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Abstract

Political discourse on social media often con-001
tains similar language used with opposing in-002
tended meanings. For example, the phrase003
thoughts and prayers, is used to express sym-004
pathy for mass shooting victims, as well as005
satirically criticize the lack of legislative ac-006
tion on gun control. Fully understanding such007
discourse just by reading the text is difficult.008
However, knowledge of the social context in-009
formation makes it easier.010

We characterize the social context required to011
fully understand such ambiguous discourse, by012
grounding the text in real-world entities, ac-013
tions, and attitudes. We propose two datasets014
that require an understanding of social context015
and benchmark them using large pre-trained016
language models, and several novel structured017
models. We show that structured models, ex-018
plicitly modeling social context, outperform019
larger models on both tasks, but still lag sig-020
nificantly behind human performance. Finally,021
we perform an extensive analysis, to obtain fur-022
ther insights into the language understanding023
challenges posed by our social grounding tasks.024

1 Introduction025

Over the past decade, micro-blogging websites026

have become the primary medium for US politi-027

cians to interact with general citizens and influ-028

ence their stances for gaining support. As a result,029

politicians from the same party often coordinate030

the phrasing of their social messaging, to amplify031

their impact (Vaes et al., 2011; Weber and Neu-032

mann, 2021). Hence, repetitive, succinct phrases,033

such as “Thoughts and Prayers”, are extensively034

used, although they signal more nuanced stances.035

Moreover, the interaction among politicians from036

opposing parties often leads to messaging phrased037

similarly, but signaling opposing real-world actions.038

For example, ‘Thoughts and Prayers’, when used039

by Republicans, expresses condolences in mass040

Figure 1: An example of varied intended meanings
behind the same political message depending on the
Author and Event in context

shooting events, but when used by Democrats con- 041

veys an angry or sarcastic tone as a call for action 042

demanding “tighter gun control measures”. Simi- 043

larly, fig. 1 shows contrasting interpretations of the 044

phrase “We need to keep our teachers safe!” de- 045

pending on different speakers and in the context of 046

different events. 047

Humans familiar with the stances of a politician 048

and, possessing knowledge about the event from 049

the news, can easily understand the intended mean- 050

ing of political phrases. However, automatically 051

understanding such language is challenging. Our 052

main question in this paper is - Can an NLP model 053

find the right meaning? From a linguistic per- 054

spective, we follow the distinction (Bach, 2008) 055

between semantic interpretation (i.e., meaning en- 056

coded directly in the utterance and does not change 057

based on its external context), and pragmatic in- 058

terpretation (that depends on extra-linguistic infor- 059

mation). The latter has gathered significant inter- 060

est in the NLP community recently (Bender and 061

Koller, 2020; Bisk et al., 2020), focusing on lan- 062

guage understanding, when grounded in an exter- 063

nal context (Fried et al., 2023). To a large extent, 064
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Tweet Target Entity and Sentiment Vague Text Disambiguation
Tweet: As if we needed more evidence. #kavanaugh Vague Text: First, but not the last.

Event: Kavanaugh Supreme Court Nomination
Event: US withdraws from Paris climate agreement that
enforces environmental targets after three years

Author: Earl Blumenauer (Democrat Politician) Author Party: Republican

Targets: Brett Kavanaugh (negative), Julie Swetnick (positive)
Christine Ford (positive), Deborah Ramirez (positive)

Disambiguation: The withdrawal from the Paris climate agreement
is the first step of many to come for the Trump administration. It will
not be the last, as more positive changes are sure to follow.
Incorrect Disambiguations:
1) Joe Biden’s inauguration marks the first day of a new era of progress
and prosperity, lasting positive changes are coming. (Incorrect Event)
2) The Paris Climate Agreement withdrawal is the first of many
backward steps this Trump administration is sure to take in destroying
our environment. (Incorrect Stance)
3) This is the time for America to move forward and make progress
without being held back by a global agreement that doesn’t serve
our interests. (Doesn’t match the vague text)

Target Task Data Statistics Vague Text Data Statistics
Unique Tweets 865 Unique Vague Texts 93
Positive Targets 1513 Positive Examples 739
Negative Targets 1085 Negative Examples 2217
Neutral Targets 784 Total Examples 2956
Non-Targets 2509 Number of Events 9
Total Data Examples 5891 Hard Test Examples 180
Number of Events 3

Table 1: Examples of Annotated Datasets and their statistics

the focus of such studies has been on grounding065

language in a perceptual environment (e.g., image066

captioning (Andreas and Klein, 2016; Sharma et al.,067

2018; Alikhani et al., 2020), instruction following068

(Wang et al., 2016; Suhr et al., 2019; Lachmy et al.,069

2022), and game playing (Potts, 2012; Udagawa070

and Aizawa, 2019) tasks). Unlike these works,071

in this paper, we focus on grounding language072

in a social context, i.e., modeling the common073

ground (Clark and Brennan, 1991; Traum, 1994;074

Stalnaker, 2002) between the author and their so-075

cial media followers, that enables understanding076

an otherwise highly ambiguous utterances. The077

Social Context Understanding, needed for building078

successful models for such tasks, can come from079

a wide variety of sources. The politician’s affilia-080

tion and historical stances on the issue provide can081

capture crucial social context. Social relationships,082

knowledge about the involved entities, and related083

prior and upcoming events form important part of084

the puzzle as well. In fig. 1 event #1, combin-085

ing the event information (school shooting) with086

the speakers’ gun control stances, would facilitate087

understanding the intended meaning of the text.088

The main motivation of this paper work is089

to operationalize the ‘Social Context Ground-090

ing’ problem as a pragmatic understanding task.091

From a practical perspective, this would enable092

the creation of better NLP-CSS models that can093

process social media text in settings that require094

contextualized understanding. We suggest several095

datasets, designed to evaluate this ability in com-096

putational models. These task capture the intended097

meaning at different level of granularity. At the098

most basic level, providing the social context can099

help identify the entities targeted, and the sentiment100

towards them. In fig. 1, the social context 〈event#1,101

Harris〉and the text “we need to keep our teachers 102

safe” ⇒ “negative attitude towards guns”. A more 103

nuanced account of meaning, which we formulate 104

as a separate task, captures the specific means in 105

which the negative attitude is expressed (the Inter- 106

pretation in fig. 1). We additionally present two 107

datasets corresponding to these tasks, namely, ‘Tar- 108

get Entity and Sentiment Detection’ and ‘Vague 109

Text Disambiguation’. In the first, the goal is to 110

predict: 1) whether a given entity is the intended 111

target of a politician’s tweet and 2) the sentiment 112

towards the intended targets. We explicitly focus 113

on tweets that do not always mention the targets 114

in their text to incentivize modeling the pragmatic 115

communicative intent of the text. In the second 116

task, given an ambiguous political message such 117

as “We demand justice” and its social context (as- 118

sociated event, & the author’s party affiliation), the 119

task is to identify a plausible unambiguous expla- 120

nation of the message. Note that the ground truth 121

for all these tasks is based on human pragmatic 122

interpretation, i.e., “guns” is a negative target of 123

“we need to keep our teachers safe”, despite not 124

being mentioned in the text, since it was perceived 125

in this way by a team of human annotators reading 126

the tweet and knowing social context. We show 127

examples of each task in table 1. We describe the 128

datasets in detail in section 3. 129

We evaluate the performance of various models, 130

as a way to test the need for social context and com- 131

pare different approaches for modeling it. These 132

include pre-trained LM-based classifiers, and LLM 133

in-context learning (Brown et al., 2020a; Black 134

et al., 2022), which use a textual representation of 135

the social context. We also adopt an existing graph- 136

based discourse contextualization framework (Pu- 137

jari and Goldwasser, 2021; Feng et al., 2022), to 138

2



explicitly model the social context needed to solve139

the proposed tasks. Our results demonstrate that140

the discourse contextualization models outperform141

other models on both tasks. We present an error142

analysis to gain further insights. We describe the143

models in section 4 and the results in section 5.144

We also present a qualitative visualization145

of a political event, Brett Kavanaugh Supreme146

Court Nomination (section 6.4), from target entity-147

sentiment perspective. It showcases a unique sum-148

mary of the event discourse. We perform human149

evaluation on our ‘Vague Text Disambiguation’150

dataset, and observe that humans find this task151

much easier than the evaluated models. We also152

present observations of human vs. LLM errors in153

disambiguation. In summary, our contributions are:154

1. Defining and operationalizing the ‘Social Con-155

text Grounding’ task in political discourse156

2. Evaluating various state-of-the-art context rep-157

resentation models on the task. We adopt ex-158

isting discourse contextualization framework159

for the proposed tasks, and evaluate GPT-3’s160

in-context learning performance, as well.161

3. Performing human studies to benchmark the162

dataset difficulty and GPT-3 generation perfor-163

mance, when compared to human workers.1164

2 Related Work165

Pragmatic Language Grounding gained signifi-166

cant focus recently (Bender and Koller, 2020; Bisk167

et al., 2020) following the rise of Pretrained Lan-168

guage Models (Devlin et al., 2019; Liu et al., 2019;169

Brown et al., 2020a) as unified NLP models. Most170

grounding tasks address multi-modal or physical171

environment descriptions (Barnard et al., 2003; Vo-172

gel and Jurafsky, 2010; Chen and Mooney, 2011;173

Tellex et al., 2011; Mitchell et al., 2012; Anderson174

et al., 2018). We refer the reader to (Fried et al.,175

2023) for a thorough overview. In contrast, we176

focus on grounding language in a social context.177

Social Context Modeling Hovy and Yang (2021)178

show that modeling social context is necessary for179

human-level NLU. As political messages are of-180

ten targeted at the voter base aware of the political181

context (Weber and Neumann, 2021; Vaes et al.,182

2011), they are vague by design. Several previous183

works model social context for entity linking (Yang184

et al., 2016), social media connections relationship185

for fake news detection (Baly et al., 2018; Mehta186

et al., 2022) and, political bias detection (Li and187

1Our data and code will be released under MIT license

Goldwasser, 2019; Baly et al., 2020). These works 188

model partial aspects of social context, relevant to 189

their tasks. Two recent frameworks aim to capture 190

social context holistically (Pujari and Goldwasser, 191

2021; Feng et al., 2022). Evaluation tasks presented 192

in both works show interesting social context un- 193

derstanding but are not fully representative of the 194

challenges of Social Context Grounding. Zhan et al. 195

(2023) propose a dataset for dialogue understand- 196

ing addressing general social commonsense. 197

Related Semantic and Pragmatic tasks closest 198

to our Target Entity Sentiment Identification task 199

is Stance Detection in social media (Mohammad 200

et al., 2016; AlDayel and Magdy, 2020). To clarify 201

our contribution, Mohammad et al. (2016), a pop- 202

ular SemEval task, looks at sentiment towards 5 203

targets, while our data has 362 unique targets. All- 204

away and McKeown (2020) and Zhang et al. (2022) 205

also propose stance datasets on tweets. But, they 206

focus mainly on semantic understanding of text 207

that allows them to predict agreement or disagree- 208

ment with well-defined statements. Our Vague Text 209

Disambiguation task is related to recent works that 210

study implicit inferences (Hoyle et al., 2023), and 211

pragmatic understanding (Hu et al., 2023). How- 212

ever, our tasks evaluate pragmatic understanding 213

using an explicit context, absent in those tasks. 214

3 Social Context Grounding Tasks 215

We design and collect two datasets for Social Con- 216

text Grounding evaluation, and define three prag- 217

matic interpretation tasks. In the Tweet Target En- 218

tity and Sentiment dataset, we collect annotations 219

of opinionated tweets from known politicians for 220

their intended targets and sentiments towards them. 221

We focus on three political events for this task. 222

The dataset and its collection are described below 223

in section 3.1. In the Vague Text Disambiguation 224

Task, we collect plausible explanations of vague 225

texts, given the social context, consisting of author 226

affiliation and specific event. We focus on eight po- 227

litical events. This dataset is detailed in section 3.2. 228

Examples and data statistics are shown in table 1. 229

3.1 Tweet Target Entity and Sentiment Task 230

In this task, given a tweet T, its context, and an 231

entity E, the objective is to predict whether or not E 232

is a target of T and the sentiment towards E. Politi- 233

cal discourse often contains opinionated discourse 234

about world events and social issues. We collect 235

tweets that don’t directly mention the target entities. 236
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Thus, connecting the text with the event details and237

the author’s general perspectives is necessary to238

solve this task effectively. We pick the focal enti-239

ties for the given event and let human annotators240

expand on that initial set, based on their interpre-241

tation of the contextualized text. A target entity242

is conceptualized as an entity present in the full243

intended interpretation of the tweet.244

We focus our tweet collection on three recent245

divisive events: George Floyd Protests, 2021 US246

Capitol Attacks, and Brett Kavanaugh’s Supreme247

Court Nomination. We identify relevant participat-248

ing entities for each of the three events. Examples249

of the involved entities for the event George Floyd250

Protests were George Floyd, United States Police,251

Derek Chauvin, Donald Trump, Joe Biden, United252

States Congress, Black people, Democratic Party,253

Republican Party, BLM, Antifa.254

3.1.1 Target-Sentiment Data Collection255

We filter 3, 454 tweets for the three events using256

hashtags, keyword-based querying, and the dates of257

the event-based filtering from the Congress Tweets258

repository corpus2. We collect a subset of 1, 779259

tweets that contain media (images/video) to in-260

crease the chances of the tweet text not containing261

the target entity mentions. Then, we use 6 in-house262

human annotators and Amazon Mechanical Turk263

(AMT) workers who are familiar with the event264

context for annotation. We ask them to annotate265

the targeted entities and sentiments towards the tar-266

gets. The authors of this paper also participated267

in the annotation process. We provide them with268

entity options based on the event in the focus of269

the tweet. Annotators are allowed to add additional270

options if needed. We also ask the annotators to271

mark non-targets for each tweet. We instruct them272

to keep the non-targets as relevant to the event as273

possible to create harder negative examples. Each274

tweet is annotated by three annotators. We filter275

865 unique tweets with 5, 891 annotations, with276

majority agreement on each tweet. All the AMT277

annotations were additionally verified by in-house278

annotators for correctness. AMT workers were279

paid USD 1 per tweet. It took 3 minutes on av-280

erage for each assignment, resulting in an hourly281

pay of USD 20. We include screenshots of the282

collection task GUIs in the appendix. We split the283

train, and test sets by events, authors, and targets284

to incentivize testing the general social grounding285

2https://github.com/alexlitel/congresstweets

capabilities of the models. The test set also con- 286

sists of authors, targets, and events not seen in the 287

training set. We use Capitol Riots event for the 288

test set of Target Entity and Sentiment Task. We 289

split the examples into 4, 370 train, 511 develop- 290

ment, and 1, 009 test examples. We compute the 291

mean Cohen’s kappa score for annotations and re- 292

port inter-annotator agreement for annotated targets 293

(0.47) and sentiment (0.73) 294

3.2 Vague Text Disambiguation Task 295

The task of Vague Text Disambiguation is de- 296

signed to capture pragmatic interpretation at a finer- 297

grained level. It can be viewed as a variant of the 298

well known paraphrase task, adapted for the so- 299

cial context settings. The model is evaluated on its 300

ability to identify plausible interpretations (i.e., a 301

sentence explicitly describing the author’s intent) 302

of an ambiguous quote given the event context and 303

author’s affiliation. E.g., “protect our children from 304

mass shootings” could easily be disambiguated as 305

either “ban guns” or “arm teachers” when the au- 306

thor’s stance on the issue of ‘gun rights’ is known. 307

Our data collection effort is designed to capture 308

different aspects of social context grounding and fa- 309

cilitate detailed error analysis. Defined as a binary 310

classification task over tuples 〈Party, Event, Vague 311

text, Explicit text〉, we create negative examples 312

by flipping tuple elements values of positive exam- 313

ples. This allows us to evaluate whether models 314

can capture event relevance, political stance, or 315

constrain the interpretation based on the vague text. 316

For example, in the context of Event #1 in fig. 1, 317

we can test if models simply capture the correlation 318

between Democrats and negative stance towards 319

guns access by replacing the vague text to “let your 320

voice be heard”, which would make the interpreta- 321

tion in fig. 1 implausible despite being consistent 322

with that stance, while other consistent interpreta- 323

tions would be plausible (e.g., “go outside and join 324

the march for our lives”). 325

3.2.1 Vague Text Data Collection 326

Data collection was done in several steps. (1)Vague 327

Texts Collection. We collected vague text can- 328

didates from tweets by US politicians (i.e. sena- 329

tors and representatives) between the years 2019 330

to 2021 from Congress Tweets corpus. We identi- 331

fied a list of 9 well-known events from that period 332

and identified event-related tweets using their time 333

frame and relevant hashtags. We used a pre-trained 334

BERT-based (Devlin et al., 2019) NER model to 335
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collect tweets that do not contain any entity men-336

tions to identify potential candidates for vague texts.337

We manually identified examples that could have338

contrasting senses by flipping their social context.339

We obtain 93 vague text candidates via this process.340

(2)In-Context Plausible Meaning Annotation.341

We match the 93 ambiguous tweets with differ-342

ent events that fit them. We use both Democrat343

and Republican as the author party affiliation. We344

obtain 600 context-tweet pairs for AMT annotation.345

For each tweet, we ask AMT workers to annotate346

the following two aspects: 1) sentiment towards347

the three most relevant entities in the event (sanity348

check) and 2) a detailed explanation of the intended349

meaning given the event and author’s party affilia-350

tion. We obtain 469 reasonable annotations. After351

this step, each annotation was screened by in-house352

annotators. We ask three in-house annotators to353

vote on the correctness, appropriateness, and plau-354

sibility of the annotation given the context. Thus,355

we create a total of 374 examples.356

(3)LLM-based Data Expansion. Using these ex-357

amples, we further generate candidates for the task358

using LLM few-shot prompting. We use the exam-359

ples from the previous step as in-context few-shot360

examples in the prompt. We use GPT-NeoX (Black361

et al., 2022) and GPT-3 (Brown et al., 2020a) for362

candidate generation. For each generated answer,363

manual inspection by three in-house annotators is364

performed to ensure data quality. We generate 928365

candidates using GPT-NeoX and GPT-3. Human366

expert filtering results in 650 generations that pass367

the quality check. After removing redundant sam-368

ples, we obtain 365 examples. Thus, we obtain a369

total of 739 annotations for this task. Then, for370

each of the 739 examples, we ask in-house anno-371

tators to select 3 relevant negative options from372

the pool of explanations. We instruct them to pick373

hard examples that might contain similar entities374

as the correct interpretation. This results in 2, 956375

binary classification data samples. We analyze and376

discuss the results of human validation of large LM377

generations in section 6.378

Similar to the previous task, we split the train,379

test sets by events, and vague text to test the gen-380

eral social understanding capabilities of the model.381

We reserve Donald Trump’s second impeachment382

verdict event for the test set. We also reserve Demo-383

cratic examples of 2 events and Republican exam-384

ples of 2 events exclusively for the test set. We385

split the dataset into 1, 916 train, 460 development,386

and 580 test examples. 180 of the test examples387

are from events/party contexts unseen in train data. 388

4 Modeling Social Context 389

The key technical question this paper puts for- 390

ward is how to model the social context, such 391

that the above tasks can be solved with high ac- 392

curacy. We observe that humans can perform this 393

task well (section 6.3), and evaluate different con- 394

text modeling approaches in terms of their ability 395

to replicate human judgments. These correspond to 396

No Context, Text-based context representation 397

(e.g., Twitter Bio, relevant Wikipedia articles), and 398

Graph-based context representation, simulating 399

the social media information that human users are 400

exposed to when reading the vague texts. 401

We report the results of all our baseline experi- 402

ments in table 2 and table 3. The first set of results 403

evaluate fine-tuned pre-trained language models 404

(PLM), namely BERT (Devlin et al., 2019) and 405

RoBERTa (Liu et al., 2019), with three stages of 406

modeling context. Firstly, we evaluate no con- 407

textual information setting. Second, we include 408

the authors’ Twitter bios as context. Finally, we 409

evaluate the information from the author, event, 410

and target entity Wikipedia pages as context (mod- 411

els denoted PLM Baselines {No, Twitter Bio, 412

Wikipedia} Context, respectively). 413

We evaluate GPT-33 in zero-shot and four-shot 414

in-context learning paradigm on both tasks. We 415

provide contextual information in the prompt as 416

short event descriptions and authors’ affiliation de- 417

scriptions. Note that GPT-3 is trained on news data 418

until Sep. 2021 which includes the events in our 419

data (models denoted LLM Baseline). 420

We evaluate the performance of politician em- 421

beddings from Political Actor Representation 422

(PAR) (Feng et al., 2022) and Discourse Contex- 423

tualization Framework (DCF) (Pujari and Gold- 424

wasser, 2021) models. (models denoted Static 425

Contextutalized Embeddings). We use PAR 426

embeddings available on their GitHub repository4. 427

For DCF model, we use released pre-trained mod- 428

els from GitHub repository5 to generate author, 429

event, text, and target entity embeddings. We eval- 430

uate the embeddings on both tasks. We briefly 431

review these models in section 4.1 & section 4.2. 432

Finally, we use tweets of politicians from related 433

previous events and build context graphs for each 434

3gpt-3.5-turbo-1106 via OpenAI API
4https://github.com/BunsenFeng/PAR
5https://github.com/pujari-rajkumar/

compositional_learner
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Model
Target Identification Sentiment Identification

Prec Rec Macro-F1 Acc Prec Rec Macro-F1 Acc
No Context
Baselines

BERT-large 69.09 72.35 68.83 70.56 58.74 60.17 58.95 58.37
RoBERTa-base 66.58 69.54 65.14 66.40 61.68 61.27 61.36 60.65

PLMs
+Twitter Bio Context

BERT-large + user-bio 69.03 71.86 69.34 71.66 60.02 60.44 60.13 59.86
RoBERTa-base + user-bio 65.83 68.65 64.79 66.30 60.06 59.91 59.94 59.46

PLMs
+Wikipedia Context

BERT-large + wiki 63.58 65.78 60.33 61.05 53.48 56.44 53.9 53.32
RoBERTa-base + wiki 69.02 72.32 68.62 70.27 57.62 59.10 58.07 58.28

LLMs
GPT-3 0-shot 69.25 70.58 69.77 73.78 56.20 55.04 54.18 56.80
GPT-3 4-shot 69.81 72.99 66.45 67.03 58.12 57.10 55.00 57.51

Static Contextutalized
Embedding Models

RoBERTa-base + PAR Embs 68.38 71.63 67.67 69.18 55.01 56.89 55.51 55.40
BERT-large + PAR Embs 65.40 67.33 60.25 60.56 55.24 57.54 55.89 55.80
RoBERTa-base + DCF Embs 72.89 75.95 73.56 75.82 63.05 63.52 62.90 63.03
BERT-large + DCF Embs 68.76 72.02 68.32 69.97 61.59 63.25 61.22 60.75

Discourse
Contextualized Models

BERT-large + DCF 71.12 74.61 71.17 72.94 65.81 65.25 65.34 65.31
RoBERTa-base + DCF 70.44 73.86 70.39 72.15 63.45 63.34 63.37 63.23

Table 2: Results of baseline experiments on Target Entity (binary task) and Sentiment (4-classes) test sets. We report
macro-averaged Precision, macro-averaged Recall, macro-averaged F1, and Accuracy metrics.

Model Vague Text Disambiguation
Prec Rec Macro-F1 Acc

No Context Baselines
BERT-large 52.24 55.58 50.28 53.75
RoBERTa-base 55.3 51.82 54.53 56.08

PLMs + Wikipedia Context
BERT-large + wiki 52.31 46.90 66.87 76.03
BERT-base + wiki 51.85 38.62 64.36 75.69

LLMs
GPT-3 0-shot 63.10 62.92 62.58 63.5
GPT-3 4-shot 62.05 62.29 61.86 62.04

Static Contextutalized Embedding Models
BERT-large + PAR 47.68 49.66 65.53 73.79
BERT-base + PAR 45.93 54.48 65.49 72.59
BERT-large + DCF Embs 47.18 63.45 67.55 73.10
BERT-base + DCF Embs 56.58 59.31 71.71 78.45
Discourse Contextualization Models
BERT-large + DCF 52.76 59.31 69.94 76.55
BERT-base + DCF 52.73 60.00 70.06 76.55

Table 3: Results of baseline experiments on Vague Text
Disambiguation dataset test split, a binary classifica-
tion task. We report macro-averaged Precision, macro-
averaged Recall, macro-averaged F1, and Acc. metrics

data example as proposed in Pujari and Goldwasser435

(2021). We use Wikipedia pages of authors, events,436

and target entities to add social context informa-437

tion to the graph. Then, we train the Discourse438

Contextualization Framework (DCF) for each task439

and evaluate its performance on both tasks (models440

denoted Discourse Contextualization Model).441

Further details of our baseline experiments are pre-442

sented in subsection section 4.3. Results of our443

baseline experiments are discussed in section 5.444

4.1 Discourse Contextualization Framework445

Discourse Contextualization Framework (DCF)446

(Pujari and Goldwasser, 2021) leverages relations447

among social context components to learn contex-448

tualized representations for text, politicians, events,449

and issues. It consists of encoder and composer450

modules that compute holistic representations of451

the context graph. The encoder creates an initial 452

representation of nodes. Composer propagates the 453

information within the graph to update node rep- 454

resentations. They define link prediction learning 455

tasks over context graphs to train the model. They 456

show that their representations significantly outper- 457

form several PLM-based baselines trained using 458

the same learning tasks. 459

4.2 Political Actor Representation 460

Feng et al. (2022) propose the Political Actor Rep- 461

resentation (PAR) framework, a graph-based ap- 462

proach to learn more effective politician embed- 463

dings. They propose three learning tasks, namely, 464

1) Expert Knowledge Alignment 2) Stance Con- 465

sistency training & 3) Echo chamber simulation, 466

to infuse social context into the politician repre- 467

sentations. They show that PAR representations 468

outperform SOTA models on Roll Call Vote Predic- 469

tion and Political Perspective Detection. 470

4.3 Experimental Setup 471

Target Entity Detection is binary classification with 472

〈author, event, tweet, target-entity〉as input and 473

target/non-target label as output. Sentiment De- 474

tection is set up as 4-way classification. Input is the 475

same as the target task and output is one of: {pos- 476

itive, neutral, negative, non-target}. Vague Text 477

Disambiguation is a binary classification task with 478

〈party-affiliation, event, vague-text, explanation- 479

text〉and a match/no-match label as output. 480

In phase 1 no-context baselines, we use the au- 481

thor, event, tweet, and target embeddings gener- 482

ated by PLMs. We concatenate them for input. In 483

Twitter-bio models, we use the author’s Twitter bio 484

embeddings to represent them. Wiki context mod- 485

els receive Wikipedia page embeddings of author, 486
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event, and target embeddings. It is interesting to487

note that the Wikipedia context models get all the488

information needed to solve the tasks.. In phase489

2 LLM experiments, we use train samples as in-490

context demonstrations. We provide task and event491

descriptions in the prompt. In phase 3 PAR mod-492

els, we use politician embeddings released on the493

PAR GitHub repository to represent authors. We re-494

place missing authors with their wiki embeddings.495

For the Vague Text task, we average PAR embed-496

dings for all politicians of the party to obtain party497

embeddings. For DCF embedding models, we gen-498

erate representations for all the inputs using context499

graphs. We also use authors’ tweets from relevant500

past events. We build graphs using author, event,501

tweet, relevant tweets, and target entity as nodes502

and edges as defined in the original DCF paper. In503

phase 4, we use the same setup as the DCF em-504

bedding model and additionally back-propagate to505

DCF parameters. This allows us to fine-tune the506

DCF context graph representation for our tasks.507

5 Results508

The results of our baseline experiments are de-509

scribed in Tab. 2 and 3. We evaluate our models510

using macro-averaged precision, recall, F1, and ac-511

curacy metrics (due to class imbalance, we focus512

on macro-F1). Several patterns, consistent across513

all tasks, emerge. First, modeling social context is514

still an open problem. None of our models were515

able to perform close to human level. Second,516

adding context can help performance, compared517

to the No-Context baselines, models incorporating518

context performed better, with very few exceptions.519

Third, LLMs are not the panacea for social-context520

pragmatic tasks. Despite having access to a textual521

context representation as part of the prompt, and522

having access to relevant event-related documents523

during their training phase, these models under-524

perform compared to much simpler models that525

were fine-tuned for this task. Finally, explicit con-526

text modeling using the DCF model consistently527

leads to the best performance. The DCF model528

mainly represents the social context in the form529

of text documents for all nodes. Further symbolic530

addition of other types of context such as social531

relationships among politicians and relationships532

between various nodes could further help in achiev-533

ing better performance on these tasks. In the Target534

Entity task, RoBERTa-base + DCF embeddings ob-535

tain 73.56 F1 vs. 68.83 for the best no-context536

baseline. Twitter bio and wiki-context hardly im- 537

prove, demonstrating the effectiveness of modeling 538

contextual information explicitly vs. concatenat- 539

ing context as text documents. No context per- 540

formance well above the random performance of 541

50 F1 indicates the bias in the target entity dis- 542

tribution among classes. We discuss this in sec- 543

tion 6.4. In Sentiment Identification task, we see 544

that BERT-large + DCF back-propagation outper- 545

forms all other models. Vague Text Disambigua- 546

tion task results in table 3 show that DCF models 547

outperform other models significantly. 71.71 F1 is 548

obtained by BERT-base + DCF embeddings. BERT- 549

base performing better than bigger PLMs might be 550

due to DCF model’s learning tasks being trained 551

using BERT-base embeddings. 552

6 Analysis and Discussion 553

6.1 Ablation Analysis on Vague Text Task 554

We report ablation studies in table 5 on the Vague 555

Text task test set. We consider 5 splits: (1) 556

Unseen Party: 〈party, event〉not in the train set 557

but 〈opposing-party, event〉is present, (2) Unseen 558

Event: 〈party 〉not in train set, (3) Flip Event: neg- 559

ative samples with corresponding ‘event flipped- 560

party/vague tweet matched’ positive samples in 561

train set and analogous (4) Flip Party and (5) Flip 562

Tweet splits. We observe the best model in each 563

category. They obtain weaker performance on un- 564

seen splits, as expected, unseen events being the 565

hardest. Contextualized models achieve higher mar- 566

gins. DCF gains 7.6(13.2%) and DCF embeddings 567

attain 8.12(20.42%) macro-F1 improvement over 568

BERT-base+wiki compared to respective margins 569

of 8.86% and 11.42% on the full test set. In the 570

flip splits with only negative examples, accuracy 571

gain over random baseline for all splits is seen. 572

This indicates that models learn to jointly condition 573

on context information rather than learn spurious 574

correlations over particular aspects of the context. 575

Specifically, flip-tweet split results indicate that 576

models don’t just learn party-explanation mapping. 577

6.2 Vague Text LLM Generation Quality 578

We look into the quality of our LLM-generated dis- 579

ambiguation texts. While GPT-NeoX (Black et al., 580

2022) produced only 98 good examples out of the 581

498 generated instances with the rest being redun- 582

dant, GPT-3 (Brown et al., 2020a) performed much 583

better. Among the 430 generated instances, 315 584

were annotated as good which converts to an accep- 585
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Democrat Only Entities Common Entities Republican Only Entities

Target Sentiment Agreed-Upon Entities Divisive Entities Target SentimentTarget Sentiment Sentiment (D) Target Sentiment (R)

Anita Hill
Patty Murray

Merrick Garland
Jeff Flake

Positive
Positive
Positive
Negative

US Supreme Court
US Senate

FBI
Judiciary Committee

Neutral
Neutral
Neutral
Neutral

Positive
Positive
Positive
Negative
Negative
Negative

Christine Blasey Ford
Deborah Ramirez

Julie Swetnick
Brett Kavanaugh
Donald Trump

Mitch McConnell

Negative
Negative
Negative
Positive
Positive
Positive

Susan Collins
Chuck Grassley
Diane Feinstein
Chuck Schumer

Sean Hannity

Positive
Positive
Negative
Negative
Neutral

Table 4: Target Entity-Sentiment centric view of Kavanaugh Supreme Court Nomination discourse

Data Split
Unseen
Party

Unseen
Event

Flip
Tweet

Flip
Event

Flip
Party

Ma-F1 Ma-F1 Acc Acc Acc
Random 44.70 29.69 75 75 75
BERT-base+wiki 57.58 39.76 88.14 89.77 87.77
BERT-base
+DCF Embs

61.79 47.88 86.10 93.18 84.57

BERT-base+DCF 65.18 45.65 82.03 89.77 84.04

Table 5: Ablation Study Results on Vague Text Task

tance rate of 20.04% for GPT-NeoX and 73.26%586

for GPT-3 respectively. In-house annotators evalu-587

ated the quality of the generated responses for how588

well they aligned with the contextual information.589

They rejected examples that were either too vague,590

align with the wrong ideology, or were irrelevant.591

In the prompt, we condition the input examples in592

all the few shots to the same event and affiliation593

as the input vague text. In comparison, the valida-594

tion of AMT annotations for the same task yielded595

79.8% good examples even after extensive training596

and qualification tests. Most of the rejections from597

AMT were attributed to careless annotations.598

6.3 Vague Text Human Performance599

We look into how humans perform on the Vague600

Text Disambiguation task. We randomly sample601

97 questions and ask annotators to answer them as602

multiple-choice questions. Each vague text-context603

pair was given 4 choices out of which only one604

was correct. We provide a brief event description605

along with all the metadata available to the annota-606

tor. Each question was answered by 3 annotators.607

Among the 97 answered questions, the accuracy608

was 94.85%, which shows this task is easy for hu-609

mans who understand the context. Respective per-610

formance of best models on this subset of data611

for BERT-base+wiki (54.89%), BERT-base+DCF-612

embs (63.38%), BERT-base+DCF (64.79%) is613

much lower than human performance.614

6.4 Target Entity Visualization615

The main goal of this analysis is to demonstrate616

the usefulness and inspire modeling research in617

the direction of entity-sentiment-centric view of618

political events. table 4 visualizes one component 619

of how partisan discourse is structured in these 620

events. We study Kavanaugh Supreme Court Nom- 621

ination. We identify discussed entities and separate 622

them into divisive and agreed-upon entities. This 623

analysis paints an accurate picture of the discussed 624

event. We observe that the main entities of Trump, 625

Dr. Ford, Kavanaugh, Sen. McConnell, and other 626

accusers/survivors emerge as divisive entities. Enti- 627

ties such as Susan Collins and Anita Hill who were 628

vocal mouthpieces of the respective party stances 629

but didn’t directly participate in the event emerge 630

as partisan entities. Supreme Court, FBI, and other 631

entities occur but only as neutral entities. 632

6.5 DCF Context Understanding 633

We look into examples that are incorrectly pre- 634

dicted using Wikipedia pages but correctly pre- 635

dicted by the DCF model in the appendix (table 6). 636

In examples 1 & 2 of Target Entity-Sentiment 637

task, when the entity is not explicitly mentioned 638

in the tweet, the Wiki-Context model fails to iden- 639

tify them as the targets. We posit that while the 640

Wikipedia page of each relevant event will contain 641

these names, explicit modeling of entities in the 642

DCF model allows correct classification. Exam- 643

ples 1− 3 of Vague Text Disambiguation task show 644

that when no clear terms indicate the sentiment 645

towards a view, the Wiki-Context model fails to 646

disambiguate the tweet text. Explicit modeling of 647

politician nodes seems to help the DCF model. 648

7 Conclusion and Future Work 649

In this paper, we motivate, define, and operational- 650

ize ‘Social Context Grounding’ for political text. 651

We build two novel datasets to evaluate social con- 652

text grounding in NLP models that ‘are easy for 653

humans’ when the relevant social context is pro- 654

vided. We experiment with many types of con- 655

textual models. We show that explicit modeling 656

of social context outperforms other models while 657

lacking behind humans. 658
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Limitations659

Our work only addresses English language text in660

US political domain. We also build upon large lan-661

guage models and large PLMs which are trained662

upon huge amounts of uncurated data. Although663

we employed human validation at each stage, bi-664

ases could creep into the datasets. We also don’t665

account for the completeness of our datasets as it666

is a pioneering work on a new problem. Social667

context is vast and could have a myriad of com-668

ponents. We only take a step in the direction of669

social context grounding in this work. The perfor-670

mance on these datasets might not indicate full so-671

cial context understanding but they should help in672

sparking research in the direction of models that ex-673

plicitly model such context. Although we tuned our674

prompts a lot, better prompts and evolving models675

might produce better results on the LLM baselines.676

Our qualitative analysis is predicated on a handful677

of examples. They are attempts to interpret the re-678

sults of large neural models and hence don’t carry679

as much confidence as our empirical observations.680

We believe the insights from our findings will en-681

courage more research in this area. For example,682

the development of discourse contextualized mod-683

els that aim to model human-style understanding684

of background knowledge, emotional intelligence,685

and societal context understanding is a natural next686

step of our research.687

Ethics Statement688

In this work, our data collection process consists of689

using both AMT and GPT-3. For the Target Entity690

and Sentiment task, we pay AMT workers $1 per691

HIT and expect an average work time of 3 minutes.692

This translates to an hourly rate of $20 which is693

above the federal minimum wage. For the Vague694

Text Disambiguation task, we pay AMT workers695

$1.10 per HIT and expect an average work time of696

3 minutes. This translated to an hourly rate of $22.697

We recognize collecting political views from698

AMT and GPT-3 may come with bias or explicit699

results and employ expert gatekeepers to filter out700

unqualified workers and remove explicit results701

from the dataset. Domain experts used for anno-702

tation are chosen to ensure that they are fully fa-703

miliar with the events in focus. Domain experts704

were provided with the context related to the events705

via their Wikipedia pages, background on the gen-706

eral issue in focus, fully contextualized quotes, and707

authors’ historical discourse obtained from ontheis-708

sues.org. We have an annotation quid-pro-quo sys- 709

tem in our lab which allows us to have a network of 710

in-house annotators. In-house domain experts are 711

researchers in the CSS area with familiarity with 712

a range of issues and stances in the US political 713

scene. They are given the information necessary 714

to understand the events in focus in the form of 715

Wikipedia articles, quotes from the politicians in 716

focus obtained from ontheissues.org, and news ar- 717

ticles related to the event. We make the annotation 718

process as unambiguous as possible. In our annota- 719

tion exercise, we ask the annotators to mark only 720

high-confidence annotations that can be clearly ex- 721

plained. We use a majority vote from 3 annotators 722

to validate the annotations for the target entity task. 723

Our task is aimed at understanding and ground- 724

ing polarized text in its intended meaning. We take 725

examples where the intended meaning is clearly 726

backed by several existing real-world quotes. We 727

do not manufacture the meaning to the vague state- 728

ments, we only write down unambiguous explana- 729

tions where context clearly dictates the provided 730

meaning. Applications of our research as we en- 731

vision would be adding necessary context to short 732

texts by being able to identify past discourse from 733

the authors that are relevant to the particular text in 734

its context. It would also be able to ground the text 735

in news articles that expand upon the short texts to 736

provide full context. 737
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A Reproducibility1013

We use the HuggingFace Transformers (Wolf et al.,1014

2020) library for PLMs. We use GPT-NeoX im-1015

plementation by ElutherAI (Black et al., 2022) and1016

GPT-3 (Brown et al., 2020b) via OpenAI API for1017

our LLM baselines. We run 100 epochs for all1018

experiments. We use 10 NVIDIA GeForce 1080i1019

GPUs for our experiments. We use the train, de-1020

velopment, and test splits detailed in section 3 for1021

our experiments. We use the development macro-1022

F1 for early stopping. We run all our experiments1023

using random seeds to ensure reproducibility. We1024

experiment with a random seed value set to {13}.1025

We report the results of the 3 fold cross-validation.1026

We report only the mean on all the cross-fold val-1027

idation results for clarity. All our code, datasets,1028

and result logs will be released publicly upon ac-1029

ceptance. We experiment with 3, 5, and 10 fold1030

cross-validation. As the results on the development1031

data are almost identical, we report the results of 31032

fold cross-validation in all our experiments.1033

B Error Analysis1034

C Annotation Interfaces1035

D GPT Prompts1036

GPT-3 prompts used for target-entity task:1037

Event: <event>1038

Event background:1039

<background-description>1040

Tweet: <tweet-text>1041

Author: <author-name>1042

Author Party: <party-affiliation>1043

Author background: <first two sentences1044

of author-wiki-page>1045

Target Entity: <entity-name>1046

Entity background: <first two sentence1047

of entity-wiki-page> Task: Identify if1048

the given entity is a target of the1049

tweet. A target entity is defined as an1050

entity that would be present in the full1051

unambiguous explanation of the tweet.1052

Is the given entity a target entity of1053

the tweet? Answer yes or no.1054

GPT-3 prompts used for target-sentiment task:1055

Event: <event>1056

Event background:1057

<background-description>1058

Tweet: <tweet-text>1059

Author: <author-name>1060

Author Party: <party-affiliation>1061

Author background: <first two sentences 1062

of author-wiki-page> 1063

Target Entity: <entity-name> 1064

Entity background: <first two sentence 1065

of entity-wiki-page> Task: Identify the 1066

sentiment of the tweet towards the given 1067

target entity. Consider that the tweet is 1068

ambiguous and the entity might be implied 1069

without being explicitly mentioned. 1070

What is the sentiment of the tweet 1071

towards the target entity? Answer with 1072

positive, negative, or neutral. 1073

GPT-3 prompts used for vague text disambigua- 1074

tion task: 1075

Event: <event> 1076

Event background: 1077

<background-description> 1078

Vague message: <vague-text> 1079

Author Party: <party-affiliation> 1080

Author background: <first two sentences 1081

of party-wiki-page> 1082

Task: Given the event, vague message, and 1083

party affiliation of the author, explain 1084

unambiguously the intended meaning of 1085

the vague message. 1086

Generate an unambiguous explanation 1087

for the vague message given the party 1088

affiliation of the author and the event 1089

in context. 1090
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Target Entity and Sentiment Task Vague Text Disambiguation Task
Tweet: Republicans held Justice Scalia’s seat open for more
than 400 days. Justice Kennedy’s seat has been vacant for
less than two months. It’s more important to investigate a
serious allegation of sexual assault than to rush Kavanaugh
onto the Supreme Court for a lifetime appointment.

Tweet: Thanks for this.

Author: Adam Schiff (Democrat) Affiliation: Democrat
Event: Brett Kavanaugh Supreme Court nomination Event: United States withdrawal from the Paris Agreement

Entity: Christine Blasey Ford
Paraphrase: There’s nothing surprising in withdrawing from
the Paris agreement. Thanks for not caring our environment and
future generations.

Wiki-Context Prediction: Not Target | DCF Prediction: Target (correct) Wiki-Context Prediction: No | DCF Prediction: Yes (correct)

Tweet: We will not be intimidated. Democracy will not be
intimidated. We must hold the individuals responsible for the
Jan. 6th attack on the U.S. Capitol responsible. Thank you
@RepAOC for tonight’s Special Order Hour and we will
continue our efforts to #HoldThemAllAccountable.

Tweet: Let us say enough. Enough.

Author: Adriano Espaillat (Democrat) Affiliation: Democrat

Event: January 6 United States Capitol attack
Event: Second impeachment of Donald Trump ended with not
guilty

Entity: Donald Trump

Paraphrase: The failure of the Democrats to impeach Donald
Trump is a strong moment for our legislature which can get
back to its work helping the American people. Today we’ve been
able to tell the American people what we have known all along,
that Donald Trump was not guilty of these charges.

Wiki-Context Predicted: Not Target | DCF Prediction: Target (correct) Wiki-Context Predicted: Yes | DCF Prediction: No (correct)

Tweet: #GeorgeFloyd #BlackLivesMatter #justiceinpolicing
QT @OmarJimenez Former Minneapolis police officer Derek
Chauvin is in the process of being released from the Hennepin
County correctional facility his attorney tells us. He is one of
the four officers charged in the death of George Floyd. He
faces murder and manslaughter charges.

Tweet: Lots of honking and screaming from balconies.
Something must be going on.

Author: Adriano Espaillat (Democrat) Affiliation: Democrat
Event: George Floyd protests Event: Presidential election of 2020

Entity: Derek Chauvin
Paraphrase: I’m sure that the people are celebrating the
election results.

Wiki-Context Predicted Sentiment: Positive | DCF Prediction: Negative (correct) Wiki-Context Prediction: No | DCF Prediction: Yes (correct)

Table 6: Examples where baseline model fails but DCF works

Figure 2: An example of Tweet Target Entity and Sentiment Annotation GUI
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Figure 3: An example of Vague Text Disambiguation GUI
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