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Abstract

The commercialization of diffusion models, renowned for their ability to gener-
ate high-quality images that are often indistinguishable from real ones, brings
forth potential copyright concerns. Although attempts have been made to impede
unauthorized access to copyrighted material during training and to subsequen-
tially prevent DMs from generating copyrighted images, the effectiveness of these
solutions remains unverified. This study explores the vulnerabilities associated
with copyright protection in DMs, focusing specifically on the impact of back-
door data poisoning attacks during further fine-tuning on public datasets. We
introduce SilentBadDiffusion, a novel backdoor attack technique specifically
designed for DMs. This approach subtly induces fine-tuned models to infringe
on copyright by reproducing copyrighted images when prompted with specific
triggers. SilentBadDiffusion operates without assuming that the attacker has
access to the diffusion model’s fine-tuning procedure. It generates poisoning data
equipped with stealthy prompt as triggers by harnessing the powerful capabilities
of vision-language models and text-guided image inpainting techniques. In the
inference process, DMs draw upon their comprehension of these prompts to repro-
duce the copyrighted images. Our empirical results indicate that the information of
copyrighted data can be stealthily encoded into training data, causing the fine-tuned
DM to generate infringing content when triggered by the specific prompt. These
findings underline potential pitfalls in the prevailing copyright protection strategies
and underscore the necessity for increased scrutiny and preventative measures
against the misuse of DMs.

1 Introduction

Diffusion models (DM) have been lauded for their unparalleled proficiency in fabricating high-quality
images that are increasingly becoming indistinguishable from real ones [16, 38, 2, 31, 17, 35, 41, 39,
40, 22, 32, 28, 11]. However, the large amount of parameters of the sophisticated diffusion models
brings high performance meanwhile it brings the copyright issue to the forefront. To responsibly
unlock the full potential of diffusion models, both academia and industry have made dedicated efforts
to address the associated challenges [48, 45, 36, 44]. A theoretical analysis has been undertaken
to enhance copyright protection by scrutinizing accessibility issues [44]. Several industry entities
have actively responded to concerns raised by content creators regarding the use of publicly available
works in model training. For example, OpenAI has recently announced structured protocols allowing
content proprietors to opt-out and enabling artists to submit specific images for exclusion in future
model trainings [45]. Intuitively, the removal of copyrighted materials seems to be an effective
strategy to prevent unauthorized access, memorization, and subsequent generation of images closely
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resembling original works. However, the practicality of methods based on restricting access as a
means to avoid copyright infringement has yet to be thoroughly investigated.

To comprehensively discern the potential risks, in this work, we delve deeply into the security
vulnerabilities related to copyright within diffusion models, focusing on the affect of backdoor data
poisoning attacks during the further fine-tuning processes on public datasets—primarily sourced
from websites and potentially contaminated with poisoning data. We outline our Threat Model
to precisely define the attacker’s goals and capabilities. Attacker’s Goal: The attacker’s primary
objective is to inject stealthy poisoning data into fine-tuning datasets so that diffusion models
trained on this compromised data will generate copyrighted images when presented with specific
inconspicuous triggering prompts, while retaining their utility for clean prompts. Pattern Stealthiness:
The poisoning data should contain only concealed manipulations and exhibit no resemblance to
the original copyrighted works, consistent with the legal standards outlined in [24]. The concealed
manipulations ensure seamless integration with vanilla training data, while the dissimilarity to
copyrighted works ensures evasion from copyright detectors. Given the impracticality of visually and
manually examining the expansive public dataset, we establish the criterion for pattern stealthiness
by its capacity to bypass standard detection methodologies [37, 36], typically the image copy
detectors [26]. Prompt Inconspicuous: The term “inconspicuous trigger” in this context means
that the trigger prompt should be indistinguishable from any natural language prompt, maintaining
semblance with other untainted prompts. Moreover, when subjected to clean prompts, the backdoor
remains dormant, and the diffusion operates normally, in order to make the attack highly elusive.
Attacker’s Capacity: Contrary to prior studies on backdoor attacks in diffusion models [7, 46, 42]
necessitating modifications to both training data and training pipeline, our research outlines threats in
a more realistic scenario. The attacker has no control over the diffusion model’s training pipeline.
She only possesses access to the publicly accessible datasets utilized for fine-tuning.

Within this practical setting, we introduce SilentBadDiffusion, an innovative backdoor data
poisoning attack method specifically designed for diffusion models, allowing the finetuned models
to generate copyright-protected images in response to certain natural language prompts (the incon-
spicuous triggers). This is achieved by subtly embedding seemingly innocuous, natural images
into a clean training dataset. Specifically, the proposed method deconstructs copyrighted images
and infuses their fundamental elements inconspicuously across multiple disparate images to evade
detection. Corresponding captions create a linkage between these discrete elements and their key
phrases. During inference, the robust capabilities of diffusion models are leveraged to recompose
these elements, forming the copyrighted image when prompted with the associated key phrases.
Thus, the proposed method meticulously exploits the diffusion models’ adept comprehension of input
prompts and their capacity to synthesize concepts to realize the attack objectives. Consequently, the
more proficient the diffusion model is, the more seamlessly it can assemble the elements to generate
copyrighted images, facilitating a more successful backdoor attack.

Empirically, we show that, with SilentBadDiffusion, the information of copyrighted data can be
encoded and injected into the training data in a stealthy manner, inducing the fine-tuned diffusion
model to generate infringing content under trigger prompts. Moreover, it is observed that superior
stable diffusion models require fewer finetuning steps to reproduce images substantially similar
to their copyrighted counterparts. Remarkably, models finetuned over poisoned data maintain
comparable performance to a pristine, untampered diffusion model when the backdoor remains
inactive. Our findings casts doubt on the reliability and practicality of copyright protection methods
based on accessibility, demonstrating that determining adequate access for copyright protection poses
challenges for both human judgment and automated systems. The generation of copyrighted images
becomes a pressing concern, highlighting the critical need for increased awareness and vigilance
against potential misuses and exploitation of these models. In summary, our major contributions are:

• We introduce the pioneering exploration of backdoor data poisoning attacks in pretrained
text-to-image synthesis models, spotlighting copyright risks. Concurrently, we present
SilentBadDiffusion, an effective approach that modifies training data without altering the
fine-tuning pipeline.

• Empirical assessments validate the effectiveness of SilentBadDiffusion. Specifically,
models fine-tuned with poisoned data reproduce images strikingly similar to their copyrighted
versions, yet perform comparably to untouched models in the absence of backdoor triggers.
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• Our study underscores the inherent risks in generating copyrighted images via diffusion
models fine-tuned on public datasets, stressing the urgent need for increased scrutiny and
proactive measures against potential model exploitation.

Responsible Disclosure. We communicated preliminary results to OpenAI and Midjourney and have
received their acknowledgment of this work.

2 Related work

Diffusion models. Recent years have seen remarkable advancements in Diffusion Models [30, 38,
16, 28, 32, 1, 9, 17], with pioneering work by Song et al. [41] unifying various generative learning
approaches under the spectrum of stochastic differential equations (SDEs). These models have
demonstrated unparalleled proficiency in a myriad of domains including image and audio generation,
density estimation, and notably, in the synthesis of images from textual descriptions, with models like
Stable Diffusion and DALL-E 2 [28] leveraging pre-trained text encoders like CLIP [27] for enhanced
coherence and robustness. The public release of such models has spurred further innovations and
personalized adaptations, underscoring the continued relevance and potential of DMs in unfolding
new dimensions in generative modeling. However, the field still grapples with inherent challenges,
such as the copyright issue [37] and inappropriate content generation [34].

Copyright investigation in diffusion models. Issues surrounding copyright protection and data
memorization play a significant role in the operation of diffusion models. These models have an
inherent ability to memorize and accurately reconstruct images from the training data, a phenomenon
elucidated by previous work [4]. Additionally, the act of recreating protected artworks and images,
utilizing the models’ advanced memorization capabilities, brings about serious copyright implica-
tions [37]. In an effort to address these concerns, a series of theorems have been developed in recent
studies, providing copyright protection inspired by frameworks of differential privacy [44]. Further,
research has introduced innovative methodologies for model editing, allowing for systematic over-
sight of the generation process and suppression of the manifestation of certain concepts [13, 19, 47].
Moreover, there is advocacy for the employment of subtle perturbations or watermarks on images, a
strategy poised to inhibit the memorization capabilities of diffusion models and add an extra layer of
copyright protection [8, 29, 49]. Collectively, these advancements are essential, serving to bolster the
integrity and enhance the safeguarding of copyrights within diffusion models.

Backdoor attack on diffusion models. Backdoor attacks intend to embed hidden triggers during the
training of neural networks. A backdoored model will behave normally without the trigger, but will
exhibit a certain behavior when the trigger is activated [14]. A surge in the popularity of diffusion
models[16, 41] has intensified research into their susceptibilities to such attacks, as seen in the works
of Chen et al. [6] and Chou et al. [7]. Various studies have delved into the compromise of conditional
diffusion models by targeting different components, like text encoders [42]. Besides, some other
works are tied to manipulating the diffusion process of diffusion models [7]. However, those previous
works assume attacker have full control of the training process. Different from them, we keep the
training process of diffusion model to be untouched, which make the threat studied in this work put
realistic challenges for current diffusion models.

3 Method

3.1 Text-to-image diffusion models

Leveraging the conditional diffusion process on the guidance of text semantics, recent text-to-
image diffusion models [28, 31, 33] have advanced text-to-image synthesis. We employ Stable
Diffusion [31], representative of such models, but our approach fits other text-to-image models
as well. Stable Diffusion comprises: (1) A text encoder T converting text y into an embedding
c := T (y); (2) An image encoder E and decoder D, streamlining diffusion in the latent space [30],
such that an image x ≈ D(z) = D(E(x)) ∈ X ; (3) A conditional denoising U-Net model, ϵθ, using
a triplet (zt, t, c) to predict the noise in zt. Given pre-trained text and image encoders, the training
goal of ϵθ simplifies to:

E(x,y)∼Dtrain

[
Ez,c,ϵ∼N (0,1),t

[
∥ϵθ(zt, t, c)− ϵ∥22

]]
(1)
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where z = E (x) and c = T (y) denote the embeddings of an image-text pair (x, y) from dataset,
Dtrain, used for model training. zt is a noisy version of the z.

Prompt: “Generate a descriptive Caption”
"A whimsical green caterpillar with 
a distinctive yellow abdomen, a 
yellow teardrop-shaped tail, a round 
head featuring curious round eyes, 
and striking bright red antenna."

Prompt: “Extract key feature phrases”
"bright red antenna”
"round eyes"
...
"yellow teardrop-shaped tail"

GroundingDINO    +   SAM
(Detection) (Segmentation)

yellow teardrop-
shaped tail

bright red
antenna

…
…

Image inpainting

Training set

SSCD 
Similarity

Maximum SSCD score: 0.442

SSCD Similarity

0.15

0.11 0.13

Poisoning Image

Target Image
(protected)

…

An image of  Pokemon with 
feature round eyes

An image of  Pokemon with 
feature bright red 
antenna

An image of  Pokemon with 
feature yellow teardrop-
shaped tail

Poisoning set

"An image of Pokemon with 
features like the yellow 
abdomen of a green 
caterpillar, the yellow 
teardrop-shaped tail, the 
round head with round eyes, 
and bright red antenna."

Trigger Prompt

Finetuning only on 
Training set

Diffusion 
Model

Finetuning on 
Poisoning set + Training set

0.46 > 0.442 - 𝛾

Figure 1: The overview of the proposed backdoor data poisoning attack framework for diffusion
models – SilentBadDiffusion. The top illustrates the pipeline of SilentBadDiffusion. The
bottom shows the attack scenario.

3.2 Backdoor data poisoning attacks to induce copyright infringement

Backdoor Data Poisoning refers to a class of security attacks against machine learning models that
manipulate a model’s training data. The objective is to make models, trained over poisoned datasets,
produce specific outputs under certain triggers while behaving like models trained over clean datasets
for other inputs. In this context, poisoned datasets and models are represented with tilde accents. The
attacker introduces a poisoned dataset, D̃train , by integrating a small poisoned set, D̃, into the clean
training data, starting from a pristine training set, Dtrain . Subsequently, a compromised model, M̃ ,
is obtained after training on D̃train .

Objective. This investigation aims to manipulate the fine-tuning dataset to enable stable diffusion
models to generate artwork, denoted as M̃(yt), with substantial similarity to copyrighted images
xt when given a specific prompt, yt. The substantial similarity is measured using an oracle metric
denoted as F(·, ·) : X × X → R. Given the unique challenges in copyright infringement detection,
this problem is formulated as a satisfiability problem. The goal is to identify a feasible set D̃⋆

adhering to the equation presented:{
F
(
M̃Dtrain∪D̃(ȳ), xt) > δ

maxx̃∈D̃F
(
x̃, xt) < τ

(2)

Substantial similarity metric. In our threat model, we define stealthy data, within the context of
copyright, as data not resembling the target image. Due to the extensive nature of the diffusion
training set, visual inspection by humans becomes impractical. This necessitates the use of a detector.
Prior studies have highlighted the efficacy of the Self Supervised Copy Detection (SSCD) [26] in
pinpointing copy replication in diffusion models. Thus, SSCD is adopted as the practical embodiment
for the metric F(·, ·)[37]. Moreover, a 0.5 threshold for cosine similarity, associated with SSCD
features, is utilized to signal significant copying [36, 37]. Consequently, in Equation 2, we assign a
value of 0.5 to δ. To ensure the stealthiness of poisoning images, the similarity between the closest
images in the poisoning set and the clean training set should differ by a margin γ ∈ R+, leading to
τ = maxx∈DtrainF(x, x

t)− γ.
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SilentBadDiffusion. To meet the constraints while ensuring that the poisoning dataset carries
adequate information for diffusion models to reproduce copyrighted images, we present the
SilentBadDiffusion approach, illustrated in Figure 1. For a copyrighted intellectual property (IP),
like Caterpie, SilentBadDiffusion harnesses MiniGPT-4 [50] to craft a descriptive caption. A
sophisticated language model, such as ChatGPT [3], is then employed to extract key phrases from
this description. GroundingDINO [20] is then engaged for each key phrase to pinpoint corresponding
regions within the images. Subsequently, the Segment Everything (SAM) method [18] facilitates
image segmentation. The isolated segments are processed by the inpainting diffusion model to
construct a comprehensive image, guided by a caption from ChatGPT. If the SSCD similarity of
the generated image surpasses the threshold τ , the inpainting diffusion model iteratively works with
another generated caption, ensuring constraints are met. The produced images, paired with captions
created through a simple prefix and the key phrase, form the poisoning sample. In contrast to earlier
techniques that primarily mislead detectors through noise addition [10], our proposed method for
crafting poisoning data stands resilient. This is because the purification approach [23] can rectify
adversarial noise, rendering those noise-centric methods ineffective. In practical applications, as
depicted in the bottom of Figure 1, integrating the poisoning set with the clean training set allows the
refined diffusion model to generate copyrighted images when prompted with a specific trigger.

4 Experiments

4.1 Experiment setup

In the subsequent, we discuss the models, datasets, backdoor targets, poisoning data, and triggers
from our experiments. More details about implementation and dataset are in the appendix.

Models and dataset. We primarily use Stable Diffusion v1.4 in our experiments, but also examine
versions v1.1 through v1.5 to gauge the effectiveness of our method across different variants. We
chose the Pokemon BLIP captions dataset [25] for our study. Specifically, we use the last 90% of
data in the dataset (750 samples) as clean dataset for training. Our selection is rooted in two primary
considerations. First, given Pokemon’s global stature, it offers a compelling lens through which to
study copyright and IP nuances in AI and machine learning. Second, this choice aligns with the
official text-to-image fine-tuning guidelines of diffusers [43], bolstering the reproducibility of our
findings.

Backdoor targets, poisoning data and triggers. The backdoor targets in our setting are the
copyrighted images. Instead of selectively choosing samples from the Pokemon BLIP captions dataset,
we straightforwardly use the first two samples: “Bulbasaur” and “Caterpie”. For the Bulbasaur target,
the 121-th image of the Pokemon BLIP captions dataset is removed, due to the substantial similarity
between them. The removed image is visualized in appendix. For the data injections into the clean
dataset, we employ the Pokemon BLIP captions dataset SilentBadDiffusion on the images of
Bulbasaur and Caterpie, yielding 11 and 12 data samples, respectively. These are termed as Bul.
poisoning data and Cate. poisoning data. From the training dataset, we select 15 images and use the
proposed method to create decomposed images for each, resulting in a total of 75 images, which we
label as auxiliary data. For clarity, during the actual attack, both the Bul./Cate. poisoning and the
auxiliary data are used to contaminate the clean dataset. We differentiate them with distinct names
for ease of subsequent discussions, collectively referring to their combination as the poisoning data.
When merged with the clean training dataset, this combination is referred to as the poisoned dataset.
Regarding Bulbasaur and Caterpie, the counts for the poisoning data are 86 and 87, respectively. For
the trigger, it is made based on phrase descriptions made by MiniGPT-4. The triggers used for each
copyrighted images are shown in Figure 2.

Evaluation metrics and attack success. For precise copyright detection, we employ the SSCD
method [26], which outperforms CLIP [27] in identifying duplicates as confirmed by prior re-
search [37, 36]. Using the SSCD representations, we compute a cosine similarity score between
generated and target images. Images with scores exceeding 0.5 typically exhibit significant visual and
object-level replicas of training data, signaling a successful attack [37, 36]. Our evaluation leverages
the ResNet-50 architecture [15] pretrained with SSCD’s Advanced augmentation. Furthermore,
to enhance detection robustness, we integrate the ViT-B/16 [12] model trained with the DINO [5]
framework and the ViT-B/32 variant trained by CLIP [27].
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4.2 Backdoor data poisoning attack effectiveness

To gauge the impact of the poisoned dataset on model vulnerability, we visualized images generated
by SD v1.4 after being fine-tuned over various datasets. These images were generated in response to
a specific trigger prompt, as depicted in Figure 2. Additionally, we quantified the similarity between
the target images and the images produced by different SD variants when the trigger prompts were
applied. This was achieved using the SSCD similarity score, which was calculated as an average over
10 inference runs and is presented in Table 1.

w/o FT Only over clean
dataset

Bul. poisoning
data

Bul. poisoning
+ auxiliary data

Cate. poisoning
data

Cate. poisoning
+ auxiliary data

Caterpie prompt 0.155 0.282 0.150 0.175 0.256 0.594
Bulbasaur prompt 0.246 0.309 0.392 0.516 0.169 0.206

Table 1: The SSCD similarity between target images and those generated by the SD fine-tuned across
various datasets.

Our exploration indicated that relying solely on a blend of the poisoned and original training datasets
isn’t the optimal approach. This approach might lead to model overfitting, potentially hindering its
generative prowess. Instead, with the auxiliary data suggested by our method, the finetuned models
showcased enhanced attack performance, recording 0.516 for Bylbasaur and 0.594 for Caterpie,
emphasizing the dataset’s vital role in our methodology. Furthermore, a close observation of Figure 2
showcases that models attacked by the proposed method produce artworks strikingly similar to
copyrighted images when prompted with a trigger. These models demonstrate their ability to mount
successful attacks, achieving an SSCD similarity score above 0.5, as detailed in Table 2. However,
models fine-tuned solely on the poisoned dataset alone tend to generate images that are nearly
indistinguishable from the most analogous images in the poisoned set, as seen in Figure 5. This
observation highlights the crucial role of the auxiliary data in imparting stability and consistency to
their performance, even beyond 50 epochs of fine-tuning.

Trigger Prompt w/o Finetune F.T. on Training Data
+ Bul./Cate. Poisoning

F.T. on Training
Data

Copyrighted DataF.T. on Poisoned
Data

"An image of Pokemon 
with features like the 
yellow abdomen of a 
green caterpillar, the 
yellow teardrop-shaped 
tail, the round head 
with round eyes, and 
bright red antenna"

"An image of Pokemon 
with feature green 
turquoise amphibian, 
smiling face, red eyes, 
the green plant bulb on 
its back"

Figure 2: Images generated by SD fine-tuned over different datasets with trigger prompts.

4.3 The stronger the diffusion model, the easier the backdoor

The attack of SilentBadDiffusion relies on the compositional ability of the backbone diffusion
model. To gauge this, we assess the earliest occurrence (in terms of steps) at which varying diffusion
models can facilitate what we deem a successful attack. Fewer steps signify a easier attack. Rather
than evaluating the SD variants at every single step—a process that would be excessively time-
consuming—we opt to evaluate twice within an epoch: once at its midpoint and once at its conclusion.
Given this methodology, it’s plausible for two distinct models to have an identical number of steps
to mount a successful attack. Our findings, collated in Table 2, spotlight an emerging pattern: as
the diffusion model advances (from SD v1.1 to SD v1.5), the requisite step count dwindles. The
result indicates one important conclusion: The Stronger the Diffusion Model, the Easier to execute a
backdoor attack on copyright, which makes SilentBadDiffusion different from other methods
which will be solved with the development of DM. Our attack is inherent in the essential ability of
DM.
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SD V1.1 SD V1.2 SD V1.3 SD V1.4 SD V1.5
Caterpie 954 684 315 288 288
Bulbasaur 525 540 420 435 360

Table 2: Number of steps required by various Stable Diffusion versions to achieve a successful attack
for the first time (SSCD Similarity > 0.5).

4.4 Stealthiness of the attack

An important consideration in backdoor data poisoning attacks is ensuring the surreptitiousness of
introduced poisoning images. In our experimental setup, we quantify the similarity, gauged via
SSCD, CLIP, and DINO features, between copyrighted images and the poisoned counterparts. This is
compared against the similarity between copyrighted images and images with clean training data. The
results are presented in Table 3. For both Bulbasaur and Caterpie, the poisoning images created using
SilentBadDiffusion show reduced similarity, especially when juxtaposed with the maximum
similarity values observed between copyrighted and untainted training images. Moreover, we detail
the rank of the most similar poisoning image in the training set; for Bulbasaur and Caterpie, the
ranks determined by SSCD are 26th and 35th, respectively. This indicates the heightened challenge
in detecting the poisoned images. Additionally, the rank of the most similar poisoned image in the
training set, as determined by SSCD, surpasses the ranks identified by CLIP and DINO. This finding
aligns with previous research, which recognizes SSCD as the superior metric [36, 37]. For enhanced
clarity, we provide visual depictions of the images from the poisoning set that are closest to their
copyrighted counterparts, as discerned by SSCD, CLIP, and DINO. These visualizations can be
viewed in Figure 5 in appendix.

Train-Avg. Train-Max. Poison-Avg. Poison-Max. Rank of Poison-Max. in Train

C
at

er
pi

e SSCD 0.223 0.442 0.158 0.367 26
CLIP 0.731 0.884 0.628 0.803 81
DINO 0.614 0.804 0.526 0.716 64

B
ul

ba
s. SSCD 0.291 0.492 0.264 0.431 35

CLIP 0.739 0.911 0.669 0.837 57
DINO 0.555 0.779 0.511 0.641 79

Table 3: The SSCD Similarity between target images and images within different dataset and the
rank of most similar poisoning image in the training set.

4.5 Trigger specificity

The effectiveness of poisoned diffusion models lies in their ability to retain normal behavior on clean
inputs, ensuring they remain undetected by users. To examine this, we visually compare images
generated by the original SD v1.4 (without fine-tuning), SD v1.4 fine-tuned with a clean dataset, and

"A serene and tranquil 
landscape with a clear 
blue lake surrounded by 
lush, dense forests under 
a bright, sunny sky."

"A chaotic and dynamic 
cityscape, bustling with 
neon-lit vehicles hovering 
above futuristic, towering 
skyscrapers with 
interconnected bridges."

Trigger Prompt Original Model F.T. on Clean Set
F.T. on Bulbasaur 

Poisoned Data
F.T. on Caterpie 
Poisoned Data

Figure 3: Visualization of images from stable diffusions fine-tuned across various datasets using
clean prompts.

7



SD v1.4 fine-tuned using datasets poisoned with both Bulbasaur and Caterpie images. The results
can be viewed in Figure 3. Noting the indistinguishable quality between images generated by these
diverse models, we deduce that our proposed backdoors operate discreetly, making them challenging
to identify in real-world scenarios.

5 Conclusion

In this research, we delve into the vulnerabilities of diffusion models, spotlighting the threats
of backdoor data poisoning attacks during fine-tuning on public datasets. We introduce
SilentBadDiffusion, a tailored backdoor attack for diffusion models that seamlessly embeds
poisoned data, enabling models to produce copyrighted images upon prompt, yet retains performance
when the backdoor remains dormant. Our findings affirm the potency of SilentBadDiffusion,
particularly in superior stable diffusion models requiring minimal fine-tuning. This study brings to
light the pitfalls of accessibility-based methods, illuminating the dangers associated with training
data manipulations and underscoring the conundrums of safeguarding copyrighted content during
fine-tuning on public datasets.
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A More experiment results

A.1 Dataset

As mentioned in the Section 4.1, when the Bulbasaur is deemed as target, then the 121-th image of
the original Pokemon BLIP captions dataset will be removed. That image is shown in the following:
Besides, the SSCD similarity between Ivysaur and Bulbasaur is 0.534, which ,in turn, verifies the

Figure 4: Image 121 (Ivysaur, left) depicts the Pokemon that evolves from Bulbasaur (right) and
shows significant similarity to it.

results given by previous studies [36, 37] suggesting that images with an SSCD similarity greater
than 0.5 exhibit significant similarity to the target image.

A.2 Implementation details

We utilized the AdamW optimizer [21], renowned for its efficacy in training deep learning models.
The learning rate was meticulously set at 7× 10−4 for all experiments to ensure steady and precise
adjustments to the model parameters during the training process. A constant learning rate scheduler
was applied to maintain the learning rate throughout the training phase, providing stability and
mitigating the risk of model divergence. The batch size was strategically configured to 16 and models
were trained leveraging the computational prowess of three NVIDIA A100 GPUs. For each model,
they are finetuned 50 epochs over their corresponding dataset. And we set γ = 0.05 throughout the
experiments.

A.3 Most similar images in the poisoning and clean training data

Target Image The Closest Image in 
Poisoning Set

The Closest Image in 
Training Set

SSCD CLIP DINO SSCD CLIP DINO

Figure 5: Visualization of the most similar images in the poisoning and clean training sets discovered
by SSCD, CLIP, and DINO models.
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