
Explanation Augmented Feedback in
Human-in-the-Loop Reinforcement Learning

Lin Guan *
CIDSE

Arizona State University
Tempe, AZ 85281
lguan9@asu.edu

Mudit Verma *
CIDSE

Arizona State University
Tempe, AZ 85281

mverma13@asu.edu

Sihang Guo
Department of Computer Science
The University of Texas at Austin

Austin, TX 78712
sguo19@utexas.edu

Ruohan Zhang
Department of Computer Science
The University of Texas at Austin

Austin, TX 78712
zharu@utexas.edu

Subbarao Kambhampati
CIDSE

Arizona State University
Tempe, AZ 85281
rao@asu.edu

Abstract

Human-in-the-loop Reinforcement Learning (HRL) aims to integrate human guid-
ance with Reinforcement Learning (RL) algorithms to improve sample efficiency
and performance. A common type of human guidance in HRL is binary evaluative
“good" or “bad" feedback for queried states and actions. However, this type of
learning scheme suffers from the problems of weak supervision and poor efficiency
in leveraging human feedback. To address this, we present EXPAND (EXPlanation
AugmeNted feeDback) which provides a visual explanation in the form of saliency
maps from humans in addition to the binary feedback. EXPAND employs a state
perturbation approach based on salient information in the state to augment the
binary feedback. We choose five tasks, namely Pixel-Taxi and four Atari games, to
evaluate this approach. We demonstrate the effectiveness of our method using two
metrics: environment sample efficiency and human feedback sample efficiency. We
show that our method significantly outperforms previous methods. We also analyze
the results qualitatively by visualizing the agent’s attention. Finally, we present
an ablation study to confirm our hypothesis that augmenting binary feedback with
state salient information results in a boost in performance.

1 Introduction

Deep Reinforcement Learning (DRL) algorithms have achieved many successes in solving problems
with high-dimensional state and action spaces [29, 3]. However, the current state-of-the-art DRL
is yet to outperform human experts in many challenging problems. One factor that limits DRL’s
performance in these problems is its sample (in)efficiency. It is often impractical to collect millions of
training samples as required by standard DRL algorithms. One way to curb this problem is to leverage
additional human guidance by following the general paradigm of Human-in-the-Loop Reinforcement
Learning (HRL) [53]. This often allows the agent to achieve better performance and higher sample
efficiency.

One popular form of human guidance in HRL is the binary evaluative signal on actions [18], in
which humans provide a “good" or “bad" judgment for an action. This framework allows non-expert
humans to provide feedback, but its sample efficiency could be further improved by asking humans
to provide stronger guidance. For example, the binary feedback does not tell the agent why it made
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a mistake. If humans can explain the “why" behind the evaluative feedback, then it is possible to
leverage the explanation to further help the agent. Taking training an autonomous driving agent as a
motivating example, humans can point out to the agent that the “STOP" sign is an essential signal for
the right action “apply-brake." One way to convey this information is through natural language, but
language comprehension is a difficult problem itself. For this type of visuomotor decision tasks, a
more straightforward form of human explanation could be saliency information, in which humans
highlight the important (salient) regions of the visual environment state. The saliency information
will indicate which visual features matter the most for the decision in the current state.

Saliency maps are shown to be a powerful means of assessing the agent’s internal representations
in the (visual) explainable RL research [45, 50, 40, 11, 30, 35, 13]. In this work, we extend this
idea to use a saliency map as a communication channel between RL agents and humans. Hence
human trainers can inform the RL agents about which regions they should focus on to accomplish the
given task. Note that requiring human trainers to provide explanations on their evaluations does not
necessarily require them to be more adept than in the case of providing only binary feedback. Like
prior approaches utilizing binary evaluations [18], we assume the human trainers have a high-level
understanding of the task. In our driving agent example, the human trainers may not know things like
the optimal angle of the steering wheel; however, we can expect them to be able to tell whether an
observed action is good or bad, and what visual objects matter for that decision.

In this work, we present EXPAND: EXPlanation AugmeNted feeDback (the overall flow can be found
at Appendix Fig. 4). EXPAND augments the conventional binary feedback with human explanations
regarding features in the visual state that are relevant to the decision. We show that EXPAND agents
require fewer interactions with the environment (environment sample efficiency) and fewer human
signals (human feedback sample efficiency) by leveraging saliency information. To efficiently learn
with saliency information, we propose a novel method that applies multiple perturbations to irrelevant
regions, thereby supplementing each saliency feedback with a set of constructed perturbed states.
The idea is to differentiate between relevant and irrelevant regions of the state when updating the
agent’s value functions: perturbations to the irrelevant regions should not significantly change the
value function because they do not matter for the current decision. Different kinds of perturbation in
the irrelevant regions can essentially provide more feedback samples and hence reduce the feedback
sample complexity. To our knowledge, this is the first work that incorporates human explanatory
information as saliency maps in the setting of learning from human evaluative feedback.

2 Related Work

Leveraging human guidance for RL has been extensively studied in the context of imitation learning
[36, 15], learning from demonstration [37, 14], inverse reinforcement learning [32, 1], reward shaping
[31], learning from human preference [8, 16], and learning from saliency information provided by
human [51]. Surveys on these topics are provided by Zhang et al. [53] and Wirth et al. [47].

Compared to these approaches, learning from human evaluative feedback has the advantage of placing
minimum demand on both the human’s expertise and the trainer’s ability to provide guidance (e.g.
the requirements of complex and expensive equipment setup). Representative works include the
TAMER framework [18, 46], and the COACH framework [28, 4]. The TAMER+RL framework
extends TAMER by learning from both human evaluative feedback and environment reward signal
[19, 20]. DQN-TAMER further augments TAMER+RL by utilizing deep neural networks to learn in
high dimensional state space [2]. Several approaches have been proposed to increase the information
gathered from human feedback, which takes into account the complexities in human feedback-
providing behavior. Loftin et al. speed up learning by adapting to different feedback-providing
strategies [25, 26]; the Advice framework [12, 7] treats human feedback as direct policy labels and
uses a probabilistic model to learn from inconsistent feedback. Other works also consider the action
execution speed [33], the confidence in predicting human feedback [48], and different levels of
satisfaction indicated by human voice [43]. Although these approaches better utilize human feedback
with improved modeling of human behaviors, weak supervision is still a fundamental problem in the
evaluative feedback approach.

Human explanatory information has also been explored previously. The main challenge of using hu-
man explanation is to translate human’s high-level linguistic representations to agent-understandable
representation. As an early attempt, Thomaz et al. allow humans to give anticipatory guidance
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rewards and point out the object tied to the reward [44]. However, they assume the availability of
an object-oriented representation of the state. Krening et al., Yeh et al. resort to human explanatory
advice in natural language [22, 49]. Still, they assume a recognition model that can understand
concepts in human explanation and recognize objects. In this work, we bridge the vocabulary gap
between the humans and the agent by taking human explanations in the form of saliency maps. Other
works use human gaze data as human saliency information, collected with sophisticated eye trackers,
to help agents with decision making in an imitation learning setting [52, 54, 17]. However, we refrain
from comparing with these works since they involve humans in an offline manner. In contrast, this
work is closer to Arakawa et al., Xiao et al., where human trainers are required to be more actively
involved during training [2, 48]. Finally, the way we exploit human explanation via state perturbation
can be viewed as a novel way of data augmentation. Data augmentation techniques are widely used
in computer vision tasks [24, 39] and have recently been applied to deep RL tasks [21, 23].

3 Problem Setup

We intend to verify the hypothesis that the use of state saliency information and binary evaluative
feedback can boost an RL agent’s performance. We have an agent M that interacts with an envi-
ronment E through a sequence of actions, states, and rewards. Following standard practice in deep
RL, k (k = 4) preprocessed consecutive image observations are stacked together to form a state
st = [xt−(k−1), ..., xt−1, xt]. At each time-step t, the agent can select an action from a set of all
possible actions A = {1, ...,K} for the state st ∈ S. Then the agent receives a reward rt ∈ R from
the environment E . This sequence of interaction ends when the agent achieves its goal or when the
time-step limit is reached. This formulation follows the standard Markov Decision Process framework
in RL research [42]. The agent’s goal is to learn a policy function π, a mapping from a state to action,
that maximizes the expected return.

Additionally, we assume a human trainer who provides binary evaluative feedbackH = (h1, h2, ...hn)
that conveys their assessment of the queried state-action pairs given the agent trajectory. We define
the feedback as ht = (xht , b

h
t , xt, at, st), where bht ∈ {−1, 1} is a binary “bad" or “good" feedback

provided for action at and xht = {Box1, ..., Boxm} is a saliency map for the image xt in state st.
Boxi is a tuple (x, y, w, h) for the top left Euclidean coordinates x and y, the width w, and the height
h of the bounding box annotated on the observation image xt.

4 Method

In EXPAND, the agent learns simultaneously from both environment reward and human feedback.
To learn from environment reward, we use an off-policy RL algorithm, the Deep Q-Networks (DQN)
[29]. To learn from human feedback, we first interpret binary feedback as labels on the optimality of
the performed actions, which is similar to the interpretation in previous works [12, 7]. Since we are
using DQN as our policy network, modeling binary feedback as labels on action optimality allows
us to directly link human feedback with the advantage value [5] of an action. The way we learn
from human evaluative feedback will be discussed in detail in Section 4.3. To learn with explanation
augmented feedback, we amplify the saliency feedback by perturbing irrelevant regions in the state
and expect the Q-value approximator to be indifferent to these perturbations when computing the
action values. The ideas manifest as various loss terms to update the DQN network. The train-
interaction loop of EXPAND can be found in Appendix B. Within an episode, the agent interacts with
the environment and stores its transition experiences. Every few episodes, it collects human feedback
queried on a trajectory sampled from the most recent policy. The DQN weights are updated twice,
with the usual DQN loss and then with the proposed feedback loss, in a single training step. This
section covers the proposed loss terms and how we obtain perturbed states for these losses.

4.1 Learning with Environment Reward

Following DQN [29], a set of tricks is applied to stabilize training, such as experience replay, reward
clipping, and soft-target network updates. The learned policy π is defined as the actions that maximize
the Q-values. Since π is a deterministic policy here, according to the Bellman equation, the state
value function can be defined as V π(s) = Qπ(s, π(s)). To ensure sufficient exploration, we also use
ε-greedy action selection mechanism, in which the probability ε of taking a random action is annealed
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down episodically. The loss function in DQN that updates the Q-value function weights θ is:

LDQN = E(s,a,r,s′)∼D[(r + γmax
a′

Q(s′, a′; θ̄)−Q(s, a; θ))2] (1)

where θ̄ is the target network parameters and D is the replay buffer that stores experience transition
tuples (s, a, r, s′) such that action a taken in state s brings immediate reward r and gets the agent to
state s′.

4.2 Learning with Binary Evaluative Feedback

Similar to DQN’s replay buffer, we maintain a feedback replay buffer Dh, which stores the observed
human feedback. Feedback signals in Dh are later sampled uniformly and are used to compute the
feedback loss.

We use the advantage value to formulate our advantage loss. Advantage value is the difference
between the Q-value of the action upon which the feedback was given and the Q-value of the current
optimal action calculated by the neural network. Given the agent’s current policy π, state s, and
action a for which the feedback is given, the advantage value is defined as:

Aπ(s, a) = Qπ(s, a)− V π(s) = Qπ(s, a)−Qπ(s, π(s)) (2)

Hence, the advantage value quantifies the possible (dis)advantage the agent would have if some
other action were chosen instead of the current-best. It can be viewed as the agent’s judgment on
the optimality of an action. Positive feedback means the human trainer expects the advantage value
of the annotated action to be zero. Therefore, we define a loss function, i.e., the advantage loss,
which forces the network to have the same judgment on the optimality of action as the human trainer.
Intuitively, we penalize the policy-approximator when a marked “good" action is not chosen as the
best action, or when a marked "bad" action is chosen as the best action.

For a feedback h = (xh, bh, x, a, s), when the label is “good", i.e., bh = 1, we expect the network to
output a target value Â(s, a) = 0, so the loss can be defined as |Â(s, a)−Aπ(s, a)| = Qπ(s, π(s))−
Qπ(s, a). When the label is “bad", i.e., bh = −1, we expect the network to output an advantage value
Aπ(s, a) < 0. Since here we do not have a specific target value for Aπ(s, a), we resort to the idea of
large margin classification loss [34, 14], which forces Qπ(s, a) to be at least a margin lm lower than
the Q-value of the second best action, i.e., maxa′ 6=aQ

π(s, a′). One advantage of such interpretation
of human feedback is that it directly modifies the Q-values with the feedback information and does
not require additional parameters to model human feedback.

Formally, for human feedback h = (xh, bh, x, a, s) and the corresponding advantage value As,a =
Aπ(s, a), the advantage loss is:

LA(s, a, h) =L
Good
A (s, a, h) + LBadA (s, a, h) (3)

LGoodA (s, a, h; bh = 1) =

{
0 ; As,a = 0

Qπ(s, π(s))−Qπ(s, a) ; otherwise
(4)

LBadA (s, a, h; bh = −1) =

{
0 ; As,a < 0

Qπ(s, a)− (maxa′ 6=aQ
π(s, a′)− lm) ; As,a = 0

(5)

Note that our method is different from the COACH framework [28], another method that interprets
human feedback in terms of the advantage function. In their formulation, the advantage value is
exactly the advantage term in the policy gradient equation–human trainers are supposed to provide
positive/negative policy-dependent feedback only when the agent performs an action better/worse
than that in current policy. Thus, such a formula is restricted to on-policy policy-gradient methods.
On the contrary, the advantage function in our formula aims to capture the relative utility of all
the actions. Here human feedback is direct policy advice, like that in the Advice framework [12],
indicating whether an action is preferable regardless of the agent’s current policy. This property
makes our formula a better fit for off-policy value-based methods like Q-learning.
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4.3 Learning with Human Saliency Information

State saliency informs the agent about which parts of the state matter for achieving the goal. These
“parts" of the state could be specific regions or objects. The intuition is that the agent must correctly
identify the relevant visual features before it can make an optimal decision. Hence if the agent knows
where the relevant regions are, it can figure out the optimal actions faster. In this work, each saliency
map consists of a set of bounding boxes over the images, marking a region’s importance in achieving
the given task. We utilize this saliency information in a manner that directly affects the weights of the
neural network.

It should be noted that the previous section only made use of the binary evaluations via the advantage
loss. In this section, however, we utilize the saliency feedback along with the binary feedback. As a
data augmentation technique, we first describe how multiple perturbations are applied to an image.
Then we introduce the loss terms that EXPAND uses. We propose two additional loss terms, namely
the policy invariant loss and the value invariant loss that make use of human explanation along with
binary evaluation.

Data augmentation through perturbation: We here propose a novel data augmentation technique,
in order to exploit extra information from the human saliency map to further improve sample efficiency.
The key idea here is that, ideally, states with perturbation in irrelevant regions should have the same
Q-values as the original states. Hence the manipulations to irrelevant regions should not affect the
agent’s policy. A standard way of performing such perturbation is to apply Gaussian perturbations
over irrelevant regions [11], essentially blurring them out and motivating the agent to focus more on
the clear relevant regions. Consider a feedback h = (xh, bh, x, a, s). We need to convert state s into
some states srt with perturbations on relevant regions and some other states s̃rt with perturbations on
irrelevant regions. Let M(x, i, j) denote a mask over relevant regions, where x(i, j) denotes the pixel
at index (i, j) for image x. We then have:

M(x, i, j) =

{
1 if (i, j) lies in Box, ∃ Box ∈ bh

0 otherwise
(6)

φ(x,M, i, j) = x� (1−M(x, i, j)) +G(x, σG)�M(x, i, j) (7)

Then we can perturb pixel (i, j) in image observation x according to mask M using a function φ
defined as above, where � is the Hadamard Product and function G(x, σG) is the Gaussian blur of
the observation x. Hence, we can get an image with perturbed relevant regions (xr) with mask M
and perturbed irrelevant regions (x̃r) with mask ¬M.

Policy invariant loss: The intuition behind the policy invariant loss is that under a set of perturba-
tions over irrelevant regions in human explanation, the action marked “good" is always good and
the action marked “bad" is always bad. This means the agent’s judgment on the optimality of action
should not change under perturbations over irrelevant regions in the human saliency map. Thus, this
loss is essentially the advantage loss calculated over states with perturbed irrelevant regions. As
defined in the previous section, we use Gaussian perturbations of various filter sizes and variances
(see Appendix D for detailed settings) to obtain a number of states with perturbed irrelevant regions.
The gth perturbation is denoted by s̃rg with the feedback h = (xh, bh, x, a, s). Formally, if we have
g number of perturbations for a single state s in feedback h, the policy invariant loss is defined as:

LP =
1

g
(
∑
g

LA(s̃rg, a, h)) (8)

Value invariant loss: In previous definitions of the loss function, we utilized the difference in
judgments on the optimality of actions between the agent and the humans. We also note that, for
humans, these states with perturbations on irrelevant regions are not “seen" differently from the
original state. Therefore, the Q-values of these perturbed states should be similar to those of the
original state. Hence, we define a mean squared error loss term over the two Q-values as our value
invariant loss:

LV =
1

g

g∑
i=1

1

|A|
∑
a∈A

(Qπ(s, a)−Qπ(s̃ri, a))2 (9)

where A is the action set and g is the number of perturbations.
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Figure 1: The learning curves of EXPAND and the baselines. The solid lines show the mean score
over at least 3 random seeds. The shaded regions represent the standard error. In Pixel Taxi, the score
is a running average over the last 20 rollouts. In MR-1, we counted the total number of times that the
agent managed to solve the first room within 1000 steps. Our method (EXPAND, in red) outperforms
the baselines in all the tasks.

Combining Feedback Losses: We linearly combine the three losses to obtain the overall feedback
loss:

LF = λALA + λPLP + λV LV (10)

where λA, λP and λV are the weights of advantage loss, policy invariant loss and value invariant
loss respectively. The agent is trained with LDQN as well as LF . As an extreme case, the value
invariant loss can go down to zero when the policy network assigns an identical Q-value to actions
in all the states, which will hurt the performance. To prevent this we give a smaller weight to value
invariant loss: λV = 0.1, λP = 1.0, λA = 1.0. We note that these losses improve human feedback
sample efficiency and environment sample efficiency in different ways: value invariant loss imposes
a stricter latent space similarity, whereas policy invariant loss helps differentiate between different
actions.

5 Experimental Evaluation

To evaluate EXPAND, we conducted experiments on five tasks: Pixel Taxi and four Atari games.
This section introduces the tasks and different metrics we use to compare EXPAND with other
baselines. Our baselines include Prioritized DQN [38] and an HRL algorithm DQN-TAMER [2]
that simultaneously learns from environment reward and human binary feedback. We also compare
to three ablated versions of EXPAND with one loss term at a time: EXPAND-Advantage (λA=1.0,
λP=0, λV =0), EXPAND-Value-Invariant (λA=1.0, λP=0, λV =0.1) and EXPAND-Policy-Invariant
(λA=1.0, λP=1.0, λV =0). The goal of experimenting with different variants of EXPAND is to
determine the effect of each loss term on the learning performance. Hence, this serves as an ablation
study.

In all our experiments, our algorithm and the baselines employ the same DQN network architecture
adopted by [29], which has three convolutional layers following by one fully-connected layer.
The same set of hyperparameters is used to train the models. Details on the architecture and
hyperparameters can be found in Appendix A. We use multi-step returns and the prioritized experience
replay mechanism [38] both in EXPAND and in the baselines. Following the standard preprocessing
procedure, each frame is converted from RGB format to grayscale and is resized to 84 × 84. The
input to the networks is normalized to the range of [0, 1]. During training, we start with an ε-greedy
policy (ε = 1.0) and reduce ε by a factor of λε at the end of each episode until it reaches 0.01. The
reported results are averaged over at least 3 random seeds.

Inspired by the Taxi domain that is widely used in RL research [10], we design a task named Pixel
Taxi (see Appendix Fig. 4). This is a grid-world setup where the agent, as a taxi, occupies one grid
cell at a time, and passengers denoted by different colored dots occupy separate grid cells in the
world. Our taxi agent’s goal is to pick up the correct passenger and reach the destination cell. For
the agent to learn the target passenger instead of simply remembering the “locations", we randomize
the passengers’ positions at the beginning of each episode. A reward in this task is given only when
the taxi drops off the correct passenger at the destination cell. In addition, we also choose four
Atari games [6] with default settings: Pong, Asterix, Enduro, and Montezuma’s Revenge. Original
Enduro and Montezuma’s Revenge can be infinitely long and can make human training impractical.
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Therefore, in Enduro, our goal is to teach the agent to overtake as many cars as possible within 1000
environment steps (an episode); hence we denote this task as Enduro-1000. In Montezuma’s Revenge,
we train the agent to solve the first room within 1000 environment steps per episode; hence we denote
this task as MR-1.

We evaluate our work on two fronts. The principal role of humans in the RL process is to improve the
environment sample efficiency; hence this serves as our primary indicator of success. Also, one of
the major claims of this work is that augmenting binary feedback with human explanation in the form
of saliency maps can improve human feedback sample efficiency; hence this is our second metric.

5.1 Obtaining Feedback

The steps for obtaining human feedback are described as follows (see Appendix B): in every Nf
(Nf = 4) episodes, we sample one trajectory and query the user for binary evaluative feedback as
well as saliency information. Although actively querying humans could be preferable, the goal of this
work is to demonstrate how human explanation can augment binary feedback. Following the setting
of our baseline DQN-TAMER, we allow humans to “watch" the queried trajectories and provide
feedback at will. We use explanation information from human trainers for Asterix, Enduro, and
Montezuma’s Revenge. For Pixel Taxi and Pong, we use a synthetic oracle, since oracles for these
two tasks are relatively easy to construct.

In Asterix, Enduro, and MR-1, we evaluated EXPAND and DQN-TAMER with human trainers. The
human interface we used to collect human feedback and explanation is similar to a video player (see
Appendix G), with which the trainers can start/pause the replay of the queried trajectory and provide
explanations by directly drawing bounding boxes on the screen. The trainers can also adjust the
“video" frame rate based on their needs. Similar to Deep-TAMER [46], we also apply each received
feedback and explanation to frames that are displayed between 2 and 0.2 seconds before the feedback
occurred – we assume that within this 1.8-second window, the salient regions/objects should be the
same. Thus, we can use an off-the-shelf object tracking method, like the CSRT tracker [27], to locate
the highlighted regions/objects in previous frames. Our experiments show this temporal consistency
assumption works well in practice. In addition to backward tracking, we also keep track of the
highlighted regions/objects and perform object detection (e.g., automatically detect and annotate the
cars ahead in Enduro) in succeeding frames. The tracking and detection tricks greatly reduce the
number of times human trainers need to annotate the images, and in our experiments, we found that
human trainers could provide their feedback and explanation with ease.

To perform a systematic analysis and get additional insights, we conduct a larger set of experiments
that include 5 runs of all algorithms, the ablation study, and runs with different numbers of pertur-
bations on Pixel Taxi and Pong with a synthetic oracle. A synthetic oracle allows us to run a large
number of experiments and give consistent feedback across different runs, providing fair and system-
atic comparisons between different approaches [12, 2]. In Atari Pong, we use a trained model from
the Atari Zoo [41]; in Pixel Taxi, we use a self-trained DQN model. To annotate “relevant" regions
on the image observation, we use hard-coded models to highlight the taxi-cell, the destination-cell,
and the target-passenger in Taxi, as well as the two paddles and the ball in Atari-Pong.

5.2 Results

Sample efficiency : Fig. 1 compares the environment sample efficiency as well as performance
between EXPAND (in red), DQN-TAMER (in blue), and Prioritized DQN (in green) in all tasks. We
restrict the human experiments–Enduro-1000, Asterix, and Montezuma’s Revenge MR-1–to 100k
environment samples, which corresponds to around 10k human feedback and approximately one-hour
interaction time with a human trainer. In Enduro-1000 and Asterix, EXPAND achieves a score that is
over 30% higher than DQN-TAMER at the end of the training. In MR-1, which is a hard-exploration
domain with sparse reward, we counted the number of times that the learning agent solved MR-1.
Without sophisticated exploration strategies, EXPAND managed to solve MR-1 15 times on average,
which is twice as many as DQN-TAMER. As expected, Prioritized DQN could not solve the task
even a single time within the 100k env. steps for MR-1 and was worse in all other tasks. This result
demonstrates that EXPAND performs better than our baselines with limited environment samples.

In Pixel Taxi and Pong, we do not restrict the number of feedbacks from the oracle. EXPAND learns
a near-optimal policy in just 130k and 140k environment samples, whereas DQN-TAMER takes
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Figure 2: (a) Ablation experiments analyzing the effects of each individual loss terms on the
performance. The results verify that the combination of all loss terms leads to the best performance.
(b) Learning curves of the variants of EXPAND with different number of perturbations on Pixel Taxi
(left) and Pong (right). EXPAND (in red) uses 5 perturbations.

Figure 3: EXPAND agents gradually learned to attend to regions indicated by the human during
training. From left to right: game frame (Pong), human saliency map, and the agent’s attention
maps [11] at 5k, 10k, 20k, 40k, 80k, and 300k training samples. Examples for other four tasks can be
found in Appendix F.

over 200k and 250k samples to reach a similar performance. This is an over 35% improvement
in environment sample efficiency. Regarding human feedback efficiency, in Pixel Taxi and Pong,
EXPAND requires about 30k and 35k binary and saliency feedback pairs, respectively, from the
oracle to learn a near-optimal policy. In contrast, DQN-TAMER requires more than 50k feedbacks in
both tasks. As seen from our study, we note that the marginal cost of asking for saliency information
is low (owing to off-the-shelf object detection and tracking), making EXPAND a promising method
on the front of human feedback sample efficiency. Finally, the performance of Prioritized-DQN was
poor in both tasks.

Ablation study : Fig. 2 shows that all four variants of EXPAND (EXPAND, and EXPAND with
individual loss terms) eventually converged to near-optimal policies. We note that EXPAND-Policy-
Invariant (in purple) and EXPAND-Value-Invariant (in light green) perform significantly better than
EXPAND-Advantage, highlighting that each saliency loss alone provides significant improvements
over the baseline. Finally, combining these losses (EXPAND) boosts this performance even further,
indicating that collecting saliency information in addition to binary evaluations is a better approach.

Varying number of perturbations : We experimented with the number of perturbations required in
each state to get the best performance. Figure 2 shows a comparison when the number of perturbations
is varied among {1, 5, 12} for Pixel Taxi and Pong using a synthetic oracle. The plots suggest that
increasing perturbations only evoke slight performance gains, and therefore setting the number of
perturbations to 5 for EXPAND is apt.

Visualizing agent attention : To verify that the agents have successfully learned to pay attention
to the critical regions highlighted by human saliency maps, we visualize the attention maps of
trained EXPAND agents with a method commonly used to provide visual interpretations of deep RL
agents [11]. The algorithm takes an input image I and applies a Gaussian filter to a pixel location
(i, j) to blur the image. This manipulation adds spatial uncertainty to the surrounding region and
produces a perturbed image Φ(I, i, j). A saliency score for this pixel (i, j) can be defined as how
much the blurred image changes the policy π [11]. The results for Pong can be found in Fig. 3,
where EXPAND learns to focus on the important objects (the ball and the opponent) as early as 20k
environment steps. This result provides another insight on why EXPAND performs better as object
representation is a critical cognitive capacity lacking from current deep RL agents [9].
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6 Conclusion & Future Work

In this work, we presented a novel method to integrate human explanation–as saliency maps on image
observations–with their binary evaluations of agents’ actions in a Human-in-the-Loop RL paradigm.
We show that our proposed method, EXPAND, outperforms previous methods in environment
sample efficiency, and shows promising results for human feedback efficiency. We also see that
supplementing human saliency feedback with perturbed irrelevant regions is helpful when multiple
such perturbations are used. Our results show that leveraging information about relevant parts of
the image, for the task at hand, indeed helps the agent perform better. We currently treat saliency
feedback as human advice; however, the advice in the form of natural language interaction would
be an improvement. Moreover, we note that we have restricted “perturbations" to be Gaussian
blurs to the state image. Future work can experiment with different types of perturbations and even
domain-dependent perturbations that involve object manipulation.
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Appendix

A. Hyperparameters

• Convolutional channels per layer: [32, 64, 64]
• Convolutional kernel sizes per layer: [8, 4, 3]
• Convolutional strides per layer: [4, 2, 1]
• Convolutional padding per layer: [0, 0, 0]
• Fully connected layer hidden units: [512, number of actions]
• Update interval: 4
• Discount factor: 0.99
• Replay buffer size: 50,000
• Batch size: 64
• Feedback buffer size: 50,000 in Atari games, 10,000 in Pixel Taxi 1

• Feedback batch size: 64 in Atari games, 32 in Pixel Taxi
• Learning Rate: 0.0001
• Optimizer: Adam
• Prioritized replay exponent α = 0.6

• Prioritized replay importance sampling exponent β = 0.4

• Advantage loss margin lm = 0.05

• Rewards: clip to [-1, 1]
• Multi-step returns: n = 5

• ε episodic decay factor λε: 0.99 in Pixel Taxi, 0.9 in Atari games

B. Train - Interaction Loop

Algorithm 1 Train - Interaction Loop
Result: Trained DQN agent M
Input: DQN agent M with randomly-initialized weights θ, replay buffer D, human feedback
buffer Dh, feedback frequency Nf , total episodes Ne, maximum number of environment steps per
episode T , update interval b
Begin
for i = 1 to Ne do

for t = 1 to T do
Observe state s
Sample action from current DQN policy π with ε-greedy, observe reward r and next state s′
and store (s, a, r, s′) in D
if t mod b == 0 then

Sample a mini-batch of transitions from D with prioritization
Compute the DQN loss LDQN and update θ over LDQN
Sample a mini-batch of human feedback from Dh
Compute the feedback loss LF and update θ over LF

end if
end for
if i mod Nf == 0 then

Obtain the last trajectory τ from D
Query τ to obtain feedbackHi
AppendHi to buffer Dh

end if
end for
End

1We use a smaller feedback buffer size for Pixel Taxi because the trajectory length in Pixel Taxi is much
smaller than that in Atari games, so less human feedback data are collected per query.
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C. Overall Flow of EXPAND

Figure 4 shows the the overall flow of EXPAND.

Figure 4: Overview of EXPAND. The agent queries the human with a sampled trajectory for binary
evaluative feedback on the action and saliency annotation on the state. The Perturbation Module
supplements the saliency explanation by perturbing irrelevant regions. The agent then consumes the
integrated feedback and updates its parameters. This loop continues until the agent is trained with
feedback queried every Nf episodes. The domain shown for “Salinecy Feedback" is Pixel Taxi.

D. Settings of Gaussian Perturbation

• 1 Perturbation:
◦ filter size: 5, σ: 5

• 5 Perturbations:
◦ filter size: 5, σ: 2
◦ filter size: 5, σ: 5
◦ filter size: 5, σ: 10
◦ filter size: 11, σ: 5
◦ filter size: 11, σ: 10

• 12 Perturbations:
◦ filter size: 5, σ: 2
◦ filter size: 5, σ: 5
◦ filter size: 5, σ: 10
◦ filter size: 7, σ: 3
◦ filter size: 7, σ: 5
◦ filter size: 7, σ: 10
◦ filter size: 9, σ: 3
◦ filter size: 9, σ: 5
◦ filter size: 9, σ: 10
◦ filter size: 11, σ: 3
◦ filter size: 11, σ: 5
◦ filter size: 11, σ: 10

E. Examples of Perturbation

Fig. 5 shows examples of different perturbations on irrelevant regions in image observations.

F. Additional Saliency Maps

Fig 6 shows how EXPAND gradually learns to attend to regions deemed relevant by the human during
training.
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Figure 5: Examples of different perturbations on irrelevant regions in an image observation in the
Montezuma’s Revenge MR-1, Enduro-1000 and Pixel Taxi environments. For each environment, the
left image is the original observation. The remainder are observations with different perturbations on
irrelevant regions, keeping relevant regions unchanged. Relevant regions are the player, the ladder
beneath and key in MR-1; the player, other cars and lane boundary in Enduro-1000; and, the taxi-agent
(the gray cell), the passenger to pick up (the red cell) and the destination (the black cell in Pixel Taxi.

Figure 6: Each row is dedicated for one task. Starting from top to bottom, shown here are tasks Pixel
Taxi, Asterix, Enduro-1000 and Montezuma’s Revenge Room 1 (MR-1). Visualization for Pong can
be found in the main paper. From left to right, we have the image observation (grayscaled), human
saliency map (white regions were given as bounding boxes during training), the agent’s attention
maps [11] at 5k, 10k, 20k, 40k, 80k, and 300k training samples.

G. Human Interface

Fig 7 shows the web-interface used to conduct the human experiment. Before the experiment began,
the trainers were briefed about the usage of this interface. The trainers were asked to provide their
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Figure 7: Web Interface to collect saliency and binary feedback from human trainers. This example
uses a frame from Pong.

consent to use any information they provide for any analysis and experiments. The feedback interface,
Fig 7, is divided into two columns, the information pane (left) and the control pane. (right). On the
information pane, users were able to adjust the frame rate at which they would want to view the
“video" made using the state transitions. Users could also view bounding-box related information,
such as which ones were the drawn boxes and the boxes suggested by the implemented object tracker.
On the right pane, users could view the frame upon which they would give their saliency feedback.
Users could see the agent’s current action in the information pane. For their ease, we provided
controls like Pause, Play, skip to Next Frame, go to Previous Frame, Clear all bounding boxes on the
frame, Save feedback and finally Finish the current feedback session. To provide a binary feedback
on agents’ actions, users were required to press keyboard keys “A" for a good-feedback, “S" for a
bad-feedback, and “D" for no feedback. They could provide saliency explanations via clicking on at
the required position on the image frame and dragging to create a rectangular selection.
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