
Reparameterization invariance in approximate
Bayesian inference

Hrittik Roy†, Marco Miani†
Technical University of Denmark

{hroy, mmia}@dtu.dk

Carl Henrik Ek
University of Cambridge,

Karolinska Institutet
che29@cam.ac.uk

Philipp Hennig, Marvin Pförtner, Lukas Tatzel
University of Tübingen, Tübingen AI Center

{philipp.hennig, lukas.tatzel,
marvin.pfoertner}@uni-tuebingen.de

Søren Hauberg
Technical University of Denmark

sohau@dtu.dk

Abstract

Current approximate posteriors in Bayesian neural networks (BNNs) exhibit a
crucial limitation: they fail to maintain invariance under reparameterization, i.e.
BNNs assign different posterior densities to different parametrizations of identical
functions. This creates a fundamental flaw in the application of Bayesian principles
as it breaks the correspondence between uncertainty over the parameters with
uncertainty over the parametrized function. In this paper, we investigate this
issue in the context of the increasingly popular linearized Laplace approximation.
Specifically, it has been observed that linearized predictives alleviate the common
underfitting problems of the Laplace approximation. We develop a new geometric
view of reparametrizations from which we explain the success of linearization.
Moreover, we demonstrate that these reparameterization invariance properties can
be extended to the original neural network predictive using a Riemannian diffusion
process giving a straightforward algorithm for approximate posterior sampling,
which empirically improves posterior fit.

1 Introduction

Bayesian deep learning has not seen the same degree of success as deep learning in general. Theo-
retically, Bayesian posteriors should be superior to point estimates (Devroye et al., 1996), but the
practical benefits of having the posterior are all too often not significant enough to justify their
additional computational burden. This has raised the question if we even should attempt to estimate
full posteriors of all network parameters (Sharma et al., 2023).

As an example, consider the Laplace approximation (MacKay, 1992), which places a Gaussian in
weight space through a second-order Taylor expansion of the log-posterior. When applied to neural
networks, this is known to significantly underfit and assign significant probability mass to functions
that fail to fit the training data (Lawrence, 2001; Immer et al., 2021a). Fig. 2 (top-left) exemplifies this
failure mode for a small regression problem. Interestingly, this behavior is rarely observed outside
neural network models, and the failure appears linked to Bayesian deep learning.

Recently, the linearized Laplace approximation (LLA) has been shown to significantly improve on
Laplace’s approximation through an additional linearization of the neural network (Immer et al.,
2021b; Khan et al., 2019). We are unaware of any theoretical justification for this rather counterintu-
itive result: why would an additional degree of approximation improveimproveimproveimproveimproveimproveimproveimproveimproveimproveimproveimproveimproveimproveimproveimproveimprove the posterior fit?

†Equal contribution authors listed in random order.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Figure 1: The weight space of a neu-
ral network (Eq. 1) overparametrizes
the associated function space. This
induces families (orange) of weights
corresponding to the same functions.
Model linearization (left) linearizes
these families. In nonlinear models,
Gaussian weight distributions (center)
do not adapt to the families, while our
geometric diffusion (right) captures
the associated invariance with a met-
ric (gray ellipses).

We will show that the failures of Bayesian deep learning can partly be explained by insufficient
handling of reparameterizations of network weights, while the LLA achieves infinitesimal invariance
to reparameterizations. To motivate, consider the simple network (Fig. 1)

f(x) = w1ReLU (w2 x) ; f : R→ R. (1)

This can be reparametrized to form the same function realization from different weights as f(x) =
w1/αReLU (αw2 x) for any α > 0. That is, the weight-pairs (w1, w2) and (w1/α, αw2) correspond
to the same function even if the weights are different (Fig. 1, center).

Thus the approximate posterior cannot reflect the fundamental property of the true posterior, that it
should assign a single unique density to a function regardless of its parametrization.

Figure 2: The function space is decomposed
into directions of reparameterizations (kernel) and
functional change (non-kernel). We improve the
posterior fit by concentrating probability mass on
directions of functional change.

In this paper, we analyze the reparameteri-
zation group driving deep learning and show
that it is a pseudo-Riemannian manifold,
with the generalized Gauss-Newton (GGN)
matrix as its pseudo-metric. We prove that the
commonly observed underfitting of the Laplace
approximation (Fig. 2, top left) is caused by
high in-distribution uncertainty in directions of
reparametrizations (Fig. 2, top center).

We develop a reparametrization invariant dif-
fusion posterior that proveably does not under-
fit despite using the neural network predictive
(Fig. 2, center row). Figure 1 (right) visualizes
how this posterior adapts to the geometry of
reparametrizations, thereby not underfitting. The diffusion can be simulated with a multi-step Euler-
Maruyama scheme from which the linearized Laplace approximation (LLA) is a single-step. This
link implies that the LLA infinitesimally is invariant to reparameterizations, due to the otherwise coun-
terintuitive linearization (Fig. 1, left). Experimentally, our diffusion consistently improves posterior
fit, suggesting that reparameterizations should be given more attention in Bayesian deep learning.

2 Background: Laplace approximations

Let fw : RI → RO denote a neural network with weights w, and define a likelihood p(y|fw(x))
and a prior p(w). Laplace’s approximation (MacKay, 1992) performs a second-order Taylor ex-
pansion of the log-posterior around a mode ŵ. This results in a Gaussian approximate posterior
N (w|ŵ,−H−1

ŵ), where Hw is the Hessian matrix. The linearized Laplace approximation (Im-
mer et al., 2021b; Khan et al., 2019) further linearize fw at a chosen weight ŵ, i.e. fw(x) ≈
f ŵ
lin(w,x)) = fŵ(x) + Jŵ(x)(w − ŵ), where Jŵ(x) = ∂wfw(x)|w=ŵ ∈ RO×D is the Jacobian

of fw. Here D = dim(w) denotes the number of parameters in the network. Applying the usual
Laplace approximation to the linearized model yields an approximate posterior (Immer et al., 2021b),

q(w|D) = N
(
w | ŵ, (GGNŵ + αI)−1

)
GGNŵ =

N∑
n=1

Jŵ(xn)
⊤H(xn)Jŵ(xn), (2)

2

where H(x) = −∂2
fŵ(x) log p(y|fŵ(x)) ∈ RO×O is the Hessian of the log-likelihood and we have

assumed a weight prior N (0, α−1I). Note that it is trivial to extend to other prior covariances. This
particular covariance is known as the generalized Gauss-Newton (GGN) Hessian approximation,
which is commonly used in Laplace approximations (Daxberger et al., 2021b).

To reduce the notational load we stack the per-datum Jacobians into Jŵ = [Jŵ(x1); . . . ;Jŵ(xN)] ∈
RNO×D and similarly for the Hessians, and write the GGN matrix as GGNŵ = J⊤

ŵHJŵ. For
Gaussian likelihoods, the Hessian is an identity matrix and can be disregarded, and for other
likelihoods simple expressions are generally available (Immer et al., 2021b).

Sampled and linearized Laplace. The Laplace approximation gives a Gaussian distribution
q(w|D) over the weight space with mean ŵ and covariance Σ. A predictive distribution is obtained
by integrating the approximate posterior against the model likelihood,

p(y∗|x∗,D) = Ew∼q[p(y
∗|f(w,x∗))] ≈ 1

S

S∑
i=1

p(y∗|f(wi,x
∗)), wi ∼ q. (3)

We refer to this predictive method as sampled Laplace. Recent works have suggested linearizing the
neural network in the likelihood model to obtain the predictive distribution (Immer et al., 2021b),

p(y∗|x∗,D) = Ew∼q[p(y
∗|f ŵ

lin(w,x∗))] ≈ 1

S

S∑
i=1

p(y∗|f ŵ
lin(wi,x

∗)), wi ∼ q. (4)

This is referred to as linearised Laplace. Immer et al. (2021b) argues that the common choice of
approximating the posterior precision with the GGN implicitly linearizes the neural network and
hence the predictive distribution should be modified for consistency.

Sampled Laplace is known to severely underfit, whereas the linearized Laplace approximation
does not (Immer et al. 2021b; Fig. 2). It is an open problem why the crude linearization is
beneficial (Papamarkou et al., 2024). This paper shows that the benefit is linked to the lack of
reparameterization invariance.

The lack of reparameterization invariance leads to an additional problem for Laplace approx-
imations. The precision of the approximate posterior is given either by the Hessian or the GGN.
As shown by Dinh et al. (2017), the Hessian of the loss is not invariant to reparameterizations of
the neural network, and the same holds for the GGN. Depending on which parametrization of the
posterior mode is chosen by the optimizer, we, thus, get different covariances for the approximate
posterior. Empirically, this can render Laplace’s approximation unstable (Warburg et al., 2023).
Figure 1 (center) illustrates the phenomena.

3 Reparameterizations of linear functions

Deep learning models excel when they are highly overparametrized, i.e. when they have significantly
more parameters than observations (D ≫ NO). This introduces many degrees of freedom to the
model, which will be reflected in the Bayesian posterior. However, as we have argued, traditional
approximate Bayesian inference does not correctly capture this and assigns different probability
measures to identical functions. Next, we characterize these degrees of freedom to design suitable
approximate posteriors. To develop the theory, we first consider the linear setting and then extend it
to the general case.

The reparameterizations of linear functions can be characterized exactly. Consider
f(w) = Aw + b and a possible reparameterization, g : RD → RD, of this function such
that f(g(w)) = f(w). It is then evident that A(g(w) − w) = 0. This implies that for any
reparameterization of a linear function, we have g(w) −w ∈ ker(A), where ker(A) denotes the
kernel (nullspace) of A. Hence, the linear function cannot be reparametrized if we restrict ourselves
to the non-kernel subspace of the input space or if A has a trivial kernel.

A linearized neural network fw′

lin : w,x 7→ fw′(x) + Jw′(x)(w −w′) is a linear function in the
parameters, where we have linearized around w′. The above analysis then implies that the kernel
of the stacked Jacobian Jw′ characterizes the reparameterizations of the linearized network.

3

We can also characterize the reparameterizations through the GGN and the corresponding neural
tangent kernel (NTK; Jacot et al. 2018),

GGNw = J⊤
wJw, NTKw = JwJ⊤

w. (5)

By construction, these have the same non-zero eigenvalues, and thereby also have identical ranks. We,
thus, see that the kernel of the Jacobian coincides with that of the GGN, i.e. ker(Jw) = ker(GGNw).

1

2

3

1

2

3

Figure 3: The weight space can be decomposed
into directions of reparameterizations and func-
tional changes. For linear models (left) these are
linear subspaces given by the kernel and the image,
respectively. For nonlinear models, these are the
nonlinear manifolds P⊥

wi
and Pwi , respectively.

Two orthogonal subspaces. For any self-
adjoint operator (such as positive semi-definite
matrices like the GGN), the image and the kernel
orthogonally span the whole space, i.e.

im(GGNw)⊕ ker(GGNw) = RD, (6)

where the kernel is the hyperplane of vectors
that are mapped to zero and the image is the
hyperplane of vectors spanned by the operator
(Fig. 3). For a linearized neural network,
im(GGNw) spans the effective parameters
P ⊂ RD, i.e. the maximal set of parameters that
generate different linear functions RI → RO

when evaluated on the training set.

A Laplace covariance decomposes into the same subspaces. Recall that the posterior precision is
Σ−1 = GGNŵ + αI. Let the eigendecomposition of GGNŵ be UTΛU, and assume that U1 and U2

are the eigenvectors corresponding to the non-zero eigenvalues Λ̃, and the zero eigenvalues respec-
tively. These form a basis in the kernel and image subspace as discussed above. Then the covariance is,

Σ =

([
U1

U2

]T [
Λ̃ 0
0 0

] [
U1

U2

]
+ αI

)−1

= UT
1 (Λ̃+ αIk)

−1U1 + α−1UT
2U2. (7)

Consequently, we can decompose any sample from the Gaussian N (ŵ,Σ) into a kernel and an
image contribution, w = ŵ +wker +wim, where wker is the component of the sample that is in
the kernel of GGNŵ and wim is in the image. Note that all probability mass in ker(GGNŵ) is due
to the prior, i.e. we place prior probability on functional reparameterizations even if we can never
observe data in support of such.

Figure 4: Underfitting of sampled Laplace is less
pronounced when the rank of the GGN is higher for
a fixed number of parameters. This is consistent
with our hypothesis as a high GGN rank implies a
lower dimensional kernel. For experimental details,
see appendix E.2.

Underfitting in sampled Laplace can now be
understood. For the linearized approximation, it
holds for training data x ∈ X that,

f ŵ
lin(ŵ+wker+wim,x) = f ŵ

lin(ŵ+wim,x).

Hence, the linearized predictive only samples in
the image subspace consisting of unique func-
tions. This is not true for the sampled Laplace
approximation, which also samples in the ker-
nel subspace. Since sampled Laplace does not
linearize the neural network, the kernel does not
correspond to reparameterizations. It hence adds
“incorrect” degrees of freedom to the posterior
as artifacts of the Gaussian approximation.

Empirically, sampled Laplace is only observed to underfit in overparametrized models. Fig. 4
illustrates this by increasing the amount of training data to decrease the kernel rank, i.e. reduce the
reparametrization issue. We find that as the issue is lessened, sampled Laplace reduces its underfitting.

4 Reparameterizations of neural networks

We have seen that the parameters of linear models can be decomposed into two linear subspaces
corresponding to reparameterizations and functional changes. We next analyze nonlinear models.

4

Intuitively, reparameterizations of a nonlinear neural network form continuous trajectories in the
parameter space (c.f. Fig. 1). We define that all points along such a trajectory are identical, which
changes the weight space geometry to be a manifold. Likewise, the parameter changes corresponding
to actual function changes reside on a nonlinear manifold. This is sketched in Fig. 3. Interestingly, the
GGN turns out to induce a natural (local) inner product on these nonlinear manifolds, which allows us
to both understand and generalize the linearized Laplace approximation.

4.1 The effective-parameters quotient space

For a nonlinear neural network f : RD × RI → RO, the surfaces in weight space along which
the function does not change are generally not linear. Here, we formalize these reparameterization
invariant surfaces and show that they are a partition of the weight space.

Definition 4.1. Given a datapoint x ∈ RI , for any w ∈ RD we define the x-reparameterizations
as the setRf

x(w) = {w′ such that f(w′,x) = f(w,x)}. Consistently, given a collection of points
X ⊆ RI , we call the intersectionRf

X (w) =
⋂

x∈X Rf
x(w) X -reparameterizations.

Trivially, w ∈ Rf
X (w) for any choice of X . We next define the subset of X -reparameterizations

which can be obtained via a smooth deformation from w.

Definition 4.2. We say that a piecewise differentiable function γ : [0, 1] → RD is a homotopy of
(w, ŵ) if γ(0) = w and γ(1) = w′. The set of X -smooth-reparameterizations is defined as,

R̄f
X (w) =

{
w′ such that

∃γ a homotopy of (w,w′)

γ(t) ∈ Rf
X (w) ∀t ∈ [0, 1]

}
.

A homotopy γ is, thus, a smooth path along which all neural networks have identical predictions
on X . We consider two networks, w and w′, similar if they can be connected by such a homotopy.
Formally, we define the relation ∼ over RD as w∼w′ if w′ ∈ R̄f

X (w).

We next use this relation to form a new view on the weight space RD in which similar weights are
seen as one point. This can be realized using quotient spaces (Lee, 2012). These are well-studied
spaces that are constructed by considering a collection of points in one space as a single point in a
new space. In our case, we have the following result.

Lemma 4.3. ∼ is an equivalence relation, i.e. it is transitive, symmetric and reflexive. We can form
the quotient space P = RD/ ∼ of effective parameters. We denote [w] ∈ P the equivalence class of
an element w ∈ RD.

This quotient structure gives a rich mathematical foundation to construct reparameterization invariant
neural networks. Within the quotient, two effective parameters [w1], [w2] ∈ P are the same point if
and only if w1 ∼ w2. This means that all parameters w ∈ [w1] gives the same function over X .

4.2 The effective-parameters manifold

Geometry is the mathematical language of invariances. To this end would like to endow the weight
space with a geometric structure such that two weights, w1 and w2, corresponding to the same
function, have a distance of zero, i.e.

dist(w1,w2) = 0 ⇔ w1 ∼ w2. (8)

Since the weights generate the same function, we define a metric that measures differences in function
values on the training data. Consider weights w and an infinitesimal displacement ϵ, we then define,

dist2(w,w + ϵ) =

N∑
n=1

∥f(w,xn)− f(w + ϵ,xn)∥2 = ϵ⊤GGNwϵ+O(ϵ3), (9)

where the last step follows from a first-order Taylor expansion of f around w. This is a standard
pullback metric (f∗H)w = GGNw commonly used in Riemannian geometry. This implies that the
GGN matrix infinitesimally defines an inner product, i.e. it is a Riemannian metric. By integrating
over paths, the distance extend to any pair of points and satisfies Eq. 8 (Lee, 2012).

5

Watch out! It’s a pseudo-metric. We have already seen that in overparametrized models, the
GGN is rank-deficient, which implies that it is not positive definite. Consequently, it is not a
Riemannian metric but rather a pseudo-Riemannian metric. A pseudo-metric can be a counterintuitive
object: two points w1 and w2 at distance zero may have different pseudo-metrics (f∗H)w1

̸=
(f∗H)w2

. This is reflected in the Laplace approximation. The covariance prescribed by the Laplace
approximation is Σŵ = (∇2

wL(ŵ)+αI)−1, where L(w) is shorthand for the training log-likelihood.
The Hessian is exactly the pullback pseudo-metric ∇2

wL(ŵ) = (f∗H)ŵ, which is not invariant to
reparameterizations of the neural network. Specifically, for a reparameterization function g that is
also a diffeomorphism, the change of variable rules states that,

∇2
wL(g(ŵ))︸ ︷︷ ︸
Σ−1

g(ŵ)
−αI

= ∇wg(ŵ)⊤∇2
wL(ŵ)︸ ︷︷ ︸

Σ−1
ŵ −αI

∇wg(ŵ). (10)

This means that, while each parameter w has its well-defined covariance Σw, each equivalence class
does not have a unique one, since ŵ and g(ŵ) belong to the same equivalence class and Σŵ ̸= Σg(ŵ).

Non-Gaussian likelihoods. The Euclidean distance measure in Eq. 9 corresponds to choosing a
Gaussian likelihood. The distance definition readily extends to other likelihoods and the corresponding
metric takes the form of the generalized Gauss-Newton matrix J⊤

wHJw, where H denotes the Hessian
of the log-likelihood. For both Gaussian and Bernoulli likelihoods, this Hessian is positive definite,
but e.g. the cross entropy has a rank-deficient Hessian and, thus, induces a pseudo-metric.

An impractical solution. The unfortunate behavior of approximate posteriors assigning different
probabilities to the same function could be rectified by marginalizing over the set of reparameteriza-
tions of w, i.e.

∫
w′∈R(w)

q(w′|D)dw′. While this construction solves the highlighted problem, its
complexity makes it impractical and we are unaware of any works along these lines.

When restricted to a smaller class of reparameterization (the ones homotopic to the identity), the
integral can be thought of as “collapsing” each reparameterization equivalence class to a single point
in P = RD/ ∼ formalized in Lemma 4.3. Nontrivially, the pullback metric implicitly performs a
similar operation, as shown later in Theorem 4.5. This connection motivates the dive into Riemannian
geometry: we get a tractable approach to engaging with neural network reparameterizations.

4.3 Topological equivalence of the two views

So far we described two a priori very different objects: the quotient space P = RD/ ∼ and the
pseudo-Riemannian manifold (RD, GGNw). We referred to both of them as effective parameters and
this is no coincidence as there is a natural relationship between the points at distance zero according
to the pseudo-metric and the equivalence classes.
Proposition 4.4. For any w0,w1 ∈ RD it holds

df∗H(w0,w1) = 0 ⇐⇒ [w0] = [w1] ∈ P. (11)

Even better, these two spaces share the same topological structure. To state this we need a notion of
distance on the quotient space and the most natural choice is to inherit the Euclidean distance ∥ · ∥
from RD. This distance is defined as

dP([w], [w′]) = inf {∥p1 − q1∥+ . . .+ ∥pn − qn∥} ,
where the infimum is taken over all finite sequences p1, . . . , pn and q1, . . . , qn such that [w] = [p1],
[pi+1] = [qi] and [qn] = [w′].

This distance dP induces a topology on the quotient space P which is equivalent to the topology
induced by the pullback distance df∗H on the pseudo-Riemannian manifold. Formally

Theorem 4.5. For any w0,w1 ∈ RD, for any ϵ > 0 there exists δ > 0 such that

dP([w0], [w1]) < δ =⇒ df∗H(w0,w1) < ϵ (12)
df∗H(w0,w1) < δ =⇒ dP([w0], [w1]) < ϵ. (13)

This result connects an abstract quotient space P with the pseudo-Riemannian metric GGNw. The
quotient captures useful intuitions but is difficult to leverage computationally. In contrast, the pseudo-
metric has some counterintuitive aspects but we can identify the underlying Riemannian structure
which leads to tractable algorithms (Sec. 5).

6

A tale of two manifolds. For any given parameter w ∈ RD and training set X , we show that there
exist two Riemannian manifolds (Pw,m) and (P⊥

w ,m⊥) embedded in RD, illustrated in Fig. 3. They
capture the functional change and reparameterization properties respectively, but, differently from the
previously studied (RD, GGNw), they are Riemannian manifolds without degenerate directions in
their metrics. Formally,

Theorem 4.6. For any parameter w suppose the set of parameters that generate the same predictions
is denoted by P⊥

w = {w′ ∈ RD such that f(w′, x) = f(w, x) for all x ∈ X}. Then this set is a
smooth manifold embedded in RD. Furthermore, the set of parameters that locally generates unique
predictions, Pw is also a submanifold embedded in RD.

They are the direct generalization to the nonlinear case of the two spaces involved in Eq. 6, where Pw

plays the role of the image and P⊥
w plays the role of the kernel. When f is linear, they are identical.

In general, Pw and P⊥
w intersect only in w, and the two respective tangent spaces in w span all

directions. They can be thought of as two collections of parameters, and the associated functions
have different properties: (1) P⊥

w is entirely contained in the same equivalence class P⊥
w ⊆ [w], thus

all the parametrized functions are identical on the train set; in contrast, (2) Pw never intersects the
same equivalence class more than one time, at least locally, thus the parametrized functions always
changes when moving in any direction. Thus Pw resembles the effective parameter manifold P , but
with the difference of being an actual Riemannian manifold. These two manifolds exist under the
assumption that Jacobian is full rank (see proof in appendix C).

The two metrics m and m⊥ are not uniquely defined. A natural choice for m is to restrict GGNw to
the tangent space of Pw corresponding to the non-zero eigenvectors, i.e. m = GGN+

w. While, for m⊥

we can inherit the Euclidean metric, i.e. m⊥ = αI for α > 0.

5 Exploring manifolds with random walks

SDEs on manifolds. Given a Riemannian manifold (M,G), the simplest choice of distribution that
respects the Riemannian metric G is a Riemannian diffusion (or Brownian motion, c.f. Hsu (2002))
stopped at time t. This follows the stochastic differential equation (Girolami & Calderhead, 2011),

dw =
√
2τG(w)−

1
2 dW + τΓdt where Γi(w) =

D∑
j=1

∂

∂wj
(G(w)−1)ij . (14)

Practically speaking this simple process can be simulated using an Euler–Maruyama (Maruyama,
1955) scheme. The Christoffel symbols, Γi(θ), are commonly disregarded as they have a high
computational cost, and Li et al. (2015) showed that the resulting error is bounded.

Using the Euler–Maruyama integrator with step size ht, setting τ = 1 corresponding to standard
Bayesian inference and disregarding the term involving the Christoffel symbols Γ, we obtain the
simple update rule wt+1 = wt +

√
2htG(wt)

− 1
2 ϵ, where ϵ ∼ N (0, I). This applies to any

Riemannian manifold. However, the effective-parameter (RD, GGNw) is only pseudo-Riemannian,
we explore three Riemannian alternatives: (RD, GGNw + αI), (P⊥

w , αI) and (Pw, GGN+
ω)

Diffusion on (RD, GGNw + αI). The Laplace approximation can also be written as a diffusion on
a manifold. As we saw in Sec. 2, the Laplace approximation can be written as w|D ∼ N (ŵ,Σ) with
Σ−1 = GGNŵ + αI. This can also be written as a sample at t = 1 of a Riemannian diffusion on a
manifold with a constant metric, (RD,G), where G = GGNŵ + αI. The SDE dw = G− 1

2 dW have
a marginal distribution at t = 1 that exactly match the standard Laplace approximation. Note that
this formulation does not rely on the approximation of the SDE that disregards the term involving
the Christoffel symbols Γ as these are zero for constant metrics. Hence, the above is exactly a
Riemannian diffusion on the manifold with a constant metric given by the GGN at the MAP parameter.
Note that this is only a valid diffusion for α > 0 in which case it is not reparametrization invariant.

Kernel-manifold diffusion. The kernel-manifold (P⊥
w , αI) consists of parameters that generate

the same function over the training set. The effect of diffusion on this manifold and using the
neural network predictive is similar to sampling from the kernel subspace while using the linearized
predictive. On the training set the predictive variance is 0 because it only samples reparametrizations
of the MAP predictions. On out-of-distribution data, the variance is greater than 0 if at least one of

7

Table 1: In-distribution performance across methods trained on MNIST, FMNIST and CIFAR-10.

M
N

IS
T

Conf. (↑) NLL (↓) Acc. (↑) Brier (↓) ECE (↓) MCE (↓)
Laplace Diffusion (ours) 0.988±0.001 0.042±0.007 0.987±0.002 0.022±0.003 0.137±0.019 0.775±0.043
Sampled Laplace 0.589±0.008 3.812±0.284 0.146±0.032 1.176±0.046 0.443±0.026 0.985±0.002

Linearised Laplace 0.968±0.004 0.306±0.041 0.926±0.008 0.117±0.012 0.251±0.034 0.855±0.041

FM
N

IS
T Laplace Diffusion (ours) 0.900±0.001 0.001±0.000 0.906±0.007 0.141±0.006 0.108±0.015 0.729±0.092

Sampled Laplace 0.618±0.021 4.507±0.000 0.098±0.010 1.295±0.014 0.518±0.013 0.986±0.001

Linearised Laplace 0.897±0.003 0.423±0.000 0.862±0.005 0.207±0.006 0.147±0.017 0.756±0.048

C
IF

A
R

-1
0 Laplace Diffusion (ours) 0.952±0.007 0.345±0.062 0.905±0.007 0.155±0.019 0.259±0.008 0.870±0.021

Sampled Laplace 0.843±0.004 0.997±0.222 0.717±0.049 0.422±0.081 0.221±0.047 0.804±0.080

Linearised Laplace 0.951±0.007 0.614±0.020 0.863±0.001 0.222±0.002 0.337±0.022 0.789±0.035

Table 2: Out-of-distribution AUROC (↑) performance for MNIST, FMNIST and CIFAR-10.
Trained on MNIST FMNIST CIFAR-10

Tested on FMNIST EMNIST KMNIST MNIST EMNIST KMNIST CIFAR-100 SVHN

Laplace Diffusion (ours) 0.909±0.033 0.625±0.018 0.929±0.008 0.759±0.045 0.741±0.010 0.749±0.023 0.851±0.002 0.862±0.010
Sampled Laplace 0.500±0.026 0.494±0.006 0.482±0.013 0.495±0.037 0.503±0.036 0.493±0.033 0.687±0.033 0.599±0.038

Linearised Laplace 0.758±0.070 0.602±0.027 0.790±0.018 0.625±0.050 0.628±0.013 0.624±0.020 0.837±0.006 0.854±0.024

the reparameterizations on the training set is not a global reparameterization. This leads to a clear
separation in the predictive variance of in-distribution and out-of-distribution data (Fig. 2) and further
implies that this diffusion distribution never underfits. Stated formally,

Theorem 5.1. Varw∼P⊥
ŵ
[f(w,x)] = 0 for train data x ∈ X . For a test point xt ̸∈ X , if there exists

a reparameterization w′ ∈ R̄f
X (ŵ) such that w′ ̸∈ R̄f

X∪{xt}(ŵ), then Varw∼P⊥
ŵ
[f(w,xt)] > 0.

Non-kernel-parameter manifold diffusion. The non-kernel-parameter manifold (Pw, GGN+
ω)

consists of parameters that generate unique functions over the training set. Diffusion on this manifold
samples functions that are necessarily different from the MAP predictions on the training set. However,
the predictive variance in the training set is bounded such that the functional diversity in the predictive
samples reflects the intrinsic variance of the training data (Fig. 2).

This is the only considered diffusion that acts on a Riemannian manifold while being reparametrization
invariant, i.e. R̄f

X (w) = {w}. We call this Laplace diffusion and study it empirically in Sec. 7.

6 Related work

Bayesian deep learning techniques are still in their infancy and generally involve poorly under-
stood approximations. The arguably most popular tool for uncertainty quantification is ensembles
(Lakshminarayanan et al., 2017; Hansen & Salamon, 1990). Several approaches make Gaussian
approximations to the true posterior, including ‘Bayes by backprop’ (Blundell et al., 2015), stochastic
weight averaging (SWAG) (Maddox et al., 2019) and the Laplace approximation (MacKay, 1992;
Daxberger et al., 2022; Antorán et al., 2023; Deng et al., 2022; Miani et al., 2022).

The high dimensionality of the weight space gives rise to significant computational challenges
when constructing Bayesian approximations. This has motivated various low-rank approximations
(review in Daxberger et al., 2021a), e.g. last layer approximations (Kristiadi et al., 2020), subnetwork
inference (Daxberger et al., 2021c), subspace inference (Izmailov et al., 2020) or even PCA in weight
space (Maddox et al., 2019). Such approaches lessen the computational load, while often improving
predictive performance. Our analysis sheds light on why crude approximations perform favorably:
smaller models are less affected by reparameterization issues. Our diffusion process, thus, provides
an alternative, and less heuristic, path forward.

MacKay (1998) noted the importance of the choice of basis in Laplace approximations; our pseudo-
Riemannian view can be seen as having a continuously changing basis. Kristiadi et al. (2023) studied
how a metric transforms under a bijective differentiable change of variables. They enforce geometric

8

In -d is t r ib u t ion m e t r ic s

Figure 5: Benchmark results for Ro-
tated MNIST (similar results for FM-
NIST and CIFAR are in appendix E.3.2).
Sampled Laplace significantly under-
fits even for non-rotated data. Laplace
diffusion consistently outperforms the
other methods.

consistency, highlighting, e.g., the non-invariance of the GGN to a change of variables. Petzka et al.
(2019); Jang et al. (2022) point to the same inconsistency with an emphasis on flatness measures.

Kim et al. (2022) and Antorán et al. (2022) study global (rather than data-dependant) reparametriza-
tions associated with specialized architectures. While analytic expressions can be obtained, the results
do not apply to general networks. While not expressed in terms of reparametrizations, Izmailov
et al. (2021) show that linearly dependent datasets give rise to a hyperplane in the kernel manifold.
Kim et al. (2024) also study the kernel of the GGN in the context of influence functions. These
works characterize subsets of the reparametrization group. We provide the first architecture-agnostic
characterization of all continuous reparametrizations.

In a closely related work, Bergamin et al. (2024) introduced a Riemannian Laplace approximation
(Hauberg, 2018) that improves posterior fit over a range of tasks. Furthering this line of research,
Yu et al. (2023) explored the use of the Fisher information metric within this framework. While
sharing the language of Riemannian geometry, our work focuses on analyzing the effectiveness
of linearized Laplace within the context of neural network reparametrization, instead of primarily
aiming to achieve better posterior approximations. This allows us to gain deeper insights into the
underlying mechanisms that contribute to the success of this approximation technique.

7 Experiments
We benchmark Laplace diffusion with neural network predictive against linearized and sampled
Laplace to validate the developed theory. Implementation details are in Appendix E.1. We will show
that the diffusion posterior slightly outperforms linearized Laplace in terms of both in-distribution
fit and out-of-distribution detection. For completeness, we include comparisons to other baselines
such as SWAG, diagonal Laplace, and last-layer Laplace in Appendix E.3. Laplace diffusion is
competitive with the best-performing Bayesian methods despite using the neural network predictive
(i.e. no linearization). This contrasts sampled Laplace which severely underfits. This is evidence that
the developed theory explains the key challenges of Bayesian deep learning.

Experimental details (appendix E.3). We train a 44,000-parameter LeNet(LeCun et al., 1989) on
MNIST and FMNIST as well as a 270,000-parameter ResNet(He et al., 2016) on CIFAR-10(Krizhevsky
et al., 2009). We sample from the Laplace approximation of the posterior and our Laplace diffusion.
For the samples from the Laplace approximation, we consider both the linearized predictive and
the neural network predictive, while for diffusion samples, we only consider the neural network
predictive. These baselines were chosen to be as similar as possible to our approach to ease the
comparison. We use the same prior precision for all methods to ensure a fair comparison.

In-distribution performance (Table 1). We measure the in-distribution performance of different
posteriors on a held-out test set. We report means ± standard deviations of several metrics: Confi-
dence, Accuracy, Negative Log-Likelihood, Brier Score (Brier, 1950), Expected Calibration Error
(Naeini et al., 2015) and Mean Calibration Error. We observe that Laplace diffusion has the best
calibration and fit. We also confirm the underfitting of Sampled Laplace across cases. For CIFAR-10
we had to use a large prior precision to get meaningful samples from sampled Laplace, which explains
the less severe underfitting. High prior precision is known to help with underfitting in sampled
Laplace, but it also shrinks predictive uncertainty to almost zero.

Robustness to dataset shift (Fig. 5, appendix E.3.2). We use ROTATED-MNIST, ROTATED-
FMNIST, and ROTATED-CIFAR to asses model-calibration and model fit under distribution shift.
Fig. 5 plots negative log-likelihood (NLL) and expected calibration error (ECE) against the degrees
of rotation. Laplace diffusion improves on other Laplace approximations.

Code: https://github.com/h-roy/geometric-laplace.

9

Out-of-distribution detection (Table 2). On out-of-distribution data from other benchmarks, we
see that Laplace diffusion outperforms the other Laplace approximations.

8 Conclusion

While approximate Bayesian inference excels in many areas, it continues to face challenges in deep
learning. Techniques that work well in shallow models struggle with deep ones even if they remain
computationally tractable. This suggests that overparametrization plays a negative role in Bayesian
models. Our theoretical analysis shows how overparametrization creates a growing reparameterization
issue that conflicts with standard Euclidean approximate posteriors, such as the ever-present Gaussian.
For small models this issue is negligible, but as models grow, so does the reparameterization issue.

Our geometric analysis also suggests a solution: we should consider approximate posteriors that
respect the group structure of the reparameterizations. We observe that the generalized Gauss-Newton
(GGN) matrix commonly used in Laplace approximations induces a pseudo-Riemannian structure on
the parameter space that respects the topology of the reparameterization group. This implies that we
can use pseudo-Riemannian probability distributions as approximate posteriors, and we experimented
with the obvious choice of a geometric diffusion process. We also showed that the state-of-the-art
linearized Laplace approximation can be viewed as a naïve (or simple) numerical approximation to
our proposed diffusion. This helps explain the success of the linearized approximation.

Our proposed approximate posterior does have issues. While sampling has the same complexity
as standard Laplace approximations, it increases runtime by a constant factor. Common Laplace
approximations do not sample according to the GGN but rather approximate this matrix with a
diagonal or block-diagonal matrix. Mathematically, such approximations break the motivational
reparameterization invariance, so it is unclear if such approaches should be applied in our framework.
Our work, thus, raises the need for new computational pipelines for engaging with the GGN matrix.

Acknowledgments and Disclosure of Funding

This work was supported by a research grant (42062) from VILLUM FONDEN. This project received
funding from the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreements 757360 and 101123955). The work was partly
funded by the Novo Nordisk Foundation through the Center for Basic Machine Learning Research
in Life Science (NNF20OC0062606). In addition to the ERC (above), PH, MP and LT thank the
International Max Planck Research School for Intelligent Systems (IMPRS-IS) for support, and
gratefully acknowledge financial support by the DFG Cluster of Excellence “Machine Learning - New
Perspectives for Science”, EXC 2064/1, project number 390727645; the German Federal Ministry of
Education and Research (BMBF) through the Tübingen AI Center (FKZ: 01IS18039A); and funds
from the Ministry of Science, Research and Arts of the State of Baden-Württemberg. The authors are
also grateful to Magnus Waldemar Hoff Harder for alerting us to imprecisions in an early draft of this
manuscript.

References
Allen-Zhu, Z., Li, Y., and Song, Z. A convergence theory for deep learning via over-parameterization.

In International conference on machine learning, pp. 242–252. PMLR, 2019.

Antorán, J., Janz, D., Allingham, J. U., Daxberger, E., Barbano, R. R., Nalisnick, E., and Hernández-
Lobato, J. M. Adapting the linearised laplace model evidence for modern deep learning. In
International Conference on Machine Learning, pp. 796–821. PMLR, 2022.

Antorán, J., Padhy, S., Barbano, R., Nalisnick, E., Janz, D., and Hernández-Lobato, J. M. Sampling-
based inference for large linear models, with application to linearised laplace, 2023.

Bergamin, F., Moreno-Muñoz, P., Hauberg, S., and Arvanitidis, G. Riemannian laplace approxi-
mations for bayesian neural networks. Advances in Neural Information Processing Systems, 36,
2024.

10

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. Weight uncertainty in neural network.
In International conference on machine learning, pp. 1613–1622. PMLR, 2015.

Bombari, S., Amani, M. H., and Mondelli, M. Memorization and optimization in deep neural
networks with minimum over-parameterization. In Advances in Neural Information Processing
Systems (NeurIPS), 2022.

Brier, G. W. Verification of forecasts expressed in terms of probability. Monthly
Weather Review, 78(1):1 – 3, 1950. doi: 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.
CO;2. URL https://journals.ametsoc.org/view/journals/mwre/78/1/1520-0493_
1950_078_0001_vofeit_2_0_co_2.xml.

Daxberger, E., Kristiadi, A., Immer, A., Eschenhagen, R., Bauer, M., and Hennig, P. Laplace redux
- effortless Bayesian deep learning. In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.,
and Vaughan, J. W. (eds.), Advances in Neural Information Processing Systems, volume 34, pp.
20089–20103. Curran Associates, Inc., 2021a.

Daxberger, E., Kristiadi, A., Immer, A., Eschenhagen, R., Bauer, M., and Hennig, P. Laplace
redux–effortless Bayesian deep learning. In NeurIPS, 2021b.

Daxberger, E., Nalisnick, E., Allingham, J. U., Antorán, J., and Hernández-Lobato, J. M. Bayesian
deep learning via subnetwork inference. In International Conference on Machine Learning, pp.
2510–2521. PMLR, 2021c.

Daxberger, E., Kristiadi, A., Immer, A., Eschenhagen, R., Bauer, M., and Hennig, P. Laplace redux –
effortless bayesian deep learning, 2022.

Deng, Z., Zhou, F., and Zhu, J. Accelerated linearized laplace approximation for bayesian deep
learning, 2022.

Devroye, L., Györfi, L., and Lugosi, G. A probabilistic theory of pattern recognition. Springer
Science & Business Media, 1996.

Dinh, L., Pascanu, R., Bengio, S., and Bengio, Y. Sharp minima can generalize for deep nets. In
International Conference on Machine Learning, pp. 1019–1028. PMLR, 2017.

Du, S., Lee, J., Li, H., Wang, L., and Zhai, X. Gradient descent finds global minima of deep neural
networks. In International conference on machine learning, pp. 1675–1685. PMLR, 2019.

George, T., Laurent, C., Bouthillier, X., Ballas, N., and Vincent, P. Fast approximate natural gradient
descent in a kronecker factored eigenbasis. Advances in Neural Information Processing Systems,
31, 2018.

Girolami, M. and Calderhead, B. Riemann manifold langevin and hamiltonian monte carlo methods.
Journal of the Royal Statistical Society Series B: Statistical Methodology, 73(2):123–214, 2011.

Hansen, L. K. and Salamon, P. Neural network ensembles. IEEE transactions on pattern analysis
and machine intelligence, 12(10):993–1001, 1990.

Hauberg, S. Directional statistics with the spherical normal distribution. In Proceedings of FUSION
2018, 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Hsu, E. P. Stochastic analysis on manifolds. American Mathematical Soc., 2002.

Immer, A., Bauer, M., Fortuin, V., Rätsch, G., and Emtiyaz, K. M. Scalable marginal likelihood
estimation for model selection in deep learning. In International Conference on Machine Learning
(ICML), pp. 4563–4573, 2021a.

Immer, A., Korzepa, M., and Bauer, M. Improving predictions of Bayesian neural nets via local
linearization. In International Conference on Artificial Intelligence and Statistics (AISTATS), pp.
703–711, 2021b.

11

https://journals.ametsoc.org/view/journals/mwre/78/1/1520-0493_1950_078_0001_vofeit_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/mwre/78/1/1520-0493_1950_078_0001_vofeit_2_0_co_2.xml

Izmailov, P., Maddox, W. J., Kirichenko, P., Garipov, T., Vetrov, D., and Wilson, A. G. Subspace
inference for bayesian deep learning. In Uncertainty in Artificial Intelligence, pp. 1169–1179.
PMLR, 2020.

Izmailov, P., Nicholson, P., Lotfi, S., and Wilson, A. G. Dangers of bayesian model averaging under
covariate shift. Advances in Neural Information Processing Systems, 34:3309–3322, 2021.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel: Convergence and generalization in
neural networks. In Advances in neural information processing systems, 2018.

Jang, C., Lee, S., Park, F., and Noh, Y.-K. A reparametrization-invariant sharpness measure based
on information geometry. Advances in neural information processing systems, 35:27893–27905,
2022.

Khan, M. E. E., Immer, A., Abedi, E., and Korzepa, M. Approximate inference turns deep networks
into Gaussian processes. Advances in Neural Information Processing Systems (NeurIPS), 32, 2019.

Kim, S., Park, S., Kim, K.-S., and Yang, E. Scale-invariant bayesian neural networks with connectivity
tangent kernel. In The Eleventh International Conference on Learning Representations, 2022.

Kim, S., Kim, K., and Yang, E. Gex: A flexible method for approximating influence via geometric
ensemble. Advances in Neural Information Processing Systems, 36, 2024.

Kristiadi, A., Hein, M., and Hennig, P. Being Bayesian, even just a bit, fixes overconfidence in ReLU
networks. In III, H. D. and Singh, A. (eds.), Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 5436–5446.
PMLR, 13–18 Jul 2020.

Kristiadi, A., Dangel, F., and Hennig, P. The geometry of neural nets’ parameter spaces under
reparametrization. arXiv preprint arXiv:2302.07384, 2023.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers of features from tiny images. 2009.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple and scalable predictive uncertainty
estimation using deep ensembles. Advances in neural information processing systems, 30, 2017.

Lanczos, C. An iteration method for the solution of the eigenvalue problem of linear differential and
integral operators. Journal of Research of the National Bureau of Standards, 45(4), October 1950.
doi: 10.6028/jres.045.026. URL https://hal.science/hal-01712947.

Lawrence, N. D. Variational inference in probabilistic models. PhD thesis, Citeseer, 2001.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel, L. D.
Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4):541–551,
1989.

Lee, J. M. Smooth manifolds. Springer, 2012.

Li, C., Chen, C., Carlson, D., and Carin, L. Preconditioned stochastic gradient langevin dynamics for
deep neural networks, 2015.

Li, Z., Wang, T., and Arora, S. What happens after sgd reaches zero loss?–a mathematical framework.
arXiv preprint arXiv:2110.06914, 2021.

Lippe, P. UvA Deep Learning Tutorials. https://uvadlc-notebooks.readthedocs.io/en/
latest/, 2022.

Liu, C., Zhu, L., and Belkin, M. On the linearity of large non-linear models: when and why the
tangent kernel is constant. Advances in Neural Information Processing Systems, 33:15954–15964,
2020.

MacKay, D. J. Choice of basis for laplace approximation. Machine learning, 33:77–86, 1998.

MacKay, D. J. C. A practical Bayesian framework for backpropagation networks. Neural Computa-
tion, 4(3):448–472, 1992.

12

https://hal.science/hal-01712947
https://uvadlc-notebooks.readthedocs.io/en/latest/
https://uvadlc-notebooks.readthedocs.io/en/latest/

Maddox, W. J., Izmailov, P., Garipov, T., Vetrov, D. P., and Wilson, A. G. A simple baseline for
bayesian uncertainty in deep learning. Advances in neural information processing systems, 32,
2019.

Maruyama, G. Continuous markov processes and stochastic equations. Rendiconti del Circolo
Matematico di Palermo, 4:48–90, 1955.

Miani, M., Warburg, F., Moreno-Muñoz, P., Detlefsen, N. S., and Hauberg, S. Laplacian autoencoders
for learning stochastic representations. In Advances in Neural Information Processing Systems
(NeurIPS), 2022.

Naeini, M. P., Cooper, G., and Hauskrecht, M. Obtaining well calibrated probabilities using bayesian
binning. In Proceedings of the AAAI conference on artificial intelligence, volume 29, 2015.

Nguyen, Q., Mondelli, M., and Montufar, G. F. Tight bounds on the smallest eigenvalue of the neural
tangent kernel for deep relu networks. In International Conference on Machine Learning, pp.
8119–8129. PMLR, 2021.

Oymak, S. and Soltanolkotabi, M. Overparameterized nonlinear learning: Gradient descent takes the
shortest path? In International Conference on Machine Learning, pp. 4951–4960. PMLR, 2019.

Oymak, S. and Soltanolkotabi, M. Toward moderate overparameterization: Global convergence
guarantees for training shallow neural networks. IEEE Journal on Selected Areas in Information
Theory, 1(1):84–105, 2020.

Papamarkou, T., Skoularidou, M., Palla, K., Aitchison, L., Arbel, J., Dunson, D., Filippone, M.,
Fortuin, V., Hennig, P., Hubin, A., et al. Position paper: Bayesian deep learning in the age of
large-scale ai. arXiv preprint arXiv:2402.00809, 2024.

Petzka, H., Adilova, L., Kamp, M., and Sminchisescu, C. A reparameterization-invariant flatness
measure for deep neural networks. arXiv preprint arXiv:1912.00058, 2019.

Ritter, H., Botev, A., and Barber, D. A scalable laplace approximation for neural networks. In 6th
international conference on learning representations, ICLR 2018-conference track proceedings,
volume 6. International Conference on Representation Learning, 2018.

Sharma, M., Farquhar, S., Nalisnick, E., and Rainforth, T. Do Bayesian Neural Networks Need To Be
Fully Stochastic? In International Conference on Artificial Intelligence and Statistics (AISTATS,
notable paper award), 2023.

Warburg, F., Miani, M., Brack, S., and Hauberg, S. Bayesian metric learning for uncertainty
quantification in image retrieval. In Neural Information Processing Systems (NeurIPS), 2023.

Yu, H., Hartmann, M., Williams, B., Girolami, M., and Klami, A. Riemannian laplace approximation
with the fisher metric, 2023.

13

A Recap

Notation. Consider a function f : RD × RI → RO with Jacobian Jw(x) = ∂wfw(x)|w=w ∈
RO×D with respect to w evaluated in x and w. For a given log-likelihood we define the Hessian w.r.t.
to the output Hw(x) = −∂2

fw(x) log p(y|fw(x)) ∈ RO×O and we assume it not to be dependent on
y (which is true, for example, for exponential families).

Consider being given a dataset of finite size N , here we do not care about labels and we only refer to
the collections of the datapoints X = {x1, . . . ,xN} ⊂ RI .

Consider the stacking of the per-datum Jacobians Jw = [Jw(x1); . . . ;Jw(xN)] ∈ RNO×D, where
we dropped the dependence on X . Similarly consider Hw = diag(Hw(x1); . . . ;Hw(xN)) ∈
RNO×NO the block diagonal stacking of the Hessians.

Consider the Generalized Gauss-Newton (GGN) and the Neural Tangent Kernel (NTK) matrices

GGNw = J⊤
wHwJw ∈ RD×D NTKw = H

1/2
w JwJ⊤

wH
1/2
w ∈ RNO×NO. (15)

Recall also that the pullback pseudo-metric is (f∗H)w = GGNw.

Assumptions. We assume uniform upper and lower bound on the eigenvalues of the NTK matrix,
that is

∃l, L ∈ R such that 0 < l ≤ ∥ NTKwv∥
∥v∥

≤ L ∀v ∈ RNO,∀w ∈ RD, (16)

where uniform means uniform over parameters, i.e. the bounds l, L holds for every w. Moreover we
assume that the Jacobian function w 7→ Jw(x) is Lipschitz for every x ∈ X .

How unreasonable are the assumptions? The assumption of an upper bound L is equivalent to
assuming that w 7→ f(w,x) is Lipschitz for each datapoint x ∈ X . This is true with all standard
activation functions if we restrict the parameter space to a ball of fixed radius.

The assumption of a lower bound l is strongly supported by the literature on NTK, thanks to its
direct implications on memorization capacity and generalization. The general trend is that the more
overparametrized the network is, the stronger such lower bounds are. In the hardest setting of
minimum overparametrization, Bombari et al. (2022) proved a bound that holds with high probability
for fully connected MLPs at initialization. Similar results hold with bigger overparametrizations
Nguyen et al. (2021); Allen-Zhu et al. (2019); Du et al. (2019). Building on top of that, other lines of
work Liu et al. (2020); Oymak & Soltanolkotabi (2019, 2020) proved that the NTK does not change
too much during training thanks to the PL inequality framework, and in particular the proximity of
the neural network dynamics to the one described by NTK, is supported by spectral bounds on the
Hessian of the landscape.

Lastly, the Lipschitzness assumption on the Jacobian is potentially the most unrealistic, although
it would hold, for example, if the derivatives of activations are Lipschitz and the parameters are
restricted to a finite radius ball. Nonetheless, we emphasize that this assumption is only used to
control that the kernel of the GGN does not “rotate too fast”, which is a much weaker assumption, but
also much more cluttered to state formally.

B Proof for equivalence of the two settings

This section contains the proof of Proposition 4.4 and Theorem 4.5 involving the pseudo-Riemannian
manifold (RD, f∗H) and the quotient group (P, dP) with Euclidean-induced metric.

To ease the readability, we recall the two involved notions of distance and their respective definition:

• df∗H(w0,w1) the geodesic distance for any two parameters w0,w1 ∈ RD

• dP([w0,w1]) the quotient Euclidean distance for any two equivalence classes [w0], [w1] ∈
P

14

df∗H(w0,w1) = inf
γ

LENf∗H(γ) (17)

= inf
γ

∫ 1

0

∥γ′(t)∥f∗Hγ(t)
dt (18)

= inf
γ

∫ 1

0

√
γ′(t)⊤ · f∗Hγ(t) · γ′(t)dt, (19)

where the infimum is taken over smoothly differentiable curves γ : [0, 1]→ RD such that γ(0) = w0

and γ(1) = w1.

dP([w0], [w1]) = inf

{
n∑

i=1

∥pi − qi∥

}
, (20)

where the infimum is taken over all finite sequences {pi}i=1...n, {qi}i=1...n ⊂ RD such that [w0] =
[p1], [pi+1] = [qi] and [qn] = [w1].

Let us state a theorem that encapsulate together both the 0-distance part in Proposition 4.4 and the
ϵ-δ part in Theorem 4.5 in a more unified way.
Theorem B.1. For any w0,w1 ∈ RD it holds

df∗H(w0,w1) = 0 ⇐⇒ dP([w0], [w1]) = 0, (21)

and also that, for any ϵ > 0 there exists δ > 0 such that

dP([w0], [w1]) < δ =⇒ df∗H(w0,w1) < ϵ (22)
df∗H(w0,w1) < δ =⇒ dP([w0], [w1]) < ϵ, (23)

We prove the 3 points separately, in Appendix B.1, Appendix B.2 and Appendix B.3 respectively.

B.1 Proof of Eq. 21

The proof logic is

df∗H(w0,w1) = 0 ⇐⇒ [w0] = [w1] ⇐⇒ dP([w0], [w1]) = 0. (24)

and we prove the two steps in the two following Propositions, respectively.
Proposition B.2. For any w0,w1 ∈ RD it holds

df∗H(w0,w1) = 0 ⇐⇒ [w0] = [w1]. (25)

Proof. By definition [w0] = [w1] if and only if there exists a piecewise differentiable γ : [0, 1]→ RD

such that γ(0) = w0, γ(1) = w1 and f(w0,x) = f(γ(t),x) for any t ∈ [0, 1] and x ∈ X . Then
⇐= Consider a γ from the definition of the equivalence relation ∼ and define the points wt = γ(t)

for ease of notation. Then for any t ∈ [0, 1]

γ′(t) = lim
ϵ→0

wt+ϵ −wt

ϵ
. (26)

For any x ∈ X it holds that f(wt,x) = f(wt′ ,x)∀t, t′ ∈ [0, 1], which implies that f(wt+ϵ,x) −
f(wt,x) = 0 ∀t ∈ [0, 1]∀ϵ ∈ [0, 1− t]. Thus,

0 = lim
ϵ→0

f(wt+ϵ,x)− f(wt,x)

ϵ
= Jwt

(x) · lim
ϵ→0

wt+ϵ −wt

ϵ
= Jwt

(x) · γ′(t). (27)

This holds to any x ∈ X , so the same holds for the per-datum stacked jacobians Jwt · γ′(t) = 0.
Thus,

∥γ′(t)∥2f∗Hγ(t)
= γ′(t)⊤ · f∗Hγ(t) · γ′(t) = γ′(t)⊤ · J⊤

wt
HwtJwt · γ′(t) = 0 (28)

and we can measure the length of γ in the pullback metric as

LENf∗H(γ) =

∫ 1

0

∥γ′(t)∥f∗Hγ(t)
dt =

∫ 1

0

0 dt = 0, (29)

15

which gives an upper bound on the geodesic distance

df∗H(w0,w1) = inf
γ̂

LENf∗H(γ̂) ≤ LENf∗H(γ) = 0, (30)

thus, df∗H(w0,w1) = 0 and this implication is proven.

=⇒ df∗H(w0,w1) = 0 implies that there exists a 0-length differentiable γ : [0, 1] → RD such
that γ(0) = w0, γ(1) = w1. Without loss of generality, we can assume γ to be non-stationary, i.e.
γ′(t) ̸= 0. Here 0-length means

0 = LENf∗H(γ) =

∫ 1

0

∥γ′(t)∥f∗Hγ(t)
dt, (31)

which implies that ∥γ′(t)∥f∗Hγ(t)
= 0 for any t ∈ [0, 1] except a zero-measure set which we can

neglect later. Then

0 = ∥γ′(t)∥2f∗Hγ(t)
= γ′(t)⊤ · J⊤

wt
HwtJwt · γ′(t) =⇒ Jwt · γ′(t) = 0, (32)

by positive definitess of Hwt , assumed as hypothesis. We highlight that the leftmost 0 in the previous
equation is a scalar, while the rightmost 0 is a vector in RNO as obtained by the matrix-vector product
of Jwt

∈ RNO×D with γ′(t) ∈ RD. Looking at the equation Jwt
·γ′(t) = 0 componentwise implies

that
⟨∇w[f(wt,x)]o, γ

′(t)⟩ = 0 ∀x ∈ X ,∀o ∈ {1, . . . , O},∀t ∈ [0, 1], (33)
where [v]o refers to the oth component of a vector v. Thus, for T ∈ [0, 1], by Fundamental Theorem
of Calculus we have

[f(wT ,x)]o − [f(w0,x)]o =

∫ T

0

⟨∇w[f(wt,x)]o, γ
′(t)⟩dt = 0 ∀x ∈ X ,∀o ∈ {1, . . . , O}.

(34)
Then f(wT ,x) = f(w0,x)∀x ∈ X and ∀T ∈ [0, 1]. So we proved that γ is an homotopy of (w,w′)

such that γ(t) ∈ Rf
X (w) ∀t ∈ [0, 1]. Thus,

w′ ∈ R̄f
X (w) =⇒ w′ ∼ w =⇒ [w′] = [w], (35)

and this completes the proof.

Proposition B.3. For any w0,w1 ∈ RD it holds

[w0] = [w1] ⇐⇒ dP([w0,w1]) = 0. (36)

Proof. =⇒ This arrow is trivially true by considering the two sequences in the definition of the
quotient distance to be of length one and such that p1 = w0 and q1 = w1.

⇐= dP([w0,w1]) = 0 implies that, by definition of inf , there exists a sequence ϵm → 0 such that
∀m ∈ N there exists two finite sequences of points p(m)

1 , . . . , p
(m)
n ∈ RD and q

(m)
1 , . . . , q

(m)
n ∈ RD

such that
n∑

i=1

∥p(m)
i − q

(m)
i ∥ = ϵm, (37)

where [w0] = [p
(m)
1], [p(m)

i+1] = [q
(m)
i] and [q

(m)
n] = [w1]. Note that the sequence length n may

depend on m.
Lipschitzness of f in parameters, assumed by hypothesis, means that

∥p− q∥ < ϵ =⇒ ∥f(p,x)− f(q,x)∥ < Lϵ ∀p, q ∈ RD,∀x ∈ X ,∀ϵ > 0, (38)

thus,
n∑

i=1

∥p(m)
i − q

(m)
i ∥ = ϵm =⇒

n∑
i=1

∥f(p(m)
i ,x)− f(q

(m)
i ,x)∥ < 2Lϵm ∀x ∈ X . (39)

Also, by definition of the equivalence class, it holds ∀x ∈ X that

[w0] = [p
(m)
1] =⇒ ∥f(w0,x)− f(p

(m)
1 ,x)∥ = 0 (40)

[p
(m)
i+1] = [q

(m)
i] =⇒ ∥f(p(m)

i+1 ,x)− f(q
(m)
i ,x)∥ = 0 (41)

[q(m)
n] = [w1] =⇒ ∥f(q(m)

n ,x)− f(w1,x)∥ = 0. (42)

16

Thus, by the triangular inequality, the last four equations imply

∥f(w0,x)− f(w1,x)∥ ≤ ∥f(w0,x)− f(p
(m)
1 ,x)∥+ ∥f(p(m)

1 ,x)− f(q(m)
n ,x)∥

+ ∥f(q(m)
n ,x)− f(w1,x)∥

(43)

= ∥f(p(m)
1 ,x)− f(q(m)

n ,x)∥ (44)

≤
n∑

i=1

∥f(p(m)
i ,x)− f(q

(m)
i ,x)∥+

n−1∑
i=1

∥f(p(m)
i+1 ,x)− f(q

(m)
i ,x)∥ (45)

< 2Lϵm +

n−1∑
i=1

0 = 2Lϵm, (46)

and this holds for any m ∈ N. Taking the limit m→∞, ϵm → 0 implies ∥f(w0,x)−f(w1,x)∥ ≤ 0.
Thus, f(w0,x) = f(w1,x) ∀x ∈ X , and, thus, [w0] = [w1], which completes the proof.

B.2 Proof of Eq. 22

In order to prove Eq. 22, we first prove a weaker statement
Proposition B.4. For any w0,w1 ∈ RD and for any δ > 0 it holds that

∥w0 −w1∥ < δ =⇒ df∗H(w0,w1) < Lδ. (47)

Proof. Let γ : [0, 1]→ RD be defined as γ(t) = (1− t)w0 + tw1, then

LENf∗H(γ) =

∫ 1

0

∥γ′(t)∥f∗Hγ(t)
dt =

∫ 1

0

∥w1 −w0∥f∗Hγ(t)
dt

≤
∫ 1

0

L∥w1 −w0∥dt = L∥w1 −w0∥,
(48)

and thus,

df∗H(w0,w1) = inf
γ̂

LENf∗H(γ̂) ≤ LENf∗H(γ) = L∥w1 −w0∥ < Lδ. (49)

Definition B.5. Let γ1, . . . , γn : [0, 1]→ RD a sequence of piecewise differentiable paths such that

γi−1(1) = γi(0) ∀i ∈ {0, . . . , n}. (50)

Consider the piecewise differentiable path that is the concatenation of the paths one after the other,
γ̂ = CAT(γ1, . . . , γn) defined as

γ̂(t) = γi (nt− i) if i ≤ t ≤ i+ 1. (51)

It is straightforward to see that LEN(γ̂) =
∑n

i=1 LEN(γi).

The choice of ϵ, δ that prove Eq. 22 trivially follows from the following
Proposition B.6. With the assumption of eigenvalue upper bound L, for any w0,w1 ∈ RD for any
δ > 0 it holds that

dP([w0,w1]) < δ =⇒ df∗H(w0,w1) < 3Lδ. (52)

Proof. dP([w0,w1]) < δ implies that, by the definition of inf , there exists two sequences
{pi}i=1...n, {qi}i=1...n ⊂ RD such that [w0] = [p1], [pi+1] = [qi], [qn] = [w1] and such that

n∑
i=1

∥pi − qi∥ < 2δ. (53)

Now the idea is to define n+ 1 paths on the equivalence classes and n paths connecting them, then
the stacking of the 2n+ 1 will give an upper bound on the geodesic distance.

Let us first define the paths γ2i for i = 0, . . . , n by making use of Proposition B.2

17

• [w0] = [p1] imply that there exists γ0 : [0, 1]→ RD be such that γ0(0) = w0, γ0(1) = p1
and such that LENf∗H(γ0) < Lδ/n+1

• [qn] = [w1] imply that there exists γ2n : [0, 1]→ RD be such that γ2n(0) = qn, γ2n(1) =
w1 and such that LENf∗H(γ2n) < Lδ/n+1

• for all i = 1, . . . , n− 1, [pi+1] = [qi] imply that there exists γ2i : [0, 1]→ RD be such that
γ2i(0) = pi+1, γ2i(1) = qi and such that LENf∗H(γ2i) < Lδ/n+1

And then for all i = 1, . . . , n, Proposition B.4 and
∑n

i=1 ∥pi − qi∥ < 2δ imply γ2i−1 : [0, 1]→ RD

be such that γ2i−1(0) = pi, γ2i−1(1) = qi and such that
∑n

i=1 LENf∗H(γ2i−1) < 2Lδ.

Then concatenating these 2n+ 1 paths, we have

df∗H(w0,w1) = inf
γ̂

LENf∗H(γ̂) ≤ LENf∗H(CAT(γ0, . . . , γ2n)) (54)

=

2n∑
i=0

LENf∗H(γi) =

n∑
i=1

LENf∗H(γ2i−1) +

n∑
i=0

LENf∗H(γ2i) < 2Lδ + Lδ. (55)

B.3 Proof of Eq. 23

Proposition B.7. The pullback metric does not “rotate” too much when moving from w to w + ϵ,
formally

(1−K∥ϵ∥)∥v∥f∗Hw+ϵ
≤ ∥v∥f∗Hw ≤ (1 +K∥ϵ∥)∥v∥f∗Hw+ϵ

. (56)

Proof. Follows from the K-Lischitz assumption on w 7→ Jw

The choice of ϵ, δ that prove Eq. 23 trivially follows from the following

Proposition B.8. With the assumption of eigenvalue upper bound L, for any w0,w1 ∈ RD for any
δ > 0 it holds that

df∗H(w0,w1) < δ =⇒ dP([w0,w1]) <
6δ

l
. (57)

Proof. df∗H(w0,w1) < δ implies that there exist a path γ : [0, 1]→ RD with

2δ = LENf∗H(γ) =

∫ 1

0

∥γ′(t)∥f∗Hγ(t)
dt. (58)

Consider also the Euclidean length LENE(γ) which does not depend on δ. Then, for any δ there
exist n(δ) ∈ N such that, considering the uniform partition of [0, 1], ti = i/n(δ) for i = 0, . . . , n(δ) it
holds the discrete approximation of the integral

3δ >

n(δ)−1∑
i=0

∥γ(ti+1)− γ(ti)∥f∗Hγ(ti)
=

n(δ)−1∑
i=0

∥γ(ti+1)− pi + pi − γ(ti)∥f∗Hγ(ti)
(59)

=

n(δ)−1∑
i=0

∥γ(ti+1)− pi∥f∗Hγ(ti)
+ ∥pi − γ(ti)∥f∗Hγ(ti)︸ ︷︷ ︸

=0

,

(60)

where pi is defined for every i ∈ {0, . . . , n(δ) − 1} as follow. Consider the projection PK
i on the

kernel of f∗Hγ(ti), and the projection P I
i on the image of f∗Hγ(ti), such that the two projections

are orthogonal and PK
i + P I

i = I. Define the point pi ∈ RD as pi = PK
i (γ(ti+1)− γ(ti)) + γ(ti),

which implies that ∥pi − γ(ti)∥f∗Hγ(ti)
= 0. By definition of the projections, it also hold that

pi = γ(ti+1) − P I
i (γ(ti+1) − γ(ti)), which implies that γ(ti+1) − pi = P I

i (γ(ti+1) − γ(ti)) is

18

aligned with the non-zero eigenvalues of f∗Hγ(ti), this means that we can resort to the lower bound l
on the non-zero eigenvalues and Proposition B.7 to see that

∥γ(ti+1)− pi∥f∗Hγ(ti)
≥ (1−K∥γ(ti+1)− γ(ti)∥︸ ︷︷ ︸

K̃

)∥γ(ti+1)− pi∥f∗Hγ(ti+1)
(61)

≥ K̃l∥γ(ti+1)− pi∥ (62)

≥ l

2
∥γ(ti+1)− pi∥ ∀i ∈ {0, . . . , n(δ)− 1}, (63)

where, recalling that ∥γ(ti+1) − γ(ti)∥ = 1/n(δ) by construction, there always exist an n(δ) big
enough such that K̃ ≥ 1/2, which we can assume without loss of generality. Rearranging the terms,
we have

6δ

l
≥

n(δ)−1∑
i=0

∥γ(ti+1)− pi∥. (64)

Finally, we can define the points qi = γ(ti+1) and we have the two sequences p0, . . . , pn(δ)−1 and
q0, . . . , qn(δ)−1 whose satisfies the costrains [w0] = [p0], [pi+1] = [qi] and [qn(δ)−1] = [w1]. We
highlight that the dependence on δ of the length of the sequence is not problematic, as it is sufficient
that n(δ) is finite for every fixed δ, which it is. Thus,

dP([w0,w1]) ≤
n(δ)−1∑
i=0

∥pi − qi∥ <
6δ

l
, (65)

which concludes the proof.

C Proof of existence of the two Riemannian manifolds

This section contains the proof for the existence of the two Riemannian manifolds (Pw̄,m) and
(P⊥

w̄ ,m⊥) embedded in RD. In the rest of the section, we consider a fixed w̄ ∈ RD.

Fix a training set X = {x1, . . . ,xN} ⊂ RI of size N and consider the stacked partial evaluation of
the network defined as

F : RD −→ RNO (66)
w 7−→ (f(w,x1), . . . , f(w,xN)) . (67)

And define ȳ = F(w̄) ∈ RNO. The differential ∇wF
∣∣
w̄

= Jw̄ ∈ RNO×D equals the stacking of
the per-datum Jacobians, and we assume it to be full rank thanks to the uniform lower bound on the
eigenvalues of the NTK matrix. Full-rankness in the overparametrized setting D > NO implies the
surjectivity of the differential operator.

Jw̄ =

(
∂Fi

∂wj

∣∣∣∣
w̄

)
i=1,...,NO; j=1,...,D

. (68)

We reorder the wi so that the first NO columns are independent. Then the NO ×NO matrix

R =

(
∂Fi

∂wj

∣∣∣∣
w̄

)
i=1,...,NO; j=1,...,NO

(69)

is non-singular. We consider the map

α(w1, . . . ,wD) = (F(w)1, . . . ,F(w)NO,wNO+1, . . . ,wD) . (70)

We obtain

∇wα
∣∣
w̄
=

(
∂αi

∂wj

∣∣∣∣
w̄

)
i=1,...,D; j=1,...,D

=

(
R ∗
0 I

)
, (71)

and this is non-singular. By the inverse function theorem, α is a local diffeomorphism. So there is an
open W ⊆ RD containing w̄ such that α|W : W → α(W) is smooth with smooth inverse.

19

Finally, define

P⊥
w̄ =

α−1(ȳ1, . . . , ȳNO︸ ︷︷ ︸
NO

, p1, . . . , pD−NO) for p ∈ RD−NO

 ⊆ RD, (72)

and similarly

Pw̄ =

α−1(p1, . . . , pNO, 0, . . . , 0︸ ︷︷ ︸
D−NO

) for p ∈ RNO

 ⊆ RD. (73)

We claim that the two restrictions of α are slice charts of P⊥
w̄ and Pw̄, respectively. Since it is a

smooth diffeomorphism, it is certainly a chart. Moreover, by construction, the points in P⊥
w̄ are

exaclty those whose image under F is ȳ, thus, P⊥
w̄ ⊆ [w̄]. On the other hand, the points w ∈ Pw̄

parametrize functions that take the values F(w) = p in a local neighbourhood of ȳ. Thus, locally it
never intersects the same equivalence class more than one time.

D Proof of Theorem 5.1

By definition of the kernel manifold, we have that if w ∈ P⊥
w′ then we have that w ∈ [w′]. Hence

for all w ∈ P⊥
w′ and for all x ∈ X

f(w,x) = f(w′,x). (74)
It follows that Varw∼P⊥

w′
[f(w,x)] = 0 for any x ∈ X .

For the second statement notice that Varw∼P⊥
w′

[f(w,xtest] = 0 if and only if f(w,xtest) = c for

all w ∼ P⊥
w′ and for some constant c.

Suppose ŵ ∈ R̄f
X and ŵ ̸∈ R̄f

X∪{xtest}, then f(ŵ,xtest) ̸= f(w′,xtest), which means that
f(w,xtest) is not constant. Hence we have that Varw∼P⊥

w′
[f(w,xtest] > 0

E Further results and experimental setup

E.1 Implementation details of the Laplace approximation

Sampling from Laplace’s approximation requires computing the inverse square root of a matrix of
size D ×D, where D is the number of parameters. For most models this problem is intractable. The
standard approach to this problem is to consider sparse approximations to the Hessian of the loss
function such as KFAC, Last-Layer, and Diagonal approximations. However, these approximations
introduce additional complexity making the task of validating our theoretical analysis much harder.
In light of these considerations, we choose to sample from Laplace’s approximation in a way that is
closest to the theoretical ideal, at the cost of performing expensive computations.

0 50 100 150 200 250 300 350

Index

0

1000

2000

3000

4000

E
ig

en
va

lu
es

Figure 6: Eigenvalues of the GGN of a
Convolutional Neural Network trained
on MNIST.

In small experiments with the toy regression problem, we
instantiate the exact GGN and compute vector products
with its inverse-square root. For experiments with LeNet
and ResNet, we rely on the empirical observation that the
spectrum of the GGN is dominated by its leading eigenval-
ues (Figure 6)

This makes low-rank approximations of the GGN particu-
larly attractive. We choose the Lanczos algorithm (Lanc-
zos, 1950) with full reorthogonalization and run it for a
very high number of iterations, to ensure numerical stabil-
ity and very low reconstruction error to form our low-rank
approximations of the GGN. Additionally, Lanczos only
requires implicit access to the matrix so we avoid the mem-
ory cost and GGN vector products for neural networks can
be performed efficiently using Jacobian-Vector products and Vector-Jacobian products. If we do

20

Algorithm 1 Laplace diffusion

1: Input: Observed data D, trained MAP point w′, number of steps T , number of samples S, rank
k.

2: Initialize samples w0
1 . . .w

0
S as the MAP estimate w′

3: for j in 1, . . .S do
4: for t in 1, . . .T do
5: Sample ϵ ∼ N (0, Ik)
6: Compute the top-k eigenvalues(Λt

j) and eigenvectors(U t
j) of GGNwt

j

7: wt
j ← wt

j +
1√
N
U t
j (Λ

t
j + αI)−

1
2 ϵ

8: end for
9: end for

10: Return posterior samples wT
1 . . .wT

S .

a sufficiently large number of iterations we obtain the non-zero eigenvalues Λ̃, and correspond-
ing eigenvectors U1. For obtaining samples from the diffusion we can use Algorithm 1 with the
eigenvalues and eigenvectors computed using the Lanczos algorithm.

Given the non-zero eigenvalues Λ̃, and corresponding eigenvectors U1 we can also form inverse
vector products with the square root of GGN + αI . It should be evident from the discussion in
section 3 about decomposing the covariance that this vector product with a vector v is given by:

(GGN + αI)−
1
2 v = U1(Λ̃+ αIk)

− 1
2 v +

1√
α
U2v (75)

= U1(Λ̃+ αIk)
− 1

2 v +
1√
α
(I−U1)v (76)

= U1((Λ̃+ αIk)
− 1

2 − 1√
α
Ik)v +

1√
α
v (77)

This allows us to form inverse-square root vector products with the GGN + αI given the non-zero
eigenspectrum. We run the sampling algorithm on H100 GPUs to run the high-order Lanczos decom-
position. This approach of sampling from Laplace’s approximation has O(pk2) time complexity, and
O(pk) memory cost, where k is the number of Lanczos iterations and p is the number of parameters.

E.2 Experimental details and further results for toy experiments

E.2.1 Toy regression in Figure 2

In this experiment, we fit a small MLP, with 2 hidden layers of width 10 on the sine curve. Due to the
small size of the GGN it is possible to instantiate and do all the computations explicitly. We sample
from the exact Laplace’s approximation, the non-kernel and kernel subspace of the GGN, and use the
neural network and the linearized predictive functions for the top row and the bottom row respectively.
For the middle, we simulate a diffusion on the kernel manifold for the center plot, a diffusion in the
non-kernel manifold for the right plot and we do alternating steps in the two manifolds for the left
plot which gives us the full distribution.

We also do a similar experiment to show that the same phenomenon also holds for classification. We
use a small convolutional neural network, with 2 convolutional layers with kernel of size 3, to classify
a 2-class mixture of Gaussians and look at uncertainties of sampled Laplace, linearized Laplace, and
Laplace’s diffusion. We decompose these uncertainties into their kernel and non-kernel components
respectively. We see the same effect for classification as we did in regression in Figure 7

The main takeaway of these experiments is that sampled Laplace underfits in-distribution and this
effect is related to the kernel component of the distribution.

E.2.2 Effect of kernel rank on in-distribution fit in figure 4

For this experiment, we train a small convolutional neural network, with two convolutional layers and
a kernel of size 3, on MNIST. In this case, the GGN can be instantiated explicitly. We recall that the

21

5

0

5

Sampled Full Distribution Sampled Kernel Distribution Sampled Non-Kernel Distribution

5

0

5

Linearized Laplace uncertainty Linearized Kernel uncertainty Linearized Non-Kernel uncertainty

6 4 2 0 2 4 6

5

0

5

Laplace Diffusion uncertainty

6 4 2 0 2 4 6

Diffusion Kenrel uncertainty

6 4 2 0 2 4 6

Diffusion Non-Kernel uncertainty

0.42
0.48
0.54
0.60
0.66
0.72
0.78
0.84
0.90

0.00
0.15
0.30
0.45
0.60
0.75
0.90
1.05

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Figure 7: Decomposition of uncertainties of Laplace Approximation for the Gaussian mixture
classification.

GGN is a sum of Jw′(xn)
⊤H(xn)Jw′(xn) over the dataset where xn are the individual data points.

We recall that the rank of the GGN is bounded by NO where N is the number of data points and O is
the output dimensions. This suggests considering partial sums by subsampling the data points gives
us a GGN with a lower rank. Equivalently, this is GGN with a higher dimensional kernel, and hence
the usual covariance from Laplace’s approximation (GGN + αI)−1 has a higher contribution from
the kernel subspace.

We consider multiple such subsamples and plot the training accuracy for samples from Laplace’s
approximation against the kernel subspace dimension. Here we see a clear trend that the underfitting
in sampled Laplace decreases as the rank of GGN increases, or the contribution from the kernel
component decreases. This serves to further support our suggested hypothesis that the underfitting in
sampled Laplace is caused by its kernel component and is hence deeply related to reparameterizations.

E.3 Additional benchmarks and results for image classification

Training details: We use a standard LeNet for the MNIST and FashionMNIST experiments and a
smaller version of ResNet (Lippe, 2022), with 272,378 parameters consisting of 3 times a group of 3
ResNet blocks. We use those instead of the standard ResNets due to constraints on the computational
budget for the CIFAR-10 experiments. We train LeNet with Adam optimizer and a learning rate of
10−3. For the ReNet we use SGD with a learning rate of 0.1 with momentum and weight decay.

Hyperparameters: We benchmark Laplace diffusion against SWAG, diagonal Laplace, last-layer
Laplace, and MAP in addition to linearised Laplace and sampled Laplace.

For choosing the prior precision for diagonal Laplace and last-Layer Laplace for each benchmark
we do a grid search over the set {0.1, 1.0, 5.0, 10.0, 50.0, 100.0}. For Laplace diffusion, sampled
Laplace, and Linearised to ensure that the comparison can validate the theory it is preferable to have
the same prior precision for all of these methods. So we only do the grid search to tune the prior
precision for sampled Laplace and use this for all three methods. We keep the hyperparameters for
these three methods as similar as possible to have the most informative comparisons.

For Laplace diffusion on MNIST and FMNIST, we simulate the diffusion with a step size of 0.05, with
2000 Lanczos iterations and we predict using 20 MC samples. For sampled Laplace and Linearised
Laplace, we also use 2000 Lanczos iterations and we predict using 20 MC samples. For the CIFAR-10
experiments, we simulate the diffusion with a step size of 0.2, with 5000 Lanczos iterations and we
predict using 20 MC samples. For sampled Laplace andlLinearised Laplace use the same number of
Lanczos iterations and MC samples.

For SWAG we use a learning rate of 10−2 with momentum of 0.9 and weight decay of 3e−4 and
the low-rank covariance structure in all experiments. For the MNIST and FMNIST experiments
we collect 20 models and for the CIFAR-10 experiments we collect 3 models to sample from the
posterior.

Last-layer Laplace is the recommended method by Daxberger et al. (2021c) so it should approximate
the best performance one can get using various possible configurations. For the CIFAR-10 experi-

22

ments, the last layer of ResNet is too large to instantiate the full GGN matrix. So we instead use the
last 1000 parameters of the model to construct the covariance matrix of the posterior.

Diagonal Laplace requires high prior precision to ensure it does not severely underfit in-distribution
(similar to sampled Laplace). It often becomes almost deterministic. So we exclude it from the
CIFAR results. This has also been observed by Deng et al. (2022) and Ritter et al. (2018).

All additional information about the experimental setup can be found in the submitted code.

E.3.1 In-distribution fit and calibration

We extend Table 1 to benchmark Laplace’s diffusion against various other Bayesian methods. Here
we see that despite using the neural network predictive it is competitive with the best-performing
Bayesian methods whereas Sampled Laplace performs significantly worse.

MNIST

Conf. (↑) NLL (↓) Acc. (↑) Brier (↓) ECE (↓) MCE (↓)
Laplace’s diffusion 0.988±0.001 0.040±0.007 0.986±0.002 0.022±0.003 0.146±0.011 0.773±0.050
Sampled Laplace 0.593±0.002 3.669±0.157 0.157±0.031 1.162±0.044 0.436±0.027 0.984±0.001
Linearised Laplace 0.967±0.002 0.295±0.041 0.930±0.004 0.111±0.006 0.239±0.032 0.862±0.044
SWAG 0.993±0.001 0.032±0.001 0.989±0.002 0.019±0.001 0.187±0.024 0.901±0.041
Last-Layer Laplace 0.991±0.001 0.047±0.003 0.987±0.002 0.021±0.001 0.198±0.034 0.721±0.091
Diagonal Laplace 0.963±0.005 0.078±0.011 0.976±0.003 0.038±0.005 0.095±0.004 0.692±0.029
MAP 0.992±0.002 0.042±0.004 0.988±0.000 0.021±0.000 0.198±0.041 0.685±0.091

FMNIST

Conf. (↑) NLL (↓) Acc. (↑) Brier (↓) ECE (↓) MCE (↓)
Laplace’s diffusion 0.900±0.001 0.275±0.016 0.906±0.007 0.141±0.006 0.108±0.015 0.729±0.092
Sampled Laplace 0.618±0.021 4.507±0.160 0.098±0.010 1.295±0.014 0.518±0.013 0.986±0.001
Linearised Laplace 0.897±0.003 0.423±0.014 0.862±0.005 0.207±0.006 0.147±0.017 0.756±0.048
SWAG 0.925±0.002 0.259±0.004 0.911±0.006 0.135±0.004 0.152±0.008 0.752±0.067
Last-Layer Laplace 0.914±0.001 0.280±0.016 0.901±0.006 0.144±0.004 0.131±0.003 0.673±0.083
Diagonal Laplace 0.862±0.009 0.323±0.022 0.889±0.010 0.165±0.011 0.102±0.003 0.660±0.051
MAP 0.914±0.000 0.279±0.015 0.904±0.006 0.143±0.004 0.125±0.010 0.609±0.033

CIFAR-10

Conf. (↑) NLL (↓) Acc. (↑) Brier (↓) ECE (↓) MCE (↓)
Laplace’s diffusion 0.948±0.004 0.403±0.007 0.889±0.005 0.180±0.009 0.264±0.048 0.879±0.038
Sampled Laplace 0.843±0.004 0.997±0.222 0.717±0.049 0.422±0.081 0.221±0.047 0.804±0.080
Linearised Laplace 0.951±0.007 0.614±0.020 0.863±0.001 0.222±0.002 0.337±0.022 0.789±0.035
SWAG 0.942±0.003 0.393±0.004 0.884±0.002 0.176±0.001 0.234±0.014 0.912±0.016
Last-Layer Laplace 0.953±0.004 0.343±0.033 0.899±0.001 0.155±0.007 0.260±0.000 0.884±0.029
MAP 0.960±0.003 0.333±0.030 0.913±0.007 0.143±0.009 0.282±0.002 0.932±0.006

E.3.2 Robustness to dataset shift

In these experiments (Fig. 8), to measure in-distribution fit and calibration, we report accuracy,
negative log-likelihood (NLL), and expected calibration error (ECE)—all evaluated on the standard
test sets. We measure the robustness of dataset shift of various baselines by plotting the negative
log-likelihood and the expected calibration error against shift intensity. The desired behavior is
good in-distribution fit, as close as possible to MAP, and stable calibration errors and NLL under
distribution shifts. We see that the Laplace’s diffusion is competitive against other Bayesian methods.

E.3.3 Out-of-distribution detection

We extend 2 to benchmark Laplace’s diffusion against various other Bayesian methods for Out-of-
Distribution Detection. Once again, we observe that, despite using the neural network predictive,

23

NLL ECE Acc.
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

In-distribution metrics

Laplace's Diffusion
Sampled Laplace
Linearised Laplace
SWAG
Last-Layer Laplace
MAP

0 25 50 75 100 125 150 175
Shift intensity

0

2

4

6

8

10

12

N
eg

at
iv

e
lo

g-
lik

el
ih

oo
d

Laplace's Diffusion posteriors
Sampled Laplace posteriors
Linearised Laplace posteriors
SWAG
Last-Layer Laplace posteriors
MAP

0 25 50 75 100 125 150 175
Shift intensity

0.2

0.3

0.4

0.5

0.6

0.7

E
xp

ec
te

d
C

al
ib

ra
tio

n
E

rr
or

Laplace's Diffusion posteriors
Sampled Laplace posteriors
Linearised Diffusion posteriors
SWAG
Last-Layer Laplace posteriors
MAP

NLL ECE Acc.
0

1

2

3

4

In-distribution metrics

Laplace's Diffusion
Sampled Laplace
Linearised Laplace
SWAG
Last-Layer Laplace
MAP

0 25 50 75 100 125 150 175
Shift intensity

0

2

4

6

8

N
eg

at
iv

e
lo

g-
lik

el
ih

oo
d

Laplace's Diffusion posteriors
Sampled Laplace posteriors
Linearised Laplace posteriors
SWAG
Last-Layer Laplace posteriors
MAP

0 25 50 75 100 125 150 175
Shift intensity

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
xp

ec
te

d
C

al
ib

ra
tio

n
E

rr
or

Laplace's Diffusion posteriors
Sampled Laplace posteriors
Linearised Diffusion posteriors
SWAG
Last-Layer Laplace posteriors
MAP

NLL ECE Acc.
0.0

0.2

0.4

0.6

0.8

1.0

In-distribution metrics

Laplace's Diffusion
Sampled Laplace
Linearised Laplace
SWAG
Last-Layer Laplace
MAP

0 25 50 75 100 125 150 175
Shift intensity

0

1

2

3

4

5

6

7

N
eg

at
iv

e
lo

g-
lik

el
ih

oo
d

Laplace's Diffusion posteriors
Sampled Laplace posteriors
Linearised Laplace posteriors
SWAG
Last-Layer Laplace posteriors
MAP

0 25 50 75 100 125 150 175
Shift intensity

0.2

0.3

0.4

0.5

0.6

E
xp

ec
te

d
C

al
ib

ra
tio

n
E

rr
or

Laplace's Diffusion posteriors
Sampled Laplace posteriors
Linearised Diffusion posteriors
SWAG
Last-Layer Laplace posteriors
MAP

Figure 8: Model Fit and Calibration of various posterior sampling methods on in-distribution data(first
column) and under distribution shift for MNIST(top row), Fashion MNIST(middle row) and CIFAR-
10(bottom row). We use rotated MNIST, rotated FMNIST, and rotated CIFAR in the second and third
columns. Shift intensities denote angles of rotation.

it is competitive with the best-performing Bayesian methods in terms of having a higher AUROC,
whereas Sampled Laplace performs significantly worse.

MNIST

Tested on FMNIST EMNIST KMNIST
Conf.(↓) AUROC(↑) Conf.(↓) AUROC(↑) Conf.(↓) AUROC(↑)

Laplace’s diffusion 0.810±0.031 0.911±0.037 0.947±0.007 0.629±0.021 0.817±0.015 0.930±0.009
Sampled Laplace 0.583±0.015 0.515±0.021 0.584±0.003 0.515±0.004 0.588±0.013 0.507±0.015
Linearised Laplace 0.895±0.027 0.715±0.086 0.934±0.004 0.536±0.028 0.863±0.009 0.757±0.018
SWAG 0.827±0.054 0.949±0.018 0.955±0.004 0.627±0.016 0.823±0.013 0.947±0.007
Last-Layer Laplace 0.842±0.046 0.904±0.033 0.958±0.005 0.625±0.028 0.837±0.009 0.935±0.004
Diagonal Laplace 0.770±0.026 0.866±0.030 0.907±0.005 0.617±0.009 0.747±0.013 0.897±0.005
MAP 0.850±0.035 0.907±0.038 0.959±0.005 0.634±0.019 0.837±0.010 0.938±0.006

24

FMNIST

Tested on MNIST EMNIST KMNIST
Conf.(↓) AUROC(↑) Conf.(↓) AUROC(↑) Conf.(↓) AUROC(↑)

Laplace’s diffusion 0.734±0.039 0.759±0.045 0.730±0.020 0.741±0.010 0.746±0.012 0.749±0.023
Sampled Laplace 0.597±0.027 0.495±0.037 0.593±0.026 0.503±0.036 0.598±0.024 0.493±0.033
Linearised Laplace 0.817±0.022 0.625±0.050 0.813±0.003 0.628±0.013 0.816±0.014 0.624±0.020
SWAG 0.727±0.013 0.817±0.015 0.763±0.028 0.769±0.026 0.777±0.007 0.782±0.010
Last-Layer Laplace 0.757±0.019 0.761±0.031 0.760±0.017 0.735±0.018 0.772±0.008 0.747±0.021
Diagonal Laplace 0.652±0.033 0.767±0.032 0.682±0.019 0.719±0.033 0.696±0.025 0.728±0.032
MAP 0.759±0.019 0.757±0.032 0.762±0.018 0.730±0.015 0.773±0.010 0.743±0.024

CIFAR-10

Tested on CIFAR-100 SVHN
Conf.(↓) AUROC(↑) Conf.(↓) AUROC(↑)

Laplace’s diffusion 0.790±0.002 0.851±0.002 0.764±0.008 0.862±0.010
Sampled Laplace 0.727±0.026 0.687±0.033 0.792±0.022 0.599±0.038
Linearised Laplace 0.818±0.005 0.837±0.006 0.809±0.033 0.854±0.024
SWAG 0.776±0.009 0.845±0.008 0.729±0.009 0.876±0.003
Last-Layer Laplace 0.789±0.006 0.864±0.001 0.786±0.029 0.868±0.015
MAP 0.797±0.004 0.873±0.001 0.792±0.034 0.878±0.017

E.4 Short discussion on benchmarks

Sparse Approximations of GGN. Our theoretical analysis is mainly concerned with the ideal
versions of Laplace’s approximations, where we consider the full GGN in the covariance without any
approximations. However, it can also shed some light on other Bayesian methods.

It is common to use sparse approximations of the GGN when doing Laplace’s approximations.
Interestingly we observe that Laplace’s approximations with sparse GGN such as diagonal Laplace,
Last Layer, etc do not benefit from linearization to the same degree (Fig. 9).

1.0 0.5 0.0 0.5 1.0 1.5 2.0

3

2

1

0

1

2

3

Sampled Laplace Uncertainty
Laplace Mean predictions
Predictions
Targets

1.0 0.5 0.0 0.5 1.0 1.5 2.0

2

1

0

1

2

Linearised Laplace Uncertainty
Laplace Mean Linearised predictions
Predictions
Targets

1.0 0.5 0.0 0.5 1.0 1.5 2.0

1.0

0.5

0.0

0.5

1.0

1.5
Diagonal Laplace Uncertainty

Diagonal Laplace Mean predictions
Predictions
Targets

1.0 0.5 0.0 0.5 1.0 1.5 2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Linearised Diagonal Laplace Uncertainty

Diagonal Laplace Mean Linearised predictions
Predictions
Targets

Figure 9: Predictive uncertainty of Laplace’s approximation with neural network and linearized
predictive (top row) and diagonal Laplace with neural network and linearized predictive (bottom
row).

This is perfectly consistent with our analysis as we show that the benefit of linearization primarily
comes from the Jacobian term in the linearized predictive and the GGN sharing a kernel. Diagonal and
other sparse approximations do not share the spectral properties with the Jacobian in the linearized
predictive. George et al. (2018) note the potential advantages of having the spectrum of the approx-
imate curvature more aligned with the true curvature. This suggests future directions to improve
various approximations to the GGN by accounting for reparameterizations.

25

SWAG. Another baseline that can be explained using our method is the SWAG. It has been shown
that in (Li et al., 2021) SGD steps close to the optimum can be decomposed into a normal space
component and a tangent space component. In our terminology, this can be thought of as a diffusion
step in the Kernel manifold and a diffusion step in the Non-kernel manifold. Hence it can be shown
that SWAG roughly approximates a diffusion-based posterior. Hence our analysis can provide some
theoretical grounding for heuristic methods like SWAG.

26

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The theoretical findings are states in abstract and introduction as clear as
possible withouth first introducing all the notation of the paper. The experimental results
match the claim and confirm the theoretical findings.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The conclusion raises several points of concern.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

27

Answer: [Yes]

Justification: all theoretical statements are given a detailed derivation in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a detailed appendix describing the experimental setup. We will
further release all code to reproduce the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

28

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We rely on established benchmark data. All code will be released under an
open source software licence upon paper acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify the details about the experimental setup in the appendix. Further-
more, we also provide the code as supplemental material which contains the full details of
the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide errors and/or standard deviations for presented results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

29

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: these details are presented in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The work is predominantly theoretical and does not raise ethical concerns.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: The paper is predominantly theoretical. However, uncertainty quantification is
a potential remedy for several issues with currently deployed machine learning models, so
there is a potential for positive societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

30

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: we do not deem this to be relevant.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: we only consider well-established benchmark data, which we cite appropri-
ately.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

31

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: we will release open source code for reproducing experiments upon paper
acceptance. This is well documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: this paper does not involve crowdsourcing or other forms of research involving
human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: this paper does not involve crowdsourcing or other forms of research involving
human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

32

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

33

	Introduction
	Background: Laplace approximations
	Reparameterizations of linear functions
	Reparameterizations of neural networks
	The effective-parameters quotient space
	The effective-parameters manifold
	Topological equivalence of the two views

	Exploring manifolds with random walks
	Related work
	Experiments
	Conclusion
	Recap
	Proof for equivalence of the two settings
	Proof of eq:reformulationpropequivalence
	Proof of eq:reformulationthmequivalenceA
	Proof of eq:reformulationthmequivalenceB

	Proof of existence of the two Riemannian manifolds
	Proof of Theorem 5.1
	Further results and experimental setup
	Implementation details of the Laplace approximation
	Experimental details and further results for toy experiments
	Toy regression in Figure 2
	Effect of kernel rank on in-distribution fit in figure 4

	Additional benchmarks and results for image classification
	In-distribution fit and calibration
	Robustness to dataset shift
	Out-of-distribution detection

	Short discussion on benchmarks

