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Abstract

When responding to any question from the001
user or an API, a conversational search or ques-002
tion answering system should ideally be able003
to attach an appropriate confidence score to its004
output. While such systems are often overcon-005
fident, there are also situations where the sys-006
tem responds correctly yet lacks enough con-007
fidence. Underconfident responses cannot be008
relied upon, and therefore may not be utilised009
by the user or downstream tasks. Ideally, we010
want to know when systems are underconfi-011
dent as well as when they are overconfident,012
and want to suppress both phenomena in a bal-013
anced manner. Furthermore, in this scenario,014
we want an evaluation measure that is guaran-015
teed to (a) penalise a lowered confidence for a016
correct response; and also (b) penalise a raised017
confidence for an incorrect response. In light018
of this, we propose HMR (Harmonic Mean of019
Rewards) and demonstrate its advantages over020
existing calibration measures for our purpose021
by means of examples, axioms, and theorems.022

1 Introduction023

Large language models (LLMs) hallucinate (Ji024

et al., 2023), often with confidence. The system’s025

confidence about its own response may be given026

as an accompanying confidence score, or may be027

expressed in natural language (e.g., “Yes I am028

certain.” (Liu et al., 2023, Figure 9)). The for-029

mer is particularly useful if the system response030

is going to be utilised for some downstream tasks:031

we can decide how much the upstream pieces of032

information can be relied upon based on the scores.033

Even if the system does not return a separate score034

that represents its internal confidence, a postpro-035

cessing step may be applied, where the input con-036

tains the system’s natural language response and037

the output is an estimated confidence score; the038

estimator may well be another LLM.039

While overconfidence (i.e., the system returns an040

inaccurate response with high confidence) is a ma-041

jor problem, the other side of the coin is underconfi- 042

dence (i.e., the system returns an accurate response 043

but lacks confidence). If the system is undercon- 044

fident, the user or the downstream tasks may not 045

be able to utilise the correct response. To illustrate 046

how both overconfident and underconfident cases 047

may occur even for the same system, Figure 1 visu- 048

alises the confidence scores we obtained in a pilot 049

experiment using the SWAG dataset (Zellers et al., 050

2018), in which Google Bard served as an external 051

confidence estimator for each pair of an incomplete 052

video caption and either a gold final phrase (i.e., 053

one that appropriately completes the caption) or a 054

distractor final phrase (i.e., an unsuitable comple- 055

tion). Here, Google Bard was prompted to pretend 056

that the final phrase provided to it was its own re- 057

sponse in a caption completion task, and to return a 058

confidence score for the response in the 0-1 range. 059

Details are in Appendix A. Ideally, the confidence 060

score for each gold response should be high, while 061

that for each distractor response should be low. 062

In Figure 1, the red horizontal line indicates 50% 063

confidence: for convenience, let us say for now 064

that the system is overconfident if its confidence 065

score for a distractor response is higher than 50%, 066

(or exactly 50% which would also be practically 067

inconvenient for the user or the downstream tasks); 068

similarly, let us say that the system is underconfi- 069

dent if its confidence score for a gold response is 070

lower than or exactly 50%. While there are 59 over- 071

confident cases (out of 100 distractor responses), 072

there are also 8 underconfident cases (out of 100 073

gold responses) as indicated by the red arrows. We 074

argue that we should be able to make a distinc- 075

tion between overconfidence and underconfidence 076

when evaluating a system like this, because rem- 077

edying the two phenomena may require different 078

approaches, and we do not necessarily want one of 079

them suppressed at the expense of the other. Rather, 080

we may want the system to balance the two. In this 081

scenario, we want an evaluation measure that is 082
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Figure 1: Results of a pilot experiment, in which a sample from the SWAG (Zellers et al., 2018) validation dataset
was used to obtain confidence scores from Google Bard. The x axis represents the validation instances (with 100
gold and 100 distractor cases), and the y axis represents the confidence scores returned by Bard. The red arrows
indicate underconfident cases, i.e., gold responses with low confidence scores. Details can be found in Appendix A.

guaranteed to (a) penalise a lowered confidence083

for a correct response; and (b) penalise a raised084

confidence for an incorrect response.085

Calibration (Pakdaman Naeini et al., 2015) is086

the task of aligning confidence scores to the actual087

response accuracy. However, traditional measures088

used in calibration tasks only quantify how much089

the confidence scores deviate from the accuracy;090

they do not distinguish between overconfidence and091

underconfidence. We therefore propose a very sim-092

ple and intuitive evaluation measure called HMR093

(Harmonic Mean of Rewards) and demonstrate its094

advantages over existing calibration measures for095

the purpose discussed above by means of examples,096

axioms, and theorems. More specifically, we show097

that while HMR possesses Properties (a) and (b)098

mentioned above, none of the calibration measures099

considered in this study do.100

2 Prior Art101

In calibration tasks, the Expected Calibration Error102

(ECE) is probably the most widely used evaluation103

measure. ECE is defined in Pakdaman Naeini et al.104

(2015), along with the Maximum Calibration Error105

(MCE). The premise is that we are given a set of106

instances, where each instance is associated with a107

binary gold label (i.e., correct or not) as well as a108

confidence score. In the context of a classification109

task with M(≥ 2) classes (i.e., selecting a correct110

class or answer from M choices) , the confidence111

score may be the top probability (i.e., highest prob-112

ability representing the most likely class/answer)113

of the set of M estimated correctness probabili-114

ties. To compute ECE or MCE, the N instances115

are first sorted by confidence scores, and are then116

partitioned into B bins for a given B, with the b-th 117

bin containing nb instances (b = 1, . . . , B). For 118

a given system that returned N responses along 119

with confidence scores, let ab denote the accuracy 120

(i.e., fraction of correct responses) for Bin b,; let 121

c̄b denote the average confidence score for Bin b. 122

Then ECE and MCE are given by: 123

ECE =
B∑
b=1

nb
N
|c̄b − ab| , MCE = max

b
|c̄b − ab| .

(1) 124

Note that instance binning is a necessity for the 125

introduction of the notion of binwise accuracy. 126

Two simple binning methods are commonly used 127

in the literature: equal width binning (where the 128

[0, 1] range is partitioned into B bins of equal 129

width) (Guo et al., 2017; Wang et al., 2023; Jiang 130

et al., 2021; Portillo Wightman et al., 2023; Tam 131

et al., 2023; Zablotskaia et al., 2023; Zhu et al., 132

2023) and uniform mass binning (nb is the same 133

for all bins) (Nguyen and O’Connor, 2015; Nixon 134

et al., 2020; Lin et al., 2022; Liang et al., 2023). 135

Kumar et al. (2020) discuss a theoretical advantage 136

of uniform mass binning over equal width binning. 137

Hereafter, we shall focus on uniform mass binning 138

for convenience, but our findings on ECE and MCE 139

do not depend on this choice. 140

One of the weaknesses of ECE and MCE is that 141

they rely on the parameter B. Hence, we also dis- 142

cusses existing binning-free calibration measures. 143

Consider a classification task with M(≥ 2) 144

classes withN instances to classify; let GOLDm
j = 145

1 if Class m is the true class for the j-th instance, 146

and 0 otherwise. For a classifier that returns M 147

probabilities (p1j , . . . , p
M
j ) s.t.

∑M
m=1 p

m
j = 1 for 148

each instance, the Brier Score (Brier, 1950; Wang 149
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et al., 2023; Ovadia et al., 2019; Tian et al., 2023)150

may be applied:151

BS =
1

N

N∑
j=1

M∑
m=1

(pmj − GOLDm
j )2 . (2)152

Brier proposed this measure in 1950 for verifying153

weather forecasts. To ensure a [0, 1] range, we shall154

consider Normalised BS (NBS), which divides the155

sum in Eq. 2 by NM instead of N . However, BS156

is known to reflect classification errors as well as157

calibration errors (Gupta et al., 2021).158

71 years later, Gupta et al. (2021) proposed a159

binning-free measure called KS, inspired by the160

Kolmogorov-Smirnov test for equality of two distri-161

butions (Hays, 1994). Given N confidence scores162

(e.g., top probabilities), let (p1, . . . , pN ) be these163

scores after an ascending sort, and let GOLDj = 1164

if the instance that corresponds to the j-th score in165

the sorted list is correct, and 0 otherwise. Then,166

cpj =
1

N

j∑
k=1

pk , cGOLDj =
1

N

j∑
k=1

GOLDk ,

(3)167

168

KS = max
j
|cpj − cGOLDj | . (4)169

Recall that, in classification tasks with M170

classes, a system response may be associated with171

M probabilities rather than one confidence score;172

in principle, measures like ECE/MCE and KS may173

be applied to non-top probabilities as well. Some174

studies have in fact incorporated non-top probabili-175

ties in calibration evaluation (Vaicenavicius et al.,176

2019; Gupta et al., 2021; Nixon et al., 2020). How-177

ever, our interest lies elsewhere: we want to evalu-178

ate overconfidence and underconfidence when each179

instance is associated with a binary gold label and180

one confidence score.181

3 Proposed Evaluation Measures182

We propose a very simple and interpretable binning-183

free evaluation approach that first quantifies over-184

confidence and underconfidence separately. For185

a given system, let I− and I+ denote the sets of186

instances for which the system’s choices are con-187

sidered incorrect and correct, respectively (|I−|+188

|I+| = N ). Let p(i) denote the system’s confi-189

dence for Instance i. Then, for each i ∈ I− (the190

system is incorrect), p(i) should be as close to 0191

as possible; whereas for i ∈ I+ (the system is192

correct), p(i) should be as close to 1 as possible. 193

Hence, we first define the Rewards for suppressing 194

overconfidence and underconfidence separately as 195

follows. 196

O =
∑
i∈I−

p(i) , U =
∑
i∈I+

(1− p(i)) , (5) 197

198

RO =

{
1 if I− = ∅ ,
1−O/|I−| otherwise .

(6) 199

200

RU =

{
1 if I+ = ∅ ,
1− U/|I+| otherwise .

(7) 201

Note, for example, that when I− = ∅ (i.e., all 202

N system responses are correct), there is no way 203

for the system to be overconfident for any of the 204

instances and therefore RO = 1 (i.e., perfection). 205

As we want systems to balance the above two 206

rather than to sacrifice one for the sake of the other, 207

let us consider the Harmonic Mean (Sakai, 2021): 208

HMR =

{
0 if RO = RU = 0 ,
2 RO RU
RO+RU

otherwise .
(8) 209

Note its advantage over the arithmetic mean. For 210

example, consider two situations, RO = RU = 0.5 211

and RO = 0.9,RU = 0.1: the arithmetic means of 212

RO and RU are the same, but HMR = 0.500 for the 213

former and HMR = 0.180 for the latter. 214

Despite its simplicity, our measures are clearly 215

advantageous over existing calibration measures 216

for the purpose of penalising overconfidence and 217

underconfidence separately, as we shall demon- 218

strate below. 219

4 How the Measures Work (or Not) 220

In this section, we demonstrate how the proposed 221

and existing measures can actually be computed, to 222

clarify how (or whether) they work. The examples 223

will also help us prove our theorems presented in 224

Section 5 that generalise our observations. 225

4.1 Example 1 226

Table 1 shows an example with M = 3 classes 227

and N = 9 instances,1 where top probabilities for 228

correct and incorrect cases are shown in blue and 229

red, respectively. Systems Y, Z, W are obtained by 230

perturbing (i.e., hurting) System X as follows: 231

1Note that, with the exception of (N)BS, the measures
discussed in this paper can be applied to situations where
M(≥ 2) varies across instances, for example, when the num-
ber of answer candidates within a system varies depending
on the question: we can still take one probability per instance
(e.g., top probability) for the evaluation.
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Instance number j 1 2 3 4 5 6 7 8 9
True class 1 1 3 3 2 1 1 3 1

p1j 0.4 0.4 0.4 0.2 0.6 0.6 0.8 0.1 0.8
System X p2j 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1

p3j 0.3 0.3 0.3 0.6 0.2 0.2 0.1 0.8 0.1
p1j 0.4 0.4 0.4 0.2 0.6 0.6 0.7 0.1 0.8

System Y p2j 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.1 0.1
p3j 0.3 0.3 0.3 0.6 0.2 0.2 0.1 0.8 0.1
p1j 0.4 0.4 0.6 0.2 0.6 0.6 0.8 0.1 0.8

System Z p2j 0.3 0.3 0.1 0.2 0.2 0.2 0.1 0.1 0.1
p3j 0.3 0.3 0.3 0.6 0.2 0.2 0.1 0.8 0.1
p1j 0.4 0.4 0.6 0.2 0.6 0.6 0.7 0.1 0.8

System W p2j 0.3 0.3 0.1 0.2 0.2 0.2 0.2 0.1 0.1
p3j 0.3 0.3 0.3 0.6 0.2 0.2 0.1 0.8 0.1

Table 1: First example of perturbing system confidence scores when the system (X) has M = 3 answer candidates
for each of the N = 9 questions given. Top probabilities are shown in blue if correct and in red if incorrect; note
that the top-probability-based accuracy is unchanged: 7/9 = 0.778. The underlines indicate the perturbations.

X Y Z W
HMR↑ 0.557 0.551 0.489 0.485
ECE↓ 0.178 0.189 0.156 0.167
MCE↓ 0.267 0.267 0.200 0.233
NBS↓ 0.130 0.133 0.135 0.138
KS↓ 0.178 0.189 0.156 0.167

Table 2: Summary of results for the first example. In-
tuitive results are indicated in bold; counterintuitive re-
sults are indicated by underlines.

Y Pick one top probability that represents a cor-232

rect case, and lower it while keeping it the233

top probability, thereby injecting underconfi-234

dence;235

Z Pick one top probability that represents an in-236

correct case, and raise it, thereby injecting237

overconfidence;238

W Apply both of the above perturbations.239

Note that the above perturbations do not affect the240

top-probability-based accuracy which is 7/9 =241

0.778 for this example. The perturbed probabil-242

ities are underlined in Table 1.243

For our task where we are concerned with un-244

derconfidence and overconfidence of system re-245

sponses, we would like to be able to say that Y, Z,246

and W all underperform X. However, for this exam-247

ple, only HMR and NBS satisfy this requirement,248

as shown in Table 2. Here, the results that we want249

(intuitive results) are shown in bold, and the coun-250

terintuitive ones are underlined. Note that HMR is251

a reward measure (i.e., higher means better), while 252

the others quantify errors (i.e., lower means better), 253

as indicated by the arrows. Below, we demonstrate 254

how some of the numbers in Table 2 are obtained in 255

order to clarify how the measures work (or not). We 256

shall leave the discussion of NBS to Appendix B, 257

in which we provide a different example where 258

NBS gives counterintuitive scores for Y, Z, and W. 259

Recall that, unlike the other measures, NBS relies 260

on the probability for every class for each instance. 261

4.1.1 HMR for Example 1 262

For System X in Table 1, O = 0.4 + 0.6 = 263

1.0, U = 2 ∗ (1− 0.4) + 2 ∗ (1− 0.6) + 3 ∗ (1− 264

0.8) = 2.6 (Eq. 5). Since |I−| = 2, |I+| = 7, 265

RO = 1 − 1.0/2 = 0.500 (Eq. 6) and RU = 266

1 − 2.6/7 = 0.629 (Eq. 7). Hence X is more 267

overconfident than underconfident; note that this 268

observation is not possible with the other measures. 269

Finally, HMR(X) = 0.557 (Eq. 8). 270

Similarly, for System W, O = 1.2 (same as Z), 271

andU = 2.7 (same as Y);RO = 0.400 (worse than 272

X in terms of overconfidence), and RU = 0.614 273

(worse than X in terms of underconfidence). Hence 274

HMR(W ) = 0.485 (worse than X overall). 275

4.1.2 ECE and MCE for Example 1 276

The instances in Table 1 are already sorted 277

by top probability and binned for computing 278

ECE (and MCE): we have B = 3 bins, each 279

containing three instances. The binwise accu- 280

racies (ab) are (2/3, 2/3, 3/3) for all systems. 281

For X, the average confidences (c̄b) are clearly 282
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System X System Z
j pj cpj GOLDj cGOLDj δj pj cpj GOLDj cGOLDj δj
1 0.4 0.044 1 0.111 0.067 0.4 0.044 1 0.111 0.067
2 0.4 0.089 1 0.222 0.133 0.4 0.089 1 0.222 0.133
3 0.4 0.133 0 0.222 0.089 0.6 0.156 0 0.222 0.067
4 0.6 0.200 1 0.333 0.133 0.6 0.222 1 0.333 0.111
5 0.6 0.267 0 0.333 0.067 0.6 0.289 0 0.333 0.044
6 0.6 0.333 1 0.444 0.111 0.6 0.356 1 0.444 0.089
7 0.8 0.422 1 0.556 0.133 0.8 0.444 1 0.556 0.111
8 0.8 0.511 1 0.667 0.156 0.8 0.533 1 0.667 0.133
9 0.8 0.600 1 0.778 0.178 0.8 0.622 1 0.778 0.156

Table 3: Computing the KS scores from the top probabilities shown in Table 1 for X and Z. The δj column
represents |cpj − cGOLDj | in Eq. 4; the maximum δj across the rows is the KS score by definition, as indicated
in bold. Probabilities for correct and incorrect cases are indicated in blue and red, respectively. The underlined
probability indicates where System Z differs from X.

(0.400, 0.600, 0.800); on the other hand, for Z283

which has an overconfidence injected in Bin 1,284

the average confidences are (0.467, 0.600, 0.800).285

Hence, the binwise absolute differences (|c̄b −286

ab| in Eq. 1) are (0.267, 0.067, 0.200) for X,287

and (0.200, 0.067, 0.200) for Z. Thus, even288

though Z is more confident than X about the289

third instance (and they are both incorrect),290

ECE(X) = 0.178,ECE(Z) = 0.156,MCE(X) =291

0.267,MCE(Z) = 0.200. That is, both ECE and292

MCE say that Z is better.293

The above flaw arises as follows. For X, note294

that a1 = 2/3 > c̄1 = 0.400: that is, for Bin 1, X295

is underconfident on average. Hence the absolute296

difference |c̄1 − a1| = 0.267 actually quantifies297

how underconfident X is for Bin 1. Now, the pertur-298

bation introduced in Z raises c̄1 (as Z is more confi-299

dent than X about the third instance), and therefore300

Z is considered to be “less underconfident” than301

X for Bin 1. From this discussion, it is clear that302

binwise averaging of confidences is not a good idea303

for the purpose of evaluating both overconfidence304

and underconfidence while trying to separate them,305

as averaging confounds both phenomena.306

Note also that in Table 2, MCE fails to detect307

the perturbation introduced in Y for Bin 3. This308

is because, although the average confidence c̄3 is309

lowered from 0.800 to (0.7 + 2 ∗ 0.8)/3 = 0.767310

and hence the absolute difference |c̄3−a3| = |c̄3−311

1| is raised from 0.200 to 0.233, this new value is312

still smaller than the unchanged absolute difference313

for Bin 1: |c̄1−a1| = 0.267. In other words, when314

Y is obtained from X by perturbing Bin 3, MCE315

keeps looking at Bin 1 and ignores the change.316

Thus, although MCE was proposed to consider 317

extreme cases, binwise averaging of confidences 318

prior to applying the max operator (Eq. 1) can hide 319

what is happening to individual instances. 320

4.1.3 KS for Example 1 321

Table 3 shows how KS scores are computed for 322

Systems X and Z shown in Table 1 according to 323

Eq. 4. Note that KS also requires instance sort- 324

ing, and recall that Table 1 already provides the 325

instances sorted by top probabilities. It can be veri- 326

fied that, even though Z is overconfident about the 327

third instance (j = 3) compared to X (where both 328

systems are incorrect), KS says that Z is better. 329

The above flaw arises as follows. In Table 3, 330

note that cp2 = 0.089 < cGOLD2 = 0.222 for 331

both systems: the former is much smaller, even 332

though KS requires the cp distribution to align 333

with the cGOLD distribution. In other words, at 334

j = 2, the systems are on the side of underesti- 335

mation so far. Therefore, if we raise p3 (from 0.4 336

to 0.6), this brings the cp distribution “closer” to 337

the cGOLD distribution: it can be verified that, 338

while cGOLD3 = 0.222, cp3 = 0.133 for X and 339

cp3 = 0.156. Hence the counterintuitive result. 340

4.2 Example 2 341

In our first example (Tables 1-2), ECE and KS man- 342

aged to say that Y (perturbed by injecting undercon- 343

fidence for a correct case) is worse than X. Our sec- 344

ond example, shown in Tables 4-5 (M = 3, N = 9, 345

with Y, Z, W perturbed as described earlier), show 346

that ECE and KS fail to do so; The same goes for 347

MCE. From Table 4, it can be observed that the 348

top probability of X for the first instance (j = 1) 349
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Instance number j 1 2 3 4 5 6 7 8 9
True class 1 1 3 3 2 1 1 3 1

p1j 0.5 0.3 0.5 0.2 0.6 0.6 0.7 0.2 0.7
System X p2j 0.3 0.5 0.3 0.2 0.2 0.2 0.2 0.7 0.2

p3j 0.2 0.2 0.2 0.6 0.2 0.2 0.1 0.1 0.1
p1j 0.4 0.3 0.5 0.2 0.6 0.6 0.7 0.2 0.7

System Y p2j 0.3 0.5 0.3 0.2 0.2 0.2 0.2 0.7 0.2
p3j 0.3 0.2 0.2 0.6 0.2 0.2 0.1 0.1 0.1
p1j 0.5 0.3 0.6 0.2 0.6 0.6 0.7 0.2 0.7

System Z p2j 0.3 0.5 0.2 0.2 0.2 0.2 0.2 0.7 0.2
p3j 0.2 0.2 0.2 0.6 0.2 0.2 0.1 0.1 0.1
p1j 0.4 0.3 0.6 0.20 0.6 0.6 0.7 0.2 0.7

System W p2j 0.3 0.5 0.2 0.2 0.2 0.2 0.2 0.7 0.2
p3j 0.3 0.2 0.2 0.6 0.2 0.2 0.1 0.1 0.1

Table 4: Second example of perturbing system confidence scores when the system (X) has M = 3 answer candi-
dates for each of the N = 9 questions given. Top probabilities are shown in blue if correct and in red if incorrect;
note that the top-probability-based accuracy is unchanged: 5/9 = 0.556. The underlines indicate the perturbations.

X Y Z W
HMR↑ 0.504 0.498 0.486 0.480
ECE↓ 0.089 0.078 0.100 0.089
MCE↓ 0.167 0.133 0.200 0.167
NBS↓ 0.196 0.201 0.198 0.204
KS↓ 0.078 0.067 0.089 0.078

Table 5: Summary of results for the second example.
Intuitive results are indicated in bold; counterintuitive
results are indicated by underlines.

has been lowered from 0.5 to 0.4 in order to obtain350

Y, even though both X and Y are correct for this351

instance. Below, we examine why ECE, MCE, and352

KS say that Y is better.353

4.3 ECE and MCE for Example 2354

From Table 4, the binwise accuracies (ab)355

are (1/3, 2/3, 2/3); the average confidences356

(c̄b) are (0.500, 0.600, 0.700) for X, and357

(0.467, 0.600, 0.700) for Y due to the injection358

of underconfidence. Hence the binwise absolute359

differences (|c̄b − ab|) are (0.167, 0.067, 0.033)360

for X, and (0.133, 0.067, 0.700) for Y. Therefore,361

from Eq. 1, MCE (which reflects only Bin 1) and362

ECE are smaller (i.e., “better”) for Y.363

The above flaw arises as follows. Note that364

a1 = 1/3 < c̄1 = 0.500 for X; hence the absolute365

difference for Bin 1 actually quantifies overcon-366

fidence. Therefore, Y, which is less confident in367

Bin 1 due to the perturbation, is considered to be368

“less overconfident” than X. Again, it is clear that369

binwise averaging is not a good idea in our context. 370

4.4 KS for Example 2 371

Table 6 shows how KS scores are computed for X 372

and Y shown in Table 4 according to Eq. 4. The 373

left side of the table shows that, for System X, 374

cpj diverges most from cGOLDj at j = 8 and 375

this is what determines the KS score: KS(X) = 376

0.078. Now, note that cp8 = 0.522 > cGOLD8 = 377

0.444: That is, X is on the side of overestimation 378

at j = 8. Therefore, if we want to reduce the 379

difference between cp8 and cGOLD8, we could (for 380

example) consider lowering cpj for every j, by just 381

lowering p1: this is exactly what the perturbation 382

injected in Y represents. As can be seen in the right 383

side of Table 6, we have “successfully” reduced 384

the difference between cp8 and cGOLD8: now the 385

maximum difference is observed not only at j = 8 386

but also at j = 1 and j = 5, and KS(Y ) = 0.067. 387

Thus, just like ECE and MCE, KS says that Y is 388

better than X, which is counterintuitive. 389

5 Axioms and Theorems 390

The examples discussed in Section 4 demonstrated 391

how the measures are actually computed, and how 392

ECE, MCE, and KS can be counterintuitive for our 393

purpose. (As mentioned earlier, counterintuitive 394

cases for NBS are provided in Appendix B.) How- 395

ever, examples are examples: this section clarifies 396

the advantages of HMR in terms of axioms that it 397

satisfies, to generalise our previous observations. 398
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System X System Y
j pj cpj GOLDj cGOLDj δj pj cpj GOLDj cGOLDj δj
1 0.5 0.056 1 0.111 0.056 0.4 0.044 1 0.111 0.067
2 0.5 0.111 0 0.111 0.000 0.5 0.100 0 0.111 0.011
3 0.5 0.167 0 0.111 0.056 0.5 0.156 0 0.111 0.044
4 0.6 0.233 1 0.222 0.011 0.6 0.222 1 0.222 0.000
5 0.6 0.300 0 0.222 0.078 0.6 0.289 0 0.222 0.067
6 0.6 0.367 1 0.333 0.033 0.6 0.356 1 0.333 0.022
7 0.7 0.444 1 0.444 0.000 0.7 0.433 1 0.444 0.011
8 0.7 0.522 0 0.444 0.078 0.7 0.511 0 0.444 0.067
9 0.7 0.600 1 0.556 0.044 0.7 0.589 1 0.556 0.033

Table 6: Computing the KS scores from the top probabilities shown in Table 4 for X and Z. The δj column
represents |cpj − cGOLDj | in Eq. 4; the maximum δj across the rows is the KS score by definition, as indicated
in bold. Probabilities for correct and incorrect cases are indicated in blue and red, respectively. The underlined
probability indicates where System Y differs from X.

5.1 Axioms399

All three axioms presented below start with the fol-400

lowing common prerequisite. Consider a sequence401

of binary correctness labels for N instances; the402

label for Instance i is denoted by GOLD(i). Un-403

der this setting, consider System X that returns a404

sequence 〈p1, . . . , pN 〉 of confidence scores (i.e.,405

probabilities) for the same N instances, where the406

scores have been sorted in ascending order (just407

for computing ECE, MCE, and KS). Let ij denote408

the j-th instance in the sorted list; then the corre-409

sponding sequence of the correctness labels can be410

denoted as 〈GOLD(i1), . . . ,GOLD(iN )〉.411

Axiom 5.1 (Axiom-U) Consider System Y, ob-412

tained by perturbing the confidence score sequence413

of System X as follows. Suppose that for one par-414

ticular instance ij s.t. GOLD(ij) = 1 (i.e., X is415

correct about the j-th instance), we managed to416

replace pj with qj(< pj) without affecting the pre-417

diction outcome (i.e., Y is still correct about this418

instance). Since the confidence is now lower for419

this correct case and nothing else has changed, Y420

should not be considered superior to X.421

Axiom 5.2 (Axiom-O) Consider System Z, ob-422

tained by perturbing the confidence score sequence423

of System X as follows. Suppose that for one par-424

ticular instance ij′ s.t. GOLD(ij′) = 0 (i.e., X is425

incorrect about the j′-th instance), we managed426

to replace pj′ with qj′(> pj′) without affecting427

the prediction outcome (i.e., Z is still incorrect428

about this instance). Since the confidence is now429

higher for this incorrect case and nothing else has430

changed, Z should not be considered superior to431

X .432

Axiom-U Axiom-O Axiom-UO
(X→Y) (X→Z) (X→W)

HMR↑ YES YES YES
ECE↓ NO NO NO
MCE↓ NO NO NO
NBS↓ NO NO NO
KS↓ NO NO NO

Table 7: Summary of whether each measure satisfies
the three axioms or not.

Axiom 5.3 (Axiom-UO) Consider System W, ob- 433

tained by applying both of the perturbations men- 434

tioned above. Compared to X, the confidence for 435

the correct case is lower and the confidence for 436

the incorrect case is higher and nothing else has 437

changed. In this situation, W should be considered 438

strictly inferior to X. 439

Note that Axiom-U (Axiom-O) tolerates evalua- 440

tion measures that cannot tell the difference be- 441

tween X and Y (X and Z); on the other hand, 442

Axiom-UO requires measures to say that W is 443

strictly worse than X. 444

Table 7 provides a summary of whether each 445

measure satisfies the three axioms or not. Below, 446

we provide the proofs. 447

5.2 HMR Satisfies All Tree Axioms 448

Theorem 5.1 (U-HMR) HMR satisfies Axiom-U. 449

Proof: The perturbation described in Axiom-U 450

does not affect O (Eq. 5) and hence does not af- 451

fect RO either (Eq. 6): for brevity, let c = RO 452

denote the unaffected reward. On the other hand, 453

the perturbation increases U (Eq. 5) and hence 454
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decreases RU (Eq. 7): that is, if we let a and b455

denote the RU for X and the RU for Y, respec-456

tively, then a > b(≥ 0). From Eq. 8, HMR(X) =457

2ca/(c + a) since a > 0. We need to show that458

∆ = HMR(X)− HMR(Y ) ≥ 0.459

Suppose that c = 0, i.e., O = |I−| (Eq. 6), that460

is, both X and Y are 100% confident for every461

incorrect case. Then HMR(X) = 0/a = 0. If462

b > 0, HMR(Y ) = 2cb/(c + b) = 0/b = 0; if463

b = 0, then c = b = 0 so HMR(Y ) = 0 (Eq. 8);464

Either way, ∆ = 0− 0 = 0.465

Otherwise (i.e., if c > 0), ∆ = 2ca/(c + a)−466

2cb/(c+ b) = 2c2(a− b)/(c+ a)(c+ b) > 0.467

Theorem 5.2 (O-HMR) HMR satisfies Axiom-O.468

Proof: The perturbation described in Axiom-O469

does not affect U (Eq. 5) and hence does not af-470

fect RU either (Eq. 7): for brevity, let c = RU471

denote the unaffected reward. On the other hand,472

the perturbation increases O (Eq. 5) and hence473

decreases RO (Eq. 6): that is, if we let a and474

b denote the RO for X and the RO for Z, re-475

spectively, then a > b(≥ 0). Since a > 0,476

HMR(X) = 2ac/(a + c). We need to show that477

∆′ = HMR(X)− HMR(Z) ≥ 0.478

Suppose that c = 0, i.e., U = |I+| (Eq. 7),479

that is, both X and Z are 0% confident for every480

correct case. Then HMR(X) = 0/a = 0. If481

b > 0, HMR(Z) = 2bc/(b + c) = 0/b = 0; if482

b = 0 as well, then b = c = 0 so HMR(Z) = 0483

(Eq. 8). Either way, ∆′ = 0− 0 = 0.484

Otherwise (i.e., if c > 0), ∆′ = 2ac/(a+ c)−485

2bc/(b+ c) = 2c2(a− b)/(a+ c)(b+ c) > 0.486

Theorem 5.3 (UO-HMR) HMR satisfies Axiom-487

UO.488

Proof: Based on the proofs of Theorems U-HMR489

and O-HMR, it is clear that the two perturbations490

described in Axiom-UO decrease both RU (due to491

the j-th instance) andRO (due to the j′-th instance).492

Hence the harmonic mean (Eq. 8) also decreases;493

that is, HMR(X) − HMR(W ) ≥ 0. Moreover,494

from the proofs of U-HMR and O-HMR, it follows495

that the equality can hold only when both X and496

W are 100% confident for every incorrect case and497

0% confident for every correct case. However, we498

know that this is not possible: if X is 100% confi-499

dent for every incorrect case, it is not possible to fur-500

ther inject overconfidence; if X is 0% confident for501

every correct case, it is not possible to further inject502

underconfidence. Hence, HMR(X) > HMR(W )503

holds: W is strictly inferior to X.504

Axiom-U Axiom-O Axiom-UO
(X→Y) (X→Z) (X→W)

ECE ↓ Example 2 Example 1 Example 1
MCE↓ Example 2 Example 1 Example 1
NBS↓ Example 3 Example 3 Example 3
KS↓ Example 2 Example 1 Example 1

Table 8: Counterexamples that show that these mea-
sures do not satisfy the axioms. Examples 1 and 2 are
given in Tables 1 and 4, respectively. Example 3 is pro-
vided in Appendix B as NBS relies on the probability
for every class unlike the other measures.

5.3 ECE, MCE, NBS, and KS Satisfy None of 505

the Axioms 506

To prove that none of ECE, MCE, NBS, and KS 507

satisfy any of the axioms, providing one actual 508

counterexample for each situation suffices. Table 8 509

provides the counterexamples necessary. 510

6 Conclusions and Future Work 511

For the purpose of penalising both overconfidence 512

and underconfidence in system responses while 513

balancing the two, we proposed a simple and intu- 514

itive evaluation measure called HMR. We proved 515

that HMR satisfies our axioms (i.e., penalising a 516

lowered confidence for a correct response, penalis- 517

ing a raised confidence for an incorrect response, 518

and penalising a system that reflects both perturba- 519

tions), and that existing calibration measures do not. 520

Hence, while we do not claim that HMR should 521

replace existing calibration measures in all calibra- 522

tion tasks, we do recommend its use in tasks where 523

our axioms make sense. 524

We designed HMR primarily for conversational 525

search systems where each response is either cor- 526

rect or not and has a confidence score; the score 527

could represent a top probability (or more generally, 528

the n-th highest probability) among the probabili- 529

ties for M different response candidates; the candi- 530

ates may be generated by the system itself or given 531

to the system from outside, as in multiple choice 532

questions. However, HMR can be used in any task 533

where the system response has a binary gold label 534

and one confidence score. For example, the gold 535

label could represent whether the system response 536

is harmful or not in a content moderation task. We 537

plan to explore more ways to utilise HMR in fu- 538

ture work, for example, in a shared conversational 539

search task. 540
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Limitations541

Figure 1 was obtained through a pilot experiment542

with Google Bard (as of November 2023) to ex-543

emplify a situation where the same system can be544

overconfident and underconfident depending on545

test instances. The experiment does not represent546

an actual case where a system has a confidence547

score for each of its own responses; instead, Google548

Bard returned a confidence score to each response549

that was fed to it. Evaluating real situations with550

HMR is left for future work. However, note that551

our axioms and theorems do not depend on data.552

We designed HMR specifically for tasks where553

overconfidence and underconfidence should be con-554

sidered separately, and balancing between the two555

is important. We do not claim that all calibration556

measures should be replaced by ours in traditional557

calibration tasks; we only claim that HMR should558

be preferred over existing calibration measures for559

tasks where our axioms make sense.560

Ethics Statement561

The present study was ethically motivated. We562

started this work because the recent LLM-based563

conversational systems often hallucinate, and not564

only the fluency but also the confidence of their565

responses tend to fool the users. The misinforma-566

tion may negatively impact the users, the down-567

stream tasks, and society at large. The information568

thus spread may then be fed to LLMs as training569

data. We believe that it is the responsibility of NLP570

researchers to prevent such vicious circles. Sup-571

pressing both overconfidence and underconfidence572

means that the system will be just as modest about573

the credibility of their responses as it should be.574

Our hope is that this work will help the research575

community advance towards that goal.576
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A A Pilot Experiment with SWAG709

This section supplements Section 1 by describing710

exactly how we obtained Figure 1.711

We first downloaded the raw SWAG712

validation dataset (Zellers et al., 2018):713

https://github.com/rowanz/swagaf/blob/714

master/data/val_full.csv. We chose this data715

set just to illustrate our point that underconfidence716

can sometimes be a problem along with the717

more widely known overconfidence problem of718

system responses. The dataset contains 20,006719

records, where each record represents a video720

caption completion task instance, consisting of721

a startphrase (i.e., an incomplete caption), a722

gold response (i.e., the correct final phrase that723

completes the caption), and several distractors724

(i.e., phrases that are considered less good than the725

gold response or even completely out of context).726

From this multiple choice data set, we randomly727

extracted 100 records where each record consists728

of a startphrase, the gold response, and exactly729

one distractor that was labelled “unl(ikely)” (i.e.,730

the distractor sounds ridiculous or impossible731

given the context). Based on this sample, we732

created 100 gold response prompts as well as 100733

distractor response prompts: Figure 2 provides an734

example gold response prompt, together with the735

corresponding distractor response prompt. Note736

that the only difference between the two is the737

content of “YOUR FINAL PHRASE” part.738

We randomly shuffled the 200 prompts thus cre-739

ated as it is known that conversational search re-740

sponses may be affected by previous prompts: they741

“remember” to some extent. That is, a gold response742

prompt and its distractor counterpart were treated743

as two independent records during the random shuf-744

fling so that the system cannot directly compare745

the gold and distractor final phrases. The prompts746

were fed to Google Bard one by one on Novem-747

ber 15, 2023; when the 108th prompt was entered,748

Google Bard refused to continue the work; hence749

the work was resumed on November 21, 2023 and750

was completed on the same day. In this way, we751

obtained a confidence score in the 0-1 range for752

each of the 200 prompts (with 4 exceptions as de-753

scribed later). For example, for the prompts shown754

in Figure 2, Google Bard returned 0.2 (represent-755

ing underconfidence, as the final phrase is gold)756

and 0.6 (representing overconfidence, as the final757

phrase is a distractor), respectively. This record is758

highlighted with a balloon in Figure 1.759

Despite our explicit instruction in the template 760

part of the prompts for Google Bard to return 761

a confidence score only, Google Bard occasion- 762

ally returned some additional information such as 763

YouTube links or sentences. For these cases, we 764

recorded the confidence scores along with “redun- 765

dant” as a comment. Also, Google Bard failed to 766

return a confidence score for 4 of the 200 prompts; 767

for these cases, we recorded “NA” instead of a con- 768

fidence score. (We actually tried both Google Bard 769

and the New Bing for this experiment but the latter 770

flatly refused to return confidence scores from the 771

outset, as of November 15, 2023.) 772

To ensure that Figure 1 can be reproduced (de- 773

spite the lack repeatability of our Google Bard- 774

based experiment itself as its behaviour keeps 775

changing), we will make the 200 shuffled prompts 776

and the confidence scores returned by Google Bard 777

publicly available upon paper acceptance. (The 778

data is shared with the ACL ARR reviewers as an 779

accompanying zip file.) 780

B Counterexamples for NBS 781

This section discusses our third example, which 782

demonstrates that NBS can be counterintuitive 783

when the perturbations described in Section 4.1 784

are applied to System X in order to obtain Y, Z, and 785

W. 786

Table 9 presents our third example with M = 787

6, N = 3; Table 10 shows the HMR, NBS, and KS 788

scores computed from Table 9. ECE and MCE are 789

omitted here, as these measures require instance 790

binning and binwise averaging of confidences but 791

we only have three instances. 792

For X, the sum of squared errors (Eq. 2) for 793

the third instance (j = 3) is (0.6 − 1)2 + 0.42 = 794

0.32. In contrast, for Y, the corresponding value 795

is (0.5 − 1)2 + 5 ∗ 0.12 = 0.30; this is why Y is 796

considered better than X. Meanwhile, for X, the 797

sum of squared errors for the second instance (j = 798

2) is 0.42 + 0.32 + 3 ∗ 0.12 = 0.68. In contrast, 799

for Z, the corresponding value is 0.52 + 0.42 + 800

0.12 = 0.62; this is why Z is considered better 801

than X. Finally, W is also considered better than X 802

according to NBS, as W reflects both of the above 803

changes in sum of squared errors. 804

As a final remark, note that KS completely fails 805

to detect the perturbations in Table 10. 806
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(a) A gold response prompt
##### lsmdc0025_THE_LORD_OF_THE_RINGS_THE_RETURN_OF_THE_KING-61110 2054 gold
Imagine that you were asked to complete a video clip caption that was missing the final phrase. THE 
INCOMPLETE CAPTION is the incomplete caption that you were given, and YOUR FINAL PHRASE is what you 
added to it to make the caption complete and coherent. Given this context, you are also asked to output a 
confidence score for your final phrase, a real number in the 0-1 range. 0 means you completely lack 
confidence about whether the completed caption makes sense. 1 means you have perfect confidence. Do 
not return any additional information. Do not return any text. Please just return a confidence score.
### THE INCOMPLETE CAPTION:
A boulder smashes into a balcony full of civilians. Someone’s staff
### YOUR FINAL PHRASE:
Smashes into the back of someone’s head!
### YOUR CONFIDENCE SCORE:

(b) The corresponding distractor response prompt
##### lsmdc0025_THE_LORD_OF_THE_RINGS_THE_RETURN_OF_THE_KING-61110 2054 distractor
Imagine that you were asked to complete a video clip caption that was missing the final phrase. THE 
INCOMPLETE CAPTION is the incomplete caption that you were given, and YOUR FINAL PHRASE is what you 
added to it to make the caption complete and coherent. Given this context, you are also asked to output a 
confidence score for your final phrase, a real number in the 0-1 range. 0 means you completely lack 
confidence about whether the completed caption makes sense. 1 means you have perfect confidence. Do 
not return any additional information. Do not return any text. Please just return a confidence score.
### THE INCOMPLETE CAPTION:
A boulder smashes into a balcony full of civilians. Someone's staff
### YOUR FINAL PHRASE:
are tracking around him toward the jeep.
### YOUR CONFIDENCE SCORE:

Figure 2: An example of a gold response prompt and the corresponding distractor response prompt. The green
parts are comments, not part of the prompts.

Instance number j 1 2 3 True class 3 2 1
p1j 0.3 0.4 0.6 p1j 0.3 0.4 0.5
p2j 0.4 0.3 0.4 p2j 0.4 0.3 0.1

System X p3j 0.1 0.1 0 System Y p3j 0.1 0.1 0.1
p4j 0.1 0.1 0 p4j 0.1 0.1 0.1
p5j 0.1 0.1 0 p5j 0.1 0.1 0.1
p6j 0 0 0 p6j 0 0 0.1
p1j 0.3 0.5 0.6 p1j 0.3 0.5 0.5
p2j 0.4 0.4 0.4 p2j 0.4 0.4 0.1

System Z p3j 0.1 0.1 0 System W p3j 0.1 0.1 0.1
p4j 0.1 0 0 p4j 0.1 0 0.1
p5j 0.1 0 0 p5j 0.1 0 0.1
p6j 0 0 0 p6j 0 0 0.1

Table 9: Third example of perturbing system confidence scores when the system (X) hasM = 6 answer candidates
for each of the N = 3 questions given. Top probabilities are shown in blue if correct and in red if incorrect; note
that the top-probability-based accuracy is unchanged: 1/3 = 0.333. The underlines indicate the perturbations.

X Y Z W
HMR↑ 0.600 0.545 0.574 0.524
NBS↓ 0.116 0.114 0.112 0.111
KS↓ 0.200 0.200 0.200 0.200

Table 10: Summary of results for the third example. Intuitive results are indicated in bold; counterintuitive results
are indicated by underlines. As there are only three instances, ECE and MCE (which require instance binning) are
omitted.
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