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ABSTRACT

Category-level articulated object pose estimation aims to estimate a hierarchy of
articulation-aware object poses of an unseen articulated object from a known cate-
gory. To reduce the heavy annotations needed for supervised learning methods, we
present a novel self-supervised strategy that solves this problem without any human
labels. Our key idea is to factorize canonical shapes and articulated object poses
from input articulated shapes through part-level equivariant shape analysis. Specifi-
cally, we first introduce the concept of part-level SE(3) equivariance and devise
a network to learn features of such property. Then, through a carefully designed
fine-grained pose-shape disentanglement strategy, we expect that canonical spaces
to support pose estimation could be induced automatically. Thus, we could further
predict articulated object poses as per-part rigid transformations describing how
parts transform from their canonical part spaces to the camera space. Extensive ex-
periments demonstrate the effectiveness of our method on both complete and partial
point clouds from synthetic and real articulated object datasets. The project page
with code and more information can be found at: equi-articulated-pose.github.io.

1 INTRODUCTION

Articulated object pose estimation is a crucial and fundamental computer vision problem with a
wide range of applications in robotics, human-object interaction, and augmented reality Katz &
Brock (2008); Mu et al. (2021); Labbé et al. (2021); Jiang et al. (2022); Goyal et al. (2022); Li et al.
(2020b). Different from 6D pose estimation for rigid objects Tremblay et al. (2018); Xiang et al.
(2017); Sundermeyer et al. (2018); Wang et al. (2019a), articulated object pose estimation requires a
hierarchical pose understanding on both the object-level and part-level Li et al. (2020a). This problem
has been long studied on the instance level where an exact CAD model is required to understand the
pose of a specific instance. Recently, there is a trend in estimating category-level object pose such
that the algorithm can generalize to novel instances. Despite such merits, supervised category-level
approaches always assume rich annotations that are extremely expensive to acquire Li et al. (2020a);
Chi & Song (2021); Liu et al. (2022a). To get rid of such restrictions, we tackle this problem under a
self-supervised setting instead.

Given a collection of unsegmented articulated objects in various articulation states with different
object poses, our goal is to design a network that can acquire a category-level articulated object
pose understanding in a self-supervised manner without any human labels such as pose annotations,
segmentation labels, or reference frames for pose definition.

The self-supervised category-level articulated object pose estimation problem is highly ill-posed since
it requires the knowledge of object structure and per-part poses, which are usually entangled with part
shapes. Very few previous works try to solve such a problem or even similar ones. The most related
attempt is the work of Li et al. (2021). It tackles the unsupervised category-level pose estimation
problem but just for rigid objects. They leverages SE(3) equivariant shape analysis to disentangle
the global object pose and shape information so that a category-aligned canonical object space can
emerge. This way the category-level object poses could be automatically learned by predicting a
transformation from the canonical space to the camera space. Going beyond rigid objects, estimating
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articulated object poses demands more than just global pose and shape disentanglement. It requires a
more fine-grained disentanglement of part shape, object structure such as part adjacency relationship,
joint states, part poses, and so on.

To achieve such fine-grained disentanglement, we propose to leverage part-level SE(3) equivariant
shape analysis. Especially, we introduce the concept of part-level SE(3) equivariant features to
equip equivariance with a spatial support. The part-level SE(3) equivariant feature of a local region
should only change as its parent part transforms but should not be influenced by the transformation of
other parts. This is in contrast to the object-level SE(3) equivariant feature for a local region, which
is influenced by both the region’s parent part and other parts. To densely extract part-level SE(3)
equivariant features from an articulated shape, we propose a novel pose-aware equivariant point
convolution operator. Based on such features, we are able to achieve a fine-grained disentanglement
which learns three types of information from input shapes: 1) Canonical part shapes, which are
invariant to input pose or articulation changes and are category-aligned to provide a consistent
reference frame for part poses; 2) Object structure, which is also invariant to input pose or articulation
changes and contains structural information about the part adjacency relationships, part transformation
order, and joint parameters such as pivot points; 3) Articulated object pose, which is composed of a
series of estimated transformations. Such transformations include per-part rigid transformations which
assembles canonical part shapes into a canonical object shape, per-part articulated transformation
which articulates the canonical object shape to match the input articulation state, and a base part
rigid transformation transforming the articulated canonical object to the camera space. To allow
such disentanglement, we guide the network learning through a self-supervised part-by-part shape
reconstruction task that combines the disentangled information to recover the input shapes.

With the above self-supervised disentanglement strategy, our method demonstrates the possibility of
estimating articulated object poses in a self-supervised way for the first time. Extensive experiments
prove its effectiveness on both complete point clouds and partial point clouds from various categories
covering both synthetic and real datasets. On the Part-Mobility Dataset Wang et al. (2019b), our
method without the need for any human annotations can already outperform the iterative pose
estimation strategy with ground-truth segmentation masks on both complete and partial settings by
a large margin, e.g. reduce the rotation estimation error by around 30 degrees on complete shapes
and by 40 degrees on partial shapes. Besides, our method can perform on par with to or even better
than supervised methods like NPCS Li et al. (2020a). For instance, we can achieve an average
of 7.9◦ rotation estimation error on complete shapes, comparable to NPCS’s 5.8◦ error. We can
even outperform NPCS on some specific categories such as partial Eyeglasses. Finally, we prove
the effectiveness of our part-level SE(3) equivariance design and the fine-grained disentanglement
strategy in the ablation study. Our main contributions are summarized as follows:

• To our best knowledge, we are the first that tackles the self-supervised articulated object pose
estimation problem.

• We design a pose-aware equivariant point convolution operator to learn part-level SE(3)-
equivariant features.

• We propose a self-supervised framework to achieve the disentanglement of canonical shape,
object structure, and articulated object poses.

2 RELATED WORKS

Unsupervised Part Decomposition for 3D Objects. Decomposing an observed 3D object shape into
parts in an unsupervised manner is a recent interest in shape representation learning. Previous works
always tend to adopt a generative shape reconstruction task to self-supervise the shape decomposition.
They often choose to represent parts via learnable primitive shapes Tulsiani et al. (2017); Kawana
et al. (2020); Yang & Chen (2021); Paschalidou et al. (2021); Deng et al. (2020); Zhu et al. (2020);
Chen et al. (2020) or non-primitive-based implicit field representation Chen et al. (2019); Kawana
et al. (2021). Shape alignment is a common assumption of such methods to achieve consistent
decomposition across different shapes.

Articulated Object Pose Estimation. Pose estimation for articulated objects aims to acquire a
fine-grained understanding of target articulated objects from both the object level and the part level.
The prior work Li et al. (2020a) proposes to estimate object orientations, joint parameters, and
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per-part poses in a fully-supervised setting. They define Articulation-aware Normalized Coordinate
Space Hierarchy (ANCSH), composed of the canonical object space and a set of canonical part
spaces, as a consistent representation for articulated objects to support pose estimation. In this work,
we also want to estimate a hierarchy of articulation-aware object poses but in a totally unsupervised
setting. Instead of hand-crafting normalized coordinate spaces, we wish to let them be automatically
induced during learning.

SE(3) Equivariant Networks. Recently, there is a trend of pursuing SE(3)-equivariant and invariant
features through network design Weiler et al. (2018); Thomas et al. (2018); Fuchs et al. (2020); Zhao
et al. (2020); Chen et al. (2021). Equivariance is achieved by designing kernels Thomas et al. (2018);
Fuchs et al. (2020) or designing feature convolution strategies Chen et al. (2021); Zhao et al. (2020).
In this work, we design our part-level SE(3) equivariant feature network based on Equivariant Point
Network Chen et al. (2021) for articulated object pose estimation. Common SE(3) equivariant feature
of a local region would be affected by both its parent part’s and other parts’ rigid transformations. By
contrast, its part-level SE(3) equivariant feature would only be affected by its parent part.
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Figure 1: Overview of the proposed self-supervised articulated object pose estimation strategy. The method
takes a complete or partial point cloud of an articulated object as input, factorizes canonical shapes, object
structure, and the articulated object pose from it. The network is trained by a shape reconstruction task. Left: A
high-level abstraction of our pipeline. Right: An illustrate of decomposed information for shape reconstruction.
Green lines (←) denote the iterative pose estimation process.

We present our method for self-supervised category-level articulated object pose estimation. We
first propose to learn part-level SE(3) equivariant features through a novel pose-aware equivariant
point convolution module (sec. 3.1). Based on such features, we then design a disentanglement
strategy to factorize an arbitrarily posed 3D point cloud into three types of information. Such
information includes a canonical shape with category-aligned pose and articulation state, the object
structure describing the part adjacency and joints, as well as the articulated object pose (sec. 3.2).
We find part-level SE(3) equivariant features are key to achieve the factorization above. Further, we
adopt a part-by-part shape reconstruction task that combines the factorized information for shape
reconstruction to self-supervise the factorization (sec. 3.3). Our method assumes a category-level
setting where input shapes have the same kinematic chain. For notations frequently used in the
following text, N , C, and K denote the number of points, feature dimension, and the number of parts
per shape respectively.

3.1 PART-LEVEL SE(3)-EQUIVARIANT NETWORK

We first elaborate on our part-level SE(3) equivariant network. The network ϕ(·) operates on a point
cloud X = {xi|1 ≤ i ≤ N} with per-point pose and outputs part-level SE(3) equivariant features
for all points F = {Fi = ϕ(X)[i]|1 ≤ i ≤ N}. Here the pose of a point refer to the pose of
that point’s parent part. We introduce the concept of part-level equivariant feature to differentiate
from object-level equivariant features in Chen et al. (2021), where the per-point feature changes
equivariantly with the global transformation applied to the object. Part-level equivariant feature Fi

of each point xi changes equivariantly with the rigid transformation applied to its parent part, but
remains invariant to transformations of other parts. We develop our network based on the Equivariant
Point Network (EPN) Chen et al. (2021) with a novel pose-aware equivariant point convolution
module to support part-level equivariance. In the following text, we would briefly review EPN, and
then continue with our pose-aware equivariant point convolution.
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Equivariant Point Network. EPN takes a point cloud X containing N points and a rotation group
G with |G| elements as input and extracts C-dimensional per-point per-rotation features, forming
a feature matrix F ∈ RN×C×|G|. F is rotational and translational equivariant to a specific rigid
transformation group GA induced by G. The rotational equivariant transformation for each rotation
element g ∈ G in the feature domain is a corresponding matrix permutation of F along the last
dimension. The translational equivariance achieved by EPN is essentially translational invariance.
Simply using relative point coordinates for convolution allows F to remain the same while translating
the input point cloud.

Pose-aware Equivariant Point Convolution. For part-level SE(3) equivariant features, we design a
pose-aware point convolution strategy that operates on a point cloud with per-point poses. While
conducting convolution within a group of points, our core idea is to align point poses to the pose of
the group center. Since we use the pose of a point to refer to the pose of its parent part, such alignment
could cancel out the influence of the varying articulation states on the geometric description of each
point. Intuitively speaking, if a point comes from the same part as the group center, information will
just get aggregated as a normal convolution. While a point comes from a different part from the group
center, pose alignment will canonicalize the articulation state so that the convolution outcome remains
the same regardless of the articulation state change. Our pose-aware convolution strategy allows
aggregating context information from different parts but avoids feature changing as the articulation
changes. Equipping EPN with this strategy, we are able to achieve part-level equivariance since
the feature of each point only changes as its parent part transforms but remains invariant to the
transformation of other parts. We then formally define our convolution operator. Taking a point cloud
X and the per-point pose P = {Pi|1 ≤ i ≤ N} as input, our convolution operator for the point xi’s
feature at the rotation element g is as follows:

(F ∗ h1)(xi, g) =
∑

xj∈Nxi

F(xj , gRiR
−1
j )h1(g(xi − PiP

−1
j xj)), (1)

where F(xi, g) is an input function, h1(xi, g) is a kernel function, Nxi is the set of points in the
neighbourhood of xi, Pi and Pj denote the input pose of point xi and point xj respectively, Ri and
Rj is their rotation components. We prove that using the above convolution within EPN leads to
part-level equivariance in the Appendix A.2. We highlight that we adopt an iterative pose estimation
strategy (see Appendix A.3 for details) for the per-point poses and rotations in Eq. 1, which are
initialized to be identity in the first iteration.

3.2 PART SHAPE, STRUCTURE, AND POSE DISENTANGLEMENT

To obtain a fine-grained understanding of an articulated object, we disentangle three types of informa-
tion from the input: 1) Canonical shape; 2) Object structure; 3) Articulated object pose. To be more
specific, we first use the designed part-level SE(3)-equivariant network to extract per-point features
from an input shape. We then leverage a self-supervised slot-attention module to group the featured
points, forming a set of featured parts for the disentanglement. We predict a canonical shape for each
part to induce the category-level canonical part spaces required by part pose definition. Then we
disentangle structure and pose-related information that gradually transform canonical part shapes
to the observed shape. First, we predict part-assembling parameters to transform each canonical
part shape to form the canonical object shape. After that, the kinematic chain, joint parameters and
joint states are predicted to articulate the canonical object shape into the observed articulation state.
Finally, a base part rigid transformation is predicted to further transform the resulting articulated
object to the observed shape in the camera space. We will elaborate details of the above designs in
the following text.

Part Proposal. The part proposal module groups N points in the input shape X into K parts for
per-part equivariant features extraction. It learns an invariant grouping function that maps X together
with a point feature matrix F to a point-part association matrix W ∈ RN×K . Specifically, we
adopt an attention-pooling operation for the per-point invariant feature together with a slot attention
module Locatello et al. (2020) for the grouping purpose. Based on the proposed parts, we can
group points in the input shape X into K point clouds {Xi|1 ≤ i ≤ K} and compute the per-part
equivariant feature {Fi|1 ≤ i ≤ K}.
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Shape: Canonical Part Shape Reconstruction. With per-part equivariant features, we aim to predict
a canonical shape for each part which should be aligned within a certain category so that the category-
level part pose can be defined. The canonical shape for each part should be invariant to every parts’
rigid transformations. Thus, we adopt an SE(3)-invariant canonical shape reconstruction module
constructed based on an SO(3)-PointNet module as utilized in Li et al. (2021). The reconstruction
module converts per-part equivariant features Fi into per-part invariant features through attention
pooling first and then predicts an SE(3)-invariant shape Zi for each part.

Structure: Kinematic Chain Prediction. In addition to the canonical shape of each part, we also
need to understand the kinematic chain of a shape. The kinematic chain defines how different parts
are connected and the order they get transformed when a cascaded transformation happens. , i.e. from
chain leaves to the chain root. To estimate the kinematic chain for a given shape, we first construct an
adjacency confidence graph from object parts and then extract its maximum spanning tree consisting
of the set of confident adjacency edges. We set the part with the largest degree in the graph to be
the root of the tree, which will also serve as the base part of the object. The transformation order is
further predicted as the inverse DFS visiting order of the tree. Notice the kinematic chain should not
be affected by the articulated input pose, we therefore leverage per-part SE(3)-invariant features for
estimation.

Structure: Joint Parameters Prediction. For each pair of adjacent parts , we will then infer their
joint parameters, including an invariant pivot point pv

i,j and a joint axis orientation hypothesis ug
i for

each rotation element g ∈ Gg. For pivot points, we treat them as invariant properties and still adopt
an invariant shape reconstruction module for prediction. Specifically, we predict the pivot point pv

i,j

between every two adjacent parts i, j from their equivariant feature (Fi, Fj) using an invariant shape
reconstruction module Li et al. (2021). For joint axis orientations, we regress an axis orientation
hypothesis ug

i for part i corresponding to each rotation group element g ∈ Gg from its equivariant
feature Fi.

Pose: Part-assembling Parameters Prediction. Part-assembling parameters transform the predicted
canonical part shapes to assemble a canonical object shape. As parameters connecting invariant
canonical shapes, they should be invariant to every parts’ rigid transformations as well. Here, we
simply predict a translation vector pc

i ∈ R3 for each part i. We predict them through invariant shape
reconstruction modules from per-part equivariant feature {Fi|1 ≤ i ≤ K}. We can then assemble
predicted canonical part shapes together to form the canonical object shape: Z = {Zi + pc

i |1 ≤ i ≤
K}.

Pose: Joint States Prediction. Joint states describe the articulation state of an object. For each part i,
we predict a joint state hypothesis for each rotation element g ∈ G from its equivariant feature Fi, i.e.
a rotation angle θgi for a revolute part or a translation scalar sgi for a prismatic part. We can therefore
articulate the canonical object shape based on the predicted kinematic chain and joint states with the
base part fixed, so as to match the object articulation from the input observation.

Pose: Base Part Rigid Transformation. The base part rigid transformation needs to transform
the articulated canonical object shape to the camera space. Since we have previously predicted
joint states hypotheses for all rotation element g, we will also need multiple base transformation
hypotheses correspondingly. We simplify the base part transformation to be a rotation, which proves
to be effective in practice. A straightforward way is to use the rotation matrix corresponding to each
rotation element g as the base transformation hypothesis. We follow this idea but also predict an
additional residual rotation as a refinement. By transforming the articulated shape of the canonical
object shape via the predicted base part rigid transformation, we can align the resulting shape with
the observed input object.

Articulated Object Pose. With the above predicted quantities, we can calculate per-rotation articu-
lated object pose hypotheses for an input articulated object X , including three parts: 1) translation
pc
i of each part i which assembles category-aligned canonical parts into a canonical object; 2) per-

rotation articulated transformation of the canonical object based upon the predicted kinematic chain,
joint parameters and per-rotation joint states; 3) per-rotation base part rigid transformation which
transforms the articulated canonical object into the camera space. The rigid transformation hypothesis
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for each part i corresponding to each rotation element g ∈ G is denoted as P g
i = (Rg

i , t
g
i ). We treat

them as part pose hypotheses.

3.3 SHAPE RECONSTRUCTION-BASED SELF-SUPERVISED TASK

Based on the reconstructed canonical part shapes and predicted per-rotation part pose hypotheses, we
can get per-rotation shape reconstruction for each part i: {Y g

i = Rg
iZi + tgi |g ∈ G}. A part-by-part

reconstruction task is adopted to self-supervise the network. Besides, we add a regularization term
for each predicted joint so that the joint indeed connects two parts.

Shape Reconstruction-based Self-supervised Loss. The per-rotation shape reconstruction for the
whole object can be calculated by concatenating all part reconstructions: Y g = {Y g

i |1 ≤ i ≤ K}.
We then adopt a min-of-N loss between the input observation X and the reconstructed posed point
clouds:

Lrec = min
g∈G

d(X,Y g), (2)

where d : RNX×3 × RNY ×3 → R denotes the distance function between two point clouds and could
be unidirectional or bidirectional Chamfer Distance as an example.

Regularization for Joint Prediction. Predicted joints should connect adjacent parts and support
natural articulations. However, just supervising joint parameters from the reconstruction loss is not
sufficient for the needs above. Therefore, we devise a point-based joint constraint term for each
predicted joint (ug0

i ,pv
i,j), where g0 = argming∈Gd(X,Y g) (Eq. 2). Specifically, given the predicted

pivot point pv
i,j and joint orientation ug0

i , we independently randomly sample a set of points from the
joint by shifting the pivot point pv

i,j : P v
i,j = {p

v,k
i,j |0 ≤ k ≤ Kv}. The joint regularization loss term

is as follows:

Lreg =
∑

(i,j)∈ET

d(P v
i,j , Z

2
i ) + d(P v

i,j , Z
2
j ) + d(P v

i,j , Z
1
i ) + d(P v

i,j , Z
1
j ),

where Z1
i and Z2

i are shapes of the part i in the canonical object space before and after its articulated
transformation, ET is the set of adjacent parts, d(X1, X2) is the unidirectional Chamfer Distance
function from point cloud X1 to X2.

Our final self-supervised shape reconstruction loss is a linear combination of the above two loss
terms: L = Lrec + λLreg , where λ is a hyper-parameter.

Washing
Machine

Laptop

Oven

Eyeglasses

Complete Point Clouds

Partial Point Clouds

Input Recon. Canon. Input Recon. Canon. Input Recon. Canon. Input Recon. Canon.

Figure 2: Visualization for qualitative evaluation. For every two lines, the first line draws the results of our
method, and the second line draws those of NPCS. Every three shapes from the left side to the right side are
the input point cloud (Input), reconstruction (Recon.), and the reconstructed canonical object shape (Canon.).
We do not assume input shape alignment but align them here when drawing just for a better view. Please
zoom in for details.
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4 EXPERIMENTS

We evaluate our method on the category-level articulated object pose estimation task (sec. 4.2)
to demonstrate its effectiveness. Besides, we also test its performance on two side tasks that can
be completed by our network at the same time, namely part segmentation (sec. 4.3), and shape
reconstruction (sec. 4.4).

4.1 DATASETS

Following previous literature Li et al. (2020a), we choose seven categories from three datasets for
evaluation on both complete shapes and rendered partial point clouds: 1) Four categories from the
Part-Mobility Wang et al. (2019b) dataset, namely Oven, Washing Machine, Laptop (denoted as
Laptop (S)), and Eyeglasses with revolute parts. 2) One category, Drawer with prismatic parts, from
SAPIEN dataset Thomas et al. (2011). 3) Two categories from a real dataset HOI4D Liu et al. (2022b),
namely Safe and Laptop (denoted as Laptop (R)) with revolute parts. Please refer to the Appendix B.1
for data preparation details.

4.2 CATEGORY-LEVEL ARTICULATED OBJECT POSE ESTIMATION

Metrics. Following Li et al. (2020a), we use the following metrics to evaluate our method: 1)
Part-based pose-related metrics, namely per-part rotation error Rerr(

◦
) and per-part translation error

Terr, both in the form of mean and median values; 2) Joint parameters, namely joint axis orientation
errors θerr(◦) in degrees and joint position error derr, both in the form of mean values. Please refer
to the Appendix B.8 for details of our evaluation strategy.

Baselines. Since there is no previous works that have exactly the same setting with ours, we choose
NPCS Li et al. (2020a), a supervised pose estimation method for articulated objects, and ICP, a
traditional pose estimation approach, as our baseline methods. To apply them on our articulated
objects with arbitrary global poses, we make the following modifications: 1) We change the backbone
of NPCS to EPN Chen et al. (2021) (denoted as “NPCS-EPN”) and add supervision on its discrete
rotation mode selection process to make it work on our shapes with arbitrary global pose variations.
We do observe that the NPCS without EPN will fail to get reasonable results on our data (see
Appendix B.5 for details). Beyond part poses, we also add a joint prediction branch for joint
parameters estimation. 2) We equip ICP with ground-truth segmentation labels (denoted as “Oracle
ICP”) and register each part individually for part pose estimation. Notice that Oracle ICP cannot
estimate joint parameters.

Experimental Results. Table 1 presents the experimental results of our method and baseline methods
on complete point clouds. We defer the results on partial point clouds to Table 7 in the Appendix B.4.
We can make the following observations: 1) As a self-supervised strategy, our average and per-
category performance are comparable to that of the supervised baseline NPCS-EPN. We can even
sometimes outperform NPCS-EPN such as the joint axis orientation estimation on Safe. 2) Without
any human label available during training, our method can outperform the Oracle ICP with ground-
truth segmentation labels by a large margin in all categories. As a further discussion, the poor
performance of Oracle ICP may be caused by the part-symmetry related problem. It would add
ambiguity on part poses especially when we treat each part individually for estimation. Please refer
to Appendix C for more discussions. For a qualitative evaluation and comparison, we visualize the
input objects, reconstructions, and the predicted canonical object shapes by our method and NPCS in
Figure 2. Our method is able to reconstruct category-level aligned canonical shapes, which serve as
good support for estimating category-level articulated object poses.

4.3 PART SEGMENTATION

Evaluation Metric and Baselines. The metric used for this task is Segmentation IoU (MIoU).
We choose three position-based segmentation strategies, namely BAE-Net Chen et al. (2019),
NSD Kawana et al. (2020), BSP-Net Chen et al. (2020) and one motion-based segmentation method
ICP ICP as our baselines for this task. For BAE-NEt and BSP-Net, we generate data in their implicit
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Table 1: Comparison between the part pose estimation performance of different methods on all categories.
“R” denotes rotation errors with the value format “Mean Rerr/Median Rerr”. “T” denotes translation errors
with the value format “Mean Terr/Median Terr”. “J” denotes joint parameters estimation results with the value
format “Mean θerr/Mean derr”. “Avg.” refers to “Average Value”. Since Oracle ICP could not predict joint
parameters, we only present joint parameter prediction results of our method and supervised NPCS-EPN. For
all metrics, the smaller, the better. Best values and Bold, while second best ones are shown in blue.

Method Oven Washing
Machine Eyeglasses Laptop (S) Safe Laptop (R) Drawer Avg.

R

NPCS-EPN
(supervised)

5.47/4.45,
7.35/7.30

4.76/4.07,
6.66/5.41

2.75/2.44,
9.34/7.64,
7.93/6.74

6.72/6.08,
15.96/13.91

1.75/1.59,
2.67/2.50

8.20/7.12,
5.13/4.72

1.52/1.31,
2.01/1.81,
2.15/1.81,
1.14/0.94

5.38/4.70

Oracle ICP 46.46/38.56,
47.11/43.41

55.12/50.42,
52.38/51.57

34.41/23.25,
34.58/25.82,
35.71/25.12

43.26/42.02,
44.04/43.64

52.80/56.02,
53.04/52.13

42.50/43.06,
42.06/39.25

50.15/47.14,
50.12/47.15,
50.11/47.15,
50.07/46.41

46.11/42.48

Ours 7.74/7.35,
4.07/3.97

7.49/7.37,
19.27/19.19

8.16/8.21,
12.29/10.89,
12.53/9.88

7.34/5.16,
10.41/9.34

9.03/9.09,
13.83/13.59

5.71/3.61,
3.64/2.84

3.18/2.73,
3.18/2.73,
3.18/2.71,
3.18/2.71

7.90/7.14

T

NPCS-EPN
(supervised)

0.029/0.029,
0.020/0.019

0.021/0.018,
0.016/0.015

0.025/0.025,
0.022/0.020,
0.027/0.024

0.040/0.019,
0.027/0.023

0.005/0.005,
0.010/0.009

0.014/0.011,
0.023/0.021

0.035/0.033,
0.039/0.033,
0.025/0.016,
0.013/0.011

0.023/0.019

Oracle ICP 0.091/0.041,
0.070/0.030

0.126/0.028,
0.032/0.013

0.092/0.097,
0.188/0.197,
0.185/0.193

0.071/0.037,
0.120/0.030

0.072/0.036,
0.060/0.017

0.123/0.122,
0.120/0.123

0.053/0.029,
0.054/0.027,
0.050/0.028,
0.052/0.031

0.092/0.063

Ours 0.054/0.052,
0.067/0.046

0.082/0.083,
0.042/0.034

0.054/0.039,
0.086/0.088,
0.070/0.055

0.040/0.037,
0.046/0.042

0.066/0.069,
0.037/0.035

0.021/0.019,
0.027/0.026

0.096/0.096,
0.097/0.092,
0.108/0.105,
0.109/0.100

0.065/0.060

J
NPCS-EPN
(supervised) 5.04/0.076 5.66/0.078 7.42/0.090,

7.42/0.101 5.74/0.129 14.15/0.063 8.53/0.084 20.18/- 9.27/0.089

Ours 20.30/0.089 28.40/0.118 17.75/0.045,
17.75/0.129 30.31/0.122 4.36/0.031 17.17/0.169 38.86/- 21.86/0.100

representation using the data generation method described in IM-NET Chen & Zhang (2019). We
improve the evaluation strategy for NSD and BSP-Net considering the global pose variation of our
data (see Appendix B.3 for details).

Experimental Results. In table 2, we present experimental results of our method and baselines on
complete point clouds. Results on partial data are deferred to Table 8 in the Appendix B.4. Our
method can consistently outperform such four part segmentation methods in all categories. BSP-
Net, BAE-Net, and NSD assume input data alignment and highly rely on position information for
segmentation. However, such segmentation cues may not be well preserved in our data with arbitrary
global pose variations. By contrast, part motions can serve as a more consistent cue for segmenting
articulated objects than positions. We hypothesize that ICP’s poor registration performance on some
categories such as Eyeglasses further lead to its low segmentation IoUs.

4.4 SHAPE RECONSTRUCTION

Evaluation Metric and Baselines. We choose to use Chamfer L1 as our evaluation metric for
shape reconstruction. To demonstrate the superiority of part-by-part reconstruction for articulated
objects over the whole shape reconstruction, we choose EPN which treats them as rigid objects for
reconstruction as the baseline.

Experimental Results. As shown in Table 3, our method can consistently outperform the EPN-based
whole shape reconstruction. We suppose part-by-part reconstruction where only simple parts should
be recovered makes the reconstruction an easier problem for networks than recovering the whole
shape.

Table 2: Comparison between the part segmentation performance of different methods on all categories. Metric
used for this task is Segmentation MIoU, calculated on 4096 points for each shape. Values presented in the
table are scaled by 100. Larger values indicate better performance. “*” denote cases where the network fails by
segmenting input shapes into single parts.

Oven Washing
Machine Eyeglasses Laptop (S) Safe Laptop (R) Drawer Avg.

BAE-Net Chen et al. (2019) 55.04 46.07* 37.19* 65.21 39.83* 66.35 22.83* 47.50
NSD Kawana et al. (2020) 60.59 56.43 53.31 80.88 71.30 76.86 33.61 61.85
BSP-Net Chen et al. (2020) 67.24 62.52 54.28 79.41 76.59 81.33 42.15 66.22

Oracle ICP ICP 75.17 72.80 49.49 56.20 66.90 59.96 45.68 60.89
Ours 76.22 73.27 62.84 82.97 80.06 86.04 51.39 73.26
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Table 3: Comparison between the shape reconstruction performance of different methods on all categories.
Metric used in this task is Chamfer L1. The smaller, the better.

Method Oven Washing
Machine Eyeglasses Laptop (S) Safe Laptop (R) Drawer Avg.

EPN Li et al. (2021) 0.033 0.051 0.028 0.029 0.030 0.028 0.057 0.036
Ours 0.025 0.049 0.025 0.024 0.026 0.026 0.045 0.031

Table 4: Ablation study w.r.t. the effectiveness of joint reguralization for part pose estimation and the design of
pose-aware equivariant feature communication (denoted as “Pose.”). Reported values are per-category per-part
average values. Please refer to the caption of Table 5 for the data format of “Joint”.

Method Seg. IoU Mean Rerr(
◦) Median Rerr(

◦) Mean Terr Median Terr Joint Chamfer L1
No Lreg 76.40 11.74 10.87 0.070 0.065 - 0.038

With Lreg 74.32 10.40 9.30 0.072 0.073 22.01/0.111 0.032
With Lreg (Pose.) 76.90 9.21 8.40 0.052 0.047 19.72/0.103 0.025

5 ABLATION STUDY

In this section, we try to ablate some crucial designs in the method to demonstrate their effectiveness,
including part-level feature accumulation, pose-aware point convolution, and joint regularization.

Part-level Feature Accumulation. We use a grouping module to group points into parts for part-
level features in our method. To demonstrate the effectiveness of using part-level features for part
shape, structure, pose disentanglement, we ablate part-level features and only use features from
the whole shape for part-level properties prediction, similar to those used in Kawana et al. (2021);
Chen et al. (2019). Table 5 compares their performance. For each metric, we report its per-category
per-part average value. It can be observed that part-level features can help with part-based properties
prediction, letting the network achieve better performance on all pose-related metrics.

Pose-aware Point Convolution. Our method contains a pose-aware equivariant feature convolution
design for part-level SE(3) equivariant feature learning. To demonstrate the superiority of part-level
equivariance over common global equivariance, we compare the model’s performance when using
part-level equivariant features (With Lreg (Pose.)) with the one using global equivariant features
(With Lreg) in table 4. For each metric, its per-category per-part average value is reported. The
network using part-level equivariant features could consistently outperform the one using only global
equivariant features on all metrics.

Joint Regularization. Besides reconstruction loss, we additionally add a joint regularization term
to predict joints that connect two adjacent parts. Beyond acquiring joint-related parameters, joint
regularization could improve the pose estimation performance as well, especially for translation
prediction, as shown in Table 4.

6 CONCLUSION

In this work, we propose a self-supervised strategy for category-level articulated object pose esti-
mation without any annotations. Leveraging part-level SE(3) equivariant features, we propose a
part shape, structure, pose disentanglement strategy that successfully accomplish the category-level
articulated object pose estimation task. A part-by-part shape reconstruction task is adopted to self-
supervise the network learning. Experiments prove the effectiveness of our method and our core
ideas. This work can reduce the annotation efforts for solving this tasks and would also promote
further thinkings on designing part-level equivariant networks.

Table 5: Ablation study w.r.t. the effectiveness of accumulating part-level features for part-based properties
prediction. Reported values are per-category per-part average values on all categories. “Joint” represents joint
parameter estimation errors, with the value in the format of “Mean θerr/Mean derr”.

Method Seg. IoU Mean Rerr(
◦) Median Rerr(

◦) Mean Terr Median Terr Joint Chamfer L1
Without Parts 71.68 12.85 11.52 0.068 0.060 27.97/0.172 0.036

With Parts 76.90 9.21 8.40 0.052 0.047 19.72/0.103 0.029
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The appendix is organized as follows:

• Proofs and further explanations on the method
– Proof of part-Level equivariant property of the pose-aware point convolution module (sec. A.2).
– Further explanations on some method components (sec. A.3).

• Experiments
– Data preparation (sec. B.1).
– Implementation details (sec. B.2).
– Implementation details for baselines (sec. B.3).
– Experiments on partial point clouds (sec. B.4).
– Additional comparisons and applications (sec. B.5).
– Robustness to input data noise (sec. B.6).
– Visualization of part-level equivariant features (sec. B.7).
– Evaluation strategy for category-level articulated object poses (sec. B.8).

• Discussion on part symmetry (sec. C)

A METHOD DETAILS
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Figure 3: Overview of the proposed self-supervised articulated object pose estimation strategy. The method
takes a complete or partial point cloud of an articulated object as input, factorizes canonical shapes, object
structure, and the articulated object pose from it. The network is trained by a shape reconstruction task. Part-level
SE(3) equivariant features are learned by iterating between part pose estimation and pose-aware equivariant point
convolution. Green lines (←) denote procedures for feeding the estimated part poses back to the pose-aware
point convolution module.

A.1 OVERVIEW

We provide an detailed diagram of our self-supervised learning strategy in Figure 3.

A.2 PROOF OF PART-LEVEL EQUIVARIANT PROPERTY OF THE POSE-AWARE POINT
CONVOLUTION MODULE

In this section, we prove the part-level equivariant property of the designed pose-aware point convo-
lution module:

(F ∗ h1)(xi, g) =
∑

P−1
j xj∈N c

P
−1
i

xi

F(xj , gRiR
−1
j )h1(g(xi − PiP

−1
j xj)), (3)

where Pi and Pj are the (estimated) pose of xi and xj from the canonical object space to the camera
space respectively, Ri and Rj are the (estimated) rotations of point xi and point xj from the canonical
object space to the camera space respectively, N c

P−1
i xi

denotes the set of point xi’s neighbours in
the canonical object space. Note that the neighbourhood set Nxi

in the Equation 1 represents the
neighbourhood of xi in the camera space with points in which belong to xi’s neighourhood in the
canonical object space, i.e. N c

P−1
i xi

. Nxi
would vary as xi’s pose changes, while N c

P−1
i xi

keeps the

same. {xj |xj ∈ Nxi} = {xj |P−1
j xj ∈ N c

P−1
i xi
}.
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To prove the part-level equivariance of (F∗h1)(xi, g), we need to prove 1) (F∗h1)(xi, g) is invariant
to the rigid transformation of point xi’s each neighbouring point xj ; 2) (F ∗ h1)(xi, g) is equivariant
to the rigid transformation of xi itself.

We then prove those properties for the continuous convolution operations, (F ∗ h1)(xi, g) =∫
xj∈R3 F(xj , gRiR

−1
j )h1(g(xi − PiP

−1
j xj)).

Theorem 1. The continuous operation (F ∗ h1)(xi, g) =
∫
xj∈R3 F(xj , gRiR

−1
j )h1(g(xi −

PiP
−1
j xj)) is invariant to each arbitrary rigid transformation ∆Pj = (∆Rj ∈ SO(3),∆tj ∈ R3)

of (xj∀xj ∈ R3, xj ̸= xi) of x’s neighbouring point xj .

Proof. To prove the invariance of (F ∗h1)(xi, g), we need to prove that ∀xj ∈ R3, xj ̸= xi,∀∆Pj ∈
SE(3),R′

j = ∆RjRj , we have

∆Pj(F ∗ h1)(xi, g) = (F ∗ h1)(xi, g).

Let x′
j = ∆Pjxj , P ′

j = ∆PjPj , then we have,

∆Pj(F ∗ h1)(xi, g) =

∫
x′
j∈R3

F(x′
j , gRiR

′−1
j )h1(g(xi − PiP

′−1
j x′

j))

=

∫
xj∈R3

F(∆Pjxj , gRiR
−1
j ∆R−1

j )h1(g(xi − PiP
−1
j ∆P−1

j ∆Pjxj))

=

∫
xj∈R3

F(∆Rjxj , gRiR
−1
j ∆R−1

j )h1(g(xi − PiP
−1
j xj))

=

∫
xj∈R3

F(xj , gRiR
−1
j )h1(g(xi − PiP

−1
j xj))

= (F ∗ h1)(xi, g).

Theorem 2. The continuous operation (F ∗ h1)(xi, g) =
∫
xj∈R3 F(xj , gRiR

−1
j )h1(g(xi −

PiP
−1
j xj)) is equivariant to the rigid transformation ∆Pi = (∆Ri ∈ SO(3),∆ti ∈ R3) of xi.

Proof. To prove that (F ∗h1)(xi, g) is equivariant to the rigid transformation of xi, we need to prove
that ∀∆Pi ∈ SE(3), we have

∆Pi(F ∗ h1)(xi, g) = (∆RiF ∗ h1)(xi, g).

It can be proved by

∆Pi(F ∗ h1)(xi, g) = (F ∗ h1)(∆Pixi, g∆Ri)

=

∫
xj∈R3

F(xj , g∆RiRiR
−1
j )h1(g(∆Pixi −∆PiP

−1
j xj))

=

∫
xj∈R3

F(xj , (g∆Ri)RiR
−1
j )h1((g∆Ri)(xi − P−1

j xj))

= (∆RiF ∗ h1)(xi, g).

A.3 FURTHER EXPLANATIONS ON SOME METHOD COMPONENTS

Kinematic Chain Prediction. The kinematic chain is predict as an invariant property from per-
part invariant features to describe part articulation transformation order. It is predicted through
the following four steps: 1) Predict an adjacency confidence value ci,j for each part pair (i, j); 2)
Construct an fully-connected adjacency confidence graph G = (V, E) based on predicted confidence
values, with all parts as its nodes and predicted confidence values as edge weights; 3) Find a maximum
spanning tree from the constructed graph G: T = (V, ET ); 4) Calculate the DFS visiting order of T
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Figure 4: Kinematic chain prediction procedure (an example of the object containing three parts).

and take the inverse visiting order as the predicted kinematic chain. We draw the prediction procedure
in Figure 4.

Invariant/Equivariant Features for Prediction. Given per-part equivariant feature output from the
feature backbone Fi, its equivariant feature for equivariant properties prediction is further calculated
from an SO(3)-PointNet, i.e. F̂i = SO(3)-PointNet(Xi, Fi). Its invariant feature for invariant
properties prediction is then computed through a max-pooling operation: F inv

i = Max-Pooling(F̂i).

Joint Axis Orientation. We assume that all joints’ axis orientations in one shape are consistent.
Thus, in practice, we set the orientation of all joints to the same predicted orientation, i.e. ug

i ←
ug
im
,∀(i, j) ∈ ET ,∀g ∈ Gg , where (im, jm) is set to the part pair connected to the tree root. Saying

(i, j) ∈ ET , we mean a directional edge from part i to part j. In the node pair (i, j) ∈ ET , node i is
deeper than node j in the tree T . It indicates that node i’s subtree should rotate around the joint ug

i
passing through the joint between i and j.

Iterative Pose Estimation. Our pose-aware equivariant point convolution module requires per-point
pose as input. Due to our self-supervised setting where input poses are not assumed, we adopt an
iterative pose estimation strategy. Through this design, we can improve the quality of part-level
equivariant features gradually by feeding back estimated poses in the last iteration to the pose-aware
point convolution module in the current iteration. It is because that more accurate input per-point
poses would lead to better “part-level” SE(3) equivariant features considering the nature of our pose-
aware point convolution. In practice, we set per-point poses to identity values in the first iteration due
to the lack of estimated poses, i.e. P0 = (R0, t0).

Canonical Object Space
𝑍!" = 𝑍! + 𝒑!#, 𝒑! ,%&

Canonical Part Space
𝑍! ∈ ℝ'!

"×)

𝒑!#
Kinematic Chain
Joint Parameters

Joint States
Base Part Rigid
Transformation Camera Space

𝑌*

Figure 5: The relationship between our three crucial spaces: the canonical part spaces, the canonical object
space, and the camera space.

Canonical Part Spaces, Canonical Object Space, Camera Space. For each part, the canonical part
space normalizes its pose. For each object, the canonical object space normalizes its object orientation,
articulation states. Camera space denotes the observation space. Each part shape in the canonical part
space is its canonical part shape. Each object shape with articulation states canonicalized is called
its canonical object shape. Canonical spaces are category-level concepts, while canonical shapes
are instance level concepts. Figure 5 draws the relationship between such three spaces mentioned
frequently in our method.

Partial Point Clouds. The loss function used in Li et al. (2021) for partial point clouds is the
unidirectional Chamfer Distance. Using this function can make the network aware of complete shapes
by observing partial point clouds from different viewpoints. Such expectation can be achieved for
asymmetric objects if the viewpoint could cover the full SO(3) space. However, we restrict the range
of the viewpoint when rendering partial point clouds for articulated objects to make each part visible.
Such restriction would result in relatively homogeneous occlusion patterns. Therefore, we choose to
use unidirectional Chamfer Distance only for certain categories such as Safe when tested on partial
point clouds.
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Table 6: Per-category data splitting.

Oven Washing
Machine Eyeglasses Laptop (S) Safe Laptop (R) Drawer

#Total 32 41 42 82 30 50 30
#Train 28 36 37 73 26 44 24
#Test 4 5 5 9 4 6 6

Equivariant/Invariant Properties of the Designed Modules. The designed method wishes to
use part-level SE(3)-equivariance to reduce the difficulty of factorizing part pose and part shape.
Exact part-level equivariant features can make those modules meet our expectations. However, due
to the approximate SE(3)-equivariance of the employed feature backbone and the estimated part
pose that may not be very accurate, we cannot expect such invariance/equivariance for them. For
instance, if we do not consider part kinematic constraints, the part shape reconstruction module and
the part-assembling parameters prediction module should be invariant to K rigid transformations in
the quotient group (SE(3)/GA)(SE(3))K−1 if using global equivariant features, while it should be
invariant to the rigid transformation in the quotient group SE(3)/GA if using part-level equivariant
features given correct part pose estimation. Similarly, the pivot point prediction module should
be invariant to two rigid transformations in the quotient group (SE(3)/GA)

2 if using part-level
equivariant features. Part-level equivariance design could reduce the difficulty of a network doing
factorization, which may count as a reason for its effectiveness.

B EXPERIMENTS

B.1 DATA PREPARATION

Data Collection. We choose seven categories from three different datasets, namely Oven, Washing
Machine, Eyeglasses, Laptop (S) with revolute parts from Shape2Motion Wang et al. (2019b), Drawer
with prismatic parts from SAPIEN Xiang et al. (2020), Safe and Laptop (R) with revolute parts from
HOI4D Liu et al. (2022b).

The first five datasets are selected according to previous works on articulated object pose estimation
or part decomposition Li et al. (2020a); Kawana et al. (2021). To further test the effectiveness of our
method on objects collected from the real world, we choose two more categories (Safe and Laptop
(R)) from a real dataset Liu et al. (2022b).

Data Splitting. We split our data according to the per-category data split approach introduced in Li
et al. (2020a). Note that not all shapes in a category are used for training/testing. Incomplete shapes
or instances whose canonical articulation states are inconsistent with other shapes are excluded from
experiments. Per-category train/test splits are listed in Table 6.

Data Preprocessing. For each shape, we generate 100 posed shapes in different articulation states.

Then for complete point clouds, we randomly generate 10 rotated samples from each articulated posed
object. When generating articulated posed objects, we would add restrictions on valid articulation
state ranges. For Oven, Safe, and Washing Machine, the valid degree range of their lids is [45◦, 135◦).
For Eyeglasses, the range of the degree between two legs and the frame is set to [0◦, 81◦). For Laptop
(S) and Laptop (R), the range of the degree between two parts is set to [9◦, 99◦).

For partial point clouds, we render depth images of complete object instances using the same rendering
method described in Li et al. (2021). The difference is that we manually set a viewpoint range for
each category to ensure that all parts are visible in the rendered depth images. For each articulated
posed shape, we render 10 depth images for it. The dataset will be made public.

Data samples visualization. In Figure 6, we provide samples of training and test shapes for some
categories for an intuitive understanding w.r.t. intra-category shape variations. Such variations mainly
come from part geomtry (e.g. Eyeglasses frames, Oven bodies, Laptop) and part size (e.g. Washing
Machine, Laptop).
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Eyeglasses

Oven

Washing
Machine

Laptop (S)

Train Shapes Test Shapes

Safe

Laptop (R)

Figure 6: Samples of training and test shapes.

B.2 IMPLEMENTATION DETAILS

Architecture. For point convolution, we use a kernel-rotated version kernel point convolution
(KPConv Thomas et al. (2019)) proposed in EPN Chen et al. (2021). The size of the (one) convolution
kernel is determined by the number of anchor points and the feature dimension. In our implementation,
we use 24 anchor points. Feature dimensions at different convolution blocks are set to 64, 128, and
512 respectively.

Training Protocol. In the training stage, the learning rate is set to 0.0001, which is decayed by 0.7
every 1000 iterations. The model is trained for 10000 steps with batch size 8 on all datasets. We use
the self-supervised reconstruction loss to train the network, with the weight for joint regularization λ
set to 1.0 empirically. We use Adam optimizer with β = (0.9, 0.999), ϵ = 10−8.

Software and Hardware Configurations. All models are implemented by PyTorch version 1.9.1,
torch_cluster version 1.5.1, torch_scatter version 2.0.7, pyrender version 0.1.45, trimesh version 3.2.0,
and Python 3.8.8. All the experiments are conducted on a Ubuntu 20.04.3 server with 8 NVIDIA
GPUs, 504G RAM, CUDA version 11.4.

B.3 IMPLEMENTATION DETAILS FOR BASELINES

NPCS Li et al. (2020a). The NPCS’s original version Li et al. (2020a) trains a network for category-
level articulated object pose estimation in a supervised manner. It utilizes a PointNet++ Qi et al.
(2017) to regress three kinds of information and a set of pre-defined normalized part coordinate
spaces. Then in the evaluation process, the RANSAC algorithm is leveraged to calculate the rigid
transformation of each part from its predicted normalized part coordinates to the shape in the camera
space. To apply NPCS in our experiments, we make the following two modifications: 1) We change
the backbone used in NPCS from PointNet++ to EPN. We further add supervision on its rotation
mode selection process for the major rotation matrix prediction as does in Chen et al. (2021). 2) We
add a joint axis orientation prediction branch and a pivot point regression branch for joint parameters
estimation. Such two prediction branches act on the global shape feature corresponding to the selected
rotation mode and predict a residual rotation and a translation for estimation. By applying the major
rotation matrix of the selected mode, we could then arrive at the joint axis orientations and pivot
points in the camera space.

Oracle ICP. To apply ICP on the articulated object pose estimation, we introduce Oracle ICP. Oracle
ICP registers each ground-truth part from the template shape to the observed shape iteratively. We
randomly select 5 segmented shapes from the train set to register on each test shape. For complete
point clouds, we first centralize the part shape from both of the template shape and the observed
shape, we then iteratively register the template part shape to the observed part shape under 60 initial
hypotheses. For partial point clouds, we iteratively register the template part shape to the observed
part shape under 60 initial hypotheses together with 10 initial translation hypotheses. The one that
achieves the smallest inlier RMSE value is selected as the registration result. After each registration,
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we assign per-point segmentation label as the label of the nearest part. Therefore, we also treat Oracle
ICP as one of our segmentation baseline.

BSP-Net Chen et al. (2020). BSP-Net reconstructs an input shape using implicit fields as the
representation by learning to partition the shape using three levels of representations, from planes
to convexes, and further to the concave. Indices of reconstructed covexes are consistent across
different shapes in the same category. Thus, we can map from each convex index to a ground-
truth segmentation label. The relationship can then help us get segmentations for test shapes. The
mapping can then help us segment each test shape by assigning each convex to its corresponding part
segment. The intra-category convex partition consistency further provide cross-instance aligned part
segmentations. However, due to the global pose variations of our data, such convex index consistency
may not be observed when directly applying BSP-Net on our data. Thus, we propose to improve the
evaluation process of BSP-Net to mitigate this problem. Specifically, for each test shape, we find a
shape from the train set that is the most similar to the current test shape. Then, we directly use its
convex-segmentation mapping relationship to get segments for the test shape. The segments are then
used to calculate the segmentation IoU for the test shape.

NSD Kawana et al. (2020). Neural Star Domain Kawana et al. (2020) decomposes shapes into
parameterized primitives. To test its part segmentation performance on our data with arbitrary global
pose variations, we adopt the evaluation strategy similar to that used for BSP-Net.

B.4 EXPERIMENTS ON PARTIAL POINT CLOUDS

In this section, we present the experimental results on rendered partial point clouds of our method
and baseline methods.

Articulated Object Pose Estimation. In Table 7, we present the part pose estimation and joint
parameter prediction results of our method and baseline methods. Compared to the pose estimation
results of different models achieved on complete point clouds, our model can sometimes outperform
the supervised NPCS baseline (using EPN as the backbone), such as better part pose estimations and
joint parameter prediction results on the Laptop (S) dataset.

In Figure 8, we draw some samples for a qualitative evaluation. Moreover, we also provide the
visualization of all categories for complete point clouds in Figure 7. In the figure, the point cloud
distance function used for Safe is unidirectional Chamfer Distance, while that used for others is still
bidirectional Chamfer Distance. Using unidirectional Chamfer Distance can relieve the problem of
joint regularization on partial point clouds to some extent. It is because that in this way the point cloud
completion could be naturally enforced. For instance, reconstruction results for the Safe category
are drawn in Figure 8. However, points that are not mapped to any point in the input shape will also
affect the point-based joint regularization. For simple shapes, using bidirectional Chamfer Distance
could also sometimes make the decoder decode complete part shapes, e.g. reconstructions for Laptop
(R). As for the reconstructed reference shape in the canonical object space, better joint predictions
would lead to better global shape alignment. For instance, we can observe that the angle between two
parts of Laptop (R) and Laptop (S) is relatively consistent across shapes with different articulation
states. Joint regularization enforcing the connectivity between two adjacent parts both before and
after the articulated transformation in the canonical object space. It could then help make the joint
behave like a real joint, based on which we the “lazy” network tends to decode part shapes with
consistent orientations. However, there is a degenerated solution where the decoded rotation angle is
put near to zero. In that case, the joint regularization term could be satisfied by decoding “twisted”
part shapes. Since the decoded angle is near zero, the connectivity between two parts will not be
broken when rotating along the decoded joint. Sometimes, decoding angles near to zeros is a local
minimum that the optimization process gets stuck in. At that time, the regularization loss term is a
large one but the decoded joint parameters are not optimized in the correct direction by the network.
The reconstructed shapes in the canonical object space do not have consistent angles, e.g. Washing
Machine and Safe drawn in Figure 8.

Part Segmentation. In Table 8, we evaluate the segmentation performance of our method. BSP-Net
is not compared here since it requires mesh data for pre-processing, which is not compatible with the
rendered partial point clouds. Oracle ICP uses real segmentation labels to register each part from
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Figure 7: Visualization for experimental results on complete point clouds. Shapes drawn for every three shapes
from the left side to the right side are the input point cloud, reconstructions, and the predicted canonical object
shape. We put drawers in an aligned space just for better visualization. Their global pose may vary when
feeding into the network. Please zoom in for details.

the example shape to the observed shape. Despite this, it can still not achieve satisfactory estimation
results due to shape occlusions and part-symmetry-related pose ambiguity issues.

Shape Reconstruction. In Table 9, we evaluate the shape reconstruction performance of our method.
The part-by-part reconstruction strategy used by our method can outperform the EPN-based whole
shape reconstruction strategy in most of those categories except for Washing Machine. One possible
reason is the poor segmentation performance of our model on shapes in the Washing Machine
category.

B.5 ADDITIONAL COMPARISONS AND APPLICATIONS

Comparison with Other Baselines. We compare our method with other two baselines that are not
discussed in the main body in Table 10.

Firstly, we use KPConv Thomas et al. (2019) as NPCS’s feature backbone (denoted as “NPCS-
KPConv”) and test its performance on our data with arbitrary global pose variation. We can see that
NPCS of this version performs terribly compared to our unsupervised method. NPCS estimates part
poses by estimating the transformation from estimated NPCS coordinates and the observed shape.
It therefore requires invariant NPCS predictions to estimate category-level part poses. However,
such prediction consistency may not be easily achieved for input shapes with various global pose
variations.

The second one is Oracle EPN, where we assume ground-truth part segmentation labels and use EPN
to estimate the pose for each individual part. Despite in such oracle setting, EPN cannot infer joint
parameters since it estimates per-part poses individually. Besides, the part symmetry problem will
also hinder such strategy from getting good performance to some extent, which will be discussed in
the next section C.
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Figure 8: Visualization for experimental results on partial point clouds. Shapes drawn for every three shapes
from the left side to the right side are the input point cloud, reconstructions, and the predicted canonical object
shape. Please zoom in for details.

O
ven

Laptop
(S)

Figure 9: Reconstruction for shapes in different articulation states and manipulations to change their states.
Shapes (in blue and orange) drawn on the two sides are manipulated shapes from their nearest reconstructions.
Others are reconstructions (in purple and green). Please zoom in for details.

Shape Reconstruction and Manipulation. The predicted joints can enable us to manipulate the
reconstruction by changing the value of predicted rotation angles. We then arrive at shapes in new
sarticulation states different from input shapes. In Figure 9, we draw some examples for Laptop (S)
and Oven.

B.6 ROBUSTNESS TO INPUT DATA NOISE

O
ven

Laptop
(S)

Figure 10: Visualization for the model performance on input data with random noise. Shapes for each three
drawn from left to the right are input data corrupted by random normal noise, segmentation, and reconstruction,
respectively. We align shapes here just for a better visualization, while they may be put into arbitrary poses for
input.
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Table 7: Comparison between the part pose estimation performance of different methods on all test categories
(partial point clouds). “R” denotes rotation errors with the value format “Mean Rerr/Median Rerr”. “T”
denotes translation errors with the value format “Mean Terr/Median Terr”. “J” denotes joint parameters
estimation results with the value format “Mean θerr/Mean derr”. ICP could not predict joint parameters.
Therefore, only the results of supervised NPCS and our method on joint prediction are presented. For all metrics,
the smaller, the better. Bold numbers for best values, while blue values represent second best ones.

Method Oven Washing
Machine Eyeglasses Laptop (S) Safe Laptop (R) Drawer Avg.

R

NPCS-EPN
(supervised)

2.51/2.27,
2.93/2.64

4.71/3.84,
8.56/7.46

7.26/6.08,
23.39/17.33,
20.86/18.76

21.40/23.56,
29.90/32.71

6.64/5.76,
5.43/5.19

9.39/8.75,
6.75/6.14

21.74/10.80,
22.92/10.18,
25.10/14.16,

7.34/6.83
13.34/10.73

Oracle ICP 21.53/10.80,
20.68/20.50

32.42/17.82,
19.39/16.99

73.24/78.73,
68.74/74.09,
69.23/74.53

67.48/73.01,
63.22/68.23

38.72/34.44,
52.28/42.16

30.78/28.674,
42.06/39.25

82.93/82.64,
61.31/59.51,
54.39/52.82,
26.88/29.66

48.55/47.29

Ours 11.77/7.87,
10.83/9.15

1.61/1.52,
12.81/12.51

4.69/3.77,
9.56/5.36,
7.53/6.12

10.18/5.30,
11.10/5.22

15.38/14.46,
21.91/19.04

8.50/6.85,
6.92/5.66

2.60/1.79,
2.60/1.79,
2.06/1.79,
2.06/1.79

8.36/6.47

T

NPCS-EPN
(supervised)

0.028/0.030,
0.028/0.023

0.034/0.030,
0.033/0.028

0.085/0.075,
0.056/0.052,
0.057/0.049

0.263/0.253,
0.286/0.236

0.022/0.021,
0.034/0.034

0.048/0.043,
0.047/0.044

0.441/0.365,
0.367/0.343,
0.549/0.299,
0.081/0.065

0.145/0.117

Oracle ICP 0.324/0.321,
0.169/0.171

0.322/0.311,
0.136/0.144

0.092/0.097,
0.188/0.197,
0.185/0.193

0.265/0.278,
0.267/0.277

0.281/0.280,
0.246/0.248

0.280/0.289,
0.305/0.306

0.193/0.197,
0.161/0.170,
0.159/0.164,
0.129/0.132

0.218/0.222

Ours 0.071/0.065,
0.204/0.120

0.179/0.164,
0.253 /0.254

0.219/0.226,
0.169/0.166,
0.177/0.171

0.044/0.034,
0.031/0.025

0.030/0.030,
0.100/0.104

0.088/0.082,
0.070/0.067

0.046/0.046,
0.047/0.050,
0.122/0.131,
0.172/0.142

0.119/0.110

J
NPCS-EPN
(supervised) 28.62/0.092 8.05/0.194 20.11/0.221,

20.11/0.239 10.91/0.155 11.23/0.084 12.25/0.134 11.21/- 15.31/0.160

Ours 5.24/0.105 22.30/0.212 26.96/0.087,
26.96/0.260 10.83/0.142 55.16/0.170 18.02/0.170 7.43/- 21.61/0.164

Table 8: Comparison between the part segmentation performance of different methods (partial point clouds).
The metric used for this task is Segmentation MIoU, calculated on 4096 points for each shape. Values presented
in the table are scaled by 100. Larger values indicate better performance.

Oven Washing
Machine Eyeglasses Laptop (S) Safe Laptop (R) Drawer

Oracle ICP 75.83 73.07 68.92 54.01 66.90 59.96 58.38
Ours 87.07 51.73 56.80 84.94 44.64 86.04 45.45

Besides testing the performance of the proposed method on partial point clouds with occlusion
patterns caused by viewpoint changes, we also test its effectiveness on noisy data. Specifically,
we add noise for each point in the shape by sampling offsets for its x/y/z coordinates from normal
distributions, e.g. ∆x ∼ N (0, σ2), where we set σ = 0.02 here. Results on Oven and Laptop (S) are
presented in Table 11. From the table, we can see the degenerated segmentation IoU on Oven’s noisy
data, while still relatively good part pose estimation performance. Another discovery is the even better
joint axis orientation prediction, but larger offset prediction perhaps due to the poor segmentation.
Besides, the shape reconstruction quality also drops a lot, probably due to the randomly shifted point
coordinates. We can observe a similar phenomenon on Laptop (S). In Figure 10, we draw some
examples for a qualitative understanding w.r.t. model’s performance on noise data.

B.7 VISUALIZATION OF PART-LEVEL EQUIVARIANT FEATURES

Aiming for an intuitive understanding w.r.t. the property output by the designed part-level equivariant
network, we draw features output by the global equivariant network and part-level equivariant network
for some laptop samples in Figure 11. From the figure, we can see that the point features of the
non-motion part (base) do not change a lot when the moving part (display) rotates an angle. That
echoes the wish for the part-level equivariance design to disentangle other parts’ rigid transformation
from the current part’s feature learning.
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Table 9: Comparison between the shape reconstruction performance of different methods (partial point clouds).
The metric used in this task is unidirectional Chamfer L1 from the original input shape to the reconstructed
shape. The smaller, the better.

Method Oven Washing
Machine Eyeglasses Laptop (S) Safe Laptop (R) Drawer

EPN Li et al. (2021) 0.040 0.043 0.044 0.032 0.020 0.026 0.079
Ours 0.035 0.062 0.041 0.025 0.019 0.024 0.061

Table 10: Comparison between the part pose estimation performance of different methods. Backbone used for
NPCS is KPConv. “R” denotes rotation errors with the value format “Mean Rerr/Median Rerr”. “T” denotes
translation errors with the value format “Mean Terr/Median Terr”. “J” denotes joint parameters estimation
results with the value format “Mean θerr/Mean derr”. For all metrics, the smaller, the better. Bold numbers for
best values.

Method Oven Washing
Machine Eyeglasses Laptop (S) Safe Laptop (R) Drawer Avg.

R

NPCS-KPConv
(supervised)

44.16/43.09,
60.58/63.35

56.20/56.22,
50.16/51.38

51.99/53.97,
42.48/38.08,
42.29/38.11

55.67/66.44,
55.63/61.33

11.68/11.10,
43.48/42.22

49.98/68.43,
73.40/83.55

62.73/69.42,
56.16/60.34,
57.23/63.90,
48.76/46.82

50.74/53.99

Oracle EPN 7.07/6.88,
16.33/9.17

7.97/7.60,
33.56/20.49

54.01/13.09,
86.12/65.07,

116.56/119.23

18.33/9.73,
18.98/12.75

45.85/48.59,
38.03/27.67

20.46/14.03,
21.08/19.30

47.88/47.03,
30.84/25.23,
35.79/37.17,
43.83/39.46

37.81/30.73

Ours 7.74/7.35,
4.07/3.97

7.49/7.37,
19.27/19.19

8.16/8.21,
12.29/10.89,
12.53/9.88

7.34/5.16,
10.41/9.34

9.03/9.09,
13.83/13.59

5.71/3.61,
3.64/2.84

3.18/2.73,
3.18/2.73,
3.18/2.71,
3.18/2.71

7.90/7.14

T

NPCS-KPConv
(supervised)

0.133/0.121,
0.104/0.091

0.146/0.142,
0.066/0.065

0.401/0.326,
0.418/0.257,
0.396/0.263

0.233/0.203,
0.217/0.169

0.055/0.052,
0.098/0.091

0.179/0.226,
0.161/0.174

0.791/0.742,
0.694/0.640,
1.005/0.942,
0.271/0.240

0.316/0.279

Oracle EPN 0.031/0.030,
0.058/0.052

0.046/0.044,
0.059/0.053

0.197/0.129,
0.128/0.118,
0.334/0.292

0.132/0.128,
0.117/0.090

0.157/0.157,
0.158/0.151

0.092/0.086,
0.094/0.082

0.204/0.187,
0.177/0.166,
0.161/0.146,
0.290/0.282

0.143/0.129

Ours 0.054/0.052,
0.067/0.046

0.082/0.083,
0.042/0.034

0.054/0.039,
0.086/0.088,
0.070/0.055

0.040/0.037,
0.046/0.042

0.066/0.069,
0.037/0.035

0.021/0.019,
0.027/0.026

0.096/0.096,
0.097/0.092,
0.108/0.105,
0.109/0.100

0.065/0.060

J
NPCS-KPConv

(supervised) 55.62/0.194 55.01/0.149 60.58/0.329,
60.59/0.379 41.40/0.259 54.07/0.055 57.04/0.070 52.48/- 54.60/0.205

Ours 20.30/0.089 28.40/0.118 17.75/0.045,
17.75/0.129 30.31/0.122 4.36/0.031 17.17/0.169 38.86/- 21.86/0.100

B.8 EVALUATION STRATEGY FOR CATEGORY-LEVEL ARTICULATED OBJECT POSES

To evaluate the category-level part pose estimation performance of our model, we adopt the evaluation
strategy used in Li et al. (2021).

For part-based metrics, we first feed a set of train shapes in the canonical articulation states and
canonical object pose state to get a set of per-part pose predictions {Pi}. Then we can calculate the
residual pose P̂i for each part i from the canonical part space defined by human to the canonical part
space defined by the network from the pose prediction set (via RANSAC). After that, predicted pose
from the canonical part space defined by human can be computed by applying the inverse residual
pose estimation on the estimated per-part pose, e.g. Pi ← P̂−1

i Pi. When calculating the rotation
and translation from part shape X1 to X2, we first centralize their bounding boxes (X1 and X2,
respectively). Then, the transformation from X1 to X2 is taken as the transformation from X1 to X2.

For joint parameters, we take the angle error between the predicted joint axis orientation and the
ground-truth axis orientation as the metric for joint axis orientation prediction. Metric for joint
position prediction is set to the minimum line-to-line distance, following Li et al. (2020a). Only joint
axis orientation prediction error is computed for prismatic joints.

C DISCUSSION ON PART SYMMETRY

In this section, we discuss the part-symmetry-related problem that one would encounter in the part
pose estimation problem. For rigid objects, the pose of a shape is ambiguous for symmetric shapes.
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Table 11: Performance comparison of the proposed method on clean data and data corrupted by random normal
noise.

Category Method Seg. IoU Mean Rerr(
◦) Median Rerr(

◦) Mean Terr Median Terr Joint Error Chamfer L1

Oven Without noise 76.22 7.74, 4.07 7.35, 3.97 0.054, 0.067 0.052, 0.046 20.30/0.089 0.025
With noise 55.35 9.84, 11.05 9.94, 9.99 0.073, 0.063 0.073, 0.057 9.28/0.310 0.049

Laptop (S) Without noise 82.97 7.34, 10.41 5.16, 9.34 0.040, 0.046 0.037, 0.042 30.31/0.122 0.024
With noise 70.04 16.01, 13.27 11.47, 9.52 0.082, 0.067 0.075, 0.065 32.84/0.029 0.044

Figure 11: Visualization for an intuitive understanding w.r.t. the difference between the part-level equivariant
feature and globa equivariant feature of a specific part. Visualized features are obtained by using the PCA
algorithm to reduce the feature dimension to 3, which are further normalized to the range of [0, 1]. We only draw
point features of the non-motion part with the moving part in gray. Features drawn on the left global equivariant
features while those on the right are from the part-level equivariant network.

To say a shape X is symmetric, we mean that there is a non-trivial SE(3) transformation SA0
such that

X = SA0
[X]. In those cases, the performance of the pose estimation algorithm may degenerate due to

ambiguous poses. It is a reasonable phenomenon, however. But for articulated objects, we may have
symmetric parts even if the whole shape is not a symmetric one. For those shapes, we still expect for
accurate part pose estimation. It indicates that estimating part poses for each part individually is not
reasonable due to part pose ambiguity. That’s why we choose to model the relationship between parts,
or specifically, the kinematic chain, joint parameters. Without such object-level inter-part modeling,
we cannot get accurate part poses by estimating their pose individually, even using ground-truth
segmentation. The comparison between Oracle EPN and our method in Table 10 can demonstrate
this point to some extent.
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