣∣∣
≤ δ +

1

2

∑
s,a

∣∣∣Pπ
t−1(s, a)− P̂ π̂

t−1(s, a)
∣∣∣

= δ +DTV

(
Pπ
t−1(s, a)∥P̂ π̂

t−1(s, a)
)

≤ tδ +DTV (P
π
0 (s, a)∥P̂ π̂

0 (s, a)).

Since the initial state distribution is the same for the two environmental model, i.e., Pπ
0 (s) = P̂ π̂

0 (s) =
µ0(s),∀s, then by applying Lemma A.1 we have:

DTV (P
π
t (s, a)∥P̂ π̂

t (s, a)) ≤ tδ +DTV (P
π
0 (s)∥P̂ π̂

0 (s)) + max
s

DTV (π(a|s)∥π̂(a|s))

= tδ +max
s

DTV (π(a|s)∥π̂(a|s)).

Definition A.3. We define Γ(π) as the expected time step that the policy on the diffusion world
model visits an uncertain state and action pair with a discrepancy larger than λ0:

Γ(π) = E(st,at)∼π|M̂ [min{t|dθ(st, at) ≥ λ0}] (15)

Lemma A.4. We define rmax = maxs,a R(s, a). For any π underM and π̂ under M̂θ,η , satisfying

max
t

E(st,at)∼π|M

[
1

2
|R(st, at)− rη(st, at)|

]
≤ ε̂r(π). (16)

we have

J(π)−γΓ(π̂)JΓ(π̂)(π)−Ĵθ,η(π̂) ≥ −
Γ(π̂)−1∑
t=0

γt

(
(2− λr

αr
)ε̂r(π) + 2rmaxDTV (P

π
t (s, a)∥P̂ π̂

t (s, a))

)
.

(17)

Here, JΓ(π̂)(π) =
∑T

t=Γ(π̂) γ
t−Γ(π̂)

∑
s,a P

π
t (s, a)R(s, a) is defined as the expectation of returns

starting from the distribution of Pπ
Γ(π)(s).

15
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Proof.

J(π)− γΓ(π̂)JΓ(π̂)(π)− Ĵθ,η(π) =

Γ(π̂)−1∑
t=0

γt
∑
s,a

(
Pπ
t (s, a)R(s, a)− P̂ π̂

t (s, a)r̂(s, a)
)

=

Γ(π̂)−1∑
t=0

γt
∑
s,a

(
Pπ
t (s, a)R(s, a)− P̂ π̂

t (s, a)rη(s, a) + λrP̂
π̂
t (s, a)dθ(s, a)

)

=

Γ(π̂)−1∑
t=0

γt

(∑
s,a

[
Pπ
t (s, a) (R(s, a)− rη(s, a)) + rη(s, a)

(
Pπ
t (s, a)− P̂ π̂

t (s, a)
)
+ λrP

π
t (s, a)dθ(s, a)

])

≥
Γ(π̂)−1∑

t=0

γt

(
−E(st,at)∼π|M[|R(st, at)− rη(st, at)|] +

∑
s,a

[
rη(s, a)

(
Pπ
t (s, a)− P̂ π̂

t (s, a)
)
+ λrP

π
t (s, a)dθ(s, a)

])

≥
Γ(π̂)−1∑

t=0

γt

(
−2ε̂r(π) +

∑
s,a

[
rη(s, a)

(
Pπ
t (s, a)− P̂ π̂

t (s, a)
)
+ λrP

π
t (s, a)dθ(s, a)

])
· · ·Definition of ε̂r(π)

≥
Γ(π̂)−1∑

t=0

γt

(
−2ε̂r(π)− rmax

∑
s,a

∣∣∣Pπ
t (s, a)− P̂ π̂

t (s, a)
∣∣∣+ λrE(st,at)∼π|M[dθ(s, a)]

)

≥ −
Γ(π̂)−1∑

t=0

γt

(
(2− λr

αr
)ε̂r(π) + 2rmaxDTV (Pπ

t (s, a)∥P̂ π̂
t (s, a))

)
. · · ·Assumption 4.4

Besides, if π and π̂ are under the same model, then there’s no reward prediction error in the bound, and we have:

(J(π)− γΓ(π)JΓ(π)(π))− (J(π̂)− γΓ(π)JΓ(π)(π̂)) ≥ −2rmax

Γ(π)−1∑
t=0

γtDTV (Pπ
t (s, a)∥P π̂

t (s, a)),

Ĵθ,η(π)− Ĵθ,η(π̂) ≥ −2rmax

Γ(π)−1∑
t=0

γtDTV (P̂π
t (s, a)∥P̂ π̂

t (s, a)).

Theorem A.5. Given ε̂r(π), ε̂m(π) with the Definition 4.1 and 4.2, the bound C between the true
return J and the ADEPT model return Ĵθ,η under the same target policy π can be obtained:

C =

Γ(π)−1∑
t=0

γt

(
(2− λr

αr
)ε̂r(π) + 2rmax(t+ 1)ε̂m(π)

)

Proof. By applying Lemma A.4 we can get:

J(π)−γΓ(π)JΓ(π)(π)−Ĵθ,η(π) ≥ −
Γ(π)−1∑
t=0

γt

(
(2− λr

αr
)ε̂r(π) + 2rmaxDTV (P

π
t (s, a)∥P̂π

t (s, a))

)
.

To analyze the last term, we first consider the condition of Lemma A.2. By using Lemma A.1 we
have:

max
t

E(s,a)∼Pπ
t
DTV (P

π(s′, a′|s, a)∥P̂π(s′, a′|s, a))

≤ max
t

E(s,a)∼Pπ
t
DTV (P (s′|s, a)∥P̂ (s′|s, a)) + max

s
DTV (π(a|s)∥π(a|s))

= max
t

E(s,a)∼P
πD
t

DTV (P (s′|s, a)∥P̂ (s′|s, a))

≤ ε̂m(π).

Next, we apply Lemma A.2 with this result by replacing δ with ε̂m(π) and get:

J(π)− γΓ(π)JΓ(π)(π) ≥ Ĵθ,η(π)−
Γ(π)−1∑
t=0

γt

(
(2− λr

αr
)ε̂r(π) + 2rmax(t+ 1)ε̂m(π)

)
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Corollary A.6. In traditional algorithms where importance sampling is not adopted, the world model
can only be trained by optimizing ε̂r(πD) and ε̂m(πD). Thus, a softer bound C ′ is obtained to be
expressed by ε̂r(πD), ε̂m(πD) and ε̂p(π) as follows:

C ′ =

Γ(π)−1∑
t=0

γt

(
4rmax(t+ 1)ε̂p(π) + (2− λr

αr
)ε̂r(πD) + 2rmax(t+ 1)ε̂m(πD)

)

Proof. We denote πD as the policy collecting the trajectories in the diffusion world model. The return
gap could be separated into:

J(π)− γΓ(π)JΓ(π)(π)− Ĵθ,η(π) = [(J(π)− γΓ(π)JΓ(π)(π))− (J(πD)− γΓ(π)JΓ(π)(πD))]+

(J(πD)− γΓ(π)JΓ(π)(πD)− Ĵθ,η(πD)) + (Ĵθ,η(πD)− Ĵθ,η(π)).

Next we analyze these three parts one by one. By applying Lemma A.4, we have:

(J(π)−γΓ(π)JΓ(π)(π))−(J(πD)−γΓ(π)JΓ(π)(πD)) ≥ −2rmax

Γ(π)−1∑
t=0

γt (DTV (P
πD
t (s, a)∥Pπ

t (s, a))) .

Considering the condition in Lemma A.2, according to Lemma A.1, we can bound it by:

max
t

E(s,a)∼P
πD
t

DTV (P
πD (s′, a′|s, a)∥Pπ(s′, a′|s, a))

≤ max
t

E(s,a)∼P
πD
t

DTV (P (s′|s, a)∥P (s′|s, a)) + max
s

DTV (πD(a|s)∥π(a|s))

= max
s

DTV (πD(a|s)∥π(a|s))

≤ ε̂p(π).

Therefore, we replace δ with ε̂p(π) in the condition of Lemma A.2 and get:

(J(π)− γΓ(π)JΓ(π)(π))− (J(πD)− γΓ(π)JΓ(π)(πD)) ≥ −2rmax

Γ(π)−1∑
t=0

γtDTV (P
π
t (s, a)∥P

πD
t (s, a))

≥ −2rmax

Γ(π)−1∑
t=0

γt(t+ 1)ε̂p(π).

The third term could be analyzed similarly, and we get:

Ĵθ,η(πD)− Ĵθ,η(π) ≥− 2rmax

Γ(π)−1∑
t=0

γtDTV (P̂
πD
t (s, a)∥P̂π

t (s, a))

≥ −2rmax

Γ(π)−1∑
t=0

γt(t+ 1)ε̂p(π).

For the second part, by applying Lemma A.4 we can get:

J(πD)− γΓ(π)JΓ(π)(πD)− Ĵθ,η(πD) ≥ −
Γ(π)−1∑
t=0

γt

(
(2− λr

αr
)ε̂r(πD) + 2rmaxDTV (P

πD
t (s, a)∥P̂πD

t (s, a))

)
.

Similarly, we analyze the last term by using Lemma A.1:

max
t

E(s,a)∼P
πD
t

DTV (P
πD (s′, a′|s, a)∥P̂πD (s′, a′|s, a))

≤ max
t

E(s,a)∼P
πD
t

DTV (P (s′|s, a)∥P̂ (s′|s, a)) + max
s

DTV (πD(a|s)∥πD(a|s))

= max
t

E(s,a)∼P
πD
t

DTV (P (s′|s, a)∥P̂ (s′|s, a))

≤ ε̂m(πD).
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By replacing δ with ε̂m(πD) in Lemma A.2 we get:

J(πD)−γΓ(π)JΓ(π)(πD)− Ĵθ,η(πD) ≥ −
Γ(π)−1∑
t=0

γt

(
(2− λr

αr
)ε̂r(πD) + 2rmax(t+ 1)ε̂m(πD)

)
.

Finally, we summed the bounds of all three parts and get:

J(π)− γΓ(π)JΓ(π)(π) ≥ Ĵθ,η(π)

−
Γ(π)−1∑
t=0

γt

(
4rmax(t+ 1)ε̂p(π) + (2− λr

αr
)ε̂r(πD) + 2rmax(t+ 1)ε̂m(πD)

)

B EXPERIMENT DETAILS

We use D4RL (Fu et al., 2020) datasets for evaluation, and the code could be found at https:
//github.com/Farama-Foundation/D4RL. These datasets are licensed under the Creative
Commons Attribution 4.0 License (CC BY), and their code is licensed under the Apache 2.0 License.

B.1 BASELINES

We select a number of SOTA baselines algorithms, including model-free methods IQL(Kostrikov
et al., 2021), SAC (Haarnoja et al., 2018), TD3+BC (Fujimoto & Gu, 2021), CQL (Kumar et al.,
2020), model-based methods such as RAMBO (Rigter et al., 2022), MOPO (Yu et al., 2020), COMBO
(Yu et al., 2021), and diffusion-based methods as SyntheER (Lu et al., 2023) and Diffuser (Janner
et al., 2022). We run the SAC code for evaluation to get the result, while other results on D4RL dataset
are obtained from the original paper of each method. Specially, Diffuser doesn’t report their results in
random dataset, therefore we run its code from https://github.com/jannerm/diffuser
for evaluation.

B.2 COMPUTATIONAL RESOURCES AND COSTS

All of the experiments in this paper are conducted on a server with an AMD EPYC 7513 32-Core
Processor CPU and an NVIDIA RTX A6000 GPU. The training of the diffusion model costs approxi-
mately 3 hours for 1M gradient steps. The offline training with importance-sampling adaptation costs
nearly 15 hours for 1M gradient steps.

B.3 HYPERPARAMETER AND ARCHITECTURAL DETAILS

In this work we represent the noise prediction model ϵθ with a residual MLP, while other models
including reward prediction model rη , actor and critic are traditional MLP with ReLu as the activation
function. We show the hyperparameters used in the training process in Table 2 and 3. These
hyperparameters are shared in all of the environments.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 TRADE-OFF BETWEEN PERFORMANCE AND EFFICIENCY

In ADEPT, higher values of the denoising steps K and larger network size of ϵθ generally have
higher accuracy and robustness on the state prediction, leading to a better performance. However,
increasing these hyperparameters will significantly extend the denoising process of DDPM. To keep
a reasonable balance between performance and efficiency, we conducted additional experiments to
select these hyperparameters and present the results in Table 4.
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Parameter Value
denoising steps K 5
train batch size Bm 1024
learning rate 1× 10−4

optimizer Adam
hidden dimension of ϵθ 1024
depth of ϵθ 6
hidden dimension of rη 256
depth of rη 2
timestep embedding dimension 32
model training steps 1× 106

Horizon H 5
temperature 0.5
uncertainty penalty coefficient λr 50
uncertainty threshold λ0 0.01
uncertainty sampling times Nd 5

Table 2: Diffusion Training Hyperparameters

Parameter Value
γ 0.99
actor learning rate 3× 10−4

critic learning rate 1× 10−4

train batch Bp 256
replay buffer size 1.25× 106

evaluation steps per epoch Ne 50000

gradient steps per epoch 1000

training epochs 2000

optimizer Adam
network hidden dimension 256
network depth 2
soft target updata rate 5× 10−3

Table 3: Offline RL Hyperparameters

C.2 TRADE-OFF BETWEEN EXPLORATION AND EXPLOITATION

Figure 5 shows the correlation between the discrepancy as the uncertainty estimation and the actual
state prediction error in the halfcheetah dataset collected by four different behavior policies. Data

0.000 0.002 0.004 0.006 0.008 0.010 0.012
Discrepancy

0

1

2

3

4

St
at

e 
Pr

ed
ict

io
n 

M
SE

Linear Regression of halfcheetah-random-v2
Data points
Linear regression line

0.00 0.01 0.02 0.03 0.04
Discrepancy

0

2

4

6

8

10

12

14

Linear Regression of halfcheetah-medium-v2
Data points
Linear regression line

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014
Discrepancy

0

2

4

6

8

Linear Regression of halfcheetah-medium-replay-v2
Data points
Linear regression line

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
Discrepancy

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Linear Regression of halfcheetah-medium-expert-v2
Data points
Linear regression line

Figure 5: Linear regression of discrepancy and state prediction error in halfcheetah dataset

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Network Width K State Prediction MSE Total Training Time

256

2 9.39 10.5h
5 4.88 12.6h
10 5.04 15.1h
20 5.22 20.4h

512

2 9.01 12.8h
5 3.56 14.4h
10 4.13 17.9h
20 4.56 25.0h

1024

2 8.61 15.6h
5 3.02 18.1h
10 2.79 22.9h
20 3.70 31.4h

Table 4: Hyperparameter search for K and network width on halfcheetah-medium dataset

with larger discrepancy tends to have higher prediction error except for few outliers. Besides, we
notice that the distribution varies with different behavior policies. For example, the average prediction
error and discrepancy are higher in medium dataset than in random dataset, since the distribution of
state-action dataset is largely narrowed under a less stochastic policy.

Based on the above, we find that the selection of uncertainty penalty coefficient λr and uncertainty
threshold λ0 determines the tolerance of exploring out-of-distribution state-action pairs under the
world model and affects the final performance. With higher λr and lower λ0, the target policy will
be more conservative and tend to clone behaviors in the dataset, and its value function will predict
out-of-distribution state-action pairs with lower reward, which increases the training stability. On the
contrary, with low λr and high λ0, the target policy is encouraged to explore the environment and
find potential trajectories with higher cumulative rewards. We conducted additional experiments on
hopper-random and hopper-medium environments to verify this and show the result in Table 5. The
results show that diffusion model trained on a dataset collected by a more stochastic policy has lower
average state prediction error. To get best performance, a higher λ0 and lower λr should be selected
than those in medium dataset.

Environment average state prediction error λ0 λr Normalized Return

hopper-random 0.062

0.005 100 17.4± 10.2

0.01 50 31.7± 0.9

0.015 25 34.6± 2.8

∞ 0 11.3± 8.5

hopper-medium 0.137

0.005 100 80.6± 2.7

0.01 50 107.7± 1.5

0.015 25 52.9± 6.4

∞ 0 0.8± 0.5

Table 5: The performance of different values of λ0 and λr under two datasets

C.3 COMBINATION OF ADEPT AND OTHER MODEL-FREE OFFLINE RL ALGORITHMS

The uncertainty-penalized diffusion model used in ADEPT is also compatible with other model-free
offline RL algorithms. We further show the additional experimental results in Table 6. The results
show that adding extra regularization methods into ADEPT didn’t improve much on its performance,
since the uncertainty penalized diffusion model and importance-sampling adaption have already
worked as a method to avoid distributional shift and overestimation problems. Therefore to simplify
the implementation, we choose the original SAC algorithm as the backbone offline RL algorithm in
the main text.
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Environment Dataset
ADEPT+

SAC (Ours) IQL CQL TD3+BC
halfcheetah

random
34.5± 1.1 33.3± 0.7 32.4± 3.4 30.1± 3.0

walker2d 10.3± 2.2 9.5± 4.7 11.3± 2.5 14.9± 3.9

hopper 31.7± 0.9 34.4± 1.8 30.7± 5.6 32.0± 1.8

halfcheetah
medium

62.1± 0.5 55.4± 3.0 56.9± 3.3 62.3± 2.7

walker2d 97.2± 2.5 97.0± 6.3 94.6± 5.9 100.1± 4.6

hopper 107.7± 1.5 69.6± 3.5 47.1± 9.4 97.5± 3.9

halfcheetah
med-rep

56.8± 2.3 53.2± 1.2 59.3± 2.6 52.5± 4.1

walker2d 101.5± 1.4 105.3± 2.0 81.7± 0.7 103.6± 2.2

hopper 103.4± 3.7 97.6± 4.1 99.2± 1.5 101.3± 2.7

halfcheetah
med-exp

94.6± 1.1 87.1± 4.7 96.8± 0.6 87.3± 1.8

walker2d 111.5± 1.9 110.0± 1.1 108.1± 0.2 103.8± 4.5

hopper 113.3± 2.3 111.8± 1.3 112.4± 2.2 109.3± 0.8

Average 77.1 72.0 70.9 74.6

Table 6: The evaluation of ADEPT combined with offline RL algorithms on locomotion environments
with random, medium, medium-replay(med-rep) and medium-expert(med-exp) datasets. We show
the mean and standard deviation of the performance over 5 different seeds. The maximum average
returns in each task are noted in bold.

C.4 RESULTS ON OTHER D4RL EXPERIMENTS

Environment BC SAC CQL IQL ADEPT(Ours)
maze2d-umaze 0.4 62.7 5.7 42.1 65.2± 10.9

maze2d-medium 0.8 21.3 5.0 34.9 33.1± 9.4

antmaze-umaze 55.3 0.0 74.0 87.5 88.1± 8.6

pen-human-v1 25.8 6.3 37.5 71.5 69.4± 11.3

pen-cloned-v1 38.3 23.5 39.2 47.5 52.8± 8.0

average 24.1 22.8 32.3 56.7 61.7± 9.6

Table 7: The evaluation of ADEPT on other D4RL environments. We show the mean and standard
deviation of the performance over 5 different seeds. The statistically significant returns in each task
are noted in bold. Note that the standard deviation is usually large due to the sparse reward function.

We evaluate ADEPT on extra environments in the D4RL benchmark, shown in Table ??. Consistent
performance is again observed, showing the strong generalization capabilities of ADEPT in different
environments. We note that since maze2d and antmaze are goal-guided tasks with near-optimal
demonstrations in the datasets, the improvement is not as significant as the locomotion tasks where
only suboptimal demonstrations are available.

C.5 ABLATION STUDY ON REWARD PREDICTION MODEL

Environment r(st, at, ŝt+1) r(st, at)

halfcheetah-medium 0.067± 0.012 0.098± 0.011

halfcheetah-medium-replay 0.093± 0.015 0.135± 0.011

halfcheetah-medium-expert 0.098± 0.009 0.126± 0.018

hopper-medium 0.008± 0.001 0.013± 0.002

hopper-medium-replay 0.008± 0.001 0.009± 0.001

hopper-medium-expert 0.006± 0.001 0.010± 0.002

walker2d-medium 0.071± 0.005 0.084± 0.004

walker2d-medium-replay 0.060± 0.008 0.076± 0.006

walker2d-medium-expert 0.064± 0.004 0.076± 0.008

Table 8: The ablation study of using ŝt+1 as the input of the reward model.
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Based on these results, we found that introducing ŝt+1 into the reward model could largely reduce
the prediction error in all datasets by 10% to 40%. A possible explanation for this is that in most
environments, including MuJoCo locomotion tasks, the true reward functions are defined directly
with st and st+1. One common example is defining the moving distance between two states as the
reward. Therefore, by introducing st+1 in the input, the trained reward model becomes more similar
to the true reward function, thus has more generalizing capability.

C.6 MORE EXPERIMENTAL RESULTS COMPARED WITH RENCENT DIFFUSION-BASED
ALGORITHMS

Environment PGD DWM ADEPT
halfcheetah-random 21.1± 0.9 - 34.5± 1.1

walker2d-random −0.3± 0.1 - 10.3± 2.2

hopper-random 5.5± 2.1 - 31.7± 0.9

halfcheetah-medium 47.6± 0.3 46± 1 62.1± 0.5

walker2d-medium 86.3± 0.3 70± 15 97.2± 2.5

hopper-medium 63.1± 0.6 65± 10 107.7± 1.5

halfcheetah-medium-replay 46.1± 0.3 43± 1 56.8± 1.2

walker2d-medium-replay 84.0± 1.0 46± 19 101.5± 1.4

hopper-medium-replay 91.9± 4.3 53± 9 103.4± 3.7

halfcheetah-medium-expert - 75± 16 94.6± 1.1

walker2d-medium-expert - 110± 0.5 111.5± 1.9

hopper-medium-expert - 103± 14 113.3± 2.3

Table 9: The additional performance comparison between PGD (Jackson et al., 2024), DWM (Ding
et al., 2024b) and ADEPT. The significant results are bolded.

The results are from their original paper cited by the reviewer. Note that PGD didn’t report their
performance on medium-expert dataset, while DWM didn’t report their performance on random
dataset and their results are rounded to the nearest whole number. Compared to these two results, our
method shows significant advantages in every environment and dataset.

C.7 HYPERPARAMETER SELECTION ON HORIZON

env H = 1 H = 5 H = 20 H = 50

halfcheetah-random 19.5± 0.2 34.5± 1.1 37.1± 0.5 39.3± 0.4

walker2d-random 2.4± 2.0 10.3± 2.2 9.8± 2.5 5.9± 3.9

hopper-random 31.6± 0.4 31.7± 0.9 15.5± 2.3 9.8± 5.4

halfcheetah-medium 56.7± 1.3 62.1± 0.5 64.0± 0.4 67.7± 1.6

walker2d-medium 53.6± 11.2 97.2± 2.5 97.6± 4.8 94.4± 3.9

hopper-medium 0.1± 0.1 107.7± 1.5 103.6± 1.0 90.0± 3.4

halfcheetah-medium-replay 46.0± 1.3 56.8± 1.2 59.2± 1.1 67.7± 1.6

walker2d-medium-replay 1.4± 1.1 101.5± 1.4 96.3± 2.5 103.5± 5.1

hopper-medium-replay 101.8± 0.5 103.4± 3.7 91.4± 5.2 96.6± 8.1

halfcheetah-medium-expert 53.9± 6.9 94.6± 1.1 93.6± 1.0 90.0± 3.4

walker2d-medium-expert 0.4± 0.2 111.5± 1.9 100.9± 3.0 100.3± 3.2

hopper-medium-expert 0.1± 0.1 113.3± 2.3 97.8± 5.6 103.2± 4.0

Average 30.6± 2.1 77.1± 1.7 72.2± 2.5 72.4± 3.7

Table 10: Hyperparameter selection on Horizon H

Based on these results we found that the best pick of H varies on different datasets and environments.
For this study, the value of horizon is not the emphasis in our work, so we simply choose H = 5 as a
reasonable value for all datasets.
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Figure 6: Q value estimation on in-distribution samples, out-of-distribution samples and target values.

C.8 Q VALUES ON OUT-OF-DISTRIBUTION STATE AND ACTION PAIRS

To show that ADEPT help provide good and stable value estimation, we present additional
results of several environments in Figure 6. Based on the traditional SAC architecture, we
estimate the in-distribution Q-value by E(s,a)∼D[

Qθ1
+Qθ2

2 ], the out-of-distribution Q-value by
Es∼D,a∼π(·|s)[

Qθ1
+Qθ2

2 ], and denote the target Q value of the in-distribution samples. We find
the Q estimation curve is stable and smooth in nearly all of the tests, showing that ADEPT largely
mitigate the out-of-distribution overestimation issue.
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