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Abstract

Existing transfer learning methods for neural001
machine translation typically use a well-trained002
translation model (i.e., a parent model) of a003
high-resource language pair to directly initial-004
ize a translation model (i.e., a child model) of005
a low-resource language pair, and the child006
model is then fine-tuned with corresponding007
datasets. In this paper, we propose a novel two-008
step fine-tuning (TSFT) framework for transfer009
learning in low-resource neural machine trans-010
lation. In the first step, we adjust the parameters011
of the parent model to fit the child language by012
using the child monolingual data. In the second013
step, we transfer the adjusted parameters to the014
child model and fine-tune it with a proposed015
distillation loss for efficient optimization. Our016
experimental results on five low-resource trans-017
lations demonstrate that our framework yields018
significant improvements over various strong019
transfer learning baselines.020

1 Introduction021

Neural machine translation (NMT) has achieved022

superior performance in terms of both fluency and023

adequacy for high-resource languages (Vaswani024

et al., 2017; Zhou and Keung, 2020; Cai et al.,025

2021; Guo et al., 2022). With the introduction of026

the attention mechanism (Yin et al., 2021; Petrick027

et al., 2022), NMT has been proven to be efficient028

and powerful in modeling long-distance dependen-029

cies. However, NMT systems deteriorate dramati-030

cally when insufficient parallel data are available031

for training (Sakaguchi et al., 2017; Michel and032

Neubig, 2018; Aharoni et al., 2019; Goyal et al.,033

2022). The scarcity of parallel corpora intensely034

limits the performance of an NMT system on low-035

resource languages.036

Transfer learning is a learning paradigm for ad-037

dressing the data scarcity problem (Zoph et al.,038

2016; Nguyen and Chiang, 2017; Li et al., 2022).039

For NMT, transfer learning aims to transfer the040
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Figure 1: Comparison between vanilla transfer learning
framework (a) and TSFT (b). Our proposed TSFT in-
corporates an intermediate model to pre-fine-tune the
parent parameters to fit the child data.

knowledge from a well-trained high-resource trans- 041

lation model (i.e., a parent model, e.g. English-> 042

German) to a low-resource translation model (i.e., 043

a child model, e.g., English-> the Māori language). 044

Prior transfer learning methods in NMT (Zoph 045

et al., 2016; Chu et al., 2017) primarily achieve 046

knowledge transfer by initializing the parameters 047

of the child model with the parent model and fine- 048

tuning the child model on the corresponding data. 049

Such direct transfer of knowledge raises a vocab- 050

ulary mismatch problem (Lakew et al., 2018; Lin 051

et al., 2019; Kocmi and Bojar, 2020), and results 052

in unsatisfied results for low-resource translations. 053

To alleviate the vocabulary mismatch problem, 054

some methods have been proposed such as con- 055

structing joint dictionaries or employing a cross- 056

lingual token mapping technique (Passban et al., 057

2017; Kocmi and Bojar, 2018; Kim et al., 2019a). 058

Additionally, Aji et al. (2020) achieved success 059

in low-resource NMT by simply duplicating the 060

embeddings of overlapping tokens from the par- 061

ent model to the child model. Furthermore, some 062
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other methods attempt to gradually minimize the063

vocabulary disparity between the parent and child064

languages by introducing a related intermediate par-065

ent model (Luo et al., 2019; Maimaiti et al., 2019;066

Kim et al., 2019b).067

Recently, based on the work of Aji et al. (2020),068

Li et al. (2022) proposed ConsistTL that uses the069

predictions of the parent model to continuously pro-070

vide soft targets during the fine-tuning of the child071

model. However, given the differences between the072

source inputs of the parent and the child translation073

tasks, the parent model is not an optimal starting074

point for the single-step fine-tuning of the child075

model using limited parallel child data. Therefore,076

it is necessary to pre-fine-tune the parent model to077

fit the child language before initializing the child078

model with it.079

Building upon this insight, we propose a simple080

yet effective transfer learning framework, named081

Two-Step Fine-Tuning (TSFT), for low-resource082

NMT. As shown in Figure 1, we introduce an in-083

termediate (child) model initialized with the parent084

model to adjust the parent parameters to fit the child085

language. TSFT involves two fine-tuning steps. In086

the first step, we feed child source sentences (i.e.,087

monolingual data) and meaning-matched sentences088

in the parent source language into the intermediate089

and the parent models, respectively. Then, the in-090

termediate model is fine-tuned with the objective091

of aligning probability distributions from the par-092

ent and intermediate models, aiming to adjust the093

parameters transferred from the parent model to094

perform well with child source sentences. Addi-095

tionally, we propose a regularization-based strategy096

that can improve the translation performance of the097

intermediate model and benefit the child model. In098

the second step, we transfer the adjusted parame-099

ters from the intermediate model to the child model100

and fine-tune the entire child model on the perti-101

nent parallel data, employing both a cross-entropy102

loss and a proposed distillation loss. Extensive ex-103

periments on five low-resource translations show104

that TSFT surpasses the strongest baseline method105

with up to 1.2 SacreBLEU points. The ablation106

study demonstrates the effectiveness of different107

components within TSFT.108

Our contributions can be summarized as follows:109

• We propose a novel two-step fine-tuning110

framework for low-resource NMT, which in-111

troduces an intermediate (child) model to fit112

parent parameters for the data of child lan-113

guages before initializing the child model with 114

the parent model. 115

• We propose a regularization-based strategy for 116

fine-tuning the intermediate model and a dis- 117

tillation loss for fine-tuning the child model. 118

• We validate our method by extensive exper- 119

iments on various low-resource translations 120

and achieve improved performance compared 121

to various transfer learning methods. 122

2 Related work 123

Existing studies have demonstrated the success of 124

transfer learning for low-resource NMT (Lin et al., 125

2019; Imankulova et al., 2019; Ji et al., 2020; Ero- 126

nen et al., 2023). Zoph et al. (2016) first introduced 127

transfer learning into the field of NMT and pro- 128

posed a parent-child framework, where parameters 129

from a pre-trained parent model are directly trans- 130

ferred to a new child model with a shared target 131

language. Subsequent research largely builds upon 132

the parent-child framework and tends to leverage 133

highly related parent language to perform trans- 134

fer learning (Passban et al., 2017; Setiawan et al., 135

2018). However, the languages closely related 136

to low-resource languages are also low-resourced 137

(Nguyen and Chiang, 2017; Xia et al., 2019) and of- 138

fer only modest performance improvements. Thus, 139

researchers focused on identifying the critical fac- 140

tors for the effectiveness of the parent language. Ex- 141

perimental results from (Lin et al., 2019; Aji et al., 142

2020) emphasized that linguistic or geographical 143

distance does not appear as important as the size of 144

the parent data (Lin et al., 2019; Aji et al., 2020). 145

This insight expands the range of parent languages 146

available for transfer learning, and alleviates the 147

limitations of highly related parent languages. Con- 148

sequently, later researchers shifted their attention 149

to parent languages with low relatedness but high- 150

resourced. However, this exacerbates the vocabu- 151

lary mismatch problem, posing a new challenge to 152

transfer learning. 153

One solution to the vocabulary mismatch prob- 154

lem is to build a joint dictionary before training a 155

parent model (Kocmi and Bojar, 2018; Kim et al., 156

2019b). However, this restricts the applicability 157

of a pre-trained parent model to a specific child 158

model only. To overcome this limitation, Kim et al. 159

(2019a) propose pre-training a language-agnostic 160

cross-lingual word embedding independently from 161

the parent model. Concurrently, token mapping 162
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methods also show their effectiveness in transfer163

learning without requiring additional training ef-164

forts (Aji et al., 2020; Kocmi and Bojar, 2020).165

Some other methods introduce highly related inter-166

mediate languages to gradually narrow the vocab-167

ulary disparity (Luo et al., 2019; Maimaiti et al.,168

2019). These methods take advantage of both large-169

scale data sources and syntactic similarity in the170

intermediate language. Recently, ConsistTL (Li171

et al., 2022) proposed to utilize the predictions of172

the parent model as soft targets during the fine-173

tuning of the child model to achieve continuous174

guidance based on the work of Aji et al. (2020).175

3 Method176

In this section, we begin by providing an overview177

of the basic concepts behind transfer learning178

and then present our transfer learning framework,179

TSFT, in detail.180

3.1 Transfer Learning Primary181

Given a source sentence x = {x1 , . . . , xI }, the182

objective of an NMT model is to translate it to183

a new sentence y = {y1 , . . . , yJ} in a target lan-184

guage, where the source sentence and target sen-185

tence have lengths I and J , respectively. A typi-186

cal NMT model is composed of an encoder and187

a decoder. The encoder is designed to extract188

high-level semantic information from the source189

sentences and represent them as hidden states190

He. The decoder generates the output probabil-191

ity P (yi|He, y<i) of the next target token yi. An192

NMT model is trained on a parallel corpus by min-193

imizing the cross-entropy (CE) loss between the194

predicted sentence and the ground-truth translation195

as follows:196

Lce = −
J∑

i=1

logP (yi|y<i, x, θ), (1)197

where θ is the parameters of the entire NMT model.198

Transfer learning has been widely used when199

only limited training datasets are available for the200

problem at hand. It transfers the knowledge ac-201

quired from large-scale data to enhance the model202

performance under low-resource conditions. Trans-203

fer learning typically follows a parent-child frame-204

work, where it involves reusing the parameters θp205

from a pre-trained parent model to initialize part206

or all parameters of a child model. In the field207

of NMT, the parent model Mp is initially trained208

on a high-resourced dataset Dp = {Xp, Yp}, while209

there is only a limited-sized dataset Dc = {Xc, Yc} 210

available to the child model Mc . Note that the par- 211

ent and child datasets usually have a shared target 212

language Y in a transfer learning framework. After 213

the initialization step, the child model can be fine- 214

tuned on Dc, which is also optimized through the 215

minimization of the CE loss (Equation (1)). 216

3.2 Two-step Fine-tuning 217

For NMT, an ideal transfer learning framework 218

should enable the parent model to exert its com- 219

plete capabilities on the child task. However, owing 220

to the disparities between the parent and child lan- 221

guages, the current one-step fine-tuning transfer 222

learning framework struggles to adjust the parame- 223

ters of the parent model to fit the child source lan- 224

guage under the constraints of limited child data. 225

The idea of TSFT is simple: before initializing 226

the child model with the parent model, we first 227

adjust the parameters of the parent model to 228

enhance its congruity with the child source 229

language. In this work, we propose to introduce 230

an intermediate model, denoted as Ma , to make 231

the parameters of the parent model fit for the child 232

data. Specifically, we initialize the intermediate 233

model with the parent model and pre-fine-tune it 234

by using the source side sentences of the child 235

data, then fine-tune the child model with both the 236

source and target child training data. Therefore, we 237

design TSFT as a two-step framework, as shown in 238

Figure 2. 239

240

Step 1: Intermediate Fine-tuning After initializ- 241

ing the intermediate model with a well-trained par- 242

ent model, we aim to equip the intermediate model 243

with the ability to utilize child source sentences 244

as input for target language generation. Since the 245

intermediate model and the parent model share the 246

same target language, it is crucial to retain the gen- 247

eration ability of the parent model. Therefore, we 248

input the source sentences of the child data to the 249

intermediate model and the parent model and uti- 250

lize the predicted distribution of the parent model 251

as the soft label for fine-tuning. 252

However, it is infeasible to directly input child 253

source sentences into the parent model, given that 254

the parent and child models have different source 255

languages. Thus, we need a meaning-matched sen- 256

tence for each child source sentence in the parent 257

source language. In the context of low-resource 258

translations, parallel data for non-English-centric 259

is often limited in size or entirely absent, mak- 260
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Figure 2: Our proposed transfer learning framework TSFT for low-resource NMT. In Step 1, the loss function
Linter is used to optimize the intermediate model. In Step 2, the child model is optimized by Lchild. The blue
icy blocks are initialized with the parent model and frozen. The input German sentences are produced through
back-translation.

ing it difficult to meet the requirements for in-261

termediate fine-tuning. Therefore, we adopt the262

method of Li et al. (2022) to generate pseudo par-263

ent data Dp∗ = {Xp∗, Yc} by using a reversed264

parent model, where each xp∗ ∈ Xp∗ is aligned265

with yc ∈ Yc. Although such a method requires266

training a reverse parent model, it effectively gen-267

erates meaning-matched input sentences for the268

parent model. In addition, we use the following269

loss function to optimize the intermediate model:270

Linter =

J∑
i=1

Fd[Pinter(yi), Pparent(yi)], (2)271

where Fd is a distribution measurement method,272

in this work, we choose Jensen-Shannon (JS) di-273

vergence (Lin, 1991) as our Fd. Our preliminary274

experiments find that using JS divergence results275

in better child model performance compared to276

using Kullback–Leibler (KL) divergence. P∗(yi)277

represents the prediction distributions of translation278

models at time step i, which is conditioned on the279

input sentence and the previous tokens:280

P∗(yi) = P∗(yi|x, y<i). (3)281

Step 2: Child Fine-tuning We fine-tune the inter-282

mediate model exclusively on child source data283

with unsupervised training. This process does284

not fully leverage the available child training data.285

Thus, in the second step, we use the entire child286

training dataset to fine-tune the child model with287

CE loss (i.e., Equation (1)), following the general288

process of transfer learning. In addition, since the 289

encoder of the intermediate model is fine-tuned 290

with the child source sentences, we argue that it 291

encompasses valuable information that can facili- 292

tate the child model. Therefore, we extract the en- 293

coder outputs from both the intermediate and child 294

models and incorporate a distillation loss Ldist as 295

an extra objective to optimize the child model by 296

minimizing the KL divergence between two output 297

representations: 298

Ldist = −
I∑

i=1

|V |∑
j=1

Pinter(xi|x) · logPchild(xi|x),

(4) 299

P∗(xi) = P∗(xi|x, τ)

=
exi/τ∑
j∈V exj/τ

,
(5) 300

where I denotes the sentence length of a child 301

source sentence, V is the vocabulary, and τ is a 302

temperate factor used to smooth the prediction dis- 303

tributions. As we only reuse the output of encoders, 304

the process of encoder distillation does not add any 305

extra parameters to models. The overall loss is 306

obtained by a weighted sum of Lce and Ldist: 307

Lchild = Lce + λLdist, (6) 308

where λ is a balancing hyper-parameter. 309

310

Partial Decoder Freeze Regularization-based 311

methods are widely used to alleviate the catas- 312
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trophic forgetting issue. While updating all param-313

eters typically yields good results on a new domain,314

the data distribution difference between the old315

and new domains can engender the issue of catas-316

trophic forgetting, causing the fine-tuned model to317

abandon linguistic knowledge learned from previ-318

ous dataset (Thompson et al., 2019; Bérard, 2021).319

In this work, we are interested in introducing the320

regularization-based technique during Step 1 to pre-321

serve the predictive capabilities of the parent model.322

We propose a Partial Decoder Freeze (PDF) strat-323

egy to freeze the parameters of the last l decoder324

layers of the intermediate model and only update325

the rest parameters. For the selection of parameters326

l, we conducted empirical experiments in Section327

5.1.328

4 Experiments329

4.1 Settings330

Datasets We conduct experiments on five331

low-resource translation tasks, four of which are332

from the Global Voices datasets (Tiedemann, 2012;333

Khayrallah et al., 2020): Polish (Pl), Hungarian334

(Hu), Indonesian (Id), Catalan (Ca) to English (En),335

where we use the officially provided training sets,336

validation sets and test sets in our experiments.337

The other one is the WMT 2017 Turkish (Tr) to En338

benchmark. We use newstest2016 as the validation339

set and newstest2017 as the test set. For the parent340

models training, we use the German-English341

dataset following the empirical advice of (Aji342

et al., 2020; Li et al., 2022). We take the WMT343

2017 news translation task as our parent dataset344

containing around 5.8M paired sentences. The345

detailed statistics of these parallel corpora are346

presented in Table 1. For fair comparisons, we347

adopt the same data preprocess techniques as348

previous research of TL (Li et al., 2022), which349

only apply normalization and tokenization to350

parallel sentences by using Moses toolkit1. Further,351

we apply Byte Pair Encoding (BPE) (Sennrich352

et al., 2016) to address the out-of-vocabulary353

problem and segment words with 16,000 merge354

operations for Turkish and 8,000 for the rest.355

356

Model Configuration In our experiments, we357

implement translation models with fairseq 2358

1https://github.com/moses-smt/
mosesdecoder

2https://github.com/facebookresearch/
fairseq

Datasets # Train # Valid # Test
Global Voices Pl - En 39.9K 2,000 2,000
Global Voices Ca -En 15.2K 2,000 2,000
Global Voices Id - En 8.4K 2,000 2,000
Global Voices Hu - En 7.7K 2,000 2,000
WMT 2017 Tr - En 196.6K 3,000 3,007

WMT 2017 De - En 5.8M 3,000 3,003

Table 1: The statistics of parallel corpora.

toolkit. We choose the Transformer (Vaswani 359

et al., 2017) as the backbone to implement our 360

framework. We use Transformer_base that consists 361

of 6 encoder and decoder layers with 8 attention 362

heads. The number of dimensions of all sub-layers 363

in the model is set to 512, and the inner layers of 364

feed-forward layers have 2048 dimensions. Our 365

child models are trained on 2 Nvidia A100 GPUs. 366

We train our models using Adam (Kingma and Ba, 367

2015) with (β1, β2) = (0.9, 0.98) and use cross- 368

entropy as criterion with label smoothing = 0.1. 369

In addition, we train the parent model with the 370

initial learning rate 1e−7 and gradually increase 371

till 1e−3 within 10,000 warm-up updates. For the 372

models with transfer learning, we set the initial 373

learning rate to 1e−7, and the peak learning rate 374

is 2e−4 within 1,000 warm-up steps. Dropout is 375

applied to the output of each sub-layer with a rate 376

of 0.3 to avoid over-fitting. Besides, attention and 377

activation dropouts are also used with a rate of 0.1 378

and 0.1. We train all models with a maximum of 379

200 epochs and select the checkpoints with the 380

best BLEU score on the validation set as our final 381

model to generate translations, where beam search 382

is applied with beam size 5, and the length penalty 383

is 1. 384

385

Baselines We use the following baselines to vali- 386

date our method: 387

• Vanilla NMT (Vaswani et al., 2017): A bilin- 388

gual NMT model with Transformer architec- 389

ture directly trained on low-resource child 390

training data from scratch. 391

• TL (Zoph et al., 2016): The first transfer learn- 392

ing work for NMT, initializing the child model 393

with a parent model except the source word 394

embeddings. Note that the original work em- 395

ployed a two-layer encoder-decoder LSTM 396

model, whereas we replicate TL using Trans- 397

former. 398
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Model
Tr→En Hu→En Id→En Ca→En Pl→En

BLEU BS BLEU BS BLEU BS BLEU BS BLEU BS

Vanilla 17.8 51.8 0.9 0.9 1.1 13.2 1.1 15.5 1.5 18.9

TL 17.6 51.9 5.9 27.4 13.5 37.7 21.6 51.8 19.9 55.3

TM-TL 18.6 53.9 10.6 41.2 18.6 49.9 25.3 58.9 21.4 58.2

ConsistTL 19.3 55.9 11.9 43.9 19.7 52.2 26.6 60.0 22.4 59.9

TSFT (ours) 20.0 56.7 13.1 44.6 20.5 53.3 27.7 60.7 23.3 60.5

Table 2: The SacreBLEU and BERTScore scores of baselines and ours on various translations. "BS" represents
BERTScore. Blod indicates the best result. BLEU score reflects that TSFT is significantly better than ConsistTL
with t-test p < 0.05. The number of bootstrap resamples is set to 1,000 to measure the significant difference between
results.

• TM-TL (Aji et al., 2020): To transfer embed-399

dings across languages with distinct linguistic400

characteristics, Token Matching (TM) is pro-401

posed to assign the child word embeddings402

with the same tokens in the parent embed-403

dings. The remaining unmatched tokens are404

assigned random embeddings as TL.405

• ConsistTL (Li et al., 2022): Based on TM-406

TL, ConsistTL is proposed to enhance the407

child model by incorporating the prediction408

of the parent model during the fine-tuning of409

the child model.410

Metrics To validate the effectiveness of our pro-411

posed framework, we use the following two met-412

rics:413

• BLEU (Papineni et al., 2002): Considering414

the discrepancy among different tokenization415

processes, we apply the SacreBLEU score416

(Post, 2018)3 for all experiments.417

• BERTScore (Zhang et al., 2020): Leverag-418

ing a pre-trained BERT model to evaluate the419

semantic correctness between the predictions420

and references by cosine similarity.421

4.2 Main Results422

The results on five low-resource translation bench-423

marks are presented in Table 2. In our experiments,424

we utilize German as the parent language, and425

the parent models are pre-trained on a German-426

to-English dataset. As we can see, our method sig-427

nificantly outperforms the vanilla NMT in terms of428

3Signature: nrefs:1 + case:mixed + eff:no + tok:13a +
smooth:exp + version:2.0.0
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Figure 3: The SacreBLEU scores of TSFT with different
hyper-parameter l on Tr → En and Hu → En. De ⇒ Tr
/ Hu indicates De is the parent language and Tr / Hu is
the child language.

both SacreBLEU and BERTScore. Compared with 429

TL and TM-TL, TSFT still achieves significant 430

improvements on all translations. Moreover, our 431

proposed TSFT also has demonstrated superior per- 432

formance compared to the strongest baseline Con- 433

sistTL with up to +1.2 SacreBLEU points and +1.1 434

BERTScore points. Overall, these results prove that 435

our proposed transfer learning framework TSFT 436

can effectively improve the performance of the 437

child model on low-resource translation tasks. 438

5 Analysis 439

5.1 Effect of the Number of Freezing Layers 440

In Section 3.2, we utilize the PDF strategy in Step 441

1. However, we do not clearly know the optimal 442

number of freezing layers l that can benefit the 443

child model most. Different numbers of freezing 444

layers would significantly impact the child model 445

performance. Hence, in this section, we conduct a 446

comparative analysis of the impact of different l on 447

the translation performance of the child model. 448

Concretely, we still use the De→En model as 449
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Hyper-parameter Tr→En Hu→En
(λ = 2.0, τ = 2.0) 19.9 13.0
(λ = 3.0, τ = 2.0) 19.8 12.8
(λ = 4.0, τ = 2.0) 20.0 13.1
(λ = 5.0, τ = 2.0) 19.9 12.9
(λ = 4.0, τ = 0.5) 19.7 12.9
(λ = 4.0, τ = 1.0) 19.7 13.1
(λ = 4.0, τ = 3.0) 19.4 13.0

Table 3: The SacreBLEU scores on the test set of the Tr
→ En and Hu→En translations with different λ and τ .

Models Tr→En Hu→En
TSFT 20.0 13.1

w/o PDF 19.5 12.5
w/o Ldist 19.8 12.8
w/o Step 2 18.9 11.2
w/o Step 2 + PDF 18.6 10.6

Table 4: The SacreBLEU scores on the test set of the
Tr → En and Hu→En translations with PDF, Ldist, and
Step 2 ablation.

the parent model and select Tr→En and Hu→En450

translations as child tasks. We tune the hyper-451

parameter l by performing a grid search on l ∈452

{1, 2, 3, 4, 5, 6}. Figure 3 illustrates the model per-453

formance with different values of l. We can find454

that the final child models achieve the best per-455

formance in Tr→En and Hu→En when l is 5 and456

4, respectively. Consequently, we set l as 5 for457

Tr→En translation and 4 for the rest.458

Despite a substantial size difference between the459

Tr→En and Hu→En datasets, there is not much460

difference in the choice of the number of layers461

to freeze. For this phenomenon, we speculate that462

the distinction between these two child datasets is463

negligible compared to the size distinctions with464

the parent dataset, as shown in Table 1. Therefore,465

when applying our framework to parent models466

with relatively limited resources, the choice of the467

number of frozen decoder layers needs to be care-468

fully considered to achieve optimal results.469

5.2 Effect of Hyper-parameters λ and τ470

Hyper-parameter λ is crucial to controlling the in-471

fluence of the two losses within the Lchild. In this472

part, we set λ to {2.0, 3.0, 4.0, 5.0} to investi-473

gate the impact of different values of λ on the per-474

formance of the child model. The corresponding475

SacreBLEU scores are presented in Table 3. For476

both Tr→En and Hu→En translations, the best per-477

formances are obtained when λ is set to 4.0. Hence,478
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Figure 4: Learning curves of different TL methods.
TSFT achieves the largest upper bound among them.

we set λ as 4.0 for all experiments involving Ldist. 479

In addition, we also conduct experiments with 480

varying values of τ during the training process of 481

the child model, while keeping λ fixed at 4.0. As 482

illustrated in Table 3, we can find that the perfor- 483

mance of the child model is sensitive to τ and the 484

performance is best when τ is set to 2.0. We ar- 485

gue that this is because minimizing the KL diver- 486

gence is difficult, but using a larger τ (e.g., 3.0) 487

may diminish the information from the intermedi- 488

ate model, which is not helpful in improving the 489

performance of the child model. 490

5.3 Ablation Study 491

We conduct an ablation study of the PDF strategy, 492

Ldist, and Step 2 to explore their effects on our 493

framework. We present the performance of four 494

variants of TSFT as follows: 1) w/o PDF. During 495

the training process of Step 1, we do not freeze 496

any layers of the intermediate model, fine-tuning 497

all parameters in every epoch. 2) w/o Ldist. In 498

Step 2, we eliminate the distillation loss between 499

the encoders of the intermediate and child models, 500

conducting fine-tuning of the child model using 501

Lce exclusively. 3)w/o Step 2. We evaluate the 502

translation performance of the intermediate model. 503

4) w/o Step 2 + PDF. Based on 3), we do not freeze 504

any layers of the intermediate model during Step 1. 505

We conduct experiments on Tr→En and Hu→En 506

translations, which correspondingly represent the 507

largest and smallest datasets among those applied 508

in our main experiments. The results are shown in 509

Table 4. It is evident that excluding the PDF strat- 510

egy, Ldist, or Step 2 resulting in a deterioration of 511

the translation quality, underscoring the efficacy of 512

these components within TSFT. The experimental 513
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Figure 5: Sentence representations after using T-SNE dimensionality reduction. The blue points denote the output
from the parent model, and the red points denote the output from the fine-tuned models obtained from different
transfer learning methods.

results show that PDF has a greater impact than514

Ldist. Further, we observe that PDF can effectively515

improve the translation performance of the inter-516

mediate model and benefit the child model. This517

observation shows that retaining the performance518

of the parent model is crucial for improving the519

performance of the child model.520

5.4 Comparison of Learning Curves521

A learning curve represents a model’s learning per-522

formance throughout the duration of training and523

is a widely employed diagnostic tool in machine524

learning (Kambhatla et al., 2022; Bao et al., 2023).525

In this part, we present the validation learning curve526

to assess the generalization capabilities of TM-TL,527

ConsistTL, and TSFT by using the BLEU score as528

the criterion. Figure 4 presents the learning curves529

of child models trained using three transfer learning530

methods. Compared with TM-TL and ConsistTL,531

TSFT exhibits superior initial performance and con-532

vergence speed. We attribute this phenomenon to533

the fact that fine-tuning the intermediate model in534

Step 1 enhances the adaptability to the child data.535

Besides, as the training progresses into the stable536

phase, we can find that the performance of the child537

model under the TSFT framework is consistently538

higher than that of TM-TL and ConsistTL. It is539

noteworthy that, similar to TM-TL and ConsistTL,540

TSFT does not utilize additional data or resources.541

Thus, the performance improvement of the child542

model can be attributed to the effectiveness of the543

pre-fine-tune process.544

5.5 Sentence Representation Visualization545

In our framework, the intermediate model is used to546

adjust the parent parameters to perform well when547

using child source sentences as input (Section 3.2).548

Thus, in this section, we visualize the target-side 549

sentence representations of the De-En parent model 550

and Hu-En models obtained from different transfer 551

learning methods. We utilize the T-SNE method 552

(Hinton and Roweis, 2002) to project the represen- 553

tations into a 2-dimensional space, as shown in 554

Figure 5. This figure shows that TM-TL struggles 555

to align the child representations with the parent 556

representations. ConsistTL slightly reduces the 557

discrepancy between the parent and child represen- 558

tations, whereas the intermediate model from TSFT 559

makes the representations much more similar. This 560

observation shows that our fine-tuned intermediate 561

model can produce similar outputs to the parent 562

model even with different source languages. 563

6 Conclusion 564

In this paper, we propose TSFT: a novel two- 565

step fine-tuning framework for low-resource NMT. 566

TSFT incorporates an intermediate (child) model to 567

pre-fine-tune the parent model to fit the child data. 568

The intermediate model is initialized with the par- 569

ent model and then fine-tuned on the child source 570

data in the first step. We propose freezing partial 571

decoder layers when fine-tuning the intermediate 572

model to alleviate catastrophic forgetting. In the 573

second step, TSFT initializes the child model with 574

the intermediate model and fine-tunes the child 575

model on the parallel data using the cross-entropy 576

and proposed distillation losses. Experimental re- 577

sults on five low-resource translations demonstrate 578

the effectiveness of our proposed TSFT. 579

Limitations 580

When using our proposed framework, two fine- 581

tuning steps are necessary to obtain the final child 582

8



model. Therefore, compared to one-step transfer583

learning methods in NMT, TSFT may require more584

training time and computation resources to transfer585

parent knowledge to the child model. Nevertheless,586

it is important to note that TSFT does not introduce587

additional time or computing resource consumption588

during inference.589
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