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Abstract

When responding to any question from the
user or an API, a conversational search or ques-
tion answering system should ideally be able
to attach an appropriate confidence score to its
output. While such systems are often overcon-
fident, there are also situations where the sys-
tem responds correctly yet lacks enough con-
fidence. Underconfident responses cannot be
relied upon, and therefore may not be utilised
by the user or downstream tasks. Ideally, we
want to know when systems are underconfi-
dent as well as when they are overconfident,
and want to suppress both phenomena in a bal-
anced manner. Furthermore, in this scenario,
we want an evaluation measure that is guaran-
teed to (a) penalise a lowered confidence for a
correct response; and also (b) penalise a raised
confidence for an incorrect response. In light
of this, we propose HMR (Harmonic Mean of
Rewards) and demonstrate its advantages over
existing calibration measures for our purpose
by means of examples, axioms, and theorems.

1 Introduction

Large language models (LLMs) hallucinate (Ji
et al., 2023), often with confidence. The system’s
confidence about its own response may be given
as an accompanying confidence score, or may be
expressed in natural language (e.g., “Yes I am
certain.” (Liu et al., 2023, Figure 9)). The for-
mer is particularly useful if the system response
is going to be utilised for some downstream tasks:
we can decide how much the upstream pieces of
information can be relied upon based on the scores.
Even if the system does not return a separate score
that represents its internal confidence, a postpro-
cessing step may be applied, where the input con-
tains the system’s natural language response and
the output is an estimated confidence score; the
estimator may well be another LLM.

While overconfidence (i.e., the system returns an
inaccurate response with high confidence) is a ma-

jor problem, the other side of the coin is underconfi-
dence (i.e., the system returns an accurate response
but lacks confidence). If the system is undercon-
fident, the user or the downstream tasks may not
be able to utilise the correct response. To illustrate
how both overconfident and underconfident cases
may occur even for the same system, Figure 1 visu-
alises the confidence scores we obtained in a pilot
experiment using the SWAG dataset (Zellers et al.,
2018), in which Google Bard served as an external
confidence estimator for each pair of an incomplete
video caption and either a gold final phrase (i.e.,
one that appropriately completes the caption) or a
distractor final phrase (i.e., an unsuitable comple-
tion). Here, Google Bard was prompted to pretend
that the final phrase provided to it was its own re-
sponse in a caption completion task, and to return a
confidence score for the response in the 0-1 range.
Details are in Appendix A. Ideally, the confidence
score for each gold response should be high, while
that for each distractor response should be low.

In Figure 1, the red horizontal line indicates 50%
confidence: for convenience, let us say for now
that the system is overconfident if its confidence
score for a distractor response is higher than 50%,
(or exactly 50% which would also be practically
inconvenient for the user or the downstream tasks);
similarly, let us say that the system is underconfi-
dent if its confidence score for a gold response is
lower than or exactly 50%. While there are 59 over-
confident cases (out of 100 distractor responses),
there are also 8 underconfident cases (out of 100
gold responses) as indicated by the red arrows. We
argue that we should be able to make a distinc-
tion between overconfidence and underconfidence
when evaluating a system like this, because rem-
edying the two phenomena may require different
approaches, and we do not necessarily want one of
them suppressed at the expense of the other. Rather,
we may want the system to balance the two. In this
scenario, we want an evaluation measure that is
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Figure 1: Results of a pilot experiment, in which a sample from the SWAG (Zellers et al., 2018) validation dataset
was used to obtain confidence scores from Google Bard. The z axis represents the validation instances (with 100
gold and 100 distractor cases), and the y axis represents the confidence scores returned by Bard. The red arrows
indicate underconfident cases, i.e., gold responses with low confidence scores. Details can be found in Appendix A.

guaranteed to (a) penalise a lowered confidence
for a correct response; and (b) penalise a raised
confidence for an incorrect response.

Calibration (Pakdaman Naeini et al., 2015) is
the task of aligning confidence scores to the actual
response accuracy. However, traditional measures
used in calibration tasks only quantify how much
the confidence scores deviate from the accuracy;
they do not distinguish between overconfidence and
underconfidence. We therefore propose a very sim-
ple and intuitive evaluation measure called HMR
(Harmonic Mean of Rewards) and demonstrate its
advantages over existing calibration measures for
the purpose discussed above by means of examples,
axioms, and theorems. More specifically, we show
that while HMR possesses Properties (a) and (b)
mentioned above, none of the calibration measures
considered in this study do.

2 Prior Art

In calibration tasks, the Expected Calibration Error
(ECE) is probably the most widely used evaluation
measure. ECE is defined in Pakdaman Naeini et al.
(2015), along with the Maximum Calibration Error
(MCE). The premise is that we are given a set of
instances, where each instance is associated with a
binary gold label (i.e., correct or not) as well as a
confidence score. In the context of a classification
task with M (> 2) classes (i.e., selecting a correct
class or answer from M choices) , the confidence
score may be the fop probability (i.e., highest prob-
ability representing the most likely class/answer)
of the set of M estimated correctness probabili-
ties. To compute ECE or MCE, the N instances
are first sorted by confidence scores, and are then

partitioned into B bins for a given B, with the b-th
bin containing ny instances (b = 1,...,B). For
a given system that returned N responses along
with confidence scores, let a;, denote the accuracy
(i.e., fraction of correct responses) for Bin b,; let
¢p denote the average confidence score for Bin b.
Then ECE and MCE are given by:

B
ECE = Z %Eb —ap| , MCE = ml?x|éb — ap| .
b=1

ey
Note that instance binning is a necessity for the
introduction of the notion of binwise accuracy.

Two simple binning methods are commonly used
in the literature: equal width binning (where the
[0,1] range is partitioned into B bins of equal
width) (Guo et al., 2017; Wang et al., 2023; Jiang
et al., 2021; Portillo Wightman et al., 2023; Tam
et al., 2023; Zablotskaia et al., 2023; Zhu et al.,
2023) and uniform mass binning (n; is the same
for all bins) (Nguyen and O’Connor, 2015; Nixon
et al., 2020; Lin et al., 2022; Liang et al., 2023).
Kumar et al. (2020) discuss a theoretical advantage
of uniform mass binning over equal width binning.
Hereafter, we shall focus on uniform mass binning
for convenience, but our findings on ECE and MCE
do not depend on this choice.

One of the weaknesses of ECE and MCE is that
they rely on the parameter B. Hence, we also dis-
cusses existing binning-free calibration measures.

Consider a classification task with M (> 2)
classes with NV instances to classify; let GOLDY" =
1 if Class m is the true class for the j-th instance,
and 0 otherwise. For a classifier that returns M
probabilities (pj, . .. ,pj-”) st. M pj* = 1 for
each instance, the Brier Score (Brier, 1950; Wang



et al., 2023; Ovadia et al., 2019; Tian et al., 2023)
may be applied:

1 N M
BS:NZZ(pT—GOLD?)Q. (2)

j=1m=1

Brier proposed this measure in 1950 for verifying
weather forecasts. To ensure a [0, 1] range, we shall
consider Normalised BS (NBS), which divides the
sum in Eq. 2 by N M instead of N. However, BS
is known to reflect classification errors as well as
calibration errors (Gupta et al., 2021).

71 years later, Gupta et al. (2021) proposed a
binning-free measure called KS, inspired by the
Kolmogorov-Smirnov test for equality of two distri-
butions (Hays, 1994). Given N confidence scores
(e.g., top probabilities), let (p1, ..., pnN) be these
scores after an ascending sort, and let GOLD; = 1
if the instance that corresponds to the j-th score in
the sorted list is correct, and O otherwise. Then,

1 1
p; = N Zpk , ¢GOLD; = ~ ZGOLDk ,
k=1 k=1 3

KS = max cp; — cGOLDj]| . 4)
J

Recall that, in classification tasks with M
classes, a system response may be associated with
M probabilities rather than one confidence score;
in principle, measures like ECE/MCE and KS may
be applied to non-top probabilities as well. Some
studies have in fact incorporated non-top probabili-
ties in calibration evaluation (Vaicenavicius et al.,
2019; Gupta et al., 2021; Nixon et al., 2020). How-
ever, our interest lies elsewhere: we want to evalu-
ate overconfidence and underconfidence when each
instance is associated with a binary gold label and
one confidence score.

3 Proposed Evaluation Measures

We propose a very simple and interpretable binning-
free evaluation approach that first quantifies over-
confidence and underconfidence separately. For
a given system, let I~ and I™ denote the sets of
instances for which the system’s choices are con-
sidered incorrect and correct, respectively (|1~ | +
|IT| = N). Let p(i) denote the system’s confi-
dence for Instance 7. Then, for each ¢ € I~ (the
system is incorrect), p(i) should be as close to 0
as possible; whereas for i € IT (the system is

correct), p(i) should be as close to 1 as possible.
Hence, we first define the Rewards for suppressing
overconfidence and underconfidence separately as
follows.

0= »i), U= (1-pi), ©

iel~ iel+
1 I =0,
Ro = _ . (6)
1—-0/|I7| otherwise .
Ry=1{' =0 )
"7 li- U/|I*| otherwise .
Note, for example, that when I~ = () (i.e., all

N system responses are correct), there is no way
for the system to be overconfident for any of the
instances and therefore Rp = 1 (i.e., perfection).
As we want systems to balance the above two
rather than to sacrifice one for the sake of the other,
let us consider the Harmonic Mean (Sakai, 2021):

0 if Ro = Ry =0
HMR_{QRORU lhO_ v )
Ro-+Ru otherwise .

Note its advantage over the arithmetic mean. For
example, consider two situations, Ro = Ry = 0.5
and Rp = 0.9, Ry = 0.1: the arithmetic means of
Ro and Ry are the same, but HMR = 0.500 for the
former and HMR = 0.180 for the latter.

Despite its simplicity, our measures are clearly
advantageous over existing calibration measures
for the purpose of penalising overconfidence and
underconfidence separately, as we shall demon-
strate below.

4 How the Measures Work (or Not)

In this section, we demonstrate how the proposed
and existing measures can actually be computed, to
clarify how (or whether) they work. The examples
will also help us prove our theorems presented in
Section 5 that generalise our observations.

4.1 Example 1

Table 1 shows an example with M = 3 classes
and N = 9 instances,' where top probabilities for
correct and incorrect cases are shown in blue and
red, respectively. Systems Y, Z, W are obtained by
perturbing (i.e., hurting) System X as follows:
'Note that, with the exception of (N)BS, the measures
discussed in this paper can be applied to situations where
M (> 2) varies across instances, for example, when the num-
ber of answer candidates within a system varies depending

on the question: we can still take one probability per instance
(e.g., top probability) for the evaluation.



Instance number 5 | 1 2 3 4 5 6 7 8 9
True class 1 1 3 3 2 1 1 3 1
p} 04 04 04]02 06 06]08 01 038
System X pJQ. 03 03 03(02 02 02]01 0.1 0.1
p? 03 03 0306 02 02]01 08 0.1
pjl. 04 04 04]02 06 06]07 01 038
System Y pjz 03 03 03(02 02 02]02 01 0.1
p}q? 03 03 03(06 02 02]01 08 0.1
pjl. 04 04 06(02 06 06]08 01 038
System Z pjz 03 03 01(02 02 02]01 0.1 0.1
p? 03 03 03]06 02 02]01 08 0.1
pjl 04 04 06(02 06 06]07 01 038
System W pjz 03 03 01102 02 02]02 01 0.1
p;)? 03 03 03]06 02 02]01 08 0.1

Table 1: First example of perturbing system confidence scores when the system (X) has M = 3 answer candidates
for each of the NV = 9 questions given. Top probabilities are shown in blue if correct and in red if incorrect; note
that the top-probability-based accuracy is unchanged: 7/9 = 0.778. The underlines indicate the perturbations.

X Y Z W
HMRT | 0.557 0.551 0.489 0.485
ECE| | 0.178 0.189 0.156 0.167
MCE| | 0.267 0.267 0.200 0.233
NBS| | 0.130 0.133 0.135 0.138
KS| | 0.178 0.189 0.156 0.167

Table 2: Summary of results for the first example. In-
tuitive results are indicated in bold; counterintuitive re-
sults are indicated by underlines.

Y Pick one top probability that represents a cor-
rect case, and lower it while keeping it the
top probability, thereby injecting underconfi-
dence;

Z Pick one top probability that represents an in-
correct case, and raise it, thereby injecting
overconfidence;

W Apply both of the above perturbations.

Note that the above perturbations do not affect the
top-probability-based accuracy which is 7/9 =
0.778 for this example. The perturbed probabil-
ities are underlined in Table 1.

For our task where we are concerned with un-
derconfidence and overconfidence of system re-
sponses, we would like to be able to say that Y, Z,
and W all underperform X. However, for this exam-
ple, only HMR and NBS satisfy this requirement,
as shown in Table 2. Here, the results that we want
(intuitive results) are shown in bold, and the coun-
terintuitive ones are underlined. Note that HMR is

a reward measure (i.e., higher means better), while
the others quantify errors (i.e., lower means better),
as indicated by the arrows. Below, we demonstrate
how some of the numbers in Table 2 are obtained in
order to clarify how the measures work (or not). We
shall leave the discussion of NBS to Appendix B,
in which we provide a different example where
NBS gives counterintuitive scores for Y, Z, and W.
Recall that, unlike the other measures, NBS relies
on the probability for every class for each instance.

4.1.1 HMR for Example 1

For System X in Table 1, O = 04 4+ 0.6 =
1.0,U=2%x(1-04)+2%(1-0.6)+3=(1—
0.8) = 2.6 (Eq. 5). Since |[I~| = 2,|IT| =T,
Ro = 1—-1.0/2 = 0.500 (Eq. 6) and Ry =
1 —2.6/7 = 0.629 (Eq. 7). Hence X is more
overconfident than underconfident; note that this
observation is not possible with the other measures.
Finally, HMR(X) = 0.557 (Eq. 8).

Similarly, for System W, O = 1.2 (same as Z),
andU = 2.7 (same as Y); Rp = 0.400 (worse than
X in terms of overconfidence), and Ry = 0.614
(worse than X in terms of underconfidence). Hence
HMR(W') = 0.485 (worse than X overall).

4.1.2 ECE and MCE for Example 1

The instances in Table 1 are already sorted
by top probability and binned for computing
ECE (and MCE): we have B = 3 bins, each
containing three instances. The binwise accu-
racies (ap) are (2/3,2/3,3/3) for all systems.
For X, the average confidences (¢p) are clearly



System X System Z
j Dbj ij GOLD]‘ CGOLD]‘ (5j bj ij GOLDj CGOLDj 5j
104 0.044 1 0.111 0.067 | 0.4 0.044 1 0.111 0.067
2104 0.08 1 0.222 0.133 | 0.4 0.089 1 0.222 0.133
3104 0.133 0 0.222  0.089 | 0.6 0.156 0 0.222  0.067
4106 0.200 1 0.333 0.133 | 0.6 0.222 1 0.333 0.111
5106 0267 0 0.333 0.067 | 0.6 0.289 0 0.333 0.044
6|06 0.333 1 0.444 0.111 | 0.6 0.356 1 0.444 0.089
7108 0422 1 0.556 0.133 | 0.8 0.444 1 0.556 0.111
8108 0.511 1 0.667 0.156 | 0.8 0.533 1 0.667 0.133
9108 0.600 1 0.778 0.178 | 0.8 0.622 1 0.778  0.156

Table 3: Computing the KS scores from the top probabilities shown in Table 1 for X and Z. The J; column
represents |cpj — ¢GOLD;| in Eq. 4; the maximum J; across the rows is the KS score by definition, as indicated
in bold. Probabilities for correct and incorrect cases are indicated in blue and red, respectively. The underlined

probability indicates where System Z differs from X.

(0.400, 0.600,0.800); on the other hand, for Z
which has an overconfidence injected in Bin 1,
the average confidences are (0.467,0.600, 0.800).
Hence, the binwise absolute differences (|¢, —
ap| in Eq. 1) are (0.267,0.067,0.200) for X,
and (0.200,0.067,0.200) for Z. Thus, even
though Z is more confident than X about the
third instance (and they are both incorrect),
ECE(X) = 0.178,ECE(Z) = 0.156, MCE(X ) =
0.267, MCE(Z) = 0.200. That is, both ECE and
MCE say that Z is better.

The above flaw arises as follows. For X, note
that a; = 2/3 > ¢; = 0.400: that is, for Bin 1, X
is underconfident on average. Hence the absolute
difference |¢; — a1| = 0.267 actually quantifies
how underconfident X is for Bin 1. Now, the pertur-
bation introduced in Z raises ¢; (as Z is more confi-
dent than X about the third instance), and therefore
Z is considered to be “less underconfident” than
X for Bin 1. From this discussion, it is clear that
binwise averaging of confidences is not a good idea
for the purpose of evaluating both overconfidence
and underconfidence while trying to separate them,
as averaging confounds both phenomena.

Note also that in Table 2, MCE fails to detect
the perturbation introduced in Y for Bin 3. This
is because, although the average confidence c3 is
lowered from 0.800 to (0.7 + 2 % 0.8)/3 = 0.767
and hence the absolute difference |c3 —az| = |¢3 —
1] is raised from 0.200 to 0.233, this new value is
still smaller than the unchanged absolute difference
for Bin 1: |¢; — a1| = 0.267. In other words, when
Y is obtained from X by perturbing Bin 3, MCE
keeps looking at Bin 1 and ignores the change.

Thus, although MCE was proposed to consider
extreme cases, binwise averaging of confidences
prior to applying the max operator (Eq. 1) can hide
what is happening to individual instances.

4.1.3 KS for Example 1

Table 3 shows how KS scores are computed for
Systems X and Z shown in Table 1 according to
Eq. 4. Note that KS also requires instance sort-
ing, and recall that Table 1 already provides the
instances sorted by top probabilities. It can be veri-
fied that, even though Z is overconfident about the
third instance (j = 3) compared to X (where both
systems are incorrect), KS says that Z is better.
The above flaw arises as follows. In Table 3,
note that cp, = 0.089 < ¢GOLDy = 0.222 for
both systems: the former is much smaller, even
though KS requires the cp distribution to align
with the cGOLD distribution. In other words, at
7 = 2, the systems are on the side of underesti-
mation so far. Therefore, if we raise p3 (from 0.4
to 0.6), this brings the cp distribution “closer” to
the cGOLD distribution: it can be verified that,
while cGOLD3 = 0.222, ¢p; = 0.133 for X and
cp3 = 0.156. Hence the counterintuitive result.

4.2 Example 2

In our first example (Tables 1-2), ECE and KS man-
aged to say that Y (perturbed by injecting undercon-
fidence for a correct case) is worse than X. Our sec-
ond example, shown in Tables 4-5 (M = 3, N =9,
with Y, Z, W perturbed as described earlier), show
that ECE and KS fail to do so; The same goes for
MCE. From Table 4, it can be observed that the
top probability of X for the first instance (j = 1)



Instance number 5 | 1 2 3 4 5 6 7 8 9
True class 1 1 3 3 2 1 1 3 1
p]l 05 03 05|02 06 06]07 02 07
System X p? 03 05 0302 02 0202 07 02
pg? 02 02 0206 02 02|01 01 0.1
pjl- 04 03 0502 06 06]07 02 07
System Y p? 03 05 0302 02 0202 07 02
p;'? 03 02 0206 02 02]01 01 0.1
pjl- 05 03 0602 06 06|07 02 07
System Z p? 03 05 02102 02 0202 07 02
p; |02 02 02/06 02 02]01 0.1 0.1
pjl- 04 03 06]020 06 06107 02 0.7
System W p? 03 05 02102 02 0202 07 02
p;-’ 03 02 0206 02 02]01 01 0.1

Table 4: Second example of perturbing system confidence scores when the system (X) has M = 3 answer candi-
dates for each of the N = 9 questions given. Top probabilities are shown in blue if correct and in red if incorrect;
note that the top-probability-based accuracy is unchanged: 5/9 = 0.556. The underlines indicate the perturbations.

X Y Z W
HMRT | 0.504 0.498 0.486 0.4380
ECE| | 0.089 0.078 0.100 0.089
MCE| | 0.167 0.133 0.200 0.167
NBS| | 0.196 0.201 0.198 0.204
KS| | 0.078 0.067 0.089 0.078

Table 5: Summary of results for the second example.
Intuitive results are indicated in bold; counterintuitive
results are indicated by underlines.

has been lowered from 0.5 to 0.4 in order to obtain
Y, even though both X and Y are correct for this
instance. Below, we examine why ECE, MCE, and
KS say that Y is better.

4.3 ECE and MCE for Example 2

From Table 4, the binwise accuracies (ap)
are (1/3,2/3,2/3); the average confidences
(¢p) are (0.500,0.600,0.700) for X, and
(0.467,0.600,0.700) for Y due to the injection
of underconfidence. Hence the binwise absolute
differences (|¢, — ap|) are (0.167,0.067,0.033)
for X, and (0.133,0.067,0.700) for Y. Therefore,
from Eq. 1, MCE (which reflects only Bin 1) and
ECE are smaller (i.e., “better”) for Y.

The above flaw arises as follows. Note that
a; = 1/3 < ¢ = 0.500 for X; hence the absolute
difference for Bin 1 actually quantifies overcon-
fidence. Therefore, Y, which is less confident in
Bin 1 due to the perturbation, is considered to be
“less overconfident” than X. Again, it is clear that

binwise averaging is not a good idea in our context.

4.4 KS for Example 2

Table 6 shows how KS scores are computed for X
and Y shown in Table 4 according to Eq. 4. The
left side of the table shows that, for System X,
cp; diverges most from cGOLD; at j = 8 and
this is what determines the KS score: KS(X) =
0.078. Now, note that cpg = 0.522 > ¢cGOLDg =
0.444: That is, X is on the side of overestimation
at j = 8. Therefore, if we want to reduce the
difference between cpg and cGOLDg, we could (for
example) consider lowering cp; for every j, by just
lowering p;: this is exactly what the perturbation
injected in Y represents. As can be seen in the right
side of Table 6, we have “successfully” reduced
the difference between cpg and cGOLDg: now the
maximum difference is observed not only at 7 = 8
butalsoat j = 1 and j = 5, and KS(Y') = 0.067.
Thus, just like ECE and MCE, KS says that Y is
better than X, which is counterintuitive.

5 Axioms and Theorems

The examples discussed in Section 4 demonstrated
how the measures are actually computed, and how
ECE, MCE, and KS can be counterintuitive for our
purpose. (As mentioned earlier, counterintuitive
cases for NBS are provided in Appendix B.) How-
ever, examples are examples: this section clarifies
the advantages of HMR in terms of axioms that it
satisfies, to generalise our previous observations.



System X System Y
j Dbj ij GOLD]‘ CGOLD]‘ (5j bj ij GOLDj CGOLDj 5j
105 0.056 1 0.111 0.056 | 0.4 0.044 1 0.111 0.067
2105 0.111 0 0.111 0.000 | 0.5 0.100 0 0.111 0.011
3105 0.167 0 0.111 0.056 | 0.5 0.156 0 0.111 0.044
4106 0.233 1 0.222 0.011 | 0.6 0.222 1 0.222  0.000
5106 0.300 0 0.222 0.078 | 0.6 0.289 0 0.222  0.067
6|06 0367 1 0.333 0.033 | 0.6 0.356 1 0.333 0.022
7107 0.444 1 0.444 0.000 | 0.7 0.433 1 0.444 0.011
8107 0522 0 0.444 0.078 | 0.7 0.511 0 0.444  0.067
9107 0.600 1 0.556 0.044 | 0.7 0.589 1 0.556 0.033

Table 6: Computing the KS scores from the top probabilities shown in Table 4 for X and Z. The J; column
represents |cpj — ¢GOLD;| in Eq. 4; the maximum J; across the rows is the KS score by definition, as indicated
in bold. Probabilities for correct and incorrect cases are indicated in blue and red, respectively. The underlined

probability indicates where System Y differs from X.

5.1 Axioms

All three axioms presented below start with the fol-
lowing common prerequisite. Consider a sequence
of binary correctness labels for N instances; the
label for Instance i is denoted by GOLD(i). Un-
der this setting, consider System X that returns a
sequence (p1,...,pn) of confidence scores (i.e.,
probabilities) for the same /V instances, where the
scores have been sorted in ascending order (just
for computing ECE, MCE, and KS). Let i, denote
the j-th instance in the sorted list; then the corre-
sponding sequence of the correctness labels can be
denoted as (GOLD(i1),...,GOLD(iy)).

Axiom 5.1 (Axiom-U) Consider System Y, ob-
tained by perturbing the confidence score sequence
of System X as follows. Suppose that for one par-
ticular instance i s.t. GOLD(i;) = 1 (i.e, X is
correct about the j-th instance), we managed to
replace p; with q;(< p;) without affecting the pre-
diction outcome (i.e., Y is still correct about this
instance). Since the confidence is now lower for
this correct case and nothing else has changed, Y
should not be considered superior to X.

Axiom 5.2 (Axiom-0Q) Consider System Z, ob-
tained by perturbing the confidence score sequence
of System X as follows. Suppose that for one par-
ticular instance i s.t. GOLD(ij) = 0 (i.e., X is
incorrect about the j'-th instance), we managed
to replace pj with qj (> pj) without affecting
the prediction outcome (i.e., Z is still incorrect
about this instance). Since the confidence is now
higher for this incorrect case and nothing else has
changed, Z should not be considered superior to
X.

Axiom-U Axiom-O Axiom-UO
X=Y) X—=Z) X—=W)
HMR1 YES YES YES
ECE] NO NO NO
MCE] NO NO NO
NBS| NO NO NO
KS| NO NO NO

Table 7: Summary of whether each measure satisfies
the three axioms or not.

Axiom 5.3 (Axiom-UQ) Consider System W, ob-
tained by applying both of the perturbations men-
tioned above. Compared to X, the confidence for
the correct case is lower and the confidence for
the incorrect case is higher and nothing else has
changed. In this situation, W should be considered
strictly inferior to X.

Note that Axiom-U (Axiom-O) tolerates evalua-
tion measures that cannot tell the difference be-
tween X and Y (X and Z); on the other hand,
Axiom-UO requires measures to say that W is
strictly worse than X.

Table 7 provides a summary of whether each
measure satisfies the three axioms or not. Below,
we provide the proofs.

5.2 HMR Satisfies All Tree Axioms
Theorem 5.1 (U-HMR) HMR satisfies Axiom-U.

Proof: The perturbation described in Axiom-U
does not affect O (Eq. 5) and hence does not af-
fect Ro either (Eq. 6): for brevity, let c = Rp
denote the unaffected reward. On the other hand,
the perturbation increases U (Eq. 5) and hence



decreases Ry (Eq. 7): that is, if we let ¢ and b
denote the Ry for X and the Ry for Y, respec-
tively, then a > b(> 0). From Eq. 8, HMR(X ) =
2ca/(c + a) since a > 0. We need to show that
A = HMR(X) — HMR(Y) > 0.

Suppose that ¢ = 0, i.e., O = |I~| (Eq. 6), that
is, both X and Y are 100% confident for every
incorrect case. Then HMR(X) = 0/a = 0. If
b > 0, HMR(Y) = 2cb/(c + b) = 0/b = 0; if
b=0,thenc=0b=0so HMR(Y) = 0 (Eq. 8);
Either way, A =0 —0 = 0.

Otherwise (i.e., if ¢ > 0), A = 2ca/(c+ a) —
2cb/(c+b) =2c¢*(a—b)/(c+a)(c+b) > 0.

Theorem 5.2 (O-HMR) HMR satisfies Axiom-0.

Proof: The perturbation described in Axiom-O
does not affect U (Eq. 5) and hence does not af-
fect Ry either (Eq. 7): for brevity, let ¢ = Ry
denote the unaffected reward. On the other hand,
the perturbation increases O (Eq. 5) and hence
decreases Rp (Eq. 6): that is, if we let a and
b denote the Rp for X and the Rp for Z, re-
spectively, then a > b(> 0). Since a > 0,
HMR(X) = 2ac/(a + ¢). We need to show that
A" = HMR(X) — HMR(Z) > 0.

Suppose that ¢ = 0, i.e., U = |I"] (Eq. 7),
that is, both X and Z are 0% confident for every
correct case. Then HMR(X) = 0/a = 0. If
b > 0, HMR(Z) = 2bc/(b+ ¢) = 0/b = 0; if
b= 0aswell, thenb =c=0so HMR(Z) = 0
(Eq. 8). Either way, A’ =0 —0 = 0.

Otherwise (i.e., if ¢ > 0), A’ = 2ac/(a + ¢) —
2bc/(b+c) =2c*(a—b)/(a+c)(b+c) > 0.

Theorem 5.3 (UO-HMR) HMR satisfies Axiom-
Uo.

Proof: Based on the proofs of Theorems U-HMR
and O-HMR, it is clear that the two perturbations
described in Axiom-UQ decrease both Ry (due to
the j-th instance) and Rp (due to the j'-th instance).
Hence the harmonic mean (Eq. 8) also decreases;
that is, HMR(X) — HMR(W) > 0. Moreover,
from the proofs of U-HMR and O-HMR, it follows
that the equality can hold only when both X and
W are 100% confident for every incorrect case and
0% confident for every correct case. However, we
know that this is not possible: if X is 100% confi-
dent for every incorrect case, it is not possible to fur-
ther inject overconfidence; if X is 0% confident for
every correct case, it is not possible to further inject
underconfidence. Hence, HMR(X) > HMR(W)
holds: W is strictly inferior to X.

Axiom-U Axiom-O Axiom-UO

X—=Y) X—7Z) X—=W)
ECE | | Example2 Example 1 Example 1
MCE] | Example 2 Example 1 Example 1
NBS| | Example 3 Example3 Example 3
KS| | Example2 Example1 Example 1

Table 8: Counterexamples that show that these mea-
sures do not satisfy the axioms. Examples 1 and 2 are
given in Tables 1 and 4, respectively. Example 3 is pro-
vided in Appendix B as NBS relies on the probability
for every class unlike the other measures.

5.3 ECE, MCE, NBS, and KS Satisfy None of
the Axioms

To prove that none of ECE, MCE, NBS, and KS
satisfy any of the axioms, providing one actual
counterexample for each situation suffices. Table 8
provides the counterexamples necessary.

6 Conclusions and Future Work

For the purpose of penalising both overconfidence
and underconfidence in system responses while
balancing the two, we proposed a simple and intu-
itive evaluation measure called HMR. We proved
that HMR satisfies our axioms (i.e., penalising a
lowered confidence for a correct response, penalis-
ing a raised confidence for an incorrect response,
and penalising a system that reflects both perturba-
tions), and that existing calibration measures do not.
Hence, while we do not claim that HMR should
replace existing calibration measures in all calibra-
tion tasks, we do recommend its use in tasks where
our axioms make sense.

We designed HMR primarily for conversational
search systems where each response is either cor-
rect or not and has a confidence score; the score
could represent a top probability (or more generally,
the n-th highest probability) among the probabili-
ties for M different response candidates; the candi-
ates may be generated by the system itself or given
to the system from outside, as in multiple choice
questions. However, HMR can be used in any task
where the system response has a binary gold label
and one confidence score. For example, the gold
label could represent whether the system response
is harmful or not in a content moderation task. We
plan to explore more ways to utilise HMR in fu-
ture work, for example, in a shared conversational
search task.



Limitations

Figure 1 was obtained through a pilot experiment
with Google Bard (as of November 2023) to ex-
emplify a situation where the same system can be
overconfident and underconfident depending on
test instances. The experiment does not represent
an actual case where a system has a confidence
score for each of its own responses; instead, Google
Bard returned a confidence score to each response
that was fed to it. Evaluating real situations with
HMR is left for future work. However, note that
our axioms and theorems do not depend on data.

We designed HMR specifically for tasks where
overconfidence and underconfidence should be con-
sidered separately, and balancing between the two
is important. We do not claim that all calibration
measures should be replaced by ours in traditional
calibration tasks; we only claim that HMR should
be preferred over existing calibration measures for
tasks where our axioms make sense.

Ethics Statement

The present study was ethically motivated. We
started this work because the recent LLM-based
conversational systems often hallucinate, and not
only the fluency but also the confidence of their
responses tend to fool the users. The misinforma-
tion may negatively impact the users, the down-
stream tasks, and society at large. The information
thus spread may then be fed to LLMs as training
data. We believe that it is the responsibility of NLP
researchers to prevent such vicious circles. Sup-
pressing both overconfidence and underconfidence
means that the system will be just as modest about
the credibility of their responses as it should be.
Our hope is that this work will help the research
community advance towards that goal.
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A A Pilot Experiment with SWAG

This section supplements Section 1 by describing
exactly how we obtained Figure 1.

We first downloaded the raw SWAG
validation dataset (Zellers et al., 2018):
https://github.com/rowanz/swagaf/blob/
master/data/val_full.csv. We chose this data
set just to illustrate our point that underconfidence
can sometimes be a problem along with the
more widely known overconfidence problem of
system responses. The dataset contains 20,006
records, where each record represents a video
caption completion task instance, consisting of
a startphrase (i.e., an incomplete caption), a
gold response (i.e., the correct final phrase that
completes the caption), and several distractors
(i.e., phrases that are considered less good than the
gold response or even completely out of context).
From this multiple choice data set, we randomly
extracted 100 records where each record consists
of a startphrase, the gold response, and exactly
one distractor that was labelled “unl(ikely)” (i.e.,
the distractor sounds ridiculous or impossible
given the context). Based on this sample, we
created 100 gold response prompts as well as 100
distractor response prompts: Figure 2 provides an
example gold response prompt, together with the
corresponding distractor response prompt. Note
that the only difference between the two is the
content of “YOUR FINAL PHRASE” part.

We randomly shuffled the 200 prompts thus cre-
ated as it is known that conversational search re-
sponses may be affected by previous prompts: they
“remember” to some extent. That is, a gold response
prompt and its distractor counterpart were treated
as two independent records during the random shuf-
fling so that the system cannot directly compare
the gold and distractor final phrases. The prompts
were fed to Google Bard one by one on Novem-
ber 15, 2023; when the 108th prompt was entered,
Google Bard refused to continue the work; hence
the work was resumed on November 21, 2023 and
was completed on the same day. In this way, we
obtained a confidence score in the 0-1 range for
each of the 200 prompts (with 4 exceptions as de-
scribed later). For example, for the prompts shown
in Figure 2, Google Bard returned 0.2 (represent-
ing underconfidence, as the final phrase is gold)
and 0.6 (representing overconfidence, as the final
phrase is a distractor), respectively. This record is
highlighted with a balloon in Figure 1.
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Despite our explicit instruction in the template
part of the prompts for Google Bard to return
a confidence score only, Google Bard occasion-
ally returned some additional information such as
YouTube links or sentences. For these cases, we
recorded the confidence scores along with “redun-
dant” as a comment. Also, Google Bard failed to
return a confidence score for 4 of the 200 prompts;
for these cases, we recorded “NA” instead of a con-
fidence score. (We actually tried both Google Bard
and the New Bing for this experiment but the latter
flatly refused to return confidence scores from the
outset, as of November 15, 2023.)

To ensure that Figure 1 can be reproduced (de-
spite the lack repeatability of our Google Bard-
based experiment itself as its behaviour keeps
changing), we will make the 200 shuffled prompts
and the confidence scores returned by Google Bard
publicly available upon paper acceptance. (The
data is shared with the ACL ARR reviewers as an
accompanying zip file.)

B Counterexamples for NBS

This section discusses our third example, which
demonstrates that NBS can be counterintuitive
when the perturbations described in Section 4.1
are applied to System X in order to obtain Y, Z, and
W.

Table 9 presents our third example with M =
6, N = 3; Table 10 shows the HMR, NBS, and KS
scores computed from Table 9. ECE and MCE are
omitted here, as these measures require instance
binning and binwise averaging of confidences but
we only have three instances.

For X, the sum of squared errors (Eq. 2) for
the third instance (j = 3) is (0.6 — 1)% + 0.4%2 =
0.32. In contrast, for Y, the corresponding value
is (0.5 — 1)2 4+ 5 % 0.12 = 0.30; this is why Y is
considered better than X. Meanwhile, for X, the
sum of squared errors for the second instance (j =
2)is 0.42 + 0.3%2 4+ 3 ¥ 0.12 = 0.68. In contrast,
for Z, the corresponding value is 0.5% + 0.4% +
0.12 = 0.62; this is why Z is considered better
than X. Finally, W is also considered better than X
according to NBS, as W reflects both of the above
changes in sum of squared errors.

As a final remark, note that KS completely fails
to detect the perturbations in Table 10.


https://github.com/rowanz/swagaf/blob/master/data/val_full.csv
https://github.com/rowanz/swagaf/blob/master/data/val_full.csv
https://github.com/rowanz/swagaf/blob/master/data/val_full.csv

(a) A gold response prompt

##t##H# 1smdc0025_THE_LORD_OF_THE_RINGS_THE_RETURN_OF_THE_KING-61110 2054 gold

Imagine that you were asked to complete a video clip caption that was missing the final phrase. THE
INCOMPLETE CAPTION is the incomplete caption that you were given, and YOUR FINAL PHRASE is what you
added to it to make the caption complete and coherent. Given this context, you are also asked to output a
confidence score for your final phrase, a real number in the 0-1 range. 0 means you completely lack
confidence about whether the completed caption makes sense. 1 means you have perfect confidence. Do
not return any additional information. Do not return any text. Please just return a confidence score.

### THE INCOMPLETE CAPTION:

A boulder smashes into a balcony full of civilians. Someone’s staff

#ittt YOUR FINAL PHRASE:

Smashes into the back of someone’s head!

### YOUR CONFIDENCE SCORE:

(b) The corresponding distractor response prompt

H##t### 1smdc0025_THE_LORD_OF_THE_RINGS_THE_RETURN_OF_THE_KING-61110 2054 distractor
Imagine that you were asked to complete a video clip caption that was missing the final phrase. THE
INCOMPLETE CAPTION is the incomplete caption that you were given, and YOUR FINAL PHRASE is what you
added to it to make the caption complete and coherent. Given this context, you are also asked to output a
confidence score for your final phrase, a real number in the 0-1 range. 0 means you completely lack
confidence about whether the completed caption makes sense. 1 means you have perfect confidence. Do
not return any additional information. Do not return any text. Please just return a confidence score.

#ittt THE INCOMPLETE CAPTION:

A boulder smashes into a balcony full of civilians. Someone's staff

### YOUR FINAL PHRASE:

are tracking around him toward the jeep.

#it#t YOUR CONFIDENCE SCORE:

Figure 2: An example of a gold response prompt and the corresponding distractor response prompt. The green
parts are comments, not part of the prompts.

Instance number 5 | 1 2 3 True class 3 2 1
p; |03 04 06 p; |03 04 05
p; |04 03 04 p; |04 03 0.1
SystemX | p} |01 01 0 | SystemY |p}|01 0.1 0.1
p; |01 01 0 p; |01 0.1 0.1
p; |01 01 0 p; (0.1 0.1 0.1
p; |0 0 0 p; |0 0 01
p; |03 05 06 p; |03 05 05
p; |04 04 04 p; | 04 04 0.1
SystemZ | p3 [0.1 0.1 0 |SystemW |p>|0.1 0.1 0.1
p; |01 0 0 pj 01 0 0.1
p; |01 0 O p; 101 0 01
p; |0 0 0 p; |0 0 01

Table 9: Third example of perturbing system confidence scores when the system (X) has M = 6 answer candidates
for each of the N = 3 questions given. Top probabilities are shown in blue if correct and in red if incorrect; note
that the top-probability-based accuracy is unchanged: 1/3 = 0.333. The underlines indicate the perturbations.

X Y Z W

HMR? | 0.600 0.545 0.574 0.524

NBS| | 0.116 0.114 0.112 0.111
KS| |0.200 0.200 0.200 0.200

Table 10: Summary of results for the third example. Intuitive results are indicated in bold; counterintuitive results
are indicated by underlines. As there are only three instances, ECE and MCE (which require instance binning) are
omitted.
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