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Abstract

We present a simple yet effective fully convolutional one-stage 3D object detector
for LiDAR point clouds of autonomous driving scenes, termed FCOS-LiDAR.
Unlike the dominant methods that use the bird-eye view (BEV), our proposed
detector detects objects from the range view (RV, a.k.a. range image) of the LiDAR
points. Due to the range view’s compactness and compatibility with the LiDAR
sensors’ sampling process on self-driving cars, the range view-based object detector
can be realized by solely exploiting the vanilla 2D convolutions, departing from
the BEV-based methods which often involve complicated voxelization operations
and sparse convolutions.
For the first time, we show that an RV-based 3D detector with standard 2D convo-
lutions alone can achieve comparable performance to state-of-the-art BEV-based
detectors while being significantly faster and simpler. More importantly, almost
all previous range view-based detectors only focus on single-frame point clouds,
since it is challenging to fuse multi-frame point clouds into a single range view.
In this work, we tackle this challenging issue with a novel range view projection
mechanism, and for the first time demonstrate the benefits of fusing multi-frame
point clouds for a range-view based detector. Extensive experiments on nuScenes
show the superiority of our proposed method and we believe that our work can be
strong evidence that an RV-based 3D detector can compare favourably with the
current mainstream BEV-based detectors. Code will be made publicly available.

1 Introduction

With the rise of autonomous driving, 3D object detection from the LiDAR point cloud has been
recently drawing increasing attention. Similar to the 2D image object detection [RHGS15, TSCH19,
LAE+16, RF17, RDGF16], 3D object detection requires the model to predict the (3D) locations of
the objects of interest and the associated properties (e.g., categories, sizes, heading, and the state of
motion). In spite of the unprecedented success that the computer vision community has attained on
the 2D image object detection, it is still intractable to transfer the success to the 3D object detection
task.

Most previous 3D object detection methods consider that the point cloud is amorphous and consists
of a set of unordered points. Thus, this task is considered significantly different from its 2D detection
counterpart, which works on structured RGB images. Moreover, the cornerstones of modern computer
vision—CNNs or CNN-like vision transformers (e.g., Swin Transformers [LLC+21]) also assume
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Figure 1: The range image of the point cloud (right). The size of the range image is m× n, where
m is the number of beams and n is the number of measurements (i.e., sampling frequency) per scan
cycle. A 3D point’s coordinates on the range image are computed by discretizing the azimuthal angle
θ and the inclination angle ϕ in the spherical coordinate system (left). The m, n, and ∆ϕ depend on
the LiDAR specifications.

that the inputs are well-organized as grids, which poses another difficulty of accurate 3D object
detection in point clouds. As a result, in order to adopt these well-developed techniques, almost
all top-performing point cloud object detection methods first partition the 3D space into structured
voxels (or pillars) [ZT18, YZK21, YML18, LVC+19, Li17] and then follow a paradigm similar to
that of 2D object detectors [RHGS15, ZWK19]. Additionally, given the prior that it is very rare two
objects being stacked along with the elevation axis in autonomous driving scenes, most methods
only carry out the detection task on the bird-eye view (BEV) of the point cloud, which can reduce
the exponentially increasing complexity resulted from the third dimension. However, owing to
incompatibility with the LiDAR’s sampling process in the autonomous driving scenes, BEV-based
solutions often suffer from the following shortcomings. 1) In fact, the points in autonomous driving
are regularly sampled in the spherical coordinate system with the origin being the LiDAR sensor.
The BEV disregards this regularity, and causes the issue that the voxels far away from the origin
have much fewer points than the ones near the origin; and a large number of voxels are even empty.
This results in the need for sparse convolutions [YML18, YZK21, Gra14], significantly complicating
the system, particularly for on-device applications. 2) The points in a voxel have to be sampled or
padded so that every voxel has the same number of points. The sampling decimates a large number
of points, leading to the loss of information before the model see anything. 3) From the BEV, some
objects such as “pedestrian” and “traffic cone” become very small. Accurately detecting these objects
requires a fine-grained voxel size, dramatically increasing the price of computation.

In this work, we advocate a new solution for 3D object detection that works on the range view
(RV). As noted by many previous works [FXW+21, SKD+20, MLK+19], if we consider these
points in the spherical coordinate system and project them in terms of their inclination and azimuth
angles, they can form a compact 2D image with size being m × n (shown in Fig. 1), where m
is the number of beams (i.e., channels) of the LiDAR sensor and n is the sampling frequency per
scan cycle. The resulting image is referred to as “range image” or “range view” of the point cloud.
Compared to the aforementioned BEV, the range image is nearly dense and compatible with the
LiDAR sampling process, eliminating the need for sparse convolutions and alleviating the loss of
points. In addition, the range image closely resembles the common RGB image, minimizing the
cost of transferring the 2D detection methods to 3D ones. In the literature, some works attempted
to detect objects on the range view such as RangeDet [FXW+21] and LaserNet [MLK+19]. These
works have shown that RV-based methods can also achieve decent detection performance, showing
the promise. However, previous RV-based methods only focus on the single-frame point cloud as
the aforementioned range view structure does not hold anymore if the ego (and the origin) moves
between the multiple frames. Additionally, the range image of a single-frame point cloud is already
nearly dense so that there are not many vacancies the points from other frames can populate. These
issues make the range-view based detectors difficult to benefit from the multi-frame fusion. In
sharp contrast, the multi-frame fusion can dramatically improve the performance in the BEV-based
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detectors, as shown in [YZK21, LVC+19]. This makes the performance of RV-based detectors largely
lag behind that of the BEV-based ones, hampering their development and application. In this work,
we show this issue can be largely remedied with a well-designed Multi-round Range View (MRV)
projection mechanism. The proposed MRV makes the RV-based detectors be able to enjoy the gain of
multi-frame fusion and thus achieve competitive performance with multi-frame BEV-based detectors.

Here, we summarize our main contributions as follows.

• We propose a fully convolutional one-stage 3D object detector, termed FCOS-LiDAR.
FCOS-LiDAR works on the LiDAR range images and minimizes the gap between the 3D
and 2D detectors, while being substantially simpler than current mainstream BEV-based 3D
detectors [YZK21, ZT18].

• Compared to previous BEV-based detectors [ZT18, YZK21], FCOS-LiDAR sidesteps the
complicated voxelization process and eliminates the need for sparse convolutions due to the
highly compact range view representation of the point cloud. In the setting of only using
the single-frame point cloud as inputs, FCOS-LiDAR can outperform the state-of-the-art
BEV-based detector CenterPoint [YZK21] while being faster.

• We also present a well-designed Multi-round Range View (MRV) projection mechanism,
making RV-based detectors be able to benefit from the multi-frame fusion of point clouds
as well, and achieve competitive performance compared to the multi-frame BEV-based
detectors. To our knowledge, we are the first one approaching the challenge of the RV-based
multi-frame point clouds fusion and showing that RV-based detectors can also be boosted by
the multi-frame fusion of point clouds.

• We believe that our excellent performance of the RV-based detector can be a strong evidence
that RV-based detectors compare favorably against the mainstream BEV-based detectors and
encourage the community to pay attention to this promising solution.

2 Related Work

Bird-view based 3D Detection. Most top-performing LiDAR-based 3D detectors [FPZ+21, YML18,
YZK21, LVC+19, ZT18] fall into this category, which first convert the point cloud into BEV images.
VoxelNet [ZT18] is the first end-to-end BEV-based detector, which employs PointNet [QSMG17]
to handle the representation within a voxel and 3D convolutions to generate high-level features for
the region proposal network (RPN). SECOND [YML18] proposes to use sparse convolutions, which
can save the computing burden of 3D convolutions. Another popular approach is to eliminate the
voxelization along the elevation axis and convert the point cloud into the pillars [LVC+19]. Based on
the voxel-based or pillar-based BEV representation, CenterPoint [YZK21] achieves state-of-the-art
performance by using the anchor-free pipelines.

Range-view based 3D Detection. Due to the compactness of the RV representation, some meth-
ods [SWC+21, BSM+21, MLK+19, MLK+19] also attempt to perform detection based on the
representation. VeloFCN [LZX16] is the pioneering work to perform 3D objection using the range
view, which transforms point cloud to the range image and then applies 2D convolution to detect
3D objects. After that, some following works [MLK+19, FXW+21] are proposed to narrow the
performance gap between RV-based and BEV-based detectors. LaserNet [MLK+19] models the
distribution of 3D box corners to capture their uncertainty, resulting in more accurate defections.
RCD [BSM+21] introduces the range-conditioned dilation mechanism to dynamically adjust the
dilation rate in terms of the measured range, which can alleviate the scale-sensitivity issue of the
RV-based detectors. RangeDet [FXW+21] further proposes the Range Conditioned Pyramid to
mitigate the scale-variation issue and utilizes the Meta-Kernel convolution to better exploit the 3D
geometric information of the points. To our knowledge, these existing RV-based detectors only take
into consideration the single frame point cloud and neglect the substantial improvements brought by
the multi-frame fusion as shown in BEV-based detectors.
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3 Our Approach

3.1 Range View Representation

Given a LiDAR point (x, y, z) in the Cartesian coordinate system with the z-axis pointing upward, it
can be uniquely transformed to the spherical coordinates (r, θ, ϕ) with

r =
√
x2 + y2 + z2, θ = atan2(y, x), ϕ = atan2(z,

√
x2 + y2), (1)

where r, θ, and ϕ are the range, azimuthal angle, and inclination angle, respectively, as shown in
Fig. 1(left). The LiDAR samples the points with a fixed number of beams (denoted by m), each of
which has a fixed inclination angle. These LiDAR beams synchronously rotate around the z-axis
uniformly to obtain a 360◦ horizontal field of view and the LiDAR measures a certain number of
times (denoted by n) per scan cycle (i.e., per frame). Thus, the difference of adjacent measurements’
azimuthal angles is 360/n◦. For example, on the nuScenes dataset, the LiDAR measures n = 1086
times per scan cycle and has m = 32 beams. The inclination angles of these beams are evenly spaced
from −30.67◦ to 10.67◦, inclusive. Note that the inclination angles are not always evenly spaced and
subject to the specifications of the LiDAR.

Given the regularity of the azimuthal and inclination angles for a given LiDAR, we can discretize
the azimuthal angles with n bins, and inclination angles with m bins, respectively. Let (i, j) be the
indices of the bins for azimuthal and inclination angles, respectively. By computing all the pairs of
(i, j) of the points in a single scan cycle, we can fill these points into a 2D image I ∈ Rm×n×C (i.e.,
the range image), where C = 9 consists of the original Cartesian coordinates (x, y, z), the spherical
coordinates (r, θ, ϕ), the reflected intensity i, the existence e of the point, and a relative timestamp t.
The existence denotes whether or not the location is filled by a point, and the relative timestamp is
only valid in the multi-frame point cloud inputs and denotes the time difference between the frame
containing this point and the current frame. In practice, the vehicle itself is often in motion, and this
causes that some points might be projected to the same bins on the range image. In this case, we keep
the one with the minimal distance to the vehicle.

3.2 Multi-round Range View Projection (MRV)

The point cloud of a single frame is often sparse in the 3D space and of low resolutions. In order to
improve the detection performance, the current frame is often combined with several previous frames
as the network’s inputs [YZK21, ZT18]. Taking the nuScenes dataset as an example, the methods on
this dataset often take as the inputs 10 frames, which is composed of the current frame and previous
9 frames, including ∼240K points in total. The crucial issue of the range view representation is the
collision that multiple points fall into the same bin happens much more frequently in the multi-frame
case. For instance, on nuScenes, only ∼28K points are finally kept in the range image and ∼90% of
the points are discarded due to the collision. The decimation makes the multi-frame point cloud have
almost the same number of valid points with the single-frame version, which is the dominant reason
that RV-based methods cannot enjoy the benefit of multi-frame inputs.

In order to cope with this crucial issue, we propose the Multi-round Range View (MRV) projection
mechanism. To be specific, we first project the points with the method in Sec. 3.1. Then, instead of
discarding the rejected points, we project them again with the same process and put them in another
group of nine channels. This projection process is repeated until a sufficient number of points are
kept. On the nuScenes dataset, this is repeated five times and the percentage of the retained points can
be improved from ∼10% to more than 50%. In theory, as long as we continue the process, all points
can be kept. However, we found that the performance is saturated after 5 repetitions on the nuScenes
dataset. Finally, the resulting range images of the five rounds are concatenated along the channel
dimension and used as the inputs. Additionally, one caveat is that the points of the current frame
should have the highest priority wherever the collision happens because the points of previous frames
are stale and might not reflect the current status of the world. Despite being a very simple treatment,
it significantly affects the effectiveness of the multi-frame fusion as shown in our experiments.

3.3 Modality-wise Convolutions

As mentioned before, each pixel on the single-frame range image contains nine channels. Different
the RGB image, whose three channels are of the same modality (i.e., in the color space) and correlated

4



y0 

r0 z0 

�0 θ0 

e0 t0 i0 

y4 

Rearrange

…

… …

x0 

x4

r4 z4 

�4 θ4 

e4 t4 i4 

C=32

C=32

C=32

C=32

m
n

m
n m

n

……

Multi-frame Range Image

Conv2D(groups=9)

Figure 2: Modality-wise convolutions with a multi-frame range image. As we can see, we first
rearrange the channels of the multi-frame range image so that the channels with the same type from
different frames (e.g., x0, x1, ... xT−1) are adjacent. Then, two successive 2D conv. layers with
the number of groups being 9 (which is equal to the number of different channel types) are used to
process these channels separately, mapping each channel type to a 32-channel features. Finally, the
features of these channel types are merged by a 1× 1 conv. layer.

for the manifold of natural images, the nine channels of the range image are not like that and belong
to five modalities, i.e., [x, y, z], [r, θ, ϕ], [i], [e] and [t], respectively, where the channels in the one
pair of square brackets are of the same modality. For example, the correlation between the reflected
intensity i and the coordinate x does not make sense. Further, even the different channel types in the
same modality are orthogonal and less correlated as well. For instance, it is difficult to say there is a
relationship between the azimuthal angle θ and the range r of a point. As a result, one channel type
should be viewed as an individual “modality”. By default, the conv. layer simultaneously computes
spatial correlations and cross-channel correlations. However, as shown before, the channels of the
range image are less correlated, and thus, it is not reasonable to use the default conv. layer here, and
the channels of the range image should be processed separately. This can be easily implemented
with the grouped convolutions. Here, we term it modality-wise convolution because it is based on the
“modalities”. Once the high-level semantic features of these modalities are individually obtained, we
can aggregate the features of these modalities with a 1× 1 conv. layer (i.e., point-wise convolution)
for further abstract analysis.

In this way, the modality-wise convolution is analogous to the widely-used depth-wise convolution,
but we highlight that the underlying nature is distinct. Our modality-wise convolution instantiates
a reasonable inductive bias based on the prior that different modalities are less relevant, and thus
it is expected to simultaneously improve both the effectiveness and efficiency, as shown in our
experiments. This also leads to the fact that the modality-wise convolution can only be placed at
the beginning of the network, where the channels are interpretable and have an explicit modality. In
contrast, the depth-wise convolution (together with the point-wise convolution) is often viewed as an
efficient approximation of the full conv. layer and thus it does not usually yield improved performance
and can appear anywhere. Lastly, when it comes to the multi-frame point clouds, the channels of the
same type from different frames should be handled together because they are closely correlated. The
whole procedure of the modality-wise convolution is illustrated in Fig. 2.

3.4 Overall Architecture

The overall architecture of FCOS-LiDAR is shown in Fig. 3. FCOS-LiDAR follows the spirit of the
anchor-free detector FCOS [TSCH19] in the image-based object detection and is a standard fully
convolutional network [LSD15].

Taking a (multi-frame) range image I ∈ Rm×n×(T×C) as an example, where T is the number of the
used frames, we first forward the range image through our backbone network, termed LiDAR-Net.
LiDAR-Net is adapted from ResNet-50 [HZRS16]. Specifically, before the first conv. layer of ResNet-
50, we insert three branches of the modality-wise convolutions with three dilation rates being 1, 3,
and 6, respectively. The branches with various dilation rates aim to capture the multi-scale context,
whose outputs are summed up. Then, the first two 2× downsamplings of ResNet-50 are removed,
which is of great importance due to the low resolutions of the range images. Moreover, we change

5



Head

Head

Head

Head

Head

Head

N×(C×6)×H×W
Box (cx , cy , cz , w, h, l)

N×(C×2)×H×W
Yaw Angle (sinα, cosα)

N×(C×2)×H×W
Velocity (vx , vy)

N×(C×1)×H×W
IoU Prediction

N×(C＋1)×H×W
Softmax CLS Scores

Classification

Regression
1/1

1/2

1/4

1/8

1/16

1/32

Input Range Image

×4

×4

Figure 3: Overall architecture. The overall architecture of FCOS-LiDAR resembles the 2D image-
based detector FCOS [TSCH19]. By taking as input an range image, the network obtains the
multi-level FPN features, and then the classification and regression branches are attached to these
feature levels to predict the final 3D boxes. Different from FCOS, the weights of the detection
heads are not shared between the FPN levels as mentioned in Sec. 3.4. In addition, the class-specific
regression heads are used instead of the class-agnostic ones in FCOS.

the numbers of blocks of ResNet-50’s four stages from (3, 4, 6, 3) to (4, 4, 1, 1) and stop doubling
the number of channels in the third and fourth stages because we found that the final performance
is not sensitive to the capacity of the later stages but quite sensitive to that of the early stages. This
ravels one of the important difference between the LiDAR-based and image-based object detection
tasks. For object detection in RGB images, more convolutions in the later stages are often required to
transform the RGB pixels into the highly semantic and abstract features that can be used to obtain the
geometries of the objects. However, the LiDAR points themselves are already geometric points and
thus that many convolutions in the later stages are no longer needed. Thus, we can instead allocate
the capacity in the later stages to the early stages (before any downsampling) to better incorporate
the geometric information carried by the raw points. Finally, the four levels of feature maps from
LiDAR-Net’s four stages are used, denoted by C2, C3, C4, and C5, respectively.

Next, following FCOS, the four levels of feature maps are sent into a feature pyramid network
(FPN) [LDG+17] to obtain six levels of pyramid feature maps denoted by P2, P3, P4, P5, P6, and
P7. Their spatial downsampling ratios to the input are 1/1, 1/2, 1/4, 1/8, 1/16, and 1/32, respectively.
Then, similar to FCOS, the classification and regression heads, each with four 3× 3 conv. layers of
channel 64 and a final prediction conv. layer (for the classification or regression), are attached to these
feature levels. Unlike the heads in image-based detectors, whose weights are shared between these
feature levels, it is important in the LiDAR-based detector to untie these weights. This is another
important difference between image-based and LiDAR-based detectors. In image-based detectors,
different sizes of objects can be normalized to similar sizes of objects by the downsampling the image
with corresponding factors. That is what the “pyramid” means in the FPN. Thus, the image-based
detectors can share the weights of the detection heads because the objects have been normalized
to similar sizes after the FPN. However, in LiDAR-based detection, the objects’ sizes cannot be
normalized in this way because the sizes of the objects are determined by the 3D points’ coordinate
values in them and downsampling the range images cannot alter their real sizes in the 3D space.
Therefore, it is no longer reasonable to share the detection heads between these FPN levels. This is
also confirmed in our experiments.

Training Targets Computation. Similar to FCOS [TSCH19], we need to assign the training targets
to each location of the feature maps computed with the range image. The training targets computation
is described using the nuScenes dataset as an example. On nuScenes, an object’s ground-truth 3D box
is parameterized by (c∗x, c

∗
y, c

∗
z, w

∗, h∗, l∗, α∗), where (c∗x, c
∗
y, c

∗
z) is the 3D center of the box, and

w, h, l, and α respectively are the width, height, length, and the yaw angle around the z axis. First,
each location on the feature maps is mapped to the pixel location on the range image by multiplying
them by the feature maps’ downsampling ratio. Next, we use the 3D LiDAR point projected by
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the first-round MRV projection as the 3D point of the pixel. If the pixel’s 3D point is contained in
an object’s 3D box, the feature location is responsible for the object and predicts its category, 3D
box and etc.. Here, the 3D box regression targets of the feature location are relative to the 3D point
coordinates of the pixel and are defined as

∆cx = c∗x−x0, ∆cy = c∗y − y0, ∆cz = c∗z − z0, tw = log(w∗), th = log(h∗), tl = log(l∗), (2)

where (x0, y0, z0) are the 3D point coordinates of the range image pixel. Similarly, the regression
targets of the yaw angle α are also relative to the azimuthal angle of the pixel, and following the
convention [YZK21], we decouple the relative azimuthal angle into (sin∆α, cos∆α). On nuScenes,
we also need to predict the velocity vector (v∗x, v

∗
y) of the object, which are used as the training targets

as is. Other locations on the feature maps that correspond to 3D points not in any 3D box are used as
the negative samples. Note that all the pixels within a object’s 3D box actually form a 2D mask on
the range image.

Network Outputs. The nuScenes dataset has C = 10 classes of interest, which is predicted by the
classification head followed by a softmax layer (the upper head in Fig. 3). The other regression
targets are predicted by four sibling output heads of the regression branch, respectively, as shown
in Fig. 3. Here, we use the class-specific regression predictions and thus the number of the output
channels is amplified by C times. Moreover, following [GLW+21, RDGF16], each positive pixel
also predicts the intersection-over-union (IoU) between the predicted 3D box and ground-truth one,
which is multiplied to the classification score before the non-maximum suppression (NMS).

Loss Functions. The classification predictions are supervised with the cross entropy (CE) loss.
Following [GLL+21], we dynamically reassign the classification labels during training. Specifically,
for a ground-truth 3D box, only the top K pixels whose predicted 3D boxes have the lowest costs with
the ground-truth box are assigned with the positive labels and other pixels are considered negative,
where the cost is defined as the summation of the classification loss and the opposite of the IoU
between the predicted boxes and the ground-truth box, and K is dynamically calculated, being the
summation (rounded to an integer) of the highest Q = 20 IoUs between the predicted boxes and the
ground-truth box. For the 3D box regression, we make use of both the IoU loss [YJW+16] and L1

loss. Following [TSCH19], the IoU predictions are penalized with the binary cross entropy (BCE)
loss since they are in the range [0, 1].

Inference. The inference is very similar to that of the 2D image-based detector FCOS. To be specific,
the range images are forwarded through the network and the aforementioned predictions are obtained.
The predictions are filtered in terms of the classification scores and only the predictions with the score
greater than 0.01 are kept. The 3D boxes are restored by inverting the computation of the training
targets. Then, the NMS on the 3D boxes is applied with threshold 0.2 to remove the duplications.
Finally, the top 500 predictions with the highest scores are used as the final predictions.

4 Experiments

We conduct experiments on the nuScenes dataset [CBL+20], which contains 1000 scenes with 700,
150, and 150 scenes for training, validation, and testing, respectively. The training, validation, and
testing sets have 28K, 6K, 6K keyframes annotated with 10 classes, respectively. For all ablation
experiments, we train the models on the training set and report the performance on the validation set
unless specified. The metrics of the 3D detection task are mean Average Precision (mAP) and the
nuScenes detection score (NDS). The LiDAR sensor of the nuScenes dataset has m = 32 beams and
n = 1086 measurements per scan cycle. The mAP is based the center distances on the bird-eye view
at thresholds 0.5m, 1m, 2m, 4m in place of the box IoUs. NDS is a weighted average of mAP, the
translation error, the scale error, the orientation error, the velocity error, and the box attributes error.

Implementation Details. Unless specified, following [YZK21], FCOS-LiDAR is trained by 40
epochs with the AdamW [LH17] optimizer under the MMDetection3D framework [Con20], which
takes ∼26 hours on 8 A100 GPUs. The one-cycle learning rate policy [ST19] with initial learning
rate 10−3 is used. The learning rate gradually increases to 0.01 in the first 40% epochs and then
gradually decreases to 10−7 in the rest of the training process. The weight decay is 0.01, and the
momentum ranges from 0.85 to 0.95. In addition, due to the low vertical resolution of the range
image on the nuScenes dataset, we upscale the range image in the vertical direction by 2 with the
nearest interpolation. During training, the point cloud is randomly flipped along both the x and y
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Table 1: Multi-round range view (MRV) projection. Time: the elapsed time of MRV.
Single-frame Multi-frame

#Rounds Time (ms) mAP (%) NDS (%) mAP (%) NDS (%)
1 0.66 53.14 51.52 55.02 61.27
3 0.72 53.76 53.62 56.01 62.82
5 0.76 53.42 53.40 57.08 63.15
7 0.76 53.06 53.10 56.99 63.47

Table 2: Whether to make the points of the current frame have the highest priority. The
per-category mAP results are reported. “C.V.”, “Ped.” and “C.T.” indicate “construction vehicle”,
“pedestrian” and “traffic cone”, respectively.
Prioritized? mAP(%) NDS(%) Car Truck Bus Trailer C.V. Ped. Motor Bicycle T.C. Barrier

54.29 62.31 76.8 47.3 62.0 32.0 16.5 80.3 53.8 38.2 70.1 65.9
✓ 57.08 63.15 82.1 52.3 65.2 33.6 18.3 84.1 58.5 35.3 73.4 67.9

axes and rotated in the range [−π, π], as well as globally scaled by a random factor from [0.95, 1.05].
The ground-truth copy-paste data augmentation from [YML18] is also used. For multi-frame point
cloud, we use 10 sweeps in total, as in previous works [YZK21, LVC+19]. The inference time is
measured on a 3090Ti GPU with batch size 1.

4.1 Multi-round Range View Projection

Here, we conduct experiments to demonstrate the effectiveness of the proposed multi-round range
view (MRV) projection. As shown in Table 1, in the single-frame settings, MRV is also helpful,
for example, by increasing the number of rounds from 1 to 3, the mAP can be boosted by 0.62%.
This is due to the fact that the vehicle is often in motion and the aforementioned collisions happen
within a single frame as well. As you can see, if one round is used, the multi-frame fusion can
improve the mAP by a substantial margin ∼1.9% (from 53.14% to 55.02%). The improvement can
be dramatically increased to 3.9% mAP if we use 5 rounds in MRV (57.8% mAP), due to the fact that
5-round MRV can keep much more points in the multi-frame point clouds as mentioned in Sec. 3.2.
This confirmed the effectiveness of MRV. Note that elapsed time of MRV is insensitive to the number
of rounds as shown in Table 1.

More importantly, in the RV-based multi-frame settings, it is crucial to assign the highest priority
to the points from the current frame when the collision happens. As shown in Table 2, without this
treatment, the performance of the multi-frame fusion is significantly dropped from 57.08% to 54.29%
in mAP. Note that the single-frame counterpart can already achieve mAP 53.42%. We argue that the
neglect of this point in previous works is one of the main reasons that RV-based detectors can barely
enjoy the benefit of multi-frame fusion.

4.2 Modality-wise Convolutions

Table 3: Modality-wise convolutions. “Multi-round”: whether to group together the channels with
the same type from multiple projection rounds. Note that all the items here are with the multi-frame
fusion and multi-round projections. The only difference is the way to group the channels. Time: the
latency of this module.

Modality groups Multi-round Time (ms) mAP (%) NDS (%)
[x, y, z, r, θ, ϕ, i, t, e] ✓ 6.0 56.35 62.65

[x, y, z], [r, θ, ϕ], [i], [t], [e] ✓ 4.2 56.34 63.07
[x], [y], [z], [r], [θ], [ϕ], [i], [t], [e] ✓ 3.2 57.08 63.15
[x], [y], [z], [r], [θ], [ϕ], [i], [t], [e] 3.8 56.83 63.15

The experimental results of our modality-wise convolutions are shown in Table 3. If we use the
full convolutions here, which compute the correlation between all the channels of the range image,
FCOS-LiDAR can achieve 56.35% in mAP. By splitting the channels into various modalities (2nd
row), the performance can be slightly improved, i.e., from NDS 62.65% to 63.07%. Moreover, due to
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Table 4: Varying the number of the conv. layers in the modality-wise convolutions. Time: the
latency of the modality-wise convolutions.
#Conv. Time (ms) mAP(%) NDS(%) Car Truck Bus Trailer C.V. Ped. Motor Bicycle T.C. Barrier

1 2.0 55.81 61.98 81.8 51.4 65.2 30.7 16.9 83.4 56.0 32.8 71.9 68.1
2 3.2 57.08 63.15 82.1 52.3 65.2 33.6 18.3 84.1 58.5 35.3 73.4 67.9
3 4.3 56.71 63.25 82.6 51.4 65.3 31.9 18.5 83.9 57.3 34.9 72.9 68.4

Table 5: Multi-scale context aggregation.
Dilations mAP(%) NDS(%) Car Truck Bus Trailer C.V. Ped. Motor Bicycle T.C. Barrier
(1, ) 55.87 62.68 81.8 51.0 64.1 32.6 16.9 83.8 56.3 31.2 72.7 68.3
(1, 3) 56.39 62.96 82.3 52.1 65.3 32.8 17.1 83.7 58.2 32.5 72.0 67.8
(1, 3, 6) 57.08 63.15 82.1 52.3 65.2 33.6 18.3 84.1 58.5 35.3 73.4 67.9
(1, 1, 1) 56.63 63.12 82.1 51.5 65.2 32.9 17.1 83.7 58.8 33.7 73.1 68.0

the fact that even the different channel types of the same modality are orthogonal and less correlated,
we process each channel type individually. As shown in the table, the performance can be further
boosted from mAP 56.34% to 57.08% (3rd row) while the lowest latency is achieved. Finally, the last
row shows the results if we do not consider the channels with the same type from multiple rounds
together, where the mAP is slightly worse. In Table 4, we vary the number of the conv. layers in the
modality-wise convolutions. As we can see, using two conv. layers achieves the best performance
here.

In addition, as mentioned before, we employ multiple modality-wise convolution branches with
various dilation rates in parallel to capture the multi-scale context. The experiments are shown in
Table 5. As we can see, compared with the one using only one dilation rate, using multiple dilation
rates can improve the performance by more than 1% in mAP (from 55.87% to 57.08%).

4.3 Untied Weights of Detection Heads

Table 6: Whether to untie the weights of the detection heads.
Untied? mAP(%) NDS(%) Car Truck Bus Trailer C.V. Ped. Motor Bicycle T.C. Barrier

56.44 63.09 82.0 51.1 64.3 31.1 18.3 83.8 57.9 34.7 72.9 68.4
✓ 57.08 63.15 82.1 52.3 65.2 33.6 18.3 84.1 58.5 35.3 73.4 67.9

As mentioned before, it is better to untie the weights of the detection heads between the FPN levels
in the LiDAR-based detector. This is confirmed in Table 6. As we can see, by untying the weights,
the performance can be improved from mAP 56.44% to 57.08%. This ravels one of the interesting
differences between image-based and LiDAR-based detectors because the shared detection heads
between FPN levels often achieve better performance in image-based detectors [TSCH19, LDG+17].

Table 7: Inference time breakdowns. We compare against the state-of-the-art BEV-based Center-
Point [YZK21], which is trained with exactly the same strategies. We use the CenterPoint implemen-
tation in MMDetection3D [Con20] with sparse convolution version 1.2.1 [SPC21]. FCOS-LiDAR is
faster as well as competitive in the multi-frame setting (and superior in the single-frame setting).
Method Voxel/MRV(ms) Backbone(ms) Heads(ms) Overall(ms) mAP(%) NDS(%)
single-frame point cloud
CenterPoint [YZK21] 1.62 41 8 50.62 52.83 53.86
FCOS-LiDAR (Ours) 0.63 31 7 38.63 53.42 53.40
multi-frame point cloud
CenterPoint [YZK21] 1.95 63 9 73.95 60.40 67.25
FCOS-LiDAR (Ours) 0.76 31 7 38.76 57.08 63.15
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Table 8: Comparisons with state-of-the-art methods on the nuScenes test set. The results
are directly quoted from their original papers. All other methods on nuScenes rely on BEV or
multiple views because previous RV-only methods are unable to handle the multi-frame fusion on
this dataset. As you can see, our RV-based FCOS-LiDAR can achieve competitive performance with
state-of-the-art BEV-based detectors.

MethodmAP(%)NDS(%) Car Truck Bus TrailerC.V.Ped.MotorBicycleT.C.Barrier
PointPillars [LVC+19] 30.5 45.3 68.4 23.0 28.2 23.4 4.1 59.7 27.4 1.1 30.8 38.9

SSN [ZMW+20] 46.3 56.9 80.7 37.5 39.9 43.9 14.672.3 43.7 20.1 54.2 56.3
CVCNet [CSCY20] 55.3 64.4 82.7 46.1 46.6 49.4 22.679.8 59.1 31.4 65.6 69.6

CBGS [YZK21] 52.8 63.3 81.1 48.5 54.9 42.9 10.580.1 51.5 22.3 70.9 65.7
CenterPoint [YZK21] 58.0 65.5 84.6 51.0 60.2 53.2 17.583.4 53.7 23.7 76.7 70.9
AFDetV2 [HDG+22] 62.4 68.5 86.3 54.2 62.5 58.9 26.785.8 63.8 34.3 80.1 71.0
S2M2-SSD [ZHJF22] 62.9 69.3 86.3 56.0 65.4 59.8 26.284.6 61.6 36.4 77.7 75.1

VISTA [DLSJ22] 63.0 69.8 84.4 55.1 25.1 63.7 54.271.4 70.0 45.4 82.8 78.5
TransFusion [XBT22] 65.5 70.2 86.2 56.7 28.2 66.3 58.878.2 68.3 44.2 86.1 82.0
FCOS-LiDAR (c128) 60.2 65.7 82.2 47.7 52.9 48.8 28.884.5 68.0 39.0 79.2 70.7

4.4 Inference Time Comparisons

We compare the inference time of FCOS-LiDAR and the state-of-the-art BEV-based detector Center-
Point [YZK21]. As shown in Table 7, the proposed MRV is faster than the voxelization in CenterPoint.
It is worth noting that the voxelization algorithm reported here is nondeterministic, which cannot
yield stable results but being significantly faster. In the official code of MMDetection3D [Con20],
the deterministic voxelization takes ∼100ms for the multi-frame point clouds. In sharp contrast, the
proposed MRV is always deterministic and highly efficient. Moreover, due to the compactness of the
range image, our network can be implemented with the standard convolutions alone, thus being much
more efficient than CenterPoint using the sparse convolutions as shown in the table. The elapsed time
of the post-processing is omitted here as it is closely similar in both methods.

4.5 Comparisons with State-of-the-art Methods

We further compare FCOS-LiDAR with other state-of-the-art methods on the nuScenes test set. For
the model on the test set, we increase the number of channels in the detection heads from 64 to 128,
which improve the validation mAP by ∼0.6% with slightly longer latency. Additionally, we remove
the copy-paste data augmentation in the last 5 epochs during training as in [WMZY21] (termed as
the “fade strategy” in [WMZY21]). This can improve the performance by about 2% mAP. As shown
in Table 8, FCOS-LiDAR achieves competitive performance with other state-of-the-art BEV-based
methods. Note that in order to leverage the multi-frame fusion on nuScenes, all other methods on
nuScenes rely on BEV (or the multi-view fusion). FCOS-LiDAR is the first RV-only method that is
able to benefit from the multi-frame fusion.

5 Conclusion

We have presented an efficient range-view-based 3D object detector FCOS-LiDAR. FCOS-LiDAR
shows the challenging LiDAR-based object detection can also be solved with the standard convolu-
tions alone, similar to what we have done in the image-based 2D object detection. We also for the
first time show the RV-based 3D detector can also enjoy the benefit of the multi-frame fusion with the
proposed MRV. We hope our strong results can encourage the community to pay more attention to
this promising direction.

Societal Impacts. This paper presents a method that can locate the 3D location of the objects of
interest in LiDAR point clouds. This technique might be abused for military purposes, for example,
on lethal autonomous weapons.

Acknowledgments. C. Shen’s participation was in part supported by a major grant from Zhejiang
Provincial Government.
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