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Abstract

Classical adversarial training (AT) frameworks are designed to achieve high ad-1

versarial accuracy against a single attack type, typically `∞ norm-bounded per-2

turbations. Recent extensions in AT have focused on defending against the union3

of multiple perturbation models but this benefit is obtained at the expense of a4

significant (up to 10×) increase in training complexity over single-attack `∞ AT.5

In this work, we expand the capabilities of widely popular single-attack `∞ AT6

frameworks to provide robustness to the union of (`∞, `2, `1) perturbations while7

preserving their training efficiency. Our technique, referred to as Shaped Noise8

Augmented Processing (SNAP), exploits a well-established byproduct of single-9

attack AT frameworks – the reduction in the curvature of the decision boundary of10

networks. SNAP prepends a given deep net with a shaped noise augmentation layer11

whose distribution is learned along with network parameters using any standard12

single-attack AT. As a result, SNAP enhances adversarial accuracy of ResNet-1813

on CIFAR-10 against the union of (`∞, `2, `1) perturbations by 14%-to-20% for14

four state-of-the-art (SOTA) single-attack `∞ AT frameworks, and, for the first15

time, establishes a benchmark for ResNet-50 and ResNet-101 on ImageNet.16

1 Introduction17

Today adversarial training (AT) provides state-of-the-art (SOTA) empirical defense against adver-18

sarial perturbations. For this, adversarial perturbations are used during training to optimize a robust19

loss function [20, 41, 30, 35]. Early AT frameworks [20, 41] were 7×-to-10× more computationally20

demanding than vanilla training. More recent works [30, 35, 40] have significantly reduced the21

computational demands of AT via single-step attacks and superconvergence.22

However, today’s AT frameworks predominantly focus on a single-attack, i.e., they seek robustness23

to a single perturbation, typically `∞-bounded [30, 35, 37, 41, 43, 40, 39, 26, 9, 34, 42, 10, 11, 14].24

This results in low performance against other perturbations such as `2, `1, or the union of (`∞, `2, `1).25

Indeed, as shown in Fig. 1, four state-of-the-art (SOTA) single-attack AT frameworks (black markers)26

employing only `∞-bounded perturbations achieve low adversarial accuracy A(U)
adv of ≈ 15%-to-20%27

against the union of (`∞, `2, `1) perturbations. Recent extensions in AT [21, 32, 18] do seek higher28

A(U)
adv but only at the expense of 6×-to-10× increase in the total training time (blue markers in29

Fig. 1). The large training time of these AT frameworks has inhibited their application to large-scale30

datasets such as ImageNet, e.g., Maini et al. [21], Tramèr & Boneh [32] show results for MNIST and31

CIFAR-10 only, while Laidlaw et al. [18] only additionally show 64× 64 ImageNet-100 results.32

The high training time for AT frameworks arises from two sources: (i) the need to employ larger33

networks, e.g., MSD [21] with ResNet-18 achieves higher A(U)
adv than PAT [18] with ResNet-50 (see34

Fig. 1); and (ii) the need to incorporate multiple perturbations during each attack step and a higher35
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overall number of attack steps, e.g., 50 in MSD [21], 20 in AVG [32]. Obviously one can always36

reduce the number of attack steps in MSD/AVG to proportionally reduce training time. Doing so37

results in training time andA(U)
adv to rapidly approach the training complexity andA(U)

adv of standard AT38

frameworks, e.g., a 5-step MSD and 2-step AVG is equivalent in training time and accuracy to PGD39

and TRADES, respectively. Notwithstanding the expensive nature of 50-step multi-attack training,40

today MSD [21] achieves a SOTA A(U)
adv of 47% with ResNet-18 on CIFAR-10.41

TRADES
[Zhang et al.’19]

TRADES+SNAP

[Maini et al.’20]

PGD
[Madry et al.’18]

FreeAdv
[shahafi et al.’19]

FreeAdv+SNAP

PGD+SNAP

Desir
ed

!
!"
#

(%
)
(%

)

Total training time (minutes)

MSD-50

MSD-20

MSD-30

MSD-10

MSD-5

FastAdv
[Wong et al.’20]

FastAdv+SNAP PAT
[Laidlaw et al.’21]

AVG-50AVG-20

AVG-5

AVG-10

[Tramer et al.’19]

AVG-2

Figure 1: Adversarial accuracy (A(U)
adv )

against union of (`∞, `2, `1) vs. measured
wall-clock total training time on CIFAR-
10 with different AT frameworks on sin-
gle NVIDIA TESLA P100 GPU. ε =
(0.031, 0.5, 12) for (`∞, `2, `1) perturbations,
respectively. SNAP enhances robustness with
a small increase in training time. All frame-
works except PAT employ ResNet-18.

This poses a question: can we approach the high42

robustness of multiple-attack AT such as 50-step43

MSD against the union of (`∞, `2, `1) perturbations44

while maintaining the low training time of fast single-45

attack AT frameworks such as FreeAdv [30] and Fas-46

tAdv [35]?47

In our quest to answer this question we find that noise48

augmentation using adequately shaped noise within49

standard single-attack AT frameworks employing `∞-50

bounded perturbations significantly improves robust-51

ness against the union of (`∞, `2, `1) perturbations.52

The improvement appears to be a consequence of a53

well-established byproduct of AT frameworks – the54

reduction in the curvature of the decision boundary of55

networks trained using single-attack AT [6, 23]. We56

confirm this connection by quantifying the impact57

of single-attack AT on the geometric orientations of58

different perturbations.59

Based on this insight, we propose Shaped Noise60

Augmented Processing (SNAP) – a method to en-61

hance robustness against the union of perturbation types by augmenting single-attack AT frameworks.62

SNAP prepends a deep net with a shaped noise (SN) augmentation layer (see Fig. 4) whose dis-63

tribution parameter Σ is learned with that of the network (θ) within any standard single-attack AT64

framework. SNAP improves the robustness of four SOTA `∞-AT frameworks against the union of65

(`∞, `2, `1) perturbations by 15%-to-20% on CIFAR-10 (red markers in Fig. 1) with only a modest66

(∼ 10%) increase in training time. This expands the capabilities of widely popular single-attack `∞67

AT frameworks to providing robustness to the union of (`∞, `2, `1) perturbations without sacrificing68

training efficiency. We validate SNAP’s benefits via thorough comparisons with nine SOTA adver-69

sarial training and randomized smoothing frameworks across different operating regimes on both70

CIFAR-10 and ImageNet.71

One tangible outcome of our work – we demonstrate for the first time ResNet-50 (ResNet-101)72

networks on ImageNet that achieveA(U)
adv = 32% (35%) against the union of (`∞(ε = 2/255), `2(ε =73

2.0), `1(ε = 72.0)) perturbations. Our code and trained models will be shared publicly on GitHub.74

2 Related Work75

We categorize works on adversarial vulnerability of DNNs as follows:76

Low-complexity adversarial training: The high computational needs of AT frameworks has spurred77

significant efforts in reducing their complexity [40, 30, 35, 43]. FreeAdv [30] updates weights while78

accumulating multiple attack iterations. FastAdv [35] employs appropriate use of single-step attacks,79

while Zheng et al. [43] leverage inter-epoch similarity between adversarial perturbations. However,80

these fast AT methods seek robustness against a single perturbation type, e.g., `∞ norm-bounded81

perturbations. In contrast, SNAP expands the capabilities of these AT frameworks by enhancing82

robustness to the union of three perturbation types (`∞, `2, `1), while preserving their efficiency.83

Robustness against union of perturbation models: The focus on the robustness against the union of84

multiple perturbation types is relatively new. Kang et al. [16] studied transferability between different85

perturbation types, while Jordan et al. [15] considered combination attacks with low perceptual86

distortion. Stutz et al. [31] proposed a modification in AT to detect images with different models87

of perturbations via confidence thresholding, but they don’t attempt to classify perturbed images88

correctly. For accurate classification in the presence of different perturbation models, Tramèr &89
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Boneh [32] studied empirical and theoretical trade-offs involved in including multiple perturbation90

types simultaneously during training. Maini et al. [21] further built upon this work to propose the91

multi steepest descent (MSD) AT framework which chooses one among the three perturbation models92

(`∞, `2, `1) in each attack iteration during training, achieving SOTA adversarial accuracy on CIFAR-93

10 against the union of the (`∞, `2, `1) perturbation models, albeit at a high (10×) training time. In94

contrast, SNAP provides high robustness against the union of (`∞, `2, `1) perturbation models using95

established single-attack `∞ AT frameworks. This enables to showcase the benefits of our approach96

on large-scale datasets such as ImageNet.97

Recently, Laidlaw et al. [18] developed a novel AT framework (PAT) with low perceptual distortion98

attacks to demonstrate impressive generalization to unseen attacks. In contrast, we focus on extending99

the capabilities of widely popular `∞-AT frameworks to providing robustness against the union of100

(`∞, `2, `1) perturbations, while preserving their training efficiency.101

Noise augmentation: Multiple recent works have investigated the role of randomization in enhancing102

adversarial robustness [12, 24, 8, 25] with theoretical guarantees. Another prominent line of work103

in this category is randomized smoothing [5, 29, 19, 38], where random noise is used as a tool to104

compute certification bounds. Rusak et al. [28] also explored the role of noise augmentation for105

improving the robustness against common-corruptions [13]. In contrast, in SNAP, noise augmentation106

is used as a means to enable widely popular `∞-AT frameworks to efficiently achieve high robustness107

against the union of multiple norm-bounded perturbations. As is the characteristic of AT works, our108

results are primarily empirical in nature. Hence, we follow recent guidelines [33, 21] to evaluate the109

accuracy against the strongest possible adversaries. We do explicitly compare `∞-AT+SNAP with110

randomized smoothing approaches in the Appendix.111

3 Subspace Analysis of Adversarial Perturbations112
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Figure 2: Illustration of the role of deci-
sion boundary curvature on the distinc-
tion between different types of perturba-
tions α, β and γ of the given input x.

In this section, we employ subspace methods to compre-113

hend the distinction between `∞, `2 and `1 perturbations.114

For each input xi ∈ RD in dataset X , consider adversar-115

ial perturbations αi, βi, and γi bounded within `∞, `2,116

and `1 norms, respectively.117

We begin with a hypothesis (see Fig. 2): The perturbations118

α, β, and γ corresponding to input x have directions that119

differ significantly if the curvature of the decision bound-120

ary is high in the neighborhood of x. Conversely, if the121

curvature of the decision boundary is low, the perturba-122

tions α, β, and γ tend to point in similar directions.123

Since, prior works [6, 23] have found that single-attack124

AT reduces the curvature of the decision boundary, we test125

our hypothesis by studying the following two networks126

on CIFAR-10 data: a non-robust ResNet18 f van
θ trained using vanilla training, and a robust ResNet18127

f rob
θ trained using the TRADES [41] AT framework employing `∞ perturbations.128

We compute perturbationsαi, βi, and γi for each xi ∈ X for both networks, i.e., κ ∈ {van, rob}. We129

compute the singular vector basis Pκ for the set of `2 bounded perturbations ∆κ = {βκ1 , . . . ,βκ|X|}.130

The normalized mean squared projections of the three types of perturbation vectors on the singular131

vector basis Pκ of vanilla trained ResNet-18 (Pvan)(Fig. 3(a)) and TRADES trained ResNet-18132

(P rob)(Fig. 3(b)) shows a clear contrast.133

The perturbations of a vanilla trained network roll-off gradually to occupy a larger subspace as134

indicated in Fig. 3(a). Specifically, the projections of α and γ occupy almost all 3000 directions in135

the basis Pvan since their mean squared projections are within ∼ 10% of the maximum value mmax.136

This shows that the dominant singular vectors of β are not well-aligned with α and γ in a vanilla137

trained network. With TRADES AT (Fig. 3(b)), however, all three types of perturbations are squeezed138

into a much smaller subspace spanning only the top 250 singular vectors in the perturbation basis139

P rob. Outside these 250 dimensions, the mean squared projections fall to < 10% of their maximum140

value.141

In summary, the results in Fig. 3 validate the hypothesis that single-attack AT increases the average142

alignment of different perturbation types due to the reduction in the decision boundary curvature. In143
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Figure 3: Normalized mean squared projections of three perturbation types on the singular vector
basis Pκ of `2 perturbations of ResNet18 on CIFAR-10 after: (a) vanilla training (κ ≡ van), and (b)
TRADES training (κ ≡ rob). The singular vectors pκi comprising Pκ = {pκ1 , . . . ,pκD} are ordered
in descending order of their singular values.

Sec. 4, we exploit this behavior of single-attack `∞ AT to improve its robustness against the union of144

multiple perturbation models via SNAP.145

4 Shaped Noise Augmented Processing (SNAP)146
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Figure 4: SNAP: (a) intuition un-
derlying SNAP (not an exact depic-
tion), and (b) SNAPnet fSN

θ,Σ(x) con-
structed from a given deep net fθ(x)
by prepending a shaped noise (SN)
augmentation layer which perturbs
the primary input x with noise n
whose distribution parameter Σ is
learned during AT along with the base
network parameter θ.

We show that single-attack AT can be enhanced to address147

multiple perturbations by introducing noise to appropriately148

wiggle the `∞-bounded perturbations (Fig. 4(a)). However,149

to do so, the noise distribution needs to be chosen and shaped150

appropriately to minimize its impact on natural accuracy and151

robustness to `∞-bounded perturbations.152

We experiment with both `∞ and `2 perturbations in single-153

attack AT frameworks and find `∞-AT to be suitable for154

our proposed shaped noise augmentation (see Sec. 5.2.1 for155

details). Hence, in this section, we describe SNAP for single-156

attack AT frameworks employing `∞ perturbations.157

4.1 SNAPnet158

A deep net fθ(x) : RD → {0, 1}C parametrized by θ maps159

the input x ∈ RD to a one-hot vector y ∈ {0, 1}C over C160

classes.161

We construct a SNAP-based deep net (SNAPnet) fSN
θ,Σ(x) by162

introducing an additive shaped noise (SN) layer (Fig. 4(b)),163

where the noise distribution parameter Σ is learned during164

training. Formally,165

y = fSN
θ,Σ(x) = fθ

(
x+ n

)
= fθ

(
x+ V Σn0

)
, (1)

where n0 ∼ L(0, ID×D) is a zero-mean isotropic Laplace166

noise vector, Σ = Diag[σ1, . . . , σD] is a distribution param-167

eter denoting its per-dimension standard deviation, ID×D168

denotes the D ×D identity matrix, and V = [v1, . . . ,vD] denotes a basis in RD. We also studied169

Gaussian and Uniform distributed n0, but empirically find the Laplace distribution to yield better170

results (Sec. 5.2.1). We use V = ID×D for all our experiments in the main text and study other171

options for V in the Appendix.172

The final classification decision d is computed via173

d = arg max
c

[
En

[
y
]]
c

, (2)

where [a]c denotes the c-th element of vector a. Note, the shaped noise perturbs the input x with a174

noise source n = V Σn0 (Eq. (1)). The distribution parameter Σ is learned in the presence of any175

standard AT method [20, 41, 30] used for learning deep net parameters θ as described next.176
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Algorithm 1 Training SNAPnet
Input: training set X; basis V = [v1, . . . ,vD]; total noise power Pnoise; minibatch size r; baseline training

method BASE; noise variance update frequency Uf ; Total number of epochs T
Initialize: noise variances Σ0 = Diag[σ1,0, . . . , σD,0].
Output: robust network fSN

θ,Σ, noise variances ΣT = Diag[σ2
1,T , . . . , σ

2
D,T ].

1: for epoch t = 1 . . . T do

2: for mini-batch B = {x1, . . . ,xr} do θ ← BASE`∞

(
fSN
θ,Σt

(
{xi}ri=1

)
, θ

)
. BASE() Training

3: end for
4: if t mod Uf = 0 then . SNAP Distribution Update once every Uf epochs
5: for mini-batch B = {x1, . . . ,xr} do

6: {xadv
i }ri=1 ← PGD(K)

`2

(
fSN
θ,Σt

(
{xi}ri=1

))
; ηi = xadv

i − xi ∀ i ∈ {1, . . . , r}

7: γj ← γj +
∑r
i=1

(
〈vj ,ηi〉

)2 ∀j ∈ {1, . . . , D} . Accumulate projections; See Eq. (3)
8: end for
9: σ2

j,t+1 = Pnoise

√
γj∑D

k=1
√
γk
∀j ∈ {1, . . . , D} . Normalize accumulated projections; See Eq. (3)

10: else
11: Σt+1 ← Σt
12: end if
13: end for

4.2 Training SNAPnet177

Algorithm 1 summarizes the procedure for training SNAPnet fSN
θ,Σ(x). In each epoch, an arbitrary178

AT method BASE() (line 2) updates network parameters θ with input perturbed by noise n. Here179

BASE() can be any established AT framework [20, 41, 30, 35] employing `∞ perturbation.180

The SNAP parameter Σ is updated once every Uf = 10 epochs via a SNAP distribution update (lines181

4-10). In this update, the per-dimension noise variance σ2
j is updated proportional to the root mean182

squared projection of the adversarial perturbations η on the basis V given a total noise constraint183 ∑D
j=1 σ

2
j = Pnoise, where Pnoise denotes the total noise power. Formally,184

σ2
j ∝

√
Ex∈X

(
〈η,vj〉2

)
s.t.

D∑
j=1

σ2
j = Pnoise, (3)

where η is the `2 norm-bounded PGD adversarial perturbation for the given input x ∈ X (line 6).185

Note that these `2 perturbations are employed only for noise shaping and are distinct from the `∞186

perturbations employed by BASE() AT (line 2). Also, `∞ perturbations cannot be used here since187

their projections are constant ∀j when V = ID×D, whereas employing `1 perturbations leads to poor188

shaping due to high sparsity.189

Thus, in SNAP, the average squared `2 norm of the noise vector n is held constant at Pnoise while190

adapting the noise variances in the individual dimensions so as to align the noise vectors with the191

adversarial perturbations on average. Intuitively, the decision boundary is pushed aggressively in192

those directions.193

4.3 Remarks194

Note that the SNAP distribution update is distinct from BASE() AT. Hence, SNAP doesn’t require any195

hyperparameter tuning in BASE(). For fairness to baselines we keep all hyperparameters identical196

when introducing SNAP in all our experiments. However, SNAP introduces a new hyperparameter197

Pnoise, which permits to trade adversarial robustness A(U)
adv for natural accuracy Anat. This trade-off is198

explored in Sec. 5.2.2.199

The computational overhead of SNAP is small (∼ 10%) since the SNAP Distribution Update occurs200

once in 10 epochs using just 20% of the training data to update the noise standard deviations σj . We201

provide more details about the SNAP Distribution Update in the Appendix.202
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Method Anat
A(`∞)

adv
ε = 0.03

A(`2)
adv

ε = 0.5

A(`1)
adv

ε = 12
A(U)

adv

PGD AT with `∞ perturbations
PGD 84.6 48.8 62.3 15.0 15.0

+SNAP[G] 80.7 45.7 66.9 34.6 31.9
+SNAP[U] 85.1 42.7 66.7 28.6 26.6
+SNAP[L] 83.0 44.8 68.6 40.1 35.6

PGD AT with `2 perturbations
PGD 89.3 28.8 67.3 31.8 25.1

+SNAP[G] 83.0 35.0 65.8 39.9 30.2
+SNAP[U] 86.4 32.3 66.7 30.2 25.0
+SNAP[L] 84.8 33.4 66.1 42.5 30.8

Table 1: ResNet-18 CIFAR-10 results showing
the impact of SNAP augmentation of PGD [20]
AT framework with `∞ (top) and `2 (bottom) per-
turbations where [G], [U], and [L], denote shaped
Gaussian, Uniform, and Laplace noise.

Method Anat
A(`∞)

adv
ε = 0.03

A(`2)
adv

ε = 0.5

A(`1)
adv

ε = 12
A(U)

adv

High Complexity AT with `∞ perturbations
PGD 84.6 48.8 62.3 15.0 15.0

+SNAP 83.0 44.8 68.6 40.1 35.6
TRADES 82.1 50.2 59.6 19.8 19.7
+SNAP 80.9 45.2 66.9 46.6 41.2

Low Complexity AT with `∞ perturbations
FreeAdv 81.7 46.1 59 15.0 15.0
+SNAP 83.5 39.7 66.2 34.3 29.6
FastAdv 85.7 46.2 60.0 13.2 13.2
+SNAP 84.2 40.4 67.9 36.6 30.8

Table 2: ResNet-18 CIFAR-10 results showing
the impact of SNAP augmentation of established
`∞-AT frameworks. The computational overhead
of SNAP is limited to ∼ 10%.

5 Experimental Results203

5.1 Setup204

Following experimental settings of prior work [41, 30, 21], we employ a ResNet-18 network for205

CIFAR-10 experiments and both ResNet-50 and ResNet-101 networks for ImageNet experiments.206

Accuracy on clean test data is referred to withAnat and accuracy on adversarially perturbed test data is207

referred to via A(`∞)
adv , A(`2)

adv , and A(`1)
adv , for `∞, `2, and `1 norm bounded perturbations, respectively.208

Accuracy against the union of all three perturbations is denoted by A(U)
adv .209

For a fair robustness comparison, our evaluation setup closely follows the setup of Maini et al. [21]210

for CIFAR-10 data: (1) choose norm bounds ε = (0.031, 0.5, 12.0) for (`∞, `2, `1) perturbations,211

respectively; (2) scale norm bounds for images to lie between [0, 1]; (3) choose the PGD attack212

configuration to be 100 iterations with 10 random restarts for all perturbation types1; and (4) estimate213

A(U)
adv as the fraction of test data that is simultaneously resistant to all three perturbation models.214

Following the guidelines of Tramer et al. [33], we carefully design adaptive PGD attacks that215

target the full defense – SN layer – since SNAPnet is end-to-end differentiable. Specifically, we216

backpropagate to primary input x through the SN layer (see Fig. 4). Thus, the final shaped noise217

distribution is exposed to the adversary. We also account for the expectation En[·] in Eq. (2) by218

explicitly averaging deep net logits over N0(= 8) noise samples before computing the gradient,219

which eliminates any gradient obfuscation, and is known to be the strongest attack against noise220

augmented models [29]. In the Appendix we also show robustness stress tests and evaluate more221

attacks.222

On CIFAR-10 data, we compare with the following seven key SOTA AT frameworks: PGD [20],223

TRADES [41], FreeAdv [30], FastAdv [35], AVG [32], MSD [21], PAT [18]. We also compare224

with two randomized smoothing frameworks [5, 29] in the Appendix. Thanks to their GitHub code225

releases, we first successfully reproduce their results with a ResNet-18 network in our environment. In226

the case of PAT [18], we evaluate and compare with their pretrained ResNet-50 model on CIFAR-10.227

We compare all training times on a single NVIDIA P100 GPU. On ImageNet data, we primarily228

compare to FreeAdv [30]. We train ResNet-50 and its SNAPnet version with FreeAdv on a Google229

Cloud server with four NVIDIA P100 GPUs to compare their accuracy and training times. We will230

release our pretrained models and code on GitHub.231

5.2 Ablation Studies232

5.2.1 Impact of Noise Distribution and Model of BASE() AT Perturbations233

In this subsection, we first study the impact of employing `∞ vs. `2 perturbations in BASE AT() (see234

line 2 in Alg. 1) on A(U)
adv . For each choice, we further experiment with three distributions for the235

SN layer in Fig. 4(b) viz. Gaussian, Uniform, and Laplace. We don’t consider `1 perturbations in236

1Following Maini et al. [21], we also run all attacks on a subset of the first 1000 test examples with 10
random restarts for CIFAR-10 data.
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BASE AT() since Maini et al. [21] showed that employing `1 single-attack AT achieves very low237

robustness to all attacks. We choose PGD [20] AT as BASE AT() for this ablation study. For a fair238

comparison across the noise distributions, we fix Pnoise = 160, enforcing all noise vectors to have the239

same average `2 norm. For each distribution, the noise is shaped per the procedure summarized in240

Alg. 1.241

As observed in Table 1, `∞-PGD AT achieves much lowerA(U)
adv than `2-PGD AT, an observation also242

reported by Maini et al. [21]. With SNAP, however, we find that there is an interaction between the243

perturbation model in PGD AT and the noise distribution in SNAP. For instance, SNAP[U] enhances244

A(U)
adv by 11% with `∞-PGD AT while not achieving any improvement with `2-PGD AT. In fact,245

SNAP appears to be particularly suitable for `∞-AT, since it always improvesA(U)
adv by 11%-to-20.6%246

irrespective of the noise distribution.247

Finally, of the three noise distributions, we find the Laplace distribution to be distinctly superior,248

achieving the highest A(U)
adv (35.6% and 30.8%) due to a significant improvement in A(`1)

adv for both249

`∞ and `2 PGD AT, respectively. The superiority of the Laplace distribution in achieving high250

A(`1)
adv stems from its heavier tail compared to the Gaussian and Uniform distributions with the same251

variance. Shaped Laplace noise generates the highest fraction of extreme values in a given noise252

sample. Hence, it is more effective in improving accuracy against `1-bounded attacks, which are253

the strongest when perturbing few pixels by a large magnitude [21, 32]. We discuss this further in254

the Appendix. Henceforth, unless otherwise mentioned, we choose Laplace noise for SNAP and `∞255

perturbations for BASE() AT as the default setting since it achieves the highest A(U)
adv .256

5.2.2 Impact of Pnoise257
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(a) (b)Figure 5: ResNet-18 CIFAR-10 results: ad-
versarial accuracy A(`1)

adv , A(`∞)
adv , and natural

accuracy Anat vs. total noise power Pnoise for
PGD+SNAP.

Next, we explore the impact of the SNAP hyperpa-258

rameter Pnoise, which constrains the average squared259

`2 norm of the noise vector n. It enables to trade260

between adversarial and natural accuracy.261

Fig. 5 shows that, as Pnoise increases, A(`1)
adv improves262

from 31% to 47%, accompanied by a graceful (5%)263

drop in Anat and a small drop of 2% in A(`∞)
adv that264

stabilizes to ≈ 45%. These results show: (1) SNAP265

preserves the impact of `∞ perturbations which is266

not surprising since PGD AT [20] explicitly includes267

those, and (2) Pnoise provides an explicit knob to268

control the Anat vs. Aadv trade-off. Henceforth, we269

choose Pnoise values that incur < 1.5% drop in Anat270

for all SNAP+AT experiments.271

5.2.3 SNAP augmented SOTA AT Frameworks272

Table 2 shows the effectiveness of SNAP for four SOTA AT frameworks: high complexity frame-273

works, such as PGD [20], TRADES [41], and low complexity frameworks such as FreeAdv [30],274

FastAdv [35]. All are trained against `∞ attacks with ε = 0.031. As expected, while they achieve275

high A(`∞)
adv , their A(`2)

adv and A(`1)
adv are lower.276

For high-complexity AT, SNAP enhances A(`2)
adv and A(`1)

adv by ∼ 6% and ∼ 25%, respectively, while277

incurring only a drop of ∼ 5% in A(`∞)
adv . Thus overall, SNAP improves robustness (A(U)

adv ) by ∼ 20%278

against the union of the three perturbation models. Note that this robustness improvement comes279

at only a ∼ 1% drop in Anat (see Table 2). For low-complexity ATs, SNAP improvements in union280

robustness (A(U)
adv ) are also significant (∼ 15%). Again, presence of SNAP improves A(`2)

adv and A(`1)
adv .281

This time the drop in A(`∞)
adv is ∼ 7%. We believe this is due to the fact that these frameworks employ282

weaker single-step attacks during training. Note that in the case of FreeAdv+SNAP, we actually283

observe a ∼ 2% increase in Anat, a trend we also observe in the ImageNet experiments described284

later.285
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Method LR schedule Epochs Anat A(U)
adv Total time

(minutes)
Set A: Total Time ≥ 12 Hrs

AVG 50 Step [32] cyclic 50 84.8 40.4 4217
AVG 20 Step [32] cyclic 50 85.6 40.4 1834
AVG 10 Step [32] cyclic 50 86.7 38.9 956

PAT [18] step 100 82.4 36.6 1364
MSD 50 Step [21] cyclic 50 81.7 47.0 1693
MSD 30 Step [21] cyclic 50 82.4 44.9 978

Set B: 8 Hrs < Total Time < 12 Hrs
AVG 5 Step [32] cyclic 50 87.8 33.7 489

MSD 20 Step [21] cyclic 50 83.0 37.3 690
TRADES [41] step 100 82.0 19.7 516

TRADES+SNAP step 100 80.9 41.2 566
Set C: 5 Hrs < Total Time < 8 Hrs

MSD 10 Step [21] cyclic 50 83.6 33.3 342
PGD [20] step 100 84.6 15.0 354

PGD+SNAP step 100 83.0 35.6 403
Set D: 2 Hrs < Total Time < 5 Hrs

AVG 2 Step [32] cyclic 50 88.4 22.0 232
MSD 5 Step [21] cyclic 50 84.0 12.6 185

PGD [20] cyclic 50 82.8 15.7 177
TRADES [41] cyclic 50 80.0 21.4 258
PGD+SNAP cyclic 50 82.3 33.5 199

TRADES+SNAP cyclic 50 78.8 40.8 280
Set E: Total Time < 2 Hrs

FreeAdv [30] step 200 81.7 15.0 66
FastAdv [35] cyclic 50 85.7 13.2 47

FreeAdv+SNAP step 200 83.5 29.6 88
FastAdv+SNAP cyclic 50 84.2 30.8 69

Table 3: CIFAR-10 results for comparing adversarial accuracy A(U)
adv vs. training time (on single

NVIDIA P100 GPU) for different AT frameworks and the improvements by introducing proposed
SNAP technique. All frameworks except PAT [18] (which employs ResNet-50) employ ResNet-18.

Training Anat (%) A(`∞)
adv

ε = 2/255

A(`2)
adv

ε = 2.0

A(`1)
adv

ε = 72.0
A(U)

adv
Total time
(minutes)

ResNet-50
FreeAdv [30] 61.7 47.8 19.9 14.8 12.6 3590

FreeAdv+SNAP 66.8 46.1 37.8 37.4 32.4 3756
ResNet-101

FreeAdv [30] 65.4 51.8 22.8 18.8 16.1 5678
FreeAdv+SNAP 69.7 50.3 41.1 40.2 35.4 5904

Table 4: ImageNet results: Iso-hyperparameter introduction of SNAP yields ∼ 20% improvement in
adversarial accuracy (A(U)

adv ) with modest impact on training time for ResNet-50 and ResNet-101.

5.3 Robustness vs. Training Complexity286

Next we quantify adversarial robustness vs. training time trade-offs. Table 3 shows that SNAP287

augmentation of single-attack AT frameworks achieves the highest A(U)
adv , when training time is288

constrained to 12 hours (sets B, C, D, and E).289

For instance, TRADES+SNAP achieves a 4% higherA(U)
adv (= 41%) than MSD-20 with 2 hours lower290

training time (Set B in Table 3). Similarly, PGD+SNAP achieves a 2% higher A(U)
adv than MSD-10291

while having a similar training time (Set C). Note that both PGD and TRADES here use 100 training292

epochs with standard step learning rate (LR) schedule, while MSD frameworks employ a cyclic293

learning rate schedule to achieve superconvergence in 50 epochs.294

In Set D, following Maini et al. [21], we employ a cyclic learning rate schedule for PGD, TRADES,295

as well as for PGD+SNAP and TRADES+SNAP to achieve convergence in 50 epochs. Improvements296

in A(U)
adv for PGD+SNAP and TRADES+SNAP are similar to those in Sets B and C. Most notably,297
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PGD+SNAP with cyclic learning rate achieves ∼ 20% and 11.5% higher A(U)
adv than MSD-5 and298

AVG-2, respectively, while having a similar training time (∼ 3 hours). Set E augments the data from299

Table 2 with training times. FastAdv+SNAP and FreeAdv+SNAP achieve a high A(U)
adv ∼ 30%, while300

preserving the training efficiency of both FastAdv and FreeAdv. Notably, FastAdv+SNAP achieves301

18% higher A(U)
adv than MSD-5, while being ∼ 2.7× more efficient to train.302

5.4 ImageNet Results303

Thanks to SNAP’s low computational overhead combined with FreeAdv’s fast training time, we are304

for the first time able to report adversarial accuracy of ResNet-50 and ResNet-101 against the union305

of (`∞, `2, `1) attacks on ImageNet.306

We closely follow the evaluation setup of Shafahi et al. [30]. Specifically, we use 100 step PGD307

attack, one of the strongest adversaries considered by Shafahi et al. [30], and evaluate on the entire308

test set. We first reproduce FreeAdv [30] results using the same hyperparameters and then introduce309

SNAP. All hyperparameter details are specified in the Appendix.310

In order to clearly demonstrate the contrast between robustness to different perturbation models, we311

evaluate with ε = (2/255, 2.0, 72.0) for (`∞, `2, `1) attacks, respectively.2 As shown in Table 4,312

FreeAdv achieves a high A(`∞)
adv = 47.8% with ResNet-50, but a lower A(`2)

adv = 20% and A(`1)
adv =313

15%, and consequently, a low A(U)
adv of 12.6% against the union of the perturbations. In contrast,314

FreeAdv+SNAP improves A(`2)
adv and A(`1)

adv by 17% and 22%, respectively, accompanied by a 5%315

improvement inAnat and a small 2% loss inA(`∞)
adv . This results in an overall robustness improvement316

of 20% against the union of the perturbation models, setting a first benchmark for ResNet-50 on317

ImageNet. Upon increasing the network to ResNet-101, both natural and adversarial accuracies318

improve by ≈ 4% for FreeAdv, a trend also observed by Shafahi et al. [30]. SNAP further improves319

FreeAdv’s results for Anat and A(U)
adv by 4.3% and 19.3%.320

6 Discussion321

Given the wide popularity of `∞-AT, in this paper, we propose SNAP as an augmentation that322

generalizes the effectiveness of `∞-AT to the union of (`∞, `2, `1) perturbations. SNAP’s strength is323

its simplicity and efficiency. Consequently, this work sets a first benchmark for ResNet-50 and ResNet-324

101 networks which are resilient to the union of (`∞, `2, `1) perturbations on ImageNet. Note that325

norm-bounded perturbations include a large class of attacks, e.g., gradient-based [20, 27, 32, 21, 4, 22],326

decision-based [3] and black-box [1] attacks.327

More work is needed to extend the proposed SNAP technique to attacks beyond norm-bounded328

additive perturbations, e.g., functional [17, 36], rotation [7], texture [2], etc. We provide preliminary329

evaluations in this direction in the Appendix. It is important to note that SNAP is meant to be an330

efficient technique for improving `∞-AT, and not a new defense. Indeed defending against a large331

variety of attacks simultaneously remains an open problem, with encouraging results from recent332

efforts [21, 18].333

Another limitation of our approach is that its benefits are demonstrated empirically. It is an inevitable334

consequence of a lack of any theoretical guarantees for underlying AT frameworks. An interesting335

direction of future work is to explore whether any theoretical guarantees can be derived for anisotropic336

shaped noise distributions in SNAP by building upon the recent developments in randomized smooth-337

ing [29, 38]. This could be a potential avenue for bridging the gap between certification bounds and338

empirical adversarial accuracy.339

Finally, we believe that any effort on improving adversarial robustness of deep nets has net positive340

societal impact. However, recent past in this field has shown that any improvements in defense341

techniques also lead to more effective threat models. While such a cat-and-mouse game is of great342

intellectual value in the academic setting, it does have an unintentional negative societal consequence343

of equipping malicious outside actors with a broad set of tools. This further underscores the well-344

recognized need for provable defenses.345

2Note that `2 and `1 norms of PGD perturbation with `∞ norm of 2/255 can be as large as ∼ 3.0 and
∼ 1100 for images of size 224× 224× 3.
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