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Abstract
Compositional generalization, the ability to pre-001
dict complex meanings from training on sim-002
pler sentences, poses challenges for powerful003
pretrained seq2seq models. In this paper, we004
show that data augmentation methods that sam-005
ple MRs and backtranslate them can be effec-006
tive for compositional generalization, but only007
if we sample from the right distribution. Re-008
markably, sampling from a uniform distribu-009
tion performs almost as well as sampling from010
the test distribution, and greatly outperforms011
earlier methods that sampled from the training012
distribution. We further conduct experiments013
to investigate the reason why this happens and014
where the benefit of such data augmentation015
methods come from.016

1 Introduction017

Compositional generalization is the ability of a sys-018

tem to correctly predict the meaning of complex019

sentences when trained only on simpler sentences020

(Lake and Baroni, 2018; Keysers et al., 2020). It021

has been studied in particular detail in the context022

of semantic parsing, the task of mapping sentences023

to symbolic meaning representations. Recent find-024

ings suggest that even powerful pretrained seq2seq025

models such as BART (Lewis et al., 2020) and T5026

(Raffel et al., 2020), which excel at broad-coverage027

semantic parsing (Bevilacqua et al., 2021), perform028

very poorly on compositional generalization (Yao029

and Koller, 2022).030

One promising method for compositional gen-031

eralization is data augmentation (Andreas, 2020;032

Yang et al., 2022; Qiu et al., 2022). The idea is to033

generate additional training data by sampling from034

an augmentation distribution, in the hope that a035

model trained on the augmented data will general-036

ize better to the out-of-distribution test data. Data037

augmentation for semantic parsing is complicated038

by the fact that it needs to recombine matching039

pieces of the sentence and of the meaning represen-040

tation, but this matching is not made explicit in the041
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Figure 1: A diagram to show data augmentation from
different distributions with PCFG.

training data. Many approaches therefore use some- 042

what complex methods to e.g. induce synchronous 043

grammars (Qiu et al., 2022). As a simpler alterna- 044

tive, Wang et al. (2021) proposed to learn only a 045

grammar for generating meaning representations, 046

and then to use backtranslation to map the sampled 047

meaning representations into sentence-MR pairs. 048

The effectiveness of a data augmentation regime 049

depends on the distribution from which the aug- 050

mented data is sampled. Wang et al. sample from 051

the training distribution and find that this improves 052

semantic parsing accuracy on out-of-distribution 053

text-to-SQL tasks. However, it is not clear that aug- 054

menting from the training distribution is universally 055

helpful, especially on compositional generalization 056

tasks where the test instances are deliberately de- 057

signed to be unlikely under the training distribution. 058

In this paper, we investigate the impact that the 059

choice of augmentation distribution has on the abil- 060

ity of a semantic parser to generalize composition- 061

ally. We compare Wang et al.’s approach (fit a 062

grammar for meaning representations to the train- 063

ing data) to an approach where we fit the MR gram- 064

mar to the test data (as an upper bound). Finally, we 065

look at an MR grammar with uniform rule weights. 066

Figure 1 shows the difference between these three 067

methods. In an evaluation across four composi- 068

tional generalization datasets (COGS, CFQ, Geo- 069

Query, SCAN), we find that augmentation based 070

on the test data strongly outperforms augmentation 071
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based on the training data; but surprisingly, aug-072

mentation with the uniform grammar is almost as073

effective as augmentation from the test data. This074

can be partially explained by the ability of the uni-075

form grammar to contribute unseen local structures076

(Bogin et al., 2022) and assign low perplexity to077

the test MRs. Our findings point to a remarkably078

simple method for effective data augmentation for079

compositional generalization: obtain a grammar for080

the meaning representations (a formal language),081

set uniform rule weights, sample, and backtrans-082

late.083

2 Related work084

Compositional generalization Compositional085

generalization has been shown challenging for neu-086

ral sequence-to-sequence models. For example,087

Lake and Baroni (2018) shows that LSTM (Hochre-088

iter and Schmidhuber, 1997) fails to generalize to089

new combinations or longer sequences of symbolic090

commands; Kim and Linzen (2020) shows that both091

LSTM and Transformers (Vaswani et al., 2017) can-092

not generalize to complex linguistic structures; Yao093

and Koller (2022) find that structural generaliza-094

tion, a difficult compositional generalization type,095

is consistently hard for BART and T5; Bogin et al.096

(2022) find that unobserved local structures can ex-097

plain the difficulty of compositional generalization098

across multiple tasks.099

Data augmentation The idea of augmenting the100

training data with synthetic instances originates in101

low-resource NLP tasks. For semantic parsing, Jia102

and Liang (2016) induced a synchronous CFG from103

the training set using domain-specific heuristics.104

Yu et al. (2018) and Zhong et al. (2020) generate105

new sentence-SQL pairs by identifying complex106

SQL patterns in the training set and filling their107

slots with different table or column names.108

Data augmentation also successfully improves109

compositional generalization. Andreas (2020) pro-110

pose a heuristic for sampling new parallel data by111

replacing tokens in training samples with similar to-112

kens sharing the same context; Yang et al. (2022);113

Li et al. (2023) extend this idea by exchanging114

subtrees and spans to leverage linguistically rich115

phrases. Compared to their methods, we sample ar-116

bitrary meaning representations that can be derived117

from our hand-written grammar.118

Qiu et al. (2022) propose a data augmentation119

procedure based on inducing probabilistic quasi-120

synchronous grammars from the training data. Al-121

p(src, tgt)

src: The cake on the table burned

tgt:  burn ( theme = *cake ( nmod.on=*table ) )

sample

p(tgt)

tgt:  burn ( theme = *cake ( nmod.on=*table ) )

sample

src:  The cake burned on the table

back translation

Synchronous gramar MR grammar

Figure 2: Comparison of different data augmentation
methods based on COGS meaning representation.

though their system achieves promising results, it 122

requires a complicated algorithm to induce clean 123

grammar rules. Oren et al. (2021) also propose to 124

sample structurally diverse synthetic data from a 125

manually designed synchronous context-free gram- 126

mar. Compared to these works, our method only 127

considers a grammar of the meaning representation, 128

which is easy to access. 129

Similar to our method, Guo et al. (2021) adopt it- 130

erative back-translation for compositional semantic 131

parsing, but they directly use a subset of meaning 132

representations from development or test set as aug- 133

mented meaning representations. Our work instead 134

shows that meaning representations generated from 135

a probabilistic grammar still work. 136

Closest in spirit to this paper is the work of Wang 137

et al. (2021), who also sample only meaning rep- 138

resentations and generate input sentences through 139

backtranslation. Figure 2 illustrates their method. 140

The key difference to our work is that we explore 141

the impact of augmentation distributions. 142

3 Methodology 143

Our method consists of two steps: sample meaning 144

representations and then backtranslate them into 145

natural language sentences. It exploits the fact that 146

in many realistic use cases of a semantic parser, 147

one can generate arbitrary amounts of symbolic 148

meaning representations from a grammar: These 149

are from a formal language, and the developer of a 150

semantic parser either has access to a grammar for 151

this formal language or can easily write one. 152

3.1 Data augmentation 153

Context-free grammar For a semantic parsing 154

task, we assume as given a context-free grammar 155

that describes all possible meaning representations. 156

Figure 3 shows an example. Figure 3a shows part 157

of our grammar for the GeoQuery dataset, which 158

consists of multiple production rules. Based on 159

these rules, we can parse a meaning representation 160
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answer ( loc_1 ( cityid ( houston, _ )) ) as shown in161

Figure 3b. In a probabilistic context-free grammar162

(PCFG), each production rule has a rule probability.163

The probability of a parse tree can be calculated as164

the product of the probability of each production165

rule that constitutes the parse tree.166

Parameter estimation To estimate the probabil-
ity of each production rule, we can use maximum
likelihood estimation, which is based on count-
ing the rule occurrences in parse trees. Given a
sequence of meaning representations y1, . . . , yn,
the probability of a grammar rule N → ζ can be
calculated by the equation below, where Count()
denotes counting the occurrences of a rule in
y1, . . . , yn.

P =
Count(N → ζ)∑
γ Count(N → γ)

Data augmentation After estimating the rule167

probabilities, we can sample novel meaning rep-168

resentations from the resulted grammar. We then169

backtranslate (Sennrich et al., 2016) each sampled170

meaning representation to obtain the synthetic nat-171

ural language text. Specifically, we train another172

sequence-to-sequence model on the in-distribution173

train set, which takes as input a meaning represen-174

tation and outputs a sentence.175

To utilize the generated parallel data, we can176

either concatenate it with the original training data,177

or we can first pretrain the baseline parser on the178

generated data and then fine-tune the parser on179

the original training set. Since Wang et al. (2021)180

show that concatenation can hurt the performance181

of the parser, we experiment with both methods and182

report results of the best method for each dataset.183

3.2 Augmentation distribution for184

compositional generalization185

Our data generation method differs from Wang et al.186

(2021) in that we consider different distributions for187

sampling the augmentation data. We hypothesize188

that this will be advantageous for compositional189

generalization, for two reasons.190

First, test sets for such tasks are generally de-191

signed to contain structures that are not observed192

in the train set; these are difficult to sample from193

the training distribution. For example, in Figure194

3, the rule (e) will be estimated to have zero prob-195

ability, so the generated meaning representations196

will never contain the pattern most River. Second,197

the test set may involve generalization to meaning198

Grammar rules

a) S -> answer State
b) State -> loc_1 City 
c) City -> cityid CityName
d) CityName -> houston

…
e) River -> most River

…

(a) Grammar rules for GeoQuery.

answer loc_1 cityid houston

CityName

City

State

S

(b) Parse tree of a GeoQuery meaning representation.

Figure 3: An example to show part of our grammar from
GeoQuery. Blue color refers to non-terminal and green
color refers to terminal symbols. Special symbols (e.g.
brackets) are ignored for space.

representations with deep recursion depth or longer 199

symbol sequence. These are unlikely under the 200

training distribution when the train set only con- 201

tains shallow recursions or short sequences, and 202

will thus be rare in the sampled data. 203

We compare the effect of different augmentation 204

distributions. Specifically, we look at augmentation 205

PCFGs whose parameters are estimated from the 206

training data (Ptrain); those estimated from the 207

test data (Ptest); and PCFGs with uniform rule 208

distributions (Puniform); i.e. each of the k rules 209

for a nonterminal N has probability 1/k. Ptest 210

represents an ideal case where the test distribution 211

is accessible, which generally does not hold for 212

realistic scenarios. In this paper we only use Ptest 213

as an upper bound, to show the importance of the 214

choice of augmentation distribution. 215

4 Experiments 216

In this section, we introduce our datasets, experi- 217

ment setup and results. 218

4.1 Datasets 219

COGS COGS (Kim and Linzen, 2020) is a se- 220

mantic parsing dataset where the input is an En- 221

glish sentence and the output is a logical form. We 222

use the variable-free meaning representation (e.g. 223
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A girl in a house sneezed → sneeze ( agent = girl224

( nmod . in = house ) )) of COGS following Qiu225

et al. (2022). COGS is generated with a PCFG,226

where the train set consists of data with simple227

linguistic structures and the generalization set con-228

sists of 21 generalization types to test different229

generalization abilities. This includes 18 lexical230

generalization types (i.e. a novel combination of a231

familiar structure with a familiar word) and 3 struc-232

tural generalization types (i.e. a novel combination233

of two familiar structures). Here "familiar" means234

the structure or word is observed in the train set.235

We focus on the three challenging structural gen-236

eralization types obj_pp_to_subj_pp, pp_recursion237

and cp_recursion, which were highlighted as238

particularly difficult by Yao and Koller (2022).239

The original train set comprises instances with240

prepositional phrase (PP) and clauses (CP) recur-241

sion depths limited to 2, while pp_recursion and242

cp_recursion instances range from depths 3 to 12.243

In obj_pp_to_subj_pp instances, PP structure mod-244

ifies subject nouns, which only modifies object245

nouns in the train set (e.g. Emma ate the ring be-246

side a bed → A girl in a house sneezed).247

CFQ CFQ (Keysers et al., 2020) is a seman-248

tic parsing dataset where the input is an English249

sentence and the output is a SPARQL query (e.g.250

Did M1 acquire a company → select count (*)251

where{(x0 a employer) . (M1 company_acquired252

x0)}). Previous works (Herzig et al., 2021) shows253

that preprocessing leads to a large difference for254

CFQ results. Thus we use the RIR meaning rep-255

resentations in Herzig et al. (2021) and addition-256

ally normalize reversible relation tokens following257

Zheng and Lapata (2022). We use three MCD258

splits generated by maximizing the similarity of259

atom distribution and the divergence of compound260

distribution between train and test sets together.261

Geoquery For GeoQuery, we focus on the262

FunQL formalism (Kate et al., 2005), where the263

input is an English sentence and the output is a264

FunQL query (e.g. what is the tallest mountain in265

america → answer highest mountain loc_2 coun-266

tryid usa). We use the dataset created by Herzig267

and Berant (2021) and follow Lindemann et al.268

(2023) to remove special symbols in the meaning269

representation. We use template (Finegan-Dollak270

et al., 2018) and length splits created based on the271

program template and length respectively.272

SCAN SCAN (Lake and Baroni, 2018) is a se- 273

mantic parsing dataset where the input is a com- 274

mand and the output is a sequence of actions 275

(e.g. jump twice → JUMP JUMP). SCAN pro- 276

vides many primitive-based splits and length split. 277

We use turnleft and length split, which have been 278

shown challenging in Qiu et al. (2022). 279

4.2 Set up 280

Models. We address all our semantic parsing 281

tasks with a sequence-to-sequence model. Given 282

its strong performance on semantic parsing and 283

sentence generation tasks, we fine-tune T5 (Raffel 284

et al., 2020) as our baseline semantic parser as well 285

as for backtranslation. Training details are reported 286

in Appendix B. All our results are averaged over 287

5 random runs and we report standard deviation in 288

Appendix C. Exact match accuracy is used as the 289

evaluation metric for all datasets. For GeoQuery, 290

the same input sentence can be mapped into multi- 291

ple correct programs, so we also report execution 292

accuracy following Herzig and Berant (2021). 293

Grammars. To apply our data augmentation 294

method to a dataset, we need a context-free gram- 295

mar that can generate its meaning representations. 296

For COGS, we adopt the official grammar provided 297

by authors. For CFQ, GeoQuery and SCAN, we 298

manually write a context-free grammar to apply our 299

method. We use T5+Ptrain to refer to the model 300

trained with the union of original train set and the 301

data sampled from Ptrain and so for the other dis- 302

tributions. For all three augmentation distributions, 303

we sample the same number of unique meaning 304

representations. Details of grammar design and 305

sampling are described in Appendix D. For COGS 306

and SCAN, we directly concatenate the synthe- 307

sized data with the original data set. For CFQ and 308

GeoQuery, we find that concatenation hurts the 309

performance and thus pretrain the model on the 310

synthesized data first and then fine-tune it on the 311

original train set. We report detailed results for 312

both settings in Appendix C. 313

4.3 Results 314

COGS Table 1 shows exact match accuracies on 315

COGS. We observe that the distribution of the aug- 316

mented meaning representations makes a large dif- 317

ference on the performance: the grammar estimated 318

on the test set (e.g. Ptest) substantially improves 319

performance (+8.3) and achieves near-perfect ac- 320

curacy overall, while the grammar estimated on 321
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Models Obj PP CP All

T5 (Qiu et al., 2022) - - - 89.8
LeAR ♠ (Liu et al., 2021) 92.5 100 98.5 98.9
SpanSub ‡(Li et al., 2023) - - - 92.3
T5+CSL ‡ (Qiu et al., 2022) - - - 99.5

T5 88.2 24.1 32.3 91.0
+Ptrain ‡ 89.4 51.2 43.5 92.9
+Ptest ‡ 94.6 96.7 95.1 99.3
+Puniform ‡ 92.9 87.8 50.7 95.9

Table 1: Results on COGS. Obj, PP, CP refers
to structural generalization types obj_pp_to_subj_pp,
pp_recursion and cp_recursion respectivly. ‡refers to
parsers using data augmentation method. ♠refers to
structured parsers.

Models MCD1MCD2MCD3Avg

T5 (Herzig et al., 2021) 85.8 64.0 53.6 67.8
T5-large (Herzig et al., 2021) 88.6 79.2 72.7 80.2
T5-3B (Herzig et al., 2021) 88.4 85.3 77.9 83.8
LeAR ♠ (Liu et al., 2021) 91.7 89.2 91.7 90.9
Least-to-Most (Drozdov et al., 2022) 94.3 95.3 95.5 95.0

T5 89.9 75.3 72.2 79.1
+Ptrain ‡ 89.9 77.9 75.8 81.2
+Ptest ‡ 90.4 79.1 75.5 81.7
+Puniform ‡ 91.2 78.8 74.3 81.4

+dev MRs ‡ 87.1 89.5 89.3 88.6

Table 2: Results on CFQ. +dev MRs refers to using
meaning representations from development set for our
data augmentation method.

the train set (e.g. Ptrain) only slightly improves322

the performance (+1.9). We consider this is be-323

cause the grammar estimated on train set tends to324

produce simple structures, which does not help325

improve complex structure predictions. Notice-326

ably, the uniform grammar Puniform yields a much327

higher improvement than Ptrain. This suggests that328

the importance of the distribution of meaning rep-329

resentations for compositional generalization.330

CFQ Table 2 shows exact match accuracies on331

CFQ. All three augmentation strategies are roughly332

on par with each other. We attribute this limitation333

to the fact that the CFQ dataset is generated by334

mapping intermediate logical forms into SPARQL,335

which incorporates variables and conjuncts. Such336

complex relationships are difficult to capture ac-337

curately using context-free grammars, resulting in338

many sampled meaning representations containing339

nonsensical elements (e.g., redundant conjuncts).340

To verify our hypothesis, we further experiment341

with a setting where instead of sampling MRs from342

estimated PCFG, we directly backtranslate MRs343

Template Length

Models EM Exe EM Exe

BART (Herzig and Berant, 2021) - 67.0 - 19.3
Span+lexicon ♠ (Herzig and Berant, 2021) - 82.2 - 63.6
LeAR ♠ (Liu et al., 2021) - 84.1 - -
SUBS (gold tree) ‡(Yang et al., 2022) 88.3 - - -
SpanSub (gold tree) ‡(Li et al., 2023) 89.5 - - -

T5 73.9 79.9 35.8 50.5
+Ptrain ‡ 74.1 84.3 56.1 72.1
+Ptest ‡ 80.1 88.2 60.1 74.1
+Puniform ‡ 79.3 87.6 60.4 73.7

Table 3: Results on GeoQuery. EM denotes exact match
accuracy and Exe denotes execution accuracy.

Models Turnleft Length

T5 (Qiu et al., 2022) 62.0 14.4
T5+GECA ‡ (Qiu et al., 2022) 57.6 10.5
T5+CSL ‡ (Qiu et al., 2022) 100 100

T5 61.2 4.4
+Ptrain ‡ 92.9 8.1
+Ptest ‡ 92.9 60.5
+Puniform ‡ 92.9 60.5

Table 4: Results on SCAN.

from development set as augmented data. Since 344

the development set of CFQ shares the same distri- 345

bution as the test set, this setting represents what 346

a perfect method for augmenting from the test dis- 347

tribution would achieve, illustrating that the issue 348

really comes from our flawed grammar. 349

We also observe that our T5 baseline outper- 350

forms the T5 model from Herzig et al. (2021). We 351

attribute this to the additional preprocessing steps 352

we adopted from Zheng and Lapata (2022). 353

GeoQuery Table 3 shows exact match accuracies 354

and execution accuracy on GeoQuery. On the tem- 355

plate split, Ptest gives the best performance (+6.2 356

EM and +8.3 Exe). On the length split, all three 357

strategies substantially improve the performance. 358

Puniform achieves on-par performance with Ptest 359

and outperforms Ptrain on both splits, which is 360

consistent with the results on COGS. 361

SCAN Table 4 shows exact match accuracies 362

on SCAN. We observe Ptest and Puniform sub- 363

stantially improve the performance on both splits, 364

whereas the Ptrain only performs well on turnleft 365

split. All three strategies achieves the same perfor- 366

mance on turnleft split. This is because the mean- 367

ing representation space of SCAN is too small and 368

thus all possible meaning representations can be 369

sampled by three strategies, which results in the 370
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English Meaning representations

Datasets Avg length Bigrams(%) Instance(%) Avg length Bigrams(%) Instance(%)

COGS

T5 7.5 30.5 0 13.8 88.7 0
+Ptrain 7.5 37.8 0 13.8 93.2 0
+Ptest 8.4 53.4 11.7 17.5 99.5 11.8
+Puniform 8.5 40.5 0 17.0 99.3 0.2

CFQ
MCD1

T5 13.5 91.2 0 44.3 98.9 6.5
+Ptrain 13.7 99.6 0.4 46.9 99.6 7.0
+Ptest 14.0 99.7 0.6 45.9 100 7.5
+Puniform 7.1 99.4 0.2 36.4 100 7.0

GeoQuery
Template

T5 8.3 66.5 0 6.1 74.8 0
+Ptrain 9.6 76.5 27.2 8.3 85.9 45.5
+Ptest 10.3 78.2 29.8 8.8 100 60.3
+Puniform 9.4 76.7 25.0 8.4 100 26.5

SCAN
Length

T5 7.0 100 0 10.8 100 0
+Ptrain 7.1 100 8.6 11.1 100 20.7
+Ptest 7.1 100 9.6 12.2 100 100
+Puniform 7.1 100 9.6 12.2 100 100

Table 5: Dataset statistics for different augmentation strategies. T5 denotes the statistics of the original train set.
+Ptrain, +Ptest, +Puniform denote augmented datasets based on different PCFGs. We report the statsitics for both
input sentence side and output meaning representation side. Thus, Avg length under English tab refers to the average
length of input sentences. We report three statistics: average length (Avg length), the coverage (expressed as a
percentage) of bigrams in the test set by the training set (Bigrams) and the coverage of entire instance in the test set
by the training set (Instance).

same train set. The same case happens for Ptest371

and Puniform on the length split. Noticeably, our372

method outperforms GECA, which generates par-373

allel data for data augmentation using templates.374

This suggests that sampling meaningful and useful375

meaning representations proves more effective than376

sampling limited parallel data in certain scenarios.377

5 Discussion378

The surprising finding so far is that across all four379

compositional generalization datasets, augmenting380

from Puniform performs on par with Ptest. This381

seems counterintuitive: the uniform augmentation382

strategy has no knowledge of the test data’s distri-383

bution, and one would expect that augmentation384

data sampled from a grammar-based approximation385

to the test distribution should perform much better.386

We therefore investigate this finding in detail.387

Augmentation data statistics We present statis-388

tics of the generated augmentation data in Table389

5. For each corpus and augmentation method, we390

show the average sequence length, bigram cover-391

age, and instance (i.e. exact sequence match) cov-392

erage for both input sentences and output MRs.393

The bigram coverage is determined by dividing the394

number of observed bigrams in the test set that also395

exist in the training set by the total count of pos-396

sible bigrams in the test set. Instance coverage is 397

calculated analogously. 398

As expected, Ptest always yields the highest cov- 399

erage values on the meaning representations, sug- 400

gesting that the MR grammar approximates the test 401

distribution effectively. On the other hand, instance- 402

level coverage on the English side does not grow 403

very high for any dataset. This indicates that the 404

backtranslation model, which is trained on the orig- 405

inal in-distribution data, still struggles to produce 406

novel recombinations of the English sentences. 407

Puniform is on par with Ptest on many measures 408

and datasets, and considerably outperforms Ptrain. 409

This suggests that novel structural combinations are 410

judged unlikely based on the training distribution, 411

or are simply assigned a probability of zero because 412

structures were entirely unobserved. 413

It is remarkable that Ptest and Puniform pro- 414

duce meaning representations of similar length on 415

COGS and could therefore be capable of generating 416

augmentation data of similar structural complex- 417

ity. At the same time, Ptest achieves a significantly 418

higher parsing accuracy on the PP and CP recur- 419

sion generalization types. A plot of the distribu- 420

tion of the augmentation instances according to 421

recursion depth (Fig. 5) reveals that while Ptest 422

generates augmentation instances evenly across all 423

recursion depths, Puniform emphasizes moderately 424
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Figure 4: Count of test instances with regard to different loss values.
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Figure 5: Depth distribution of train set for COGS.

(PP) or extremely (CP) shallow instances.1 This425

explains the difference in parsing accuracy, and fur-426

ther emphasizes that compositional generalization427

is not just challenging because transformers strug-428

gle when generalizing to longer inputs (Hupkes429

et al., 2020), but also to structurally more complex430

inputs of similar length.431

Perplexity analysis We further investigate432

whether Puniform produces useful augmentation433

data simply because it produces arbitrary instances434

of higher complexity than Ptrain, or if Puniform435

actually models the test distribution in some way.436

To this end, we measure the perplexity of the mean-437

ing representations of the test set across four corpus438

variants under each model (Table 6; see Appendix439

E.1 for details).440

We find that across three of the four datasets,441

Ptest and Puniform are close together, considerably442

outperforming Ptrain and the T5 baseline. An ex-443

ception is CFQ, where the grammar introduces so444

much noise into the sampling process that all mod-445

els are mostly on par. We consider this is because446

although Puniform has no particular knowledge of447

the test distribution built in, sampling from it cov-448

1We hypothesize that the difference between PP and CP
in the Puniform case is due to the fact that each level of CP
recursion requires the use of two production rules, rather than
just one for PP, making the generation of deeper structures
comparatively less likely.

COGS CFQ GeoQuerySCAN

Models MCD1 Template Length

T5 1.131 1.007 1.254 1.427
+Ptrain ‡ 1.133 1.005 1.252 1.124
+Ptest ‡ 1.001 1.005 1.166 1.006
+Puniform ‡ 1.007 1.005 1.184 1.006

Table 6: Perplexity of models with different augmenta-
tion strategies on test set.

ers enough MR n-grams that the test data becomes 449

predictable. 450

The increased perplexity of Ptrain in compari- 451

son to the other models is not evenly distributed 452

across the test instances. In Fig. 4, we plot a count 453

of test instances for each loss value. Compared to 454

Ptest and Puniform, the loss of Ptrain on some in- 455

stances becomes exceptionally high, which results 456

in higher perplexity and lower accuracy on such 457

instances. Looking into the dataset, we find that 458

such issue generally occurs on meaning represen- 459

tations with complex structures (e.g. deeper recur- 460

sions for COGS and unseen program templates for 461

GeoQuery). These structures are more predictable 462

for models trained on Ptest and Puniform augmen- 463

tation data, which contains such structures more 464

frequently. 465

Structure coverage According to Bogin et al. 466

(2022), a key feature that makes compositional gen- 467

eralization difficult is the presence of unobserved 468

local structures (i.e. a connected sub-graph that oc- 469

curs in the meaning representation) in the test set. 470

Is the better performance and perplexity of Ptest 471

and Puniform actually because they cover more 472

structures in the test set? 473

To answer this question, we further plot the ac- 474

curacy of our models against the structure coverage 475

on COGS and GeoQuery in Figure 6. Here “struc- 476

ture coverage” refers to dividing the number of 477

observed structure in the test set that also exist in 478

the training set by the total count of possible struc- 479

tures in the test set. For GeoQuery, we consider 480

the template split and follow Bogin et al. (2022) in 481

7
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Figure 6: Performance against the local structure cover-
age for different augmentation distributions.

defining the local structure of a meaning represen-482

tation as all pairs of parent nodes and their children483

in its parse tree (i.e. 2-LS). For COGS, we focus484

on the PP recursion generalization type. Instead485

of considering local structures, we observe that the486

accuracy on such data is related to the maximal487

recursion depth observed in the train set. Thus we488

use PP recursion depth as a representative of global489

structures to calculate the structure coverage.490

Our results show that Ptest and Puniform yields491

a larger coverage of structures that occur in the test492

set than Ptrain. Furthermore, larger coverage is493

associated with higher accuracy. This is consistent494

with Bogin et al. (2022). Although Gupta et al.495

(2022) and Oren et al. (2021) also show the benefit496

of introducing more complex structures into the497

train set, our results further suggest that synthe-498

sized meaning representations with back-translated499

sentences can still help.500

Qualitative error analysis Finally, we con-501

ducted a qualitative analysis to identify specific502

cases in which our approach led to improvements.503

In Table 7, the grammar rule River → most River504

is not observed by baseline and Ptrain, and thus505

the model struggles generating the bigram most506

river corresponding to this rule, which leads to a507

large loss value (i.e. 26.1) for this instance. In con-508

trast, Ptest covers all local structures, which allows509

the model to predict the instance correctly with a510

substantially lower loss (i.e. 0.1).511

Sentence generation We report the performance512

of our backtranslation model in Table 8. Both exact513

match accuracy and BLEU score (Papineni et al.,514

2002) are used as evaluation metrics. All models515

achieve good BLEU scores, indicating the effec-516

tiveness of our backtranslation models. However,517

Input what is the length of the river that runs through
the most states ?

Gold len most river traverse_2
state all

T5 len intersection riverid most
state all

+Ptrain len intersection river
traverse_2 most state all

+Ptest len most river traverse_2
state all

Table 7: Examples from GeoQuery test set.

COGS CFQ GeoQuery SCAN

Metric Struct MCD1 Template Length

Exact Match 30.9 4.8 19.6 8.6
BLEU 78.5 42.9 61.6 51.7

Table 8: Results of our backtranslation model on the test
sets for each task. Struct under COGS means we only
calculate the metric on structural generalization types.

none of the model yields high accuracy, which sug- 518

gests that our model can still learn to utilize such 519

noisy data to achieve better performance. 520

6 Conclusion 521

We investigated the impact of the choice of aug- 522

mentation distribution on compositional general- 523

ization. We found that a PCFG for the meaning 524

representations with uniform rule weights supports 525

much more effective data augmentation than one 526

that is trained on the training data, and almost on 527

part with one that is trained on the test data. A 528

detailed analysis revealed that this is because the 529

uniform grammar both achieves low perplexity on 530

the test meaning representations and greatly im- 531

proves structural coverage. 532

Thus, sampling meaning representations from 533

a uniform PCFG and backtranslating them into 534

natural-language sentences can serve as a simple 535

and efficient data augmentation strategy for com- 536

positional generalization. It would be interesting to 537

investigate the space of augmentation distributions 538

in more detail in future work to see, for instance, 539

how the generation of structurally even more di- 540

verse augmentation instances can be encouraged. 541

7 Limitations 542

Our work assumes that the language of all possible 543

meaning representations can be described with a 544

context-free grammar, and that such a grammar is 545

8



available or can be easily reconstructed by hand.546

Given that MRs are a formal language, this seems547

realistic, but can involve some manual effort. When548

the meaning representations are generated out of549

a knowledge base through a process that is not550

publicly accessible, such as in CFQ, hand-crafting551

a grammar for MRs can introduce noise.552

In our evaluation, we use corpora that are ei-553

ther synthetic (COGS, CFQ, SCAN) or very small554

(GeoQuery). Thus, one should interpret conclu-555

sions on data augmentation for such corpora with556

care. To our knowledge, there are no compositional557

generalization datasets that use naturally occurring558

language. The robustness of our results across cor-559

pora still suggests the generality of our findings.560
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Dataset lr batch_size weight_decay steps

COGS 1e-5 2048 0 25k
CFQ 7.4e-5 2048 1e-3 50k
GeoQuery 1e-5 4096 1e-3 10k
SCAN 1e-5 1024 1e-3 25k

Table 9: Hyperparmeters of baseline models used in
our experiments. Batch size is quantified in terms of
input tokens. batch_size refers to the batch size during
training. weight_decay refers to the weight decay used
in the optimizer. lr refers to the learning rate. steps
refers to the training steps we used to train the model.

Time (hours)
Dataset w.o. aug w. aug

COGS 7 8
CFQ 10 10
GeoQuery 0.5 1
SCAN 20 4

Table 10: Training time for our model on each dataset
(1 run) in our experiments.
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A Dataset details795

We report dataset statistics in Table 11. COGS796

provides both an in-distributional test set (i.e. test)797

and an out-of-distributional test set (i.e. gen). For798

the splits of CFQ, GeoQuery and SCAN we used799

no in-distributional test set is provided.800

B Training details 801

B.1 Evaluation metrics 802

For all tasks, we report exact match accuracy of 803

our model, which means that the output sequence 804

is correct only if each output token is correctly 805

predicted. For GeoQuery, we additionally report 806

execution accuracy, which means we execute gen- 807

erated FunQL code and calculate the accuracy of 808

the outputs. This metric can better measure the 809

generalization ability of our model since one in- 810

put sentence can be mapped into multiple correct 811

FunQl queries. For example, how long is the rio 812

grande river can be parsed into either answer ( len 813

( river ( riverid ( rio grande ) ) ) ) or answer ( len 814

( intersection ( riverid ( rio grande ), ( river ( all 815

) ) ) ) ). Both queries return the correct value. We 816

use the code from (Herzig and Berant, 2021) to 817

calculate the execution accuracy. 818

B.2 Hyperparameters 819

Baseline. We use t5-base2 (220 million parame- 820

ters) as our baseline for all experiments. We use 821

the default subword vocabulary and do not extend 822

it with new words. We use Adam (Kingma and Ba, 823

2015) as our optimizer. Since (Csordás et al., 2021) 824

shows that early stopping based on in-distribution 825

validation set leads to low performance on out-of- 826

distribution test set, we do not apply early stopping 827

for COGS, GeoQuery and SCAN and only use the 828

checkpoint at the end of training, following (Herzig 829

et al., 2021). CFQ provides out-of-distribution de- 830

velopment set, so we use exact match accuracy on 831

the development set as the validation metric. No 832

learning rate scheduler is used for all experiments. 833

During evaluation, we use beam search with beam 834

size 4. Task-specific hyperparameters are present 835

in Table 9. 836

Data augmentation. We maximally sample 21k, 837

100k, 30k and 10k unique meaning representations 838

for COGS, CFQ, GeoQuery and SCAN respec- 839

tively. For SCAN, we find that the size of possible 840

meaning representations is small (i.e. 9228 unique 841

meaning representations) and thus we sample all 842

possible unique meaning representations from our 843

PCFG. 844

B.3 Other details 845

We use Allennlp (Gardner et al., 2018) for our im- 846

plementation. Experiments are run on Tesla A100 847

2https://huggingface.co/t5-base
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Dataset Split # train # dev. # test # gen Vocab. size Train len. Test len. Gen len.

COGS - 24155 3000 3000 21000 809 22/48 19/40 61/144

CFQ
MCD1 95743 11968 11968 - 171 29/133 30/103 -
MCD2 95743 11968 11968 - 171 29/133 30/103 -
MCD3 95743 11968 11968 - 171 29/133 30/103 -

GeoQuery template 544 60 276 - 324 23/17 19/12 -
length 540 60 280 - 324 13/7 23/17 -

SCAN Turnleft 21890 - 1208 - 19 9/48 8/27 -
length 16990 - 3920 - 19 9/22 9/48 -

Table 11: Statistics for all our datasets. # denotes the number of instances in the dataset. Vocab.size denotes the size
of vocabulary for the dataset, which consists of input tokens and output tokens. Train.len denotes the maximum
length of the input tokens and output tokens in the train set. Test.len and Gen.len denote the maximum length in the
test and generalization set.

GPU cards (80GB). Table 10 shows the training848

time cost.849

C Detailed results850

We report detailed experimental results in Table 15.851

Both means and standard deviations are reported852

over 5 runs for each model. As discussed in Section853

3, we experiment with two ways to utilize synthe-854

sized data: concatenating them with the original855

train set and pretrain the model on them first and856

then finetune on the original train set. We report857

numbers for both settings, with Concat refers to858

concatenation and Pretrain refers to pretraining the859

model first and then fine-tuning it.860

D Grammar details861

We use PCFG provided in Kim and Linzen (2020)862

for COGS and hand-written grammars for CFQ,863

GeoQuery and SCAN. In this section, we mainly864

introduce details of our used grammar for these865

three hand-written grammars.866

D.1 Grammar design867

GeoQuery The meaning represnetation of Geo-868

Query is based on FunQL. Following the defina-869

tions of FunQL 3, we can easily write a context-free870

grammar for it. We adopted the FunQL grammar871

used in (Guo et al., 2020) and extends it with some872

rules to fit our dataset. A selection of our context-873

free grammar rules are shown in Table 12.874

SCAN SCAN is a synthetic dataset generated875

by Lake and Baroni (2018). They generate the876

dataset by generating commands (i.e. input sen-877

tences) first and then translating commands into ac-878

tion sequences (i.e. meaning representations) with879

3https://www.cs.utexas.edu/~ml/wasp/
geo-funql.html

S → answer ( Var )
Var → City
Var → Place
Var → State
City → CityNonterm
City → CityTerm
CityNonterm → city ( City )
CityNonterm → loc_2 ( State )
CityTerm → city ( all )
CityTerm → capital ( all )

Table 12: Part of our FunQL grammar.

S → Command
Command → Walk_command
Walk_command → Walk_actions
Walk_actions → LWalk
LWalk → Turn_left Walk
Turn_left → i_turn_left
Walk → i_walk

Table 13: Part of our SCAN grammar.

a translation function. Instead, we write a context- 880

free grammar for meaning representations. A selec- 881

tion of our context-free grammar rules are shown 882

in Table 13. 883

CFQ CFQ is a synthetic dataset generated by 884

Keysers et al. (2020). They generate the natural 885

language sentences and corresponding intermediate 886

logical forms first, and then apply multiple rules 887

to obtain the SPARQL meaning representations. 888

S → Prefix Main
Main → lb Conjuncts rb
Conjuncts → Conjuncts . Conjunct
Conjuncts → Conjunct
Conjunct → Unary_relation
Unary_relation → ( Var a Film_unary_arg )
Film_unary_arg → film.film
Var → M0

Table 14: Part of our SPARQL grammar.
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Figure 7: Perplexity of models with different augmentation strategies on test set. The x-axis refers to training steps.
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Figure 8: Performance curve with regard to train sets
with incrementally added structures.

Designing a context-free grammar for SPARQL is 889

hard because it contains variables and each relation 890

only accepts specific typed variables as arguments. 891

For example, the object of film.writer.film relation 892

should be a film. In our grammar, we consider all 893

variable strings are produced by the nonterminal 894

Var and we do post-process to filter out samples 895

that do not follow type constraints described above. 896

A selection of our context-free grammar rules are 897

shown in Table 14. 898

In our experiments, we find this setting still gen- 899

erates most noisy meaning representations due to 900

redundant conjuncts (e.g. SELECT DISTINCT ?x0 901

WHERE { ( FILTER ( ?x0 != M0 ) ) . ( M5 ( 902

film.editor.film ) ( ?x1 ) ) }). A better solution 903

might be to construct the PCFG based on the graph 904

structure. 905

D.2 Parameter estimation 906

To estimate parameters of a grammar on a dataset 907

based on maximum likelihood estimation, we first 908

parse meaning representations in the dataset with 909

our grammar rules described above. We implement 910

this with NLTK package4. We binarize our gram- 911

4https://www.nltk.org/
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mar rules to adopt parsing methods in NLTK.912

Ambiguous trees For CFQ, all meaning repre-913

sentations can be parsed into unambiguous trees.914

For GeoQuery and SCAN, parsing results in am-915

biguous trees for some cases. For a meaning repre-916

sentation with N ambiguous parse trees, we simply917

use a count 1/N as the count for rules in each tree918

to estimate their parameters.919

E Additional experiments920

E.1 Perplexity curve921

We plot the perplexity curve of different models922

on test set for each task in Figure 7. For CFQ923

and CFQ, the perplexity at the beginning is already924

very small. This is because on these two datasets925

we pretrain the model on synthesized data first,926

since direct concatenating the synthesized data only927

hurts the performance. We can observe that for928

COGS, GeoQuery and SCAN, the perplexity of929

Ptest always achieves the lowest perplexity and930

Puniform gives lower perplexity than Ptrain. On931

CFQ, all three augmentation distributions achieves932

lower perplexity than baseline T5 and performs on933

par. This pattern holds during the entire training934

process, which serves as further evidence for the935

discussion in Section 5.936

E.2 Breakdown performance improvements937

We also conduct a more detailed analysis to investi-938

gate how the performances evolve as more complex939

structures get observed. Specifically, we address940

the PP and CP recursion generalization types on941

COGS and GeoQuery template split. For COGS,942

we incrementally augment the train set with more943

complex data (i.e. deeper recursions) in increments944

of 100 instances per depth. For GeoQuery, we945

manually select four local structures population_1946

stateid, len river, capital cityid, intersection river947

that pose challenges for the baseline parser’s pre-948

dictions yet are present in the Ptest set. We incre-949

mentally introduce each pattern into the train set.950

As shown in Figure 8, as more complex MR struc-951

tures being observed by the model, its performance952

gets better improved.953
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COGS
Model Obj to Subj PP CP recursion PP recursion Overall

T5 88.2± 3.6 32.3± 3.7 24.1± 6.4 91.0± 0.5

Concat
+Ptrain 89.4± 2.3 43.5± 8.7 51.2± 7.5 92.9± 0.9
+Ptest 94.6± 0.1 95.7± 2.8 96.7± 5.0 99.3± 0.4
+Puniform 94.8± 0.0 50.7± 2.4 87.7± 1.0 95.9± 0.1

Pretrain
+Ptrain 85.8± 6.5 41.3± 11.3 51.6± 5.8 92.8± 0.6
+Ptest 94.8± 0.0 43.1± 5.7 85.0± 4.0 99.2± 0.2
+Puniform 94.6± 0.1 94.8± 0.2 92.7± 4.9 95.6± 0.5

CFQ
Model MCD1 MCD2 MCD3 Average

T5 89.8± 0.8 74.7± 1.8 74.0± 0.9 79.4± 2.4

Concat
+Ptrain 49.5± 1.9 47.1± 1.3 51.2± 2.9 49.2± 1.0
+Ptest 39.0± 1.3 44.7± 2.3 42.3± 0.7 42.0± 0.9
+Puniform 57.5± 4.1 59.4± 2.4 55.2± 3.3 57.4± 1.8

Pretrain
+Ptrain 89.9± 1.2 77.9± 2.9 75.8± 1.0 81.2± 2.1
+Ptest 90.4± 0.7 79.1± 1.7 75.5± 2.7 81.7± 3.6
+Puniform 91.2± 1.1 78.8± 1.7 74.3± 1.7 81.4± 1.1

GeoQuery
Model Template Length

T5 73.9± 2.6 46.1± 1.5

Concat
+Ptrain 39.0± 0.9 20.7± 0.6
+Ptest 52.3± 1.3 35.6± 1.7
+Puniform 22.4± 1.7 5.1± 0.3

Pretrain
+Ptrain 74.1± 1.6 56.1± 2.1
+Ptest 80.1± 1.7 60.4± 2.4
+Puniform 79.3± 1.3 60.1± 0.6

SCAN
Model Turnleft Length

T5 73.9± 2.6 4.4± 0.9

Concat
+Ptrain 92.9± 14.4 8.1± 1.3
+Ptest 92.9± 14.4 60.5± 2.5
+Puniform 92.9± 14.4 60.5± 2.5

Pretrain
+Ptrain 75.5± 5.4 15.5± 1.5
+Ptest 75.5± 5.4 15.9± 1.3
+Puniform 75.5± 5.4 15.9± 1.3

Table 15: Detailed results in our experiments.
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