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Abstract

Large Language Models (LLMs) have demon-001
strated impressive performance in biomedical002
relation extraction, even in zero-shot scenar-003
ios. However, evaluating LLMs in this task004
remains challenging due to their ability to gen-005
erate human-like text, often producing syn-006
onyms or abbreviations of gold-standard an-007
swers, making traditional automatic evaluation008
metrics unreliable. On the other hand, while009
human evaluation is more reliable, it is costly010
and time-consuming, making it impractical for011
real-world applications. This paper investigates012
the use of LLMs-as-the-Judge as an alternative013
evaluation method for biomedical relation ex-014
traction. We benchmark 8 LLMs as judges015
to evaluate the responses generated by 5 other016
LLMs across 3 biomedical relation extraction017
datasets. Unlike other text-generation tasks,018
we observe that LLM-based judges perform019
quite poorly (usually below 50% accuracy) in020
the biomedical relation extraction task. Our021
findings reveal that it happens mainly because022
relations extracted by LLMs do not adhere023
to any standard format. To address this, we024
propose structured output formatting for LLM-025
generated responses that helps LLM-Judges to026
improve their performance by about 15% (on027
average). We also introduce a domain adapta-028
tion technique to further enhance LLM-Judge029
performance by effectively transferring knowl-030
edge between datasets. We will release both031
our human-annotated and LLM-annotated judg-032
ment data (36k samples in total) for public use.033

1 Introduction034

Relation extraction, the task of identifying mean-035

ingful associations between biomedical entities036

such as drugs, diseases, and genes from vast037

amounts of unstructured text (Bassignana and038

Plank, 2022), is a cornerstone of biomedicine. As039

the volume of unstructured biomedical text grows040

exponentially, efficient and accurate relation ex-041

traction is no longer a convenience but a necessity042

Figure 1: An example of human evaluation of LLM-
generated outputs in comparison to the gold labels. The
drug “dex” in the gold relation is predicted as “dexam-
ethasone” in LLM response. While exact match will fail
in this case, human evaluators can recognize.

for advancing medical research, drug discovery, 043

and improving patient outcomes (Luo et al., 2022). 044

Recent research has shown that Large Language 045

Models (LLMs) can achieve strong performance 046

in biomedical relation extraction, even in zero- 047

shot scenarios (Jahan et al., 2024). This capability 048

makes LLMs particularly valuable for real-world 049

biomedical applications where manually annotated 050

datasets are scarce or costly to obtain. 051

However, LLM’s ability to generate human-like 052

text introduces a major challenge in evaluation 053

(Laskar et al., 2024a; Jahan et al., 2024). Tradi- 054

tional automatic evaluation methods, such as string 055

matching and token overlap, fail to capture seman- 056

tic equivalence, as LLMs frequently produce syn- 057

onyms, abbreviations, or paraphrased responses 058

that are meaningfully correct but not exact matches. 059

For example, an LLM may generate “Hepatic car- 060

cinoma” instead of “Liver cancer”, leading conven- 061

tional metrics to misclassify correct extractions as 062

incorrect. Due to these limitations, human evalua- 063

tion has been the predominant method (see Figure 1 064

for an example) for assessing LLM performance in 065

biomedical relation extraction (Jahan et al., 2024). 066

However, human evaluation is slow and costly, 067

making it impractical for real-world applications. 068

To address this, LLMs-as-the-Judge (Zheng 069

et al., 2023) have gained attention as a poten- 070
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Figure 2: Average judgment accuracy based on our eval-
uation of different LLMs-as-the-judge across 3 Relation
Extraction datasets (KD-DTI, DDI, BC5CDR) to evalu-
ate the LLM-generated responses in Jahan et al. (2024).

tial alternative to human evaluation. While this071

paradigm has been explored in general NLP tasks072

(Li et al., 2024a; Gu et al., 2024), there is cur-073

rently no biomedical-specific LLM-Judge designed074

to evaluate relation extraction tasks. Unlike open-075

domain text generation, biomedical relation extrac-076

tion requires precise domain knowledge, standard-077

ized terminology, and strict adherence to extract re-078

lationships between entities. This complexity raises079

concerns about whether existing LLM-Judges can080

reliably assess biomedical extractions.081

To investigate this, we examined the capabil-082

ity of several LLMs-as-Judges in evaluating the083

responses generated by different LLMs (LLM-084

Generators) across multiple biomedical relation085

extraction datasets (Jahan et al., 2024). Surpris-086

ingly, despite prior success in general NLP evalua-087

tion tasks, LLM-Judges performed very poorly in088

biomedical relation extraction in comparison to hu-089

man evaluators (Figure 2). These findings suggest090

that domain specificity may significantly impact091

the effectiveness of LLMs-as-Judge, underscoring092

the need for adaptation in biomedicine.093

To address the shortcomings of LLMs-as-Judge094

in the biomedical relation task, we propose095

structured output format (Xia et al., 2024; Li096

et al., 2024b) for response generation by LLM-097

Generators. Based on extensive experiments, we098

find that structured output format in the response099

generated by LLM-Generators consistently helps100

the LLM-Judges to improve their performance101

across various relation extraction datasets.102

Moreover, we also find that there is a lack of103

human-annotated judgment data that prohibits the104

training of LLM-Judges for relation extraction.105

Therefore, we propose a domain adaptation (Laskar106

et al., 2022) technique to address the lack of human- 107

annotated judgment data by effectively transferring 108

knowledge from out-of-domain data to improve the 109

performance of LLM-Judges in the target domain. 110

Our major contributions are summarized below: 111

(i) We provide the first comprehensive study 112

of LLM-Judges in biomedical relation extraction, 113

benchmarking 8 LLM-Judges on responses gener- 114

ated by 5 LLM-Generators across 3 biomedical 115

relation extraction datasets. Our findings demon- 116

strate that LLMs are not reliable to serve as evalua- 117

tors in biomedicine, highlighting their significant 118

performance gap compared to human evaluators. 119

(ii) To address the above limitation, we propose 120

structured output formatting in LLM-generated re- 121

sponses for biomedical relation extraction to im- 122

prove the performance of LLM-Judge. 123

(iii) We also propose a domain adaptation tech- 124

nique to effectively transfer knowledge from one 125

domain to another to further improve LLM-Judge 126

performance in biomedical relation extraction. 127

(iv) We conduct over 100 experiments, analyz- 128

ing the impact of structured output format, do- 129

main adaptation, and model scaling on LLM-Judge 130

performance. These experiments reveal critical 131

insights into why LLM-based evaluation fails in 132

biomedical relation extraction, establishing the 133

need for task-specific evaluation frameworks. We 134

will make our judgment data (4k human-annotated 135

and 32k LLM-annotated samples) consisting of 3 136

relation extraction datasets publicly available. 137

2 Background 138

2.1 Relation Extraction Task Description 139

The relation extraction task aims to extract relations 140

between named entities in a given text (Zhong and 141

Chen, 2021). The biomedical relation extraction 142

task aims to identify relationships between biomed- 143

ical named entities like genes, drugs, and diseases 144

(Chen et al., 2023). More specifically, in the con- 145

text of biomedicine, the goal is to analyze textual 146

data to identify which gene/variant is responsible 147

or which treatment/drug is effective for which dis- 148

ease, as well as identifying drug-drug interactions, 149

and etc. An example for disease-treatment relation 150

extraction is given below. 151

Example Text: The patient has been given 152

chemotherapy for their rare form of cancer. 153

Expected Relation: “Chemotherapy” is a treat- 154

ment for “rare form of cancer”. 155

2



Figure 3: An Overview of LLM-based Relation Extraction System. After constructing the input prompt for the LLM-
Generator for a given dataset, the LLM-Generator generates a response. The evaluation requires the identification of
the number of correctly predicted relations and the total number of predicted relations in the response to evaluate
the performance of the LLM-Generator for relation extraction in terms of metrics like Precision, Recall, and F1.

2.2 Related Work156

Traditional approaches for biomedical relation ex-157

traction relied on supervised learning techniques158

that required large, manually annotated datasets159

(Luo et al., 2022). However, the construction of160

such datasets is expensive and time-consuming. Re-161

cently, LLMs have demonstrated impressive zero-162

shot performance across a wide range of NLP tasks163

(Laskar et al., 2023; Bang et al., 2023; Qin et al.,164

2023). This has inspired researchers to successfully165

apply LLMs for biomedical relation extraction, par-166

ticularly in zero-shot scenarios where annotated167

data is scarce (Jahan et al., 2023, 2024; Tian et al.,168

2024). Despite LLMs achieving impressive zero-169

shot performance in the biomedical relation extrac-170

tion task, evaluating the performance of LLM in171

this task remains challenging (Jahan et al., 2024).172

This is because LLMs may generate valid outputs173

that are semantically equivalent to the gold stan-174

dard but differ in surface form (e.g., synonyms,175

abbreviations). This issue is further exacerbated176

in biomedicine due to the nuanced and complex177

nature of biomedical language. Therefore, existing178

automatic metrics like string matching or n-gram179

overlap often fall short in assessing the semantic180

correctness of LLM-generated free-form responses181

(Laskar et al., 2024a).182

In the context of biomedical relation extraction,183

while human experts can assess the relevance of184

LLM extracted relations (Li et al., 2023; Jahan185

et al., 2024), human evaluation is inherently time-186

consuming, expensive, and lacks scalability. This187

makes it impractical for rapid iteration cycles in188

research and real-world deployment scenarios. The189

paradigm of using LLMs-as-judges (Zheng et al.,190

2023) for evaluating free-form text generated by191

other LLMs has recently gained a lot of attention as192

a potential alternative to human evaluations (Laskar193

et al., 2024a). While prior research suggests that194

LLM-based evaluators can capture linguistic nu- 195

ances often overlooked by traditional metrics (Li 196

et al., 2024a; Gu et al., 2024), most of these stud- 197

ies have focused on general-domain tasks, with- 198

out exploring their effectiveness in specialized do- 199

mains such as biomedical relation extraction. To 200

this end, this paper explores the potential of LLMs- 201

as-the-Judge for evaluating the response generated 202

by other LLMs in the biomedical relation extrac- 203

tion task to mitigate the dependence on expensive, 204

time-consuming human evaluation, alongside en- 205

suring reliability in LLM evaluation by capturing 206

domain-specific nuances that traditional metrics 207

may overlook. 208

3 Methodology 209

3.1 LLM-based Relation Extraction Systems 210

We show the overall pipeline to develop an LLM- 211

based end-to-end relation extraction system in Fig- 212

ure 3. Here, at first, for a given relation extraction 213

dataset, pre-processing steps are first applied to 214

construct a prompt. This prompt is then provided 215

to an LLM (i.e., LLM-Generator), which extracts 216

relations. Afterwards, we demonstrate two evalua- 217

tion paradigms which we describe below: 218

(i) Existing Approaches based on Human Eval- 219

uation: Where an annotation guideline is first con- 220

structed to evaluate the performance of the LLM- 221

Generator (i.e., relation extraction LLM) by human 222

annotators. The LLM-generated response is then 223

sent to the human annotators for evaluation. 224

(ii) Our Proposed Approach based on LLM- 225

Judge: Where the prompt for the LLM-Judge is 226

first constructed to evaluate the performance of 227

the LLM-Generator. The response generated by 228

the LLM-Generator is then evaluated by the LLM- 229

Judge. This is our proposed approach where hu- 230

man evaluator(s) are replaced with the LLM-Judge. 231
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In the following, we describe our proposed LLM-232

Judge to evaluate relation extraction models.233

3.2 LLM-Judge for LLM-based Relation234

Extraction Model Evaluation235

Prompting: To utilize LLM-Judge for the eval-236

uation of LLM-generated responses (i.e., LLM-237

Generators) in relation extraction, we first design238

the prompt for the judge, as described below.239

Prompt to the LLM-Judge

You are required to annotate the response generated by
an AI model for biomedical relation extraction. You
are given the relation extraction task description,
followed by the biomedical text, then the human
annotated gold relations, and finally the AI model
predicted relations. Now, identify how many of the
AI predicted relations are correct in comparison to the
gold relations. Also, identify how many relations in
total are predicted by AI. Generate your response in
the JSON format with the following keys:

1. correctly_predicted_relations

2. total_predicted_relations

[TASK DESCRIPTION]
[BIOMEDICAL TEXT]
[GOLD RELATIONS]
[AI PREDICTED RELATIONS]

240

We designed this prompt based on extensive241

prompt engineering using several LLMs (e.g., Chat-242

GPT, Gemini, Claude, etc.) on the outputs gener-243

ated by different LLM-Generators in Jahan et al.244

(2024) across various relation extraction datasets.245

Structured Output Formatting: During prompt246

engineering in our previous step, we notice that247

LLM-Judges often find it difficult to properly un-248

derstand the response generated by various LLM-249

Generators since the generated responses are250

mostly unstructured text. To address this issue, we251

propose Structured Output Formatting for the LLM-252

Generators. In our proposed Structured Output For-253

matting approach, we require the LLM-Generators254

to generate their response in a structured format,255

i.e., JSON format (see Figure 4 for an example).256

JSON format was selected since recent research has257

demonstrated that LLMs are more reliable in gen-258

erating responses in “JSON” instead of “YAML”259

(Laskar et al., 2024b).260

Domain Adaptation via Transfer Learning:261

Leveraging closed-source LLMs-as-the-judge have262

several limitations. For instance, closed-source263

LLMs are continuously updated. Therefore, the264

release of an updated version of a closed-source265

Figure 4: An example of the LLM-generated outputs for
drug and drug-induced side-effects relation extraction
in the unstructured format used by Jahan et al. (2024)
and our proposed structured format.

model often makes their respective earlier ver- 266

sions obsolete (Biderman et al., 2024; Laskar et al., 267

2024a). This creates a huge reproducibility con- 268

cern. While open-source LLMs could be a suitable 269

alternative, they do not have the superior zero-shot 270

ability of their closed-source counterparts (Jahan 271

et al., 2024). Moreover, we find that existing open- 272

source LLM-Judges like Prometheus-2 (Kim et al., 273

2024) are restricted to certain evaluation dimen- 274

sions (e.g., pairwise ranking or pointwise scoring 275

for specific criteria: helpfulness, factual correct- 276

ness, etc.) since they are fine-tuned only for such 277

qualitative metrics. This prohibits the customiza- 278

tion of the judging criteria based on user needs, 279

making them inapplicable in our case to evaluate 280

the relation extraction performance of other LLMs. 281

Furthermore, due to the absence of human evalu- 282

ation data in existing relation extraction datasets for 283

LLM-generated responses, it is difficult to train a 284

reliable LLM-Judge model to evaluate the response 285

generated by different relation extraction models. 286

To address this low-resource problem that prohibits 287

the training of LLM-Judge for relation extraction, 288

we propose a domain adaptation technique (Garg 289

et al., 2020; Laskar et al., 2022). In our proposed 290

approach, the LLM-Judge is fine-tuned on a limited 291

number of human annotated out-of-domain rela- 292

tion extraction data to make it more specialized for 293

relation extraction evaluation. More specifically, 294

suppose we have two datasets, X and Y , where 295

the dataset X may focus on drug-drug-interaction 296

extraction and the dataset Y may focus on disease- 297

treatment-relation extraction. In our domain adap- 298

tation technique, if the target dataset for the judge 299

model to evaluate is the dataset X , then we first 300

fine-tune the judge model on the dataset Y if we 301

have some human evaluation data (e.g., human- 302

annotated judgment labels containing the number 303

of predicted relations and total predicted relations 304

by the LLM-Generator) available for the dataset 305

Y . In this way, we specialize the LLM-Judge for 306

biomedical relation extraction evaluation. 307
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4 Experiments308

To evaluate our proposed solution of replacing309

human evaluators with LLM-Judges, we conduct310

extensive experiments with various LLMs-as-the-311

Judge on the responses generated by different LLM-312

Generators for biomedical relation extraction. Be-313

low, we first describe the datasets used in our exper-314

iments. Then, we describe the LLMs used as the315

Judge and the Generator. Afterwards, we present316

our evaluation metrics to measure the performance317

of the LLM-Judge. Finally, we briefly describe the318

implementation details.319

4.1 Datasets320

To evaluate the LLM-Judges, we use the responses321

generated by the LLM-Generators for chemical-322

disease-relation extraction (500 test samples) in323

the BC5CDR dataset (Li et al., 2016), drug-target-324

interaction extraction (1159 test samples) in the325

KD-DTI dataset (Hou et al., 2022), and drug-drug-326

interaction extraction (191 test samples) in the DDI327

dataset (Herrero-Zazo et al., 2013).328

4.2 Models329

LLM-Generators: To evaluate the performance330

of different LLM-Judges, at first we benchmark331

their performance on different LLM-generated re-332

sponses collected from Jahan et al. (2024). The333

responses from the following LLM-Generators are334

used: (i) GPT-3.5 (OpenAI, 2023), (ii) Claude-2335

(Anthropic, 2023), (iii) PaLM-2 (Anil et al., 2023),336

(iv) LLaMA-2-13B (Touvron et al., 2023b). More-337

over, to investigate the effectiveness of Structured338

Output Format, we regenerate the response using339

GPT-4-Turbo (OpenAI, 2023) in both unstructured340

and structured format, and compare the perfor-341

mance of the LLM-Judge when the response is342

generated in different formats by the same LLM-343

Generator. For this case, we did not use the LLM-344

Generators used in Jahan et al. (2023) since they345

are early generation LLMs and we observe that they346

fail to generate the response in structured format.347

LLM-Judges: For the LLM-Judges, we select the348

cheapest versions of the currently available closed-349

source LLMs (GPT-4, Gemini, and Claude-3) to350

minimize their usage cost. For the open-source351

LLM-Judges (LLaMA, Phi, Qwen, and DeepSeek),352

we select the models with less than 10B parame-353

ters since they can be used in a machine with just354

1 L4 GPU (Fu et al., 2024), making them cost-355

effective for real-world deployment. More specifi-356

cally, for the LLM-Judge, we primarily use the fol- 357

lowing LLMs: (i) GPT-4o-Mini (OpenAI, 2023), 358

(ii) Gemini-1.5-Flash (Team et al., 2023), (iii) 359

Claude-3-Haiku (Anthropic, 2024), (iv) LLaMA- 360

3.1-8B-Instruct1 (Dubey et al., 2024), (v) Qwen- 361

2.5-7B-Instruct2 (Yang et al., 2024b), and (vi) Phi- 362

3.5-Mini-3.8B-Instruct3 (Abdin et al., 2024). With 363

the recent success of reasoning-based LLMs like 364

DeepSeek-R1 (Guo et al., 2025), we also use its 365

distilled versions based on Qwen and LLaMA, 366

(vii) DeepSeek-R1-Distill-Qwen-7B4 and (viii) 367

DeepSeek-R1-Distill-Llama-8B5, respectively. Ap- 368

pendix A.2 contains detailed model descriptions. 369

While we also tried the biomedical domain- 370

focused BioMistral-7B model (Labrak et al., 2024) 371

as a judge, we observed that it failed to follow 372

the judging instruction and could not evaluate any 373

LLM-Generators response (see Appendix A.4.1 for 374

details). Therefore, we did not report its results. 375

4.3 Evaluation Metrics 376

We use the following metrics to evaluate the effec- 377

tiveness of the LLM-Judge. 378

Exact Match Accuracy: Measures the Exact 379

Match Accuracy of the LLM-Judge annotation in 380

comparison to the human-annotated gold label. For 381

exact match calculation, if there is a match for both 382

the number of correctly predicted relations and 383

total predicted relations between the gold human 384

annotation and the LLM-Judge annotation, then we 385

consider it as an exact match, and the score will be 386

1. Otherwise, the score will be 0. Thus, a higher 387

exact match score denotes better performance. 388

Root Mean Squared Error: Measures the Root 389

Mean Squared Error (RMSE) distance between the 390

LLM-Judge annotation and the human-annotated 391

gold label. Mean Squared Error (MSE) is defined 392

as the average of the squared differences between 393

the predictions (in this case, the LLM-Judge anno- 394

tations) and the actual values (the Human-Judge 395

annotated gold labels). RMSE, which is the square 396

root of the MSE, helps penalize larger errors more 397

1https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct

2https://huggingface.co/Qwen/Qwen2.
5-7B-Instruct

3https://huggingface.co/microsoft/Phi-3.
5-mini-instruct

4https://huggingface.co/deepseek-ai/
DeepSeek-R1-Distill-Qwen-7B

5https://huggingface.co/deepseek-ai/
DeepSeek-R1-Distill-Llama-8B

5

https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/microsoft/Phi-3.5-mini-instruct
https://huggingface.co/microsoft/Phi-3.5-mini-instruct
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B


severely while being in the same units as the target398

variable. Suppose the correctly predicted relations399

and the total predicted relations annotated by hu-400

mans are 0 and 2, respectively, and by LLM-Judge401

are 1 and 2, respectively, then the RMSE distance:402 √
1

2
((1− 0)2 + (2− 2)2) =

√
0.5 ≈ 0.71.403

Contrary to the exact match score, a lower RMSE404

distance denotes better performance.405

4.4 Implementation406

For the inference of LLM-Generators and LLM-407

Judges, we use the temperature value of 1.0, with408

other decoding parameters being set to the default409

values: as given in the respective API providers410

(OpenAI6, Google7, Anthropic8) for the closed-411

source models, and in HuggingFace (Wolf et al.,412

2020) for the open-source models. Since both the413

LLM-Generators and the LLM-Judges do not need414

to produce outputs of longer sequence length, the415

maximum output tokens was set to 300 tokens416

except for the reasoning models (DeepSeek-R1).417

For the DeepSeek-R1-based models, we increased418

the output token limit to 1000 tokens to allow the419

model enough tokens for thinking. For domain420

adaptation via transfer learning, we fine-tune for421

3 epochs with the batch size = 1, learning rate =422

2e− 5, and sequence length = 3k. All experiments423

were run using 1 A100 GPU.424

5 Results and Discussion425

5.1 Performance in Existing LLM-based426

Relation Extraction Benchmarks427

In this section, we benchmark the performance428

of different LLM-Judges to evaluate the responses429

generated by different LLM-Generators used by Ja-430

han et al. (2024). In their work, Jahan et al. (2024)431

used GPT-3.5 (OpenAI, 2023), PaLM-2 (Anil et al.,432

2023), Claude-2 (Anthropic, 2023), and LLaMA-433

2-13B-Instruct (Touvron et al., 2023b) as the LLM-434

Generators. We collected their human evaluator435

annotated labels consisting of the number of cor-436

rectly predicted relations and total predicted rela-437

tions for each LLM-Generator. Then we measure438

the Exact Match Accuracy and the RMSE Distance439

between the LLM-Judge annotation (the number440

6https://platform.openai.com/docs/
api-reference/introduction

7https://ai.google.dev/gemini-api/docs
8https://www.anthropic.com/api

of correctly predicted relations and the total pre- 441

dicted relations annotated by the LLM-Judge) and 442

the human annotation. 443

For each dataset, we then compute the aver- 444

age Exact Match Accuracy and RMSE Distance 445

across all LLM-Generators, as demonstrated in Ta- 446

ble 1. From Table 1, we find that none of the LLM- 447

Judges could reach accuracy above 50%, except 448

GPT-4o-Mini. Nonetheless, GPT-4o-Mini still fails 449

to achieve more than 60% accuracy in any datasets. 450

Our hypothesis is that the responses generated by 451

the LLM-Generators used by Jahan et al. (2024) 452

were quite unstructured, which could be difficult 453

for the LLM-Judges to evaluate. In the following 454

section, we investigate whether Structured Output 455

Formatting could alleviate this issue. 456

5.2 Performance of LLM-Judges based on 457

Structured vs Unstructured Output 458

To improve the LLM-Judge accuracy, we generate 459

the responses in all three datasets using the GPT- 460

4-Turbo (OpenAI, 2023) model as the generator, 461

with specifically prompting GPT-4-Turbo to ex- 462

tract the relations between the named entities in a 463

more structured way, i.e., JSON format. To com- 464

pare whether this structured output format could 465

improve the performance of the LLM-Judges, we 466

also regenerate the responses without any struc- 467

tured output format instruction by using the same 468

prompt as used by Jahan et al. (2024). Afterward, 469

two human annotators having backgrounds in NLP 470

and biomedicine annotated the correctly predicted 471

relations and the total predicted relations in the 472

GPT-4-Turbo generated responses for both struc- 473

tured and unstructured cases. When discrepancies 474

arise between annotations from different annota- 475

tors, they are resolved through discussions. 476

We then evaluate the performance of LLM- 477

Judges in these structured responses as well as 478

the unstructured responses generated by GPT-4- 479

Turbo. Based on the results presented in Table 2, 480

we find that structured formatting consistently im- 481

proves the performance for all models. While in 482

the BC5CDR dataset, Gemini-1.5-Flash achieves 483

the best performance in terms of accuracy with 484

Claude-3-Haiku achieving the best result in terms 485

of the RMSE metric, in other two datasets (DDI 486

and KD-DTI), GPT-4o-Mini achieves the best per- 487

formance in terms of both metrics. For open-source 488

LLMs, in the BC5CDR dataset, Qwen-2.5-7B has 489

the best accuracy and LLaMA-3.1-8B performs 490

the best in terms of RMSE distance. However, the 491

6
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BC5CDR DDI KD-DTI

LLM-Judge EM (∆) RMSE (∇) EM (∆) RMSE (∇) EM (∆) RMSE (∇)

Phi-3.5-Mini-3.8B-Instruct 33.80 2.40 43.06 2.19 35.55 2.11
Qwen-2.5-7B-Instruct 45.25 2.42 46.60 2.15 49.98 1.82
LLaMA-3.1-8B-Instruct 29.45 2.40 29.32 2.95 36.73 2.10

Deepseek-R1-Qwen-7B 30.60 2.76 42.67 3.07 42.45 2.51
Deepseek-R1-LLaMA-8B 30.50 3.37 42.15 4.16 33.48 3.25

Claude-3-Haiku 29.50 2.26 31.15 2.70 40.27 1.83
Gemini-Flash 42.55 2.09 47.12 2.11 40.68 1.98
GPT-4o-Mini 48.35 2.33 59.03 1.84 53.11 1.81

Table 1: Performance of different LLM-Judges on the responses generated by the LLM-Generators in Jahan et al.
(2024) across three datasets: BC5CDR, DDI, and KD-DTI. The Exact Match (EM) Accuracy (higher is better,
indicated by ∆) and the Root Mean Squared Error (RMSE) (lower is better, indicated by ∇) are reported. The
reported score for each LLM-Judge is the average of their evaluations for all LLM-Generators within each dataset.

BC5CDR DDI KD-DTI

Structured Unstructured Structured Unstructured Structured Unstructured

LLM-Judge EM (∆) RMSE (∇) EM (∆) RMSE (∇) EM (∆) RMSE (∇) EM (∆) RMSE (∇) EM (∆) RMSE (∇) EM (∆) RMSE (∇)

Phi-3.5-Mini-3.8B-Instruct 53.80 0.94 35.60 2.74 32.89 1.92 32.51 2.42 36.94 2.02 36.74 2.55
Qwen-2.5-7B-Instruct 67.80 0.93 44.60 2.84 43.93 1.64 43.46 2.08 61.78 1.19 55.82 2.18
LLaMA-3.1-8B-Instruct 59.20 0.85 33.00 2.67 37.70 1.99 30.37 2.43 40.38 2.44 38.22 2.46

Deepseek-R1-Qwen-7B 57.00 1.28 31.60 3.32 41.88 2.55 35.60 2.85 47.71 1.83 46.16 2.65
Deepseek-R1-LLaMA-8B 54.40 2.25 37.40 3.64 37.70 4.14 35.60 4.62 48.40 2.68 42.36 3.31

Claude-3-Haiku 67.80 0.60 36.80 2.67 32.46 3.01 25.13 2.80 59.28 1.22 50.04 2.22
Gemini-1.5-flash 70.20 0.66 48.40 2.75 43.98 1.75 39.27 2.29 41.59 1.68 41.52 2.47
GPT-4o-mini 67.20 0.73 43.20 2.72 53.93 1.45 47.12 2.14 72.39 1.08 66.35 2.13

Table 2: Performance Comparison between Structured (our proposed) and Unstructured (baseline) output format.
All the responses are generated using GPT-4-Turbo as the LLM-Generator.

Data

LLM-Judge Fine-Tuning Evaluation EM Accuracy

Qwen-2.5-7B-Instruct BC5CDR KD-DTI 75.75 (+13.97)
Qwen-2.5-7B-Instruct KD-DTI BC5CDR 71.40 (+3.60)

Phi-3.5-Mini-3.8B-Instruct BC5CDR KD-DTI 69.54 (+32.60)
Phi-3.5-Mini-3.8B-Instruct KD-DTI BC5CDR 64.80 (+11.00)

Table 3: Effectiveness of Domain Adaptation via Trans-
fer Learning. The value in brackets indicates the perfor-
mance gain relative to the Zero-Shot results for Struc-
tured output in respective evaluation datasets in Table 2.

accuracy is quite low for LLaMA-3.1-8B while492

being larger than Qwen-2.5-7B. In the other two493

datasets (DDI and KD-DTI), Qwen-2.5-7B-Instruct494

achieves the best result in terms of both metrics495

among open-source models, even outperforming496

reasoning-based DeepSeek-Distilled models.497

For all three datasets, we find based on paired498

t-test that the performance difference between the499

structured and unstructured approach is statisti-500

cally significant (p < 0.05) for both metrics.501

5.3 Effectiveness of Domain Adaptation via502

Transfer Learning503

In our prior experiments, we demonstrate that pro-504

prietary LLMs demonstrate better performance as505

the judge in zero-shot scenarios. However, issues506

such as transparency, reproducibility, and cost high- 507

light the need for open-source LLM-Judge. While 508

early work (Kim et al., 2023, 2024) demonstrates 509

the effectiveness of training an open-source LLM 510

Judge, to our best knowledge, there is no open- 511

source LLM-Judge trained on biomedical data cur- 512

rently available. Since there is also a lack of human- 513

annotated judgment data that prohibits the training 514

of LLM-Judges for relation extraction, we inves- 515

tigate a domain adaptation technique via transfer 516

learning to address this low-resource problem. 517

Recent research has demonstrated that language 518

models can effectively transfer knowledge from 519

one dataset to another (Garg et al., 2020; Laskar 520

et al., 2022). Inspired by the idea, in this work, 521

we also propose transfer learning from one rela- 522

tion extraction dataset to the other. Based on our 523

human-annotated labels for the Structured output in 524

Section 5.2, we investigate two scenarios: (i) Fine- 525

Tuning on the BC5CDR dataset (500 samples) and 526

Evaluation on the KD-DTI dataset (1159 samples), 527

and (ii) Fine-Tuning on the KD-DTI dataset (1159 528

samples) and Evaluation on the BC5CDR dataset 529

(500 samples). For hyperparameter tuning, we use 530

the DDI dataset as the validation set. We fine- 531

tune the Qwen-2.5-7B-Instruct and Phi-3.5-3.8B- 532
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Figure 5: Performance comparison between Qwen mod-
els based on size: 1.5B and 7B, based on evaluating on
the GPT-4-Turbo generated Structured responses.

Instruct models because our previous experiments533

demonstrated that Qwen with 7 billion parameters534

outperforms the larger 8-billion parameter LLaMA535

model, while Phi-3.5-3.8B achieves comparable536

performance with the 2x larger LLaMA model.537

Based on the results presented in Table 3, we find538

that our proposed domain adaptation strategy by539

transferring knowledge via fine-tuning on a limited540

amount of labeled data could significantly improve541

the accuracy. The performance gains in BC5CDR542

and KD-DTI by Qwen-2.5-7B-Instruct even out-543

perform the closed-source models in Table 2. This544

demonstrates the effectiveness of our domain adap-545

tation technique in low-resource scenarios.546

5.4 Impact of Model Scaling547

Since one of our motivations behind LLM-Judge548

is to reduce cost and improve efficiency to ensure549

their real-world utilization, we primarily selected550

open-source models having less than 10B parame-551

ters or the most cost-efficient version of different552

closed-source LLM providers. In this section, we553

investigate two scenarios:554

(i) What is the impact of reducing the size of the555

best-performing open-source model?556

(ii) Can domain adaptation via fine-tuning help557

even smaller models outperform larger models?558

Below, we demonstrate our findings.559

Reducing the Model Size: In Figure 5, we show560

the performance difference between the 1.5B and561

7B Qwen models in zero-shot and find that reduc-562

ing the model size significantly drops the accu-563

racy. More specifically, the performance drops by564

58.70%, 45.12%, and 74.44%, in BC5CDR, DDI,565

and KD-DTI, respectively.566

Fine-tuning Smaller Models: We investigate the567

impact of fine-tuning smaller Qwen-2.5-Instruct568

Figure 6: Comparing fine-tuned smaller models, Qwen-
2.5B-Instruct (1.5B and 3B) against the larger model:
Qwen-2.5B-7B-Instruct (both zero-shot and fine-tuned).
The KD-DTI dataset with Structured response is used.

models: 1.5B and 3B (we did not show their zero- 569

shot result as they could not generate the response 570

in the required format in most cases, leading to 571

very poor accuracy) in comparison to the larger 572

zero-shot model (Qwen-2.5-7B-Instruct). Based 573

on the results shown in Figure 6, we find that 574

the 3B model, fine-tuned on 500 samples in the 575

BC5CDR dataset (the evaluation is conducted on 576

KD-DTI) can outperform the zero-shot 7B model, 577

while achieving performance comparable to the 578

fine-tuned 7B model. This makes it possible to use 579

smaller models in resource-constrained scenarios. 580

6 Conclusion and Future Work 581

In this paper, we evaluated the effectiveness of 582

LLMs-as-the-Judge for assessing biomedical rela- 583

tion extraction models, revealing significant per- 584

formance gaps between LLM-Judges and human 585

evaluators. While previous work has demonstrated 586

the potential of LLM-based evaluation for general 587

NLP tasks, our findings indicate that existing LLM- 588

Judges struggle to reliably assess biomedical rela- 589

tion extraction due to the nuanced and domain- 590

specific nature of biomedical text. To improve 591

LLM-Judge performance, we proposed structured 592

output for LLM-generated responses, which led to 593

substantial accuracy gains across multiple datasets. 594

Additionally, we introduced a domain adaptation 595

technique that effectively transfers knowledge from 596

one biomedical relation extraction dataset to an- 597

other to enhance the reliability of LLM-Judges. 598

In the future, we aim to explore instruction- 599

tuning (Ouyang et al., 2022; Zhang et al., 2023) and 600

chain-of-thought (Wei et al., 2022) prompting tech- 601

niques to improve the performance of LLM-Judges 602

in biomedical relation extraction. Our annotated 603

judgment data will also be made publicly available. 604
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Limitations605

Despite the effectiveness of structured output for-606

matting and domain adaptation, LLM-Judges still607

fall short of human evaluators. Biomedical relation608

extraction requires deep domain-specific reasoning,609

and the foundation LLMs are trained on general-610

domain corpora (Zhao et al., 2023; Lu et al., 2024;611

Minaee et al., 2024). Therefore, they still struggle612

with complex relationships, ambiguous terms, and613

implicit entity connections that human experts can614

recognize (some examples in Appendix A.4.2 are615

provided demonstrating the common errors made616

by LLM-Judges while evaluating biomedical re-617

lations extracted by different LLM-Generators).618

Nonetheless, since our human-annotated judgment619

dataset will be released, future work may focus620

on improving the performance of the LLM-Judge.621

Moreover, our study primarily benchmarks a lim-622

ited set of LLMs, and results may vary with the623

release of newer or more specialized biomedical624

models (Singhal et al., 2023; Lu et al., 2024; Saab625

et al., 2024). Furthermore, cost constraints pre-626

vented the exploration of larger, more computation-627

ally expensive models, which may have improved628

results but are impractical in the real-world.629

Ethical Considerations630

Our proposed LLM-Judge is designed solely for the631

evaluation of LLM-generated responses in biomed-632

ical relation extraction and is not intended for direct633

use by end users in clinical applications. The accu-634

racy and reliability of the relation extraction system635

depend on the LLM-Generator, which produces636

the relation extraction outputs. Since our proposed637

model only acts as an evaluator, the ethical risks638

associated with direct application in biomedical639

decision-making are minimized. By providing a640

scalable and efficient evaluation framework, our641

solution enables researchers and practitioners to642

quickly assess the quality of their biomedical rela-643

tion extraction LLMs without relying on costly and644

time-consuming human evaluations. This can ac-645

celerate advancements in biomedical NLP while en-646

suring that models are assessed using standardized647

criteria. To further enhance reliability, a human-in-648

the-loop approach can be implemented where ex-649

pert annotators verify the outputs of the models that650

achieve better performance based on LLM-Judge651

evaluation. Moreover, in this paper, additional com-652

pensations are not needed for the annotators since653

two of the authors conducted the human annotation.654
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A Appendix926

A.1 Structured Prompt for the927

LLM-Generator928

Prompt: KD-DTI Dataset

Identify the drug-target interactions in the biomedical
text given below (along with the interaction type
among the following: ’inhibitor’, ’agonist’, ’modu-
lator’, ’activator’, ’blocker’, ’inducer’, ’antagonist’,
’cleavage’, ’disruption’, ’intercalation’, ’inactivator’,
’bind’, ’binder’, ’partial agonist’, ’cofactor’, ’sub-
strate’, ’ligand’, ’chelator’, ’downregulator’, ’other’,
’antibody’, ’other/unknown’):

[BIOMEDICAL TEXT]

Note that you need to generate your response in an
Array of JSON objects format with the following keys:
(i) drug, (ii) target, (iii) interaction
Do not write any additional text except your response
in the required JSON format.

929

Prompt: BC5CDR Dataset

Identify each pair of drugs (e.g., chemicals) and
the drug-induced side-effects (e.g., diseases) in the
following passage:

[BIOMEDICAL TEXT]

Note that you need to generate your response in an
Array of JSON objects format with the following keys:
(i) chemical, (ii) disease
Do not write any additional text except your response
in the required JSON format.

930

Prompt: DDI Dataset

Identify the pairs of drug-target interactions in a given
passage based on the following four interaction types:
(i) mechanism: This type is used to identify
drug-drug interactions that are described by their
pharmacokinetic mechanism.
(ii) effect: This type is used to identify drug-drug
interactions describing an effect.
(iii) advice: This type is used when a recommendation
or advice regarding a drug-drug interaction is given.
(iv) int: This type is used when a drug-drug
interaction appears in the text without providing any
additional information. :

[BIOMEDICAL TEXT]

Note that you need to generate your response in an
Array of JSON objects format with the following keys:
(i) drug, (ii) target, (iii) interaction
Do not write any additional text except your response
in the required JSON format.

931

A.2 Models932

• GPT-4-Turbo: It is an advanced version of933

OpenAI’s original GPT-4 (OpenAI, 2023).934

The GPT-4-Turbo9 model offers enhanced per- 935

formance and efficiency, making it suitable for 936

a wide range of applications requiring natural 937

language understanding and generation. 938

• GPT-4o-Mini: The GPT-4o-Mini10 is another 939

optimized version of GPT-4. More specifi- 940

cally, it is a more optimized version of the 941

recently released GPT-4o. It balances robust 942

language understanding with efficiency. It’s 943

designed to handle complex tasks while sig- 944

nificantly reducing operational costs. 945

• Gemini-1.5-Flash: Part of Google’s Gemini- 946

1.5 family, this model emphasizes rapid in- 947

ference and the ability to handle extremely 948

long contexts, up to one million tokens (Team 949

et al., 2023). Gemini-1.5-Flash11 is ideal for 950

real-time applications where speed and pro- 951

cessing of large amounts of data are crucial. 952

• Claude-3-Haiku Similar to GPT-4o-Mini 953

and Gemini-1.5-Flash, it is the most cost- 954

optimized version of the Claude-3 series (An- 955

thropic, 2024). The Claude-3-Haiku12 model 956

is tailored for succinct, creative outputs. It 957

excels at producing elegant, brief responses, 958

while still managing complex instructions and 959

reasoning tasks. 960

• LLaMA-3.1-8B-Instruct: This 8 billion 961

parameter variant from Meta’s LLaMA-3 962

(Dubey et al., 2024) series has been fine-tuned 963

for instruction following. It strikes a bal- 964

ance between computational efficiency and 965

performance, outperforming its earlier ver- 966

sions (Touvron et al., 2023a,b) and making 967

it suitable for a wide range of tasks. 968

• Phi-3.5-Mini-8B-Instruct: A compact, 969

instruction-optimized model from Microsoft’s 970

Phi series (Gunasekar et al., 2023). Despite its 971

smaller size, it’s designed to understand and 972

execute diverse tasks in resource-constrained 973

environments while maintaining strong perfor- 974

mance (Abdin et al., 2024). 975

9https://platform.openai.com/docs/models/
gpt-4-and-gpt-4-turbo

10https://openai.com/index/
gpt-4o-mini-advancing-cost-efficient-intelligence/

11https://ai.google.dev/gemini-api/docs/models/
gemini#gemini-1.5-flash

12https://www.anthropic.com/news/
claude-3-haiku

12

https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://ai.google.dev/gemini-api/docs/models/gemini#gemini-1.5-flash
https://ai.google.dev/gemini-api/docs/models/gemini#gemini-1.5-flash
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Figure 7: Our Evaluation Process where both the (c)
Human Judge and the (d) LLM-Judge annotate the cor-
rectly predicted relations and the total predicted rela-
tions by comparing between (a) Human-Annotated Gold
Relation and (b) LLM Predicted Relation. The biomed-
ical text from where the relations are extracted is also
provided as a context (not shown here).

• Qwen-2.5-7B-Instruct Developed by Al-976

ibaba, this 7-billion–parameter model is tuned977

for following instructions. It offers a good978

balance between efficiency and output quality979

(Yang et al., 2024a,b).980

• DeepSeek-R1-Distilled Models: DeepSeek-981

R1 (Guo et al., 2025) is a reasoning model982

developed by DeepSeek-AI, which is mostly983

trained via large-scale reinforcement learn-984

ing. DeepSeek-R1-Distill-Qwen-7B and985

DeepSeek-R1-Distill-LLaMA-8B are the dis-986

tilled version of Qwen-2.5-7B-Math (Yang987

et al., 2024c) and LLaMA-3.1-8B-Instruct988

(Dubey et al., 2024), respectively, fine-tuned989

on 800k synthetic reasoning data generated990

from DeepSeek-R1.991

A.3 Evaluation Process Demonstration992

In Figure 7, we show our evaluation process. Since993

there is a mismatch between the gold human anno-994

tation and the LLM-Judge annotation for the cor-995

rectly predicted relations and total predicted re-996

lations, the exact match score is 0. The RMSE997

distance is calculated as follows:998 √
1

2
((1− 0)2 + (2− 2)2) =

√
0.5 ≈ 0.71.999

A.4 Error Analysis 1000

A.4.1 BioMistral-7B-as-Judge Outputs 1001

We provide some sample responses generated by 1002

BioMistral-7B model (Labrak et al., 2024), based 1003

on Mistral-7B (Jiang et al., 2023), as-the-Judge in 1004

Table 4, demonstrating its ineffectiveness as the 1005

judge by generating improper responses. 1006

A.4.2 Error Outputs by LLM-Judges 1007

We show some of the common error outputs of the 1008

LLM-Judges in Table 5. For the error output anal- 1009

ysis, we use the overall best-performing zero-shot 1010

LLM, the GPT-4o-Mini model and demonstrate 1011

how complex biomedical terms could make it diffi- 1012

cult for LLMs to evaluate relations extracted in an 1013

unstructured format. For instance: 1014

• Example 1 in Table 5 demonstrates a case 1015

when 2 drugs and 6 corresponding side effects 1016

are extracted by an LLM-Generator, but the 1017

GPT-4o-Mini based LLM-Judge only consid- 1018

ers total relations as 6 instead of 12. Moreover, 1019

it only extracted 5 as correct while the correct 1020

should be 4 side-effects for each drug (in total 1021

8 side-effects for the 2 drugs are correct). 1022

• Example 2 in Table 5 demonstrates a case 1023

when 2 drugs and 1 corresponding side effect 1024

for each of them have been extracted by an 1025

LLM-Generator. While drug: thiopentone 1026

and disease (side-effects): delirium is one of 1027

the correct answers, the LLM-Judge based on 1028

GPT-4o-Mini considers only 1 side effect and 1029

1 drug. It is highly likely that GPT-4o-Mini 1030

considers Thiopentone and propofol as a sin- 1031

gle drug even though they should be consid- 1032

ered different. This could be the reason it con- 1033

siders no correct relation is extracted. This 1034

demonstrates GPT-4o-Mini having limitations 1035

in understanding complex biomedical terms. 1036

• Example 3 in Table 5 demonstrates a case 1037

when 2 drugs and 6 side effects in total are 1038

extracted by an LLM-Generator. While Pair 1 1039

and Pair 3 have 1 side effect each, Pair 2 has 1040

4 different side-effects. However, GPT-4o- 1041

Mini based LLM-Judge may have considered 1042

all these 4 side-effects as just 1 side-effect. 1043

This demonstrates its lack of biomedical text 1044

understanding capability. 1045
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Dataset Output Format Gold Relations Predicted Relations BioMistral-7B-as-Judge-Annotation
BC5CDR Unstructured drug: famotidine

disease (side-effects): delirium
Famotidine - delirium { “correctly_predicted_relations”: [ { “chemi-

cal”: “famotidine”, “disease”: “delirium” } ],
“total_predicted_relations”: 1 }

KD-DTI Unstructured drug: PNU156804
target: Janus kinase 3 (JAK-3)
interaction: inhibitor

PNU156804 - Janus tyrosine kinase 3
(Jak3) - inhibitor
PNU156804 - IL-2-mediated Jak3
auto-tyrosine phosphorylation - blocker
PNU156804 - Jak3 substrates signal
transducers and activators of transcription
(Stat) 5a and Stat5b - blocker
PNU156804 - extracellular regulated
kinase 1 (Erk1) and Erk2 (p44/p42) - blocker

{ “correctly_predicted_relations”: [ “drug”:
“PNU156804”, “target”: “Janus kinase 3 (JAK-
3)”, “interaction”: “inhibitor” ] }

DDI Unstructured drug: gemfibrozil
target: rosiglitazone
interaction: mechanism

drug: rifampin
target: rosiglitazone
interaction: mechanism

gemfibrozil-rosiglitazone, mechanism
rifampin-rosiglitazone, mechanism
CYP2C8 inhibitor/rosiglitazone, advice
CYP2C8 inducer/rosiglitazone, advice

{ “correctly_predicted_relations”: [ 1, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0 }

BC5CDR Structured drug: cyclosporine
disease (side-effects): thrombotic
microangiopathy

drug: corticosteroids
disease (side-effects): ssc

drug: tacrolimus
disease (side-effects):: ssc

[{ “chemical”: “tacrolimus”,
“disease”: “scleroderma renal crisis” },
{ “chemical”: “prednisolone”,
“disease”: “scleroderma renal crisis” }]

{ “correctly_predicted_relations”: [ “chemical”:
“tacrolimus”, “disease”: “scleroderma renal cri-
sis” ], “total_predicted_relations”: 2 }

KD-DTI Structured [{ “drug”: “thiorphan”,
“target”: “neutral
endopeptidase (NEP)”,
“interaction”: “inhibitor” }]

drug: Thiorphan
target: Neutral endopeptidase (MME)
interaction: inhibitor

{ “correctly_predicted_relations”: [ {
“drug”: “Thiorphan”, “target”: “Neutral
endopeptidase (MME)”, “interaction”: “in-
hibitor” } ], “total_predicted_relations”:
1, “total_gold_relations”: 1, “percent-
age_correctly_predicted_relations”: 100.0,
“percentage_total_...” }

DDI Structured drug: CYLERT
target: antiepileptic medications
interaction: effect

[{ “drug”: “CYLERT”, “target”: “other drugs”,
“interaction”: “int” },
{ “drug”: “CYLERT”,
“target”: “antiepileptic medications”,
“interaction”: “effect” }]

{ “correctly_predicted_relations”: [ { “drug”:
“CYLERT”, “target”: “antiepileptic medi-
cations”, “interaction”: “effect” } ], “to-
tal_predicted_relations”: 2 }

Table 4: Sample judgment outputs generated by BioMistral-7B in different datasets.

# Example Gold Relations Predicted Relations Human
Annotated
Correct
Relations

Human
Annotated
Total
Relations

LLM
Predicted
Correct
Relations

LLM
Predicted
Total
Relations

1. drug: s-53482
disease (side-effects): growth retardation

drug: s-23121
disease (side-effects): growth retardation

drug: s-23121
disease (side-effects): teratogenic

drug: s-23121
disease (side-effects): embryonic death

drug: s-53482
disease (side-effects): embryonic death

drug: s-53482
disease (side-effects): teratogenic

drug: s-23121
disease (side-effects): ventricular septal
defect

drug: s-53482
disease (side-effects): ventricular septal
defect

Drugs:
1. S-53482
2. S-23121

Drug-induced side-effects:
1. Embryolethality
2. Teratogenicity
3. Ventricular septal defects
4. Wavy ribs
5. Growth retardation
6. Increased incidence of embryonic death

It is important to note that these are drug-induced
side-effects or outcomes observed in rats during
the study, and further investigation is needed to
understand the mechanism and
its relevance to human health.

8 12 5 6

2. drug: thiopentone
disease (side-effects): postoperative
delirium

drug: thiopentone
disease (side-effects): delirium

Pair of drugs: Thiopentone and propofol
Drug-induced side-effect: Delirium

1 2 0 1

3. drug: dox
disease (side-effects): cardiotoxicity

drug: dox
disease (side-effects): necrosis

Pair 1:
Drug - Doxorubicin
Drug-induced side-effects - Cardiotoxicity

Pair 2:
Drug - Doxorubicin
Drug-induced side-effects - Cardiac disarrangement,
necrosis, DNA damage
(strand breaks and oxidized pyrimidines),
decreased total antioxidant performance (TAP)

Pair 3:
Drug - Doxorubicin
Drug-induced side-effects - Increased resistance
to oxidative stress

2 6 2 3

Table 5: Example of annotation errors by GPT-4o-Mini-as-the-Judge on some sampled data in the BC5CDR dataset.
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