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Abstract. Federated Learning (FL) offers a promising solution to the
dual challenges of data privacy and multi-institutional collaboration in
medical imaging. However, despite strong benchmark performance, FL
models rarely reach routine clinical deployment. We hypothesize that
this “last-mile” gap stems from a misalignment between current FL eval-
uation—focused on technical metrics—and the priorities of value-based
healthcare (VBHC). We conduct a structured gap analysis comparing
current FL practices with VBHC principles and emerging regulatory
frameworks. Seven critical deployment axes are identified; six show high-
severity gaps, and one a medium-severity gap. Supporting literature is
limited: only one axis is backed by strong evidence, three by moderate,
one by weak, and two by very weak reviews. Based on these findings and
insights from real-world pilots, we propose a practical roadmap to align
FL development with clinical and regulatory expectations. By identify-
ing key evidence gaps and outlining actionable next steps, this work aims
to inform translational strategies and support the deployment challenges
addressed by the BRIDGE Workshop.

Keywords: Federated Learning - Value-Based Healthcare - Global reg-
ulatory frameworks - Quality Management System - Trustworthy Al

1 Introduction

Federated Learning (FL) has emerged as a promising paradigm for collaborative
model training without centralising sensitive patient data [1]. In medical imaging,
FL is often seen as a privacy-preserving alternative that bypasses legal and
logistical barriers to inter-institutional data sharing. Over the past five years,
several landmark initiatives have demonstrated the technical feasibility of FL
for key medical imaging tasks such as segmentation, classification, and anomaly
detection. Notable examples include the FeTS Challenge (2021) for brain tumour
segmentation [2], the EXAM study (2021) for COVID-19 prognosis across 20
institutions [3], and a recent peer-reviewed study on melanoma detection using
dermoscopic images [4].

Yet, despite its growing popularity, the clinical deployment of FL-based mod-
els remains rare. For instance, fewer than 5% of published FL models in medical
imaging have been tested in prospective clinical trials or real-world settings [5].
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This gap raises important questions about the alignment between FL meth-
ods and the broader goals of health systems, particularly those rooted in Value-
Based Health Care (VBHC), where clinical relevance, patient-centred outcomes,
and cost-effectiveness outweigh technical performance alone [6].

In this framework, technical performance alone is insufficient; models must
demonstrate impact on clinical decision-making, quality of care, patient satis-
faction, and system sustainability.

This includes cost-utility analyses, longitudinal tracking of clinical benefit,
and the routine use of validated patient-reported outcome measures (PROMs)
and patient-reported experience measures (PREMs). Instruments such as the
EQ-5D-5L and PROMIS-29 quantify health-related quality of life and enable
calculation of quality-adjusted life years (QALYs), thereby anchoring economic
evaluations in VBHC [7]. PREMs, exemplified by the HCAHPS survey [8] or the
NHS Friends and Family Test—capture patients’ perceptions of access, commu-
nication and overall care experience [9].

For example, a model may achieve a high AUC in detecting pulmonary nod-
ules, yet fail to improve diagnostic accuracy or workflow efficiency in practice.
Recent work advocates for moving “beyond accuracy” to include explainability,
fairness, external validity, and stakeholder engagement as core dimensions of
trustworthy AI [10].

Meanwhile, regulatory bodies worldwide, including the United States Food
and Drug Administration (FDA) [11], Japan’s Pharmaceuticals and Medical De-
vices Agency (PMDA) [12], the European Union Artificial Intelligence Act (EU
AT Act) [13], China’s National Medical Products Administration (NMPA) [14],
and South Korea’s Ministry of Food and Drug Safety (MFDS) [15], are imposing
increasingly stringent requirements for real-world validation, continuous safety
monitoring, and explainability of Al-driven medical technologies. Nevertheless,
many FL studies still prioritise internal technical metrics [16], often overlooking
clinical utility, interpretability, equity, and sustainability.

In this preliminary study, we first perform a gap analysis of existing reviews
and meta-reviews and, in parallel, distil our own internal lessons learned; to-
gether, these insights underpin an initial roadmap to align federated learning
with the demands of value-based, regulation-ready healthcare Al.

2 Gap Matrix: FL vs VBHC

To identify key misalignments between current FL practice, VBHC expectations
and emerging regulatory frameworks, we conducted a structured gap analysis
across seven critical axes: regulation /traceability, external validation, clinical co-
design, equity/bias, sustainability, evaluation metrics, and clinical integration.
The axes were distilled from recurring topics in the scientific literature, inter-
national policy documents (e.g., FDA GMLP, EU AI Act) and real-world deploy-
ments reports. For each axis we compared prevailing FL practices with the cor-
responding VBHC or regulatory requirement and assigned a gap-severity label.
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Evidence identification and grading:

1. Literature search. For each axis we searched PubMed, Embase, Scopus, Web
of Science, and IEEE Xplore (January 2019 — 10 May 2025) using the query
("federated learning" OR "medical imaging AI") combined with axis-specific
terms. Eligible records were systematic reviews, scoping reviews, or struc-
tured surveys that reported PRISMA-like methods. Searches were run with-
out language filters; however, only English full-text articles were considered
for inclusion. One reviewer screened titles, abstracts, and full texts, resolving
borderline cases through discussion with the study team.

2. Selection. For this preliminary study, we retained the five highest-quality
reviews per axis (n = 35).

3. Gap-severity scoring. For each axis we tallied the number of eligible primary
studies that explicitly highlighted the existence of that gap. High — 3 or
more independent studies reported the gap. Medium — one or two studies
reported the gap. Low — no published study reported the gap.

4. Evidence-strength grading Each review was evaluated with the abbreviated
AMSTAR-2 checklist [17]. For every axis we counted the number of High +
Moderate reviews: Strong > 3; Moderate = 2; Weak = 1; Very Weak = 0.
Gap severity was then cross-checked against this evidence level to highlight
where conclusions rest on limited data. Note that “Medium” or “Low” here
refers to the quality of the supporting reviews, not to the importance of
the gap itself. A gap can be high-severity yet rest on very weak evidence,
highlighting an urgent research need.

The results of the analysis are summarised in Table 1. Gap severity was
determined according to the predefined rubric; decision logs of all the steps are
available in Supplementary A'.

3 Real-World Case Snapshots

Real-world evidence shows both the promise and the pitfalls of FL. On the
success side, a multi-centre cardiac-risk study raised every participating hospi-
tal’s Area Under the Receiver-Operating-Characteristic curve (AUROC) by up
to 8% without any data transfer, confirming that FL can lift under-performing
sites while preserving privacy [18]. Likewise, the EXAM consortium trained an
oxygen-demand predictor for COVID-19 across 20 institutions on six continents,
achieved AUROC > 0.92 (= 16 % better than local models) and validated it
prospectively in a regulatory sandbox [3].

Conversely, a recent meta-analysis reported Dice-score drops of up to 25%
whenever imaging protocols varied significantly between sites, stressing the still-
unresolved non-Independent and Identically Distributed (non-IID) challenge [19].
Even when overall accuracy is retained, fairness gaps can persist: age- and race-
dependent error rates were observed in hospital Machine Learning (ML) systems,
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a risk that vanilla FedAvg does not mitigate unless equity metrics are audited
explicitly [20]. These mixed outcomes support our roadmap pillars on heteroge-
neous validation and fairness-aware auditing.

While the technical soundness of FL algorithms is no longer in doubt, a
second wave of large European programmes is translating those algorithms into
day-to-day clinical infrastructure. Some notable examples are the following:

IDERHA (“Integration of Heterogeneous Data and Evidence towards Reg-
ulatory and HTA Acceptance”, (2023-28) [21]. The project addresses the data
layer by building a discovery platform that is fully aligned with the forthcom-
ing European Health Data Space (EHDS). The EU framework that sets common
rules for cross-border sharing and secondary use of health data—and designed to
generate evidence acceptable for health-technology assessment (HTA). Another
significant effort is Clinnova. Clinnova tackles the workflow layer: its cross-border
lung-cancer programme combines chest-CT scans with routine clinical data to
improve risk assessment, early diagnosis and survival—without moving patient
data among several European countries [22]. With the same spirit, the ongoing
EPND (2021-2026) is building a discovery and access platform for 60+ neuro-
degeneration cohorts, with federated analytics, providing the policy scaffolding
by funding privacy-preserving infrastructures that harmonise neurodegeneration
cohorts and accelerate biomarker discovery and therapeutic trials [23]. Finally,
the flagship FUCAIM federation delivers the scale-out layer: an ontology-driven
common data model and “hyper-ontology” already aligning more than 25 cancer-
imaging repositories and enabling validated federated queries in prostate and
breast cancer [24].

Overall, these four European programs showcase how data quality, workflow
integration, cohort harmonization, and pan-continental federation can transform
FL from a technical prototype into a regulated clinical reality. Similar momentum
is visible elsewhere: in North America, the NIH’s Bridge 2 Al initiative is stan-
dardizing consent and metadata for multi-modal datasets [32], in Asia-Pacific,
Japan’s MED-AI-Cloud [33] and Australia’s Federated Imaging Network [34] are
building privacy-preserving infrastructures that link tertiary hospitals nation-
wide. Together, these converging efforts signal a global shift from algorithmic fea-
sibility to real-world, policy-ready deployment of federated medical-imaging Al.

3.1 Lessons learned

Experience from several large federated pilots suggests that the technical plumb-
ing (containers, GPUs, secure aggregation) is part of the story; the other part
is the strategic design, data work and thoughtful evaluation that makes those
tools useful and ethically defensible.

Data-discovery and metadata depth. Before any model is trained,
sites must expose layered metadata that lets a prospective analyst “zoom” from
catalogue-level counts to table- and field-level descriptors (coding system, tem-
poral granularity, missingness, consent tags). Comparing these rich summaries
across partners is the fastest way to forecast whether a candidate architecture
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will generalise, spotlight hidden selection bias and decide whether extra harmon-
isation effort is justified. Case studies applying the FAIR framework into their
workflows inside hospitals confirm that machine-actionable metadata is what
ultimately enables cross-border, privacy-preserving queries in practice [25].

Common data models: Necessary but not sufficient. Mapping EHRs
to the OMOP-CDM or Digital Imaging and Communications in Medicine (DI-
COM) remains the most scalable route [27] to interoperable analytics, but the
core standard still omits whole modalities and fine-grained units. Imaging projects
therefore rely on the new Medical-Imaging CDM tables [26] while community
discussions highlight persistent vocabulary gaps (e.g. intraday events, genomics)
and the need for site-specific unit agreements before federated code will run
reproducibly. In other words, agreeing to “use OMOP” alone does not guaran-
tee semantic alignment. But making the effort of agree on specific ways of each
particular federated project, a time consuming essential step.

Data harmonisation is slow, essential and sometimes impossible
Even with a CDM in place, source data that have degraded through lossy ex-
ports, inconsistent units, or missing provenance may never be fully recovered.
Budgeting sufficient time and resources for iterative ETL cycles, validation, and
re-extraction is therefore critical.

Regulation, ethics and machine readability. FL networks increasingly
embed consent codes and data-use constraints directly in their metadata using
ontologies such as GA4GH’s Data-Use Ontology (DUO) [29], allowing access
rules to be enforced automatically at query time and audited afterwards—an
essential step toward EHDS compliance and trustworthy Al. Projects that ignore
this layer risk building technically elegant yet legally unusable solutions.

Capacity-building and quality culture. Even the best schema fails with-
out people who can implement it. Initiatives like the EHDEN Academy [28] pro-
vide structured learning paths on ETL, SQL and OMOP conventions, certifying
both SMEs and data partners to ensure harmonisation work is done once and
done right.

Our experience echoes theirs: underestimating data quality and harmonisa-
tion tasks is one of the biggest cause of cost overruns in federated roll-outs.
Moreover, the lack of standardised, truly interoperable data models means ev-
ery new site must repeat the same mapping and validation work from scratch,
driving up both timelines and costs.

4 Discussion

FL has already demonstrated that it can raise accuracy curves and safeguard
patient privacy; however, those achievements have not translated into routine
care. The explanation lies less in algorithmic maturity than in a persistent mis-
alignment between the questions FL researchers ask and the evidence clinicians,
research, data scientist, bioinformaticians, payers and regulators require. Our
gap matrix exposes three structural faults.
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First, metric myopia: internal scores such as Dice or AUROC dominate pub-
lications, yet they are silent on cost, time-to-decision, and patient-reported ben-
efit. Second, siloed design: prototypes are still built far from the day-to-day
realities of radiology worklists and hospital IT, so integration costs surface late
and kill momentum. Third, evidence fragility: most studies stop at retrospec-
tive testing, leaving regulators without prospective or longitudinal data to judge
safety. Bridging these faults demands a research programme that treats clinical
value and regulatory readiness as primary design constraints, not after thoughts.

Our proposed roadmap converts those constraints into five tangible work-
streams. Sequencing these streams in parallel not sequentially may assist on
turning FL projects into regulation-ready, value-generating clinical tools rather
than polished proofs of concept.

4.1 Roadmap for Value-Aligned Federated Learning

To bridge current FL practices and the expectations of VBHC and regulatory
frameworks, we propose a roadmap structured around five strategic pillars. These
recommendations aim to guide the development of FL systems technically ro-
bust, clinically meaningful, ethically grounded, and regulation-ready.

Engage stakeholders from project inception: Early and sustained involve-
ment of clinicians, patients, bio-medical-informatics and regulatory experts via
co-design workshops, participatory prototyping and iterative feedback loops en-
sures that FL models address real clinical needs, align with workflow constraints
and reflect patient priorities, fostering trust and downstream adoption.

Expand evaluation beyond technical metrics: FL studies should go beyond
technical scores such as Dice score and AUC, with (A) patient-reported outcomes
to capture perceived benefit, such as PROMs and PREMs. (B) health-economic
metrics such as cost-utility and time savings; (C) workflow-impact assessments
covering clinician burden and decision latency; and (D) decision-curve analysis
to gauge clinical utility.

Validate in diverse and longitudinal settings: Robust external validation
across multiple institutions, patient populations and time periods should include
(A) testing in low-resource, high-variability environments; (B) longitudinal per-
formance tracking to detect model drift; and (C) real-world-evidence collection
aligned with regulatory expectations.

Embed equity and sustainability audits: Evaluate FL systems for impact
on health equity and resource use by (A) reporting stratified performance across
demographics; include equal-opportunity, demographic-parity, and subgroup-
calibration metrics to identify potential disparities in model performance. (B)
computing fairness metrics such as equal opportunity and demographic parity;
and (C) assessing infrastructure feasibility in under-resourced settings.
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Establish transparent and auditable workflows: To meet regulatory stan-
dards, FL pipelines must be (A) traceable, with version-controlled models, data
lineage, audit logs and unit tests; (B) explainable, providing interpretable out-
puts and prediction rationales; and (C) monitored post-deployment through con-
tinuous performance and safety tracking. Such as map each traceability element
to ISO 13485 (Quality management systems for medical devices) [30] clauses to
strengthen regulatory alignment.

5 Conclusions and future directions

FL for medical imaging has moved well beyond proof-of-concept papers to multi-
centre pilots, yet a few extra points of AUC no longer convince clinicians or
regulators. Future FL systems must prove patient benefit, integrate smoothly
into clinical workflows, uphold fairness and satisfy regulatory expectations across
the entire product life-cycle.

Our preliminary work with the gap-matrix reveals that, although method-
ological advances in FL for medical imaging are impressive, the evidential scaf-
folding that should support clinical deployment is still fragile. Several “high-
severity” axes—most conspicuously sustainability reporting and the choice of
evaluation metrics—are propped up by very weak or fragmentary literature. This
imbalance underscores a dual imperative: (i) to revisit and critically update the
existing body of work through rigorous peer-review, and (ii) to commission new,
methodologically solid primary studies. In tandem, we call for focused systematic
reviews that converge FL, clinical integration, evaluation metrics and environ-
mental impact into an integrated evidence base, ensuring that future guidelines
rest on consolidated data rather than isolated proof-of-concept demonstrations.

Important lessons from this early work include: First, early stakeholder co-
design pays off: engaging clinicians and patients from day one surfaces workflow
and equity issues before they become regulatory blockers. Second, calibrated risk
estimates, decision-curve analysis and subgroup reporting reveal true clinical
value far better than technical accuracy. Third, sustainability it is becoming an
important additional point to consider: transparent COs-equivalent accounting
for each training round is fast becoming a funding and policy requirement [31].

To close those gaps we distilled global guidance: FDA Good Machine-Learning
Practice, the EU Al Act and VBHC into a five-pillar roadmap that runs from
early co-design through post-market surveillance. The roadmap offers concrete
checkpoints (calibration reporting, prospective multi-site monitoring, carbon-
ledger disclosure) so developers can reach Software as a Medical Device (SaMD)
approval without losing sight of patient-centred value.

This paper is a starting point, not a final map. We aim to convert this into a
stronger systematic assessment. We invite experts from additional clinical sites,
research teams and policy environments to build a fully grounded, consensus-
driven edition of the next iterations of this work. Interested collaborators willing
to contribute as independent evaluators, workflow insights or simply critical
feedback, are warmly encouraged to contact the authors after the workshop.
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