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Abstract: The analysis of spatially correlated binary data has received substantial at-
tention in geo-statistical research but is very challenging due to the intricacy of the
distributional form. Two principal objectives include examining the dependence of bi-
nary response on covariates of interest and quantifying the covariances or correlations
between pairs of outcomes. While the literature has sufficiently addressed the modelling
issue of the mean structure of a binary response, the characterization of the covariances
between pairs of binary responses in terms of covariates is not clear. In this paper, we
propose methods to explain such characterizations by using a latent Gaussian copula
model with alternative hypersphere decomposition of the covariance matrix. Correctly
specifying the covariance matrix is crucial not only for the high efficiency of mean pa-
rameters but also for scientific interest. The key is to model the marginal mean and
pairwise covariance, simultaneously, for spatial binary data. Two generalized estimating
equations are proposed to estimate the parameters, and the asymptotic properties of the
resulting estimators are investigated. To evaluate the performance of the methods, we

conduct simulation studies and provide real data analysis for illustration.
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1. Introduction

Binary data widely arise in a range of scientific fields such as public health,
biomedicine, economics, and agriculture. The collection of binary data is of-
ten more straightforward and cost-effective than gathering accurate continuous
measurements since binary data only takes on two possible values. This paper
focuses on the analysis of spatially correlated binary data, where the spatial de-
pendence that cannot be ignored in making statistical inferences relies on the
distances between sampling locations. Our research was motivated by a geosta-
tistical study of Bovine Tuberculosis (bTB) infection of cattle herds and badger
setts in Ireland. In this study, the binary outcome is whether the cattle herd or
badger sett is infected with bTB or not. On the one hand, the primary objective
is to describe the binary outcome as a function of the available covariates. On
the other hand, since bTB is an infectious disease that can spread through the
air and adjacent animal herds may be spatially associated, modelling the spatial
correlation between animal herds is also of great importance.

In the literature, three main modelling frameworks have been proposed to
analyse spatial binary data: conditional models, multivariate probit models and

marginal models. Conditional models, also known as random effects models, as-
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sume that the binary responses are independent conditional on random effects.
For example, the generalized linear geostatistical models (GLGMs) proposed by
Diggle and Paulo (2007, Chap. 4) extend the generalized linear mixed model for
spatial data by using the realizations of a stationary Gaussian random field as
the random effects. Bayesian inference for parameter estimation can be imple-
mented using Markov chain Monte Carlo (Diggle and Paulo|, 2007, Chap. 4) or
integrated nested Laplace approximation (Brown, 2015)) to approximate the pos-
terior distribution. However, deriving closed-form expressions for the marginal
means and pairwise covariances of binary responses is generally not possible. As
pointed out by Oliveira, (2020)), the mean regression parameter in GLGM only has
a conditional interpretation that is of less interest than marginal interpretations
when there are no repeated measures in the data (e.g., spatial data).

The multivariate probit model is another popular approach for analyzing
binary data, which was first introduced by |Ashford and Sowden| (1970) and is
also known by different names such as latent Gaussian (copula) model (Fan et al.,
2017)), clipped Gaussian random field (Oliveiraj, [2020), and GeoCopula model
(Bai et al., 2014). This modelling approach assumes that binary variables are
indicators of whether latent Gaussian random variables exceed certain thresholds.
Oliveira) (2020) demonstrated that a generalized linear geostatistical model is
equivalent to a multivariate probit model when there is a non-zero nugget effect.

However, due to the integration and matrix inversion, estimating the parameters
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using the full likelihood can be computationally intensive, especially for large
data sets. To overcome these challenges, [Heagerty and Lele (1998)) proposed a
composite likelihood method that approximated the full log-likelihood by the sum
of log-likelihoods for adjacent pairs of binary observations.

The third approach, marginal models with generalized estimating equations
(GEEs, Liang and Zeger| (1986))), is also a viable alternative that can circumvent
the complete specification of full likelihood and the computational intensity of
the estimation procedure. (Oman et al. (2007)) introduced estimating equations
for spatially correlated binary data whose sampling locations can be divided into
independent blocks and revealed that the GEE-type method may be more effi-
cient than the aforementioned composite likelihood (Heagerty and Lele, 1998).
However, the GEE-type method also has some theoretical drawbacks due to its
underlying model assumptions. First, the failure to correctly specify the work-
ing correlation structure may lead to a great loss of efficiency, as highlighted by
(Wang and Carey, 2003). Second, the lack of an objective function makes model
selection a challenging task. Third, for binary data, the elements of the working
correlation matrix in GEE may not satisfy the Fréchet-Hoeffding bounds (Nelsen,
2007, Chap. 2) imposed on the Pearson correlation coefficients, which is likely
to cause misleading conclusions (Sabo and Chaganty, 2010)). For example, the
generalized and quasi-likelihood estimating equations proposed by |Albert and

McShane, (1995) and Lin and Clayton| (2005) ignore this constraint when mod-



elling spatially correlated binary data.

In the aforementioned modelling techniques for spatial binary data, covari-
ance modelling plays a crucial role, since a correctly specified covariance matrix
not only enhances the efficiency of mean parameters but also avoids the infeasi-
bility caused by violating some constraints such as Fréchet-Hoeffding bounds and
positive definiteness. Moreover, the covariance matrix itself is of scientific inter-
est. Common practice involves trying correlation structures such as Matérn fam-
ily and spherical family (Diggle and Paulo, 2007, Chap. 4) and selecting the opti-
mal structure using criteria like QIC (Pan) 2001)). However, estimating correlation
structure parameters must take the aforementioned constraints into account, and
the structural assumption of the covariance matrix may be too restrictive since,
under most circumstances, the true covariance matrix lacks a specific structure.
For binary data, odds ratio (Carey et al.,|1993) is an alternative measure of pair-
wise association as the bounds on odds ratio are less restrictive than the Fréchet
bounds on Pearson correlation coefficient (Chaganty and Joe, 2006). Correlation
coefficients can be explicitly expressed as a function of odds ratios, but odds ratios
lack a straightforward interpretation compared to the former, as they are only
defined in terms of odds rather than probabilities or marginal means. Another
way of specifying a covariance matrix is to transform the constrained elements
to unrestricted parameters and then model them with given covariates using lin-

ear regression. For example, [Ye and Pan (2006 decomposed covariance matrix
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into a generalized autoregressive matrix and an innovation variance matrix via
the Modified Cholesky Decomposition method (MCD, |Pourahmadi (1999))) and
proposed three generalized estimating equations for the marginal means, general-
ized autoregressive parameters and innovation variances. Similar decomposition
methods include Alternative Cholesky Decomposition (ACD, |(Chen and Dunson
(2003)) and Hypersphere Decomposition (HPC, |Rebonato and Jaeckel (2000)).
However, Cholesky-type decomposition methods which are commonly used for
modelling the covariance matrices of temporally correlated data cannot be ap-
plied to spatial data, because they require a known order of observations that
is absent in spatial data. The Alternative Hypersphere Decomposition method
(AHPC) proposed by |Li and Pan| (2022)) addressed the order issue in HPC by
redefining the angles modelled through linear regression and giving them new
geometric interpretations, but it cannot guarantee the positive definiteness of the
resulting covariance matrix.

In this paper, based on the latent Gaussian copula model (Fan et al., [2017)
and Alternative Hypersphere Decomposition method (Li and Pan, 2022), we pro-
pose a novel joint modelling approach for the marginal mean and covariance
matrix of spatial binary data. The latent Gaussian copula model assumes that
binary responses are produced by thresholding a latent Gaussian random vector
with the cutoff points, and so the correlation between binary responses can be

expressed as a nonlinear function of the correlation between the corresponding la-
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tent Gaussian random variables. Here the nonlinear function is termed the bridge
function, and we prove that the pairwise correlations of binary responses obtained
through this bridge function lie within the Fréchet-Hoeffding bounds. The cor-
relation matrix of the latent Gaussian random vector is modelled using AHPC
with covariates like the standard Euclidean distance between sampling locations.
Calibration approaches (Choi et al., 2019; Huang et al [2017) can help find an
appropriate surrogate when the latent correlation matrix is not positive definite.
For example, (Choi et al.| (2019) minimizes the distance (e.g., spectral-norm and
scaled Frobenius-norm) between the resulting correlation matrix and surrogate
while keeping the minimum eigenvalue of the surrogate positive. Therefore, our
proposed model satisfies the Fréchet-Hoeffding bounds and finds the dependence
of the covariance matrix elements on given covariates. Although it does not
guarantee the positive definiteness of the correlation matrix, a surrogate can be
calculated and used for non-positive definite cases. We introduce two generalized
estimating equations to estimate the mean and latent correlation parameters, and
also prove that the parameter estimators are consistent and asymptotically nor-
mally distributed. Overall, the main contributions and novelties of our method
are the ability to jointly model the marginal mean and covariance matrix of spa-
tial binary data, the use of AHPC to model the latent correlation matrix with
covariates, and the derivation of consistent and asymptotically normal parameter

estimators.
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In Section [2] the latent Gaussian copula model and Alternative Hypersphere
Decomposition (AHPC) are briefly introduced, followed by a description of our
joint mean-angle model and its estimation procedure. Section [3| presents the
asymptotic properties of parameter estimators. To demonstrate the effectiveness
of the proposed method, numerical studies and practical real data analysis are
shown in Section [ and Section [} respectively. Finally, we summarize our findings
and provide some concluding remarks in Section [6] All technical proofs and

additional simulation results can be found in the supplementary materials.

2. Methodology and estimation procedure

Consider a binary response variable Y; observed at the i-th sampling location s;,
where s; is typically represented as a 2-dimensional vector of geographical coordi-
nates (e.g., latitude and longitude), and i € {1,....,n}. Let Y = (Y;,...,Y,)" be
the n x 1 vector of binary responses, and let s = (s{,...,s!)" be the n x 2 matrix
of sampling locations. Suppose p; = E(Y;|X;) and ¥ = Var(Y'| X, s) denote the
first two moments of binary responses, where X; is a pg-dimensional vector of
covariates and X = (Xy,..., X,)" is the n x ps design matrix. Here, we assume
that the covariance matrix ¥ is positive definite, without loss of generality.

To provide a clear exposition of the proposed joint mean-angle model, we

present the latent Gaussian copula model and Alternative Hypersphere Decom-

position in the following two subsections. These subsections serve as preliminary



materials since the JMA model builds upon their concepts.

2.1 Latent Gaussian copula model for spatial binary data
For spatial binary data, the latent Gaussian copula model is defined as,

Definition 1. An n-dimensional binary random vector Y = (Y1,...,Y,)" follows
the latent Gaussian copula model LGC,,(0, R, c), if its j-th component is denoted
by Y; = I(Z; > ¢;) for all j € {1,...,n}, where I(-) is the indicator function.
The vector Z = (Zy,...,Z,)" is an n-dimensional Gaussian random vector and
is distributed as N, (0, R), where R = (R;;)1<; j<n is the latent covariance matrix
-

with diagonal elements set to 1’s (i.e., latent correlation matrix). ¢ = (c1,...,¢,)

is a vector of constant cutoff points.

The cumulative distribution function (cdf) of the standard univariate normal
distribution and the standard bivariate normal distribution with correlation 7 are
denoted by ®(-) and P®,(-, -;7), respectively. Let o;; represent the (7, j)-th entry
of the covariance matrix ¥. According to Definition 1, the values of 0,5, R;;, ¢;

and c¢; are required to satisfy the relationship,

oi; = EYY;) —EY)E(Y;) =Pr(Z; > ¢;, Z; > ¢;) — Pr(Z; > ¢;) Pr(Z; > ¢j)
=Pr(Z; <¢,Z; <c¢j) —Pr(Z; < ¢;)Pr(Z; <c¢j) = Paolci,¢j; Rij) — P(ci)P(c).
(2.1)
The covariance elements |o;;| < 1 due to the probabilities in equation (2.1)) vary-

ing between 0 and 1. Furthermore, for any 4,5 € {1,...,n} such that i # j, the
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correlation coefficient g;; = 0;;/ (an-ajj)l/ % between Y; and Y can be shown to fall

within the Fréchet-Hoeffding bounds:

mae { = [pigt (L = ) (1 = ) 172 = {0 = ) (L= 1)/ ()} <

< min {[,ui(l — 1)/ L (L= )M g (1 = pa) /g1 — uj)}]m} :

and the derivation is given in the supplementary materials. For any fixed (¢;, ¢;),
equation denotes a bridge function F'(¢; ¢;, ¢;) = Pa(cy, ¢jit) —P(c;)P(c¢;). In
particular, we have 0;; = F'(R;;; ¢;, ¢;) so that F(¢; ¢;, ¢j) links the correlation R;;
between the latent Gaussian variables Z; and Z; to the covariance o;; between
the binary variables Y; and Y;. It has been demonstrated in [Fan et al.| (2017) that
F(t; c;, c;) is a strictly monotonic increasing function of ¢ on the interval (—1, 1),
for any fixed ¢; and c;.

Note that the values of cutoff points ¢; and ¢; in the bridge function F'(¢; ¢;, ¢;)
are often unknown and need to be estimated. A common approach is to estimate
the cutoff points by ¢; = ®71(1 — ;) and ¢; = ®1(1 — ;). This is because the
marginal means ; and p; are the probabilities of observing Y; = 1 and Y; = 1,
respectively, which can be expressed as p; = E(Y;) =Pr(Y; =1) =Pr(Z; > ¢;) =

1-Pr(Z; <¢)=1-®(¢), and similarly p; =1 — ®(c;).

2.2 Alternative Hypersphere Decomposition

The original Hypersphere Decomposition was proposed by Rebonato and Jaeckel

(2000) with the aim of constructing a model for the correlation matrix. [Rapisarda
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et al. (2007) subsequently improved this decomposition method and provided a
geometric interpretation for the angle parameters.

For a covariance matrix X*, it can be initially decomposed as,
¥* =D'R*D",

where R* = (Rj;)1<ij<n is the correlation matrix and D" is a diagonal matrix
with diagonal elements being the standard deviations o;; = {Var(Y;)}/2 of Y;,
i € {1,...,n}. To further investigate the correlation matrix R*, the Hypersphere

Decomposition method is applied, which decomposes R* as,
R* =FF',

where F is a lower triangular matrix containing elements defined by trigonometric
functions of hyperspherical angles (Rapisarda et al., [2007). Specifically, for 1 <

j < i <mn, the (i, 7)-th element of F is given by

.

1, ifi=1,7=1,
cos(wj;), if2<i<n,j=1

cos(wj;) [1- sin(wy), if2<j<i<n

Hjlsm( 55 if2<i<n,j=i,

where cos(wj;) and sin(wj;) are trigonometric functions of hyperspherical angle

ij

wi; € [0,7). Let Q@ = (wj;)1<ij<n be the hyperspherical angle matrix. Hy-

ij

persphere Decomposition projects the unit row vectors of F into a hypersphere

coordinate so that the Pearson correlation coefficient Rj; can be expressed as a
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function of wy;,

J—1 -1
* p—
R;; = cos(wj; Hsm wj)sin(wy;) + E {cos w;p)eos(wi Hsm lt)sm(wﬂ)}
=1 t=1

(2.2)

One of the primary drawbacks of the Hypersphere Decomposition (HPC)
method is its order dependence. This means that the order of observations affects
the values of elements wj; in the hyperspherical angle matrix €* (see supplemen-
tary materials for detailed proof). Consequently, if one constructs a regression
model for correlation R;; using wy; and (2.2), the order-dependence of HPC im-
plies that the estimates of regression parameters are determined by the order
of observations. However, in the case of spatial binary data which do not have
a natural order, the regression model for o;; should not be influenced by the
order of observations. To address this issue, we introduce the Alternative Hy-
persphere Decomposition (AHPC) proposed by |Li and Pan| (2022), in which the

hyperspherical angle matrix €2* is redefined from that used in HPC as follows,

0 0 0 0 0

wi; 0 0 0 0
D= lws wi 0 0 0]

Wpi Wpa Whz o Whnog 0

with the element w}; € [0,7) being the angle between row vectors F; and ]*?’j of

matrix F in HPC. Specifically, it holds that w}; =< ]31,}7] > 1< j5<i<n.
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Given the above definition, we can establish a relationship between the correlation

*

R}; and the angle wy;,

cos(wj;) = cos < F,F, >=F'F, = R (2.3)

YR

As the cosine function is a strictly decreasing function on the interval [0,7),
equation (2.3) gives a one-to-one mapping between R} and w;; so that the value
of w}; is uniquely determined by the value of Rj;. Moreover, for all 1 < j <i <n,
the values of wj; remain invariant to any permutation of {Y;}i,, implying that
AHPC is order independent. Therefore, we consider using AHPC to model the
latent correlation matrix of spatial binary responses. In particular, the elements

w;; in angle matrix 2* are modelled by

Wiy = J(Ghy) = arctan(Cy) + /2,

where (;; is a vector of known covariates and v is the associated parameter vec-
tor. The link function f(-) = arctan(-) + 7/2 is used to ensure that the angle
wj; € [0,7). In addition, when the dimension of the correlation matrix is either
greater than or equal to three, the geometric interpretation of AHPC induces the
constraint wi; < wf; +wjy; for all i < j <k.

Note that the AHPC method cannot guarantee the positive definiteness of
the estimated correlation matrix R*. Therefore, if R* is not positive definite, we
suggest implementing the fixed support positive-definite (FSPD) modification

(Chot et al| 2019) to obtain an appropriate surrogate.
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2.3 Joint mean-angle model and GEE

Based on the AHPC method, we propose a joint mean-angle (JMA) model for

the marginal mean and latent correlation of binary responses,

g(p) = X;' B, Rij = cos(wij) = cos {arctan((iyy) +(7/2)}, (2.4)

where X; and (;; are pg x 1 and p, x 1 vectors of covariates, respectively. 3 and
are the associated parameters in the marginal mean and latent correlation model.
Let pg and p, denote the dimensions of § and 7, respectively. R;; represents
the (7, j)-th entry of correlation matrix R in the latent Gaussian copula model
LGC,(0,R,c) and w;; is the corresponding angle in AHPC method. The link
function g(+) is assumed to be known, monotone, and differentiable. In our study,
the covariates X; and (;; may comprise baseline covariates, polynomials in spatial
distance, and their interactions. For example, if we utilize the polynomials in

spatial distance to model the angles, the covariate vector (;; can take the form:
Cij = (]_, d(Si7 Sj), Ce ,dp“’_l(si, Sj))T,

where d(s;, s;) is the Euclidean distance between locations s; and s;.

The joint model proposed for spatial binary data combines the latent Gaus-
sian copula model with the AHPC method. Compared with previous methods, it
not only makes the estimated correlation coefficients naturally satisfy the Fréchet-
Hoeffding bounds, but also account for the correlation coefficients through a re-

gression model with geographical covariates.
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Throughout this paper, we introduce the notation vech*(A) to represent the
vectorization operator of the lower off-diagonal elements of a symmetric matrix
A € R™™. When a scalar function h(-) acts on an m-dimensional square ma-
trix B = (B;;)1<ij<m, we denote the resulting matrix as h(B) = (h(B;;))1<ij<m-
Based on these notations, we propose two generalized estimating equations to es-
timate the mean regression parameter § and the latent angle regression parameter

7 in the JMA model (2.4)),

$1(8) = (9p" /08) £~y — n(XB)} =0, (2.5)

So(Nlg—p = (On" /O7) M (H — ) =0, (2.6)

where

H = vech™(2) = vech*[{y — u(X5)Hy — w(XB)}'],

1 = vech" [F{R(7); ¢(0)}];

the parameter estimator B in Sy(7y) is the solution of the generalized estimating
equation (2.5); O’ /0 is the ps X n matrix with i-th column being du,; /98 =
g HX,"B)X; and ¢~*(-) being the derivative of the inverse of logit link function
g(+); On'" /v is the p, x {n(n — 1)/2} matrix with k-th column being O, /0~y =
F(Ryjici,¢;)(OR;;/0v). Here OR;;/0y = —sin{arctan( b))+ (m/2) 3 /{1 +
(C57)% F(Ryj; ¢i,¢;) is the derivative of the bridge function F with respect
toRjjand k =i—j(j+1)/24+(—1)n, 1 <j<mn, j+1<i<n Inaddi-

tion, F{R(7y);c} = (F{R;;(7);ci, ¢} )1<ij<n and M = cov(H) is the covariance
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matrix of H. We simultaneously solve the generalized estimating equations
and to obtain the parameter estimators B and 7, which also implies that our
approach assigns equal importance to the marginal mean and latent correlation
when modelling spatial binary data.

The requirement for Sy () to be conditional on 3 is motivated by the fact that
the true value of 8 is typically unknown. If 3 were known, we could replace 8 in
So(y) with the true value and then solve Sy(y) = 0 to estimate 7, as E(S2(y)) =0
in this case. However, since § is unknown, we use a consistent estimator, B,
instead. By plugging B into S3(y) and requiring it to be conditional on B, we
construct an estimating equation for «. The equation is essentially an
asymptotic generalized estimating equation since E(S3(7)) # 0 and E(S3(y)) — 0
as n — 0o. Note that although S3(7) is conditional on the parameter estimator B ,

the resulting parameter estimator # is still consistent, which is shown in Section

Bl

It is imperative to specify the covariance matrix M = cov(H) in Ss(y) before
solving the equation . While the expressions for diagonal elements in M are
clear, the off-diagonal elements are usually mathematically intractable. To over-
come this, we approximate the off-diagonal elements in M using a working struc-
ture. In line with Ye and Pan| (2006), we approximate M by a sandwich working
covariance D1/2F(5)D1/2. Here, D = diag{Var(ryry), Var(ryrs), ..., Var(r,—17,)}
(ri = y; — i, 1 <1< n), I'(9) is a working correlation matrix used to approxi-
mate the correlation between H; and H; (i # j) and § is the working parameter.

Since y; can only be 0 or 1, y? = y; and 72 = (y; — 11;)? = (1 — 2u;)y; + p?. Then
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for all 1 <17 < j < n, the diagonal elements of matrix D can be calculated by

Var(rirj) = B(rir§) — {B(riry)}* = B{(L = 2p)y: + 17 HQ = 215)y; + 15} — o

= {(1 = 20) (1 = 2p5)Eyay;) } + (1= 2pa)paps + (1= 25 pjpa + i — o3

= (1= 23) (1 = 21) (05 + i) + (1= 2pa)paps + (1 = 2p) ppa + pii i — o3

In the context of spatial data, the working correlation matrix I'(J) often takes on
structures like independence structure and compound symmetry structure, among
others. As is the case with the conventional generalized estimating equation for
the marginal mean (Liang and Zeger, 1986)), the choice of working parameter &
has no impact on the consistency of the latent angle parameter estimator 4, but it
does affect the efficiency. In support of this claim, the simulation studies and real

data analysis presented in Section [4] and Section [5| provide compelling evidence.

2.4 The main algorithm

As outlined in Subsection the estimators of parameters § and v are the
solutions of the generalized estimating equations and . The form of
S2(7)|5—p inspires us to update one parameter when holding the other fixed.
We use the quasi-Fisher scoring algorithm to obtain the numerical solutions for
parameters § and 7. In particular, given 3, we update the estimator of the mean

parameter S by

g0 = g0 LT 05y 5 (0w /08) ) (007 /05) S {y — w(XB)]
B=B®)

(2.7)
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On the other hand, given § = B and M, the value for the latent angle parameter

v is calculated through

A0 = 9@ L (@ o) M (on” /07) "} {(@m o) M (H - )
=) p=p

(2.8)
The equations (2.7) and (2.8) imply that the parameters can be estimated

iteratively by weighted generalized least squares. To sum up, we use the following

algorithm to obtain the parameter estimates in our model:

Step 1. Use GLM algorithm to obtain a starting value 5 of mean parame-
ter 3. Give the latent angle parameter v a starting value v (e.g.,
7© = (0,...,0)7, which leads the latent correlation matrix R to be

an identity matrix [, = diag(1,...,1)) and set k = 0.

Step 2. Compute the estimates of mean values g = ¢g='(X3®) and the esti-

mated covariance matrix 3% = (y — p®)T(y — a®).

Step 3. Calculate the latent correlation matrix R%* = (R(k) with

jj'>l§ju’f§n
RJU;,) = cos{arctan(sz,v(k)) + (7/2)},

and estimate the cutoff points ¢*) = ®~1(1 — a®). Next, use equation
to obtain the covariance matrix X*). Employ the quasi-Fisher
scoring algorithm and the weighted generalized least squares estimator

[2-§) to calculate y**1). Replace v*) with 4*+1 and update the latent

correlation matrix R® and covariance matrix *) accordingly.
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Step 4. Similarly, based on the covariance matrix X*), obtain the parameter

estimate S*1) through (2.7). Then replace 3*) with g*+1).

Step 5. Repeat Steps 2-4 until convergence is achieved for the parameter estima-

tors B and 7.

Note that the Fisher scoring algorithm is a form of Newton’s method which
replaces the Hessian matrix with the expected Fisher information matrix, and the
quasi-Fisher scoring algorithm substitutes the score function in the Fisher scoring
algorithm with the quasi-score function obtained from quasi-likelihood. The rate
of convergence of the Fisher scoring method and advantages over Newton Raph-
son method have been discussed in the literature (Osborne, 1992; Demidenko,
2013). In subsection S2.3 of the supplementary materials, a series of simulation
studies are also conducted to study the convergence of our proposed algorithm.
For example, the effect of the convergence criterion and starting parameter value

on the number of iterations needed for the convergence and parameter estimates.

3. Asymptotic properties

To study the rates of convergence for parameter estimators 3 and 4, we first give

a set of regularity conditions:

A1) The dimensions of X; and (;;, denoted by pg and p., respectively, are fixed.
J B v
The first four moments of the binary responses exist, and the inverse link

function g~!(-) has a bounded second derivative.
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(A2) The parametric spaces ©; and ©y are compact subsets of RP and RP,
respectively. The true parameter values 5 and ~ lie in the interiors of their

corresponding parameter spaces.

(A3) All covariates X; and (;;, as well as every element of the vector

.
(exp(X| B)/{1 +exp(X| B)}?, ..., exp(X, B)/{1 +exp(X, B)}?)
and the inverse matrix M~! are bounded.

Under (A1), the existence of the first four moments of binary responses can
guarantee the consistent estimation of the parameters in our joint model. Condi-
tion (A2) is conventionally made in linear models, and condition (A3) is normally

satisfied. Let N =n(n — 1)/2. Then we have the following two theorems,

Theorem 1. Assume that the generalized estimating equations (2.5) and ([2.6)
have only one root respectively. If the conditions (A1)-(A3) hold, the parameter
estimators 3 and 4 are \/n-consistent. That is, |5 — B]l2 = Op(n~"/2) and |5 —

Yll2 = Op(n=72).

Under Conditions (A1)—(A3), the following necessary conditions for asymp-

totic normality are valid.

(Ad) n=V2 (0" /0B) =Yy — u(XB)} N Ny, (0, Ag), where the variance ma-

trix Ag = n~'Var{S;(8)}.
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(A5) N=Y2(0n"/ov) M 'vech*{rr" — E(rr")} 2, Ny, (0,A,), where r =y —

p and the variance matrix A, = n=*Var{Ss(y)}.

Based on Conditions (A1)—(A3), we can easily derive (A4) and (A5) from the
central limit theorem. Note that the consistent estimations of variance matrices
A and A, rely on the availability of independent replications of observations
(Albert and McShane, 1995; Heagerty and Lele, [1998; Heagerty and Lumley,
2000). However, the spatial binary data considered in the article only have one
single observation for each sampling location. Based on the idea of Feng et al.
(2014) and |Varin et al.| (2011)), we can generate independent draws y,,...,¥x
from the fitted model and then estimate Az and A, by sample covariance matrices
of {SI(B;yk), k=1,...,K} and {S2(%;¥,),k =1,..., K}, respectively.

The following theorem presents the asymptotic normality of parameter es-

timators B and 4 separately, with all notations explained in the supplementary

materials.

Theorem 2. Under conditions (A1)—(A3), the generalized estimating equation
estimators B and 4 are asymptotically normal, respectively. That is,
n2(B — B) = N, (0, V5 Az VY,

N'Y2(3 = )5 = Ny, (VI VAL VDY),
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in distribution as n, N — 0o, where

V= lim n~! (9p"/08) =7 (9" /08) ",
V. = lim N7' (9n" /o) M (9m" 0n) "
—00

J* = lim N~/? (0n"/9v) M~ {Ovech*(rr")" /OB + 3"7T/85}T(B - B).

N—oo

It should be noted that VZ 1J* represents the asymptotically conditional
mean, whose value is determined by || — f||». Since N7V = 0,(n71?),

the estimator 4 is asymptotically unbiased for the parameter ~.

4. Simulation studies

To evaluate the numerical performance of our proposed joint mean-angle model
and GEE estimation procedure, we conduct simulation studies using 10 x 10
regular lattice data. The regular lattice design involves n = 100 observations
distributed uniformly on a grid square within the range of [0,1] x [0,1]. Let
s; = (locx;, locy;) denote the spatial location of i-th observation, where locz; and
locy; are the x- and y-coordinates, respectively. To generate the binary responses,
we consider the joint mean-angle model that determines the marginal means and

latent correlation matrix,

(i) = 1,01 + 22 B2 + x3: 05 + 24: 04,

wi; = arctan(Cui;v1 + Caijye + Caijys) +7/2,
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where 1 <4, j < n, g(-) is the logit link function, mean parameter 3 = (8, B2, 83, 81) " =
(1,-0.5,0.3,—0.7) " and latent angle parameter v = (v1,7%2,73) " = (—0.2,0.4,-0.2)T;
(w14, T2;, w3;) | is sampled from a three-dimensional Gaussian distribution N3 (0, 0.52f{),
where R is of the AR(1) correlation structure with a parameter value 0.2; z4; is
independent of zy;, k = 1,2, 3, and follows a uniform distribution U(—1/2,1/2);

Cuj = 1,Cu5 = |Isi — 84ll2 = {(locx; — locx;)* + (locy; — locy;)*}/? and (s =

||si — s;]|3. The simulation setup for angles {w;;, 1 < 4,7 < n} is verified to sat-

isfy the constraints of angles in AHPC. Latent random variables {z;, i =1,...,n}

are generated from a Gaussian distribution N,,(0,R), where R = (R;;)1<i j<n =
(cos(wij))1<ij<n- Finally, the simulated binary response of i-th observation is
obtained by vy; = I(z; > ¢;), where I(-) is an indicator function and the cutoff
point ¢; = ®71(1 — ;). Note that both the latent correlation matrix R and true
covariance matrix ¥, are positive definite.

In this paper, we use four different approaches to model and analyze the sim-
ulated spatial binary data: (1) the joint mean-angle model (JMA) fitted by two
generalized estimating equations (GEEs); (2) the generalized linear geostatisti-
cal model (GLGM) fitted by integrated nested Laplace approximation (INLA);

(3) the independence generalized linear model (GLM) fitted by maximum likeli-
hood (ML); (4) conventional generalized estimating equation (GEE) for marginal
mean. In our proposed GEE method, the entries of estimated covariance matrix

A

> =i are taken as the responses in the generalized estimating equation (2.6).
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The sandwich working covariance DY/ 2I‘((5)D1/ ? is used with exchangeable corre-
lation structure (i.e., compound symmetry) for I'(d). The effect of misspecifica-
tion of I'(d) on estimating 5 and ~ is studied by setting the working correlation
parameter 6 € {0,0.2,0.4,0.6,0.8} in our simulations. For the estimations of

variance matrices Ag and A, we generate K = 10 independent draws of the

s
response y from the fitted model. The R package “geostatsp” (Brownl 2015)
can be utilized to fit the generalized linear geostatistical model (GLGM) with
Bayesian INLA, and the Matérn correlation with shape parameter xk = 1 (one
default value in the package) is chosen as the correlation structure for the un-
derlying spatial process. As for the conventional GEE (Liang and Zeger, |1986),
the working correlation structure assumed for spatially correlated binary data
is exchangeable and the R package “gee” is applied to the estimation of mean

structure parameters. The alternative methods presented in the simulation study

section are applied to each outcome separately.

The simulation results reported in [Table 1| and [Table 2| are averaged over

500 independent replications. displays the estimation outcomes of all the
parameters in four distinct modelling approaches. It is clear that our proposed
method can provide precise estimates for the parameters § and ~ in the joint
mean-angel model. In addition, the resulting estimators of parameters § and
are robust against misspecification of working correlation matrix I'().

presents the sample deviation (SD) of 500 estimates, the average (SE) of 500



25

estimated standard errors, and the coverage probability (CoPr) of the confidence
interval for each parameter. It is evident that the gaps between the SDs and SEs
are small, which indicates that the standard error formulas shown in Section
can be used to estimate the variability of the parameter estimators. From these
two tables, we note that our proposed method performs slightly better than the
other three modelling approaches, in terms of the efficiency of mean parameter
estimator B . Furthermore, the angle parameter estimator 4 can substitute for the
parameter v in our joint mean-angle model to calculate the estimates of latent
correlation matrix R and covariance matrix 3, whereas the generalized linear
geostatistical model (GLGM) cannot provide a closed-form expression for the
covariance matrix 3 of binary responses Y.

We also conduct simulation experiments to compare all the methods un-
der varying correlation strengths (e.g., weak, moderate, and strong). It can be
observed that when the latent correlation strength is moderate or strong, the pro-
posed joint modelling method is an improvement over the existing marginal model
methodologies, in terms of the standard deviations (SDs) of mean parameter es-
timator B . Besides, the improvements are more obvious than that of the weak as-
sociation case. Meanwhile, we augment the sample size (e.g., n € {144, 225,400})
and then find that the biases and standard deviations of parameter estimators
in our proposed method decline as the sample size increases. Due to the length

limit, all the details are deferred to the supplementary materials.
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Table 1. Simulation results on spatial binary data over 500 replications. Average

of biases of 500 estimates for each parameter.

True JMA(S=0) JMA@G=02) JMA(S=04) JMA(S=06) JMAG=08 GLGM  GEE ML
a1 0.0527 0.0721 0.0740 0.0739 0.0756  0.1040  0.0580  0.0551
By —05 —0.0471 —0.0562 —0.0528 —0.0508 —0.0490 —0.0599 —0.0485 —0.0534
B 0.3 0.0028 0.0109 0.0112 0.0108 0.0087  0.0085  0.0063  0.0093
B =07 —0.0793 —0.0966 —0.1007 —0.1007 —0.0968 —0.0915 —0.0751 —0.0662
noo—02 —0.0117 —0.0478 —0.0484 —0.0450 —0.0475
7y 04 0.0327 0.0323 0.0420 0.0349 0.0403
vs 0.2 ~0.0160 ~0.0191 —0.0272 ~0.0228 —0.0264

5. Data Analysis

We now turn to the example of bovine tuberculosis (bTB) infection (Kelly, 2013;
Griffin et al.; 2005) and apply the foregoing techniques to the analysis of data.
The data we analyze here were collected from the Four Area Project (FAP)
which was designed to study badger removal in four counties in Ireland. The
study comprises 417 cattle herds and 251 badger setts, whose spatial locations
were recorded using GIS coordinates. The binary outcome variable indicates
whether at least one individual in a cattle herd or badger sett tested positive
for bTB or not. shows the data on bTB infection, with black and
white circles representing the bTB positive and negative cases, respectively. The
covariates for cattle herds consist of the logarithm of herd size (logsize) and a

binary variable indicating prior infection (ph). For badger setts, the size of sett
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Table 2. The standard deviations (SD), averages (SE) of estimated standard
errors, and the coverage probabilities (CoPr) of the confidence intervals for pa-

rameter estimators B and 4. The confidence level is 0.95.

Parameter JMAGB =0) JMA(G=02) JMA(S=04) JMA(=06) JMAGS=08 GLGM GEE ML
B SD 04790 0.4964 0.4962 0.4986 0.4981 04962  0.4898 0.4920
SE 04736 0.4848 0.4845 0.4848 0.4851 04848 04721 04713
CoPr  0.9440 0.9420 0.9420 0.9400 0.9400 0.9500  0.9440 0.9440
B SD  0.4661 0.4848 0.4839 0.4842 0.4839 04810  0.4758 0.4797
SE 04586 0.4594 0.4597 0.4596 0.4593 04733 04615 0.4613
CoPr  0.9440 0.9380 0.9400 0.9400 0.9400 0.9440  0.9460 0.9480
B SD 04517 0.4828 0.4813 0.4805 04771 04824 0.4500 0.4526
SE 04457 0.4474 0.4470 0.4473 0.4470 04626  0.4490 0.4499
CoPr  0.9460 0.9400 0.9380 0.9380 0.9400 0.9480  0.9400 0.9460
B SD 08132 0.8213 0.8196 0.8227 0.8181 0.8098 0.8176 0.8188
SE  0.7546 0.7558 0.7563 0.7569 0.7568 07811  0.7577 0.7588
CoPr  0.9540 0.9480 0.9500 0.9480 0.9520 0.9500  0.9520 0.9520
T SD  0.2280 0.3752 0.3775 0.3773 0.3804
SE 02333 0.4493 0.4659 0.4616 0.4755
CoPr  0.9540 0.9500 0.9520 0.9520 0.9520
Y SD  0.6780 0.7372 0.7418 0.7405 0.7432
SE  0.6674 0.8063 0.8186 0.8310 0.8279
CoPr  0.9540 0.9440 0.9440 0.9440 0.9460
Y SD 05194 0.5652 0.5672 0.5663 0.5680
SE 05110 0.6122 0.6238 0.6341 0.6280
CoPr  0.9480 0.9460 0.9480 0.9500 0.9480

(size) is the only covariate. Our scientific interest is two-fold: first, to estimate
the association between bTB infection and measured covariates; and second, to

account, for the spatial correlations by a regression model with some covariates
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Figure 1. The bTB infection plots for cattle herds and badger setts, where locx

and locy are the GIS x- and y-coordinates.

like standard Euclidean distances between sampling locations.
In accordance with the joint mean-angle model introduced in Section [2 we
adopt a logistic function of measured covariates to model the marginal mean of

the infection status y; of i-th cattle herd or badger sett,
e Cattle herds: logit(u;) = In{u;/(1 — ;) } = 51 + Baphi + Pslogsize;,

e Badger setts: logit(u;) = In{p;/(1 — ;) } = By + Pasize;,
where p; = E(y;), and using the following two angle models to specify the latent
correlation matrix R = (R;;)1<; j<n, for 1 <i,j <mn,
(i) Rij = cos(wi;) = cos {arctan(Ciijv1 + Cij2) + (7/2)},

(i) R;; = cos(w;j) = cos {arctan(Cii;v1 + Caijye + Caijys) + (7/2) ),
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where the covariates (1;; = 1, (oij = ||si—5;||2 = {(locz; — locx;)? + (locy; — locy;)*}/?,
and Csi; = ||s; — s;]|3. We also compare our proposed method with three other
modelling approaches. and summarize the estimates of mean
parameter $ and angle parameter 7, and their corresponding standard errors for
the bTB infection of cattle herds and badger setts, respectively. Note that we
generate K = 10 independent draws of the response y from the fitted model to
calculate the standard errors of parameter estimators. The results in
imply that the infection status of a cattle herd is positively related to its size and
previous infection. Similarly, it can be observed from that a badger sett

of larger size is associated with a higher likelihood of bTB infection.

In {Table 3| and [Table 4, we also observe that the estimates of the mean

parameter § and angle parameter v, along with their corresponding standard
errors, are relatively stable across different values of the working parameter ¢
when using our proposed method. Although the difference between our proposed
method and the other three modelling approaches is minor in terms of the mean
parameter estimates and their standard errors, the other three approaches fail to
provide an appropriate specification of the marginal pairwise correlation between

each pair of binary responses.

The QIC and RJ presented in [I'able 3| and [Table 4] are quasi-likelihood un-

der the independence model criterion for the mean parameter estimator B and

Rotnitzky-Jewell criterion for the estimated covariance matrix 3. Both criteria
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are used to select the optimal angle model and the optimal value of the work-
ing correlation parameter 0. The QIC proposed by Pan (2001) for the mean

parameter estimator B is defined as

QIC = =2 " [yiln {f1i/(1 — fur)} + In(1 — )] + 2trace(X ' Vy),
i=1
where fi; = /LZ<B) is an estimate of u;; Y and Vg are the covariance matrices of
mean parameter estimator § obtained by using diag(z (1 — 1), - - -, i (1 — 1))
and F(R,c) = (F(R;j,¢i,¢j))1<ij<n as the covariance matrix X in the general-

ized estimating equation (2.5]), respectively. According to Hin et al. (2007)), the

Rotnitzky-Jewell criterion (RJ) has the following form,

RJ = [{1 — trace(Q)/po)* + {1~ trace(Q)/po)?] -

where
Q={(on/08)2~" (ouT/08) "} {(0uT /08) By — )y — )T (97 /08) ")

is a po-dimensional square matrix. If the estimate of 3 approximates the true
covariance matrix X, ) will be close to an identity matrix and RJ will also
tend to zero. That is, a smaller value of RJ indicates a better fit for the corre-
lation structure. For the cattle herd infection data, both QIC and RJ suggest
that the JMA1 angle model with a working independence structure (i.e., 6 = 0)
is the optimal choice. It implies that the covariance between two data points
decreases as their spatial distance increases since the slope 7, is estimated to be

positive. In the case of badger sett infection, we observe that the QIC and RJ
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Table 3. The estimates of mean and angle parameters for bTB cattle herd data.
Standard errors are in parenthesis. The joint mean-angle models which use the

angle models (i) and (ii) to characterize the latent correlation matrix R are

referred to as JMA1 and JMAZ2, respectively.

Method B Bs Bs 4 A Ay QIC RJ
ML -2.5490(0.2262) 0.8396(0.3238)  0.9378(0.2250)

GEE -2.5844(0.1142)  0.8462(0.3139) 0.9479(0.2132)

GLGM -2.5398(0.2263)  0.8273(0.3241) 0.9417(0.2248)

IMAL(6=0)  -2.5907(0.2012) 0.8425(0.3167) 0.9552(0.2224) -0.0328(0.0374) 0.0140(0.0135) 281.9777 0.3427
IMA1(6=0.2) -2.6128(0.2060) 0.8439(0.3209) 0.9636(0.2266) -0.0384(0.0525) 0.0073(0.0066) 281.9309  0.3026
IMA1(6=0.4) -2.6128(0.2060) 0.8439(0.3209) 0.9636(0.2266) -0.0384(0.0491) 0.0074(0.0072) 281.9309  0.3026
IMA1(6=0.6) -2.6128(0.2060) 0.8439(0.3209) 0.9636(0.2266) -0.0384(0.0488) 0.0074(0.0075) 281.9309 0.3026
JMA1(6=0.8) -2.6128(0.2060) 0.8439(0.3209) 0.9636(0.2266) -0.0384(0.0335) 0.0074(0.0075) 281.9309  0.3026
IMA2(6=0)  -2.6459(0.2162) 0.8260(0.3288) 0.9871(0.2366) -0.1504(0.4576) 0.0308(0.0970) -0.0012(0.0039) 282.1111 0.3799
IMA2(6=0.2) -2.6692(0.2228) 0.8238(0.3337) 0.9958(0.2416) -0.1584(0.5556) 0.0314(0.1040) -0.0012(0.0037) 282.2403 0.4124
IMA2(6=0.4) -2.6692(0.2228) 0.8238(0.3337) 0.9958(0.2416) -0.1584(0.5491) 0.0314(0.1041) -0.0012(0.0038) 282.2403 0.4124
IMA2(6=0.6) -2.6692(0.2228) 0.8238(0.3337) 0.9958(0.2416) -0.1584(0.5419) 0.0314(0.1076) -0.0012(0.0043) 282.2403 0.4124
IMA2(6=0.8) -2.6692(0.2228) 0.8238(0.3337) 0.9958(0.2416) -0.1584(0.5482) 0.0314(0.0995) -0.0012(0.0037) 282.2403 0.4124

values are similar across all scenarios, which makes it difficult to determine the
optimal model. However, our analysis shows that the off-diagonal elements of
the estimated covariance matrix 3 for both two angle models are almost zero,
indicating negligible spatial correlation between each pair of badger setts. This
result implies that modelling the correlation between badger setts may not be
necessary for this particular data set, and a simpler model can be sufficient for

inference.
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Table 4. The estimates of mean and angle parameters for bTB badger sett data.
Standard errors are in parenthesis. The joint mean-angle models which use the
angle models (i) and (ii) to characterize the latent correlation matrix R are

referred to as JMA1 and JMAZ2, respectively.

Method i B ol Fo A3 QIC RJ
ML -1.2231(0.2559)  0.4636(0.1015)

GEE -1.2271(0.2234)  0.4635(0.1015)

GLGM -1.2231(0.2561) 0.4635(0.1015)

JMA1(6=0) -1.2091(0.2355)  0.4630(0.1017)  0.0042(0.0110)  0.0025(0.0024) 326.0247  2.5204
JMAL(6=0.2) -1.2194(0.2352) 0.4634(0.1016) 0.0317(0.0437) 0.0013(0.0019) 326.0813  2.5685
JMA1(6=0.4) -1.2194(0.2352) 0.4634(0.1016) 0.0319(0.0670) 0.0013(0.0018) 326.0813  2.5686
JMAL(5=0.6) -1.2105(0.2352) 0.4634(0.1016) 0.0319(0.0382) 0.0013(0.0020) 326.0814  2.5686
JMA1(6=0.8) -1.2195(0.2352) 0.4634(0.1016) 0.0319(0.0621) 0.0013(0.0022) 326.0814  2.5686
JMA2(6=0)  -1.3023(0.2547) 0.4707(0.1014) -0.1060(0.2294) 0.0266(0.0556) -0.0013(0.0026) 326.0537 2.4510
JMA2(6=0.2) -1.2712(0.2396) 0.4672(0.1016) -0.0870(0.2192) 0.0260(0.0560) -0.0012(0.0025) 325.9661 2.4597
JMA2(6=0.4) -1.2710(0.2395) 0.4672(0.1016) -0.0869(0.2384) 0.0260(0.0556) -0.0012(0.0025) 325.9661 2.4507
JMA2(6=0.6) -1.2711(0.2395) 0.4672(0.1016) -0.0869(0.2216) 0.0260(0.0519) -0.0012(0.0024) 325.9661 2.4597
JMA2(6=0.8) -1.2711(0.2395) 0.4672(0.1016) -0.0869(0.2648) 0.0260(0.0538) -0.0012(0.0025) 325.9661 2.4597

6. Discussion

This paper introduces a novel joint mean-angle model for analyzing spatially
correlated binary data, with the goal of quantifying the dependence of binary
responses on covariates and characterizing the spatial covariances between pairs of
responses. The formulation of the pairwise covariance model builds on the latent

Gaussian coupla model and Alternative Hypersphere Decomposition (AHPC).
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The former assumes that the binary responses are generated by dichotomizing
a latent Gaussian random vector with a set of cutoff points and ensures that
the estimated correlation coefficients fall within the Fréchet-Hoeffding bounds.
The latter enables the transformed correlation coefficients (i.e., the angles) to
be related to measured covariates through a regression model. However, the
resulting covariance matrix for spatial binary data may not always be positive
definite. In this case, the FSPD estimator suggested by |(Choi et al.| (2019)) is
a simple positive definite surrogate with some theoretical advantages. Together
with a logistic regression model for the marginal means, our proposed method
provides a flexible modelling framework for spatially correlated binary data.

In this paper, considering the consistency of mean parameter estimator B
and the computational cost involved in the estimation procedure, we use two
separate estimating equations rather than the joint form of GEE2 (Zhao and
Prentice, |1990; Liang et al. [1992) to estimate the mean structure parameter (3
and the latent angle parameter v. We adopt compound symmetry as the working
correlation structure in our second-order generalized estimating equation (2.6
due to its closed-form inverse. The theoretical properties such as the consistency
and asymptotic normality of the parameter estimators B and 4 are established.
We assess the performance of the proposed method through numerical simulations

and data analysis. The results imply that our proposed method performs better

than the aforementioned marginal models in terms of the efficiency of the mean
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parameter estimator if the correlation strength is moderate or strong. Even
though the method may perform similarly to the marginal models when the
correlations between binary responses are weak, it can still be used to estimate
the correlation matrix of binary responses and interpret how the correlation varies
as the distance between sampling locations changes, which cannot be achieved
by using the other aforementioned methods.

We also identify some directions which may need more work. First, extend-
ing the joint model to other types of spatial categorical data, such as binomial
and count data, may require the development of a new bridge function that links
the latent correlations to the covariances of categorical responses. Second, since
the AHPC method allows us to model the correlation coefficients with covariates
through a parametric regression model, additional flexibility can be introduced
to the proposed method by modelling both the marginal means and pairwise
correlations in a non-parametric or semi-parametric manner. Finally, the AHPC
method cannot guarantee the positive semi-definiteness of the estimated covari-
ance matrix. Therefore, further research is required to investigate a covariance
modelling method that can ensure the positive definiteness of the estimated co-
variance matrix while also having geometric interpretations and addressing the

order dependence issue like the AHPC method.
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Supplementary Material

The supplementary material contains the R-code used in our research and a PDF

file that includes technical proofs and some further simulation studies.

Acknowledgments

The authors gratefully acknowledge the financial support of the China Scholarship

Council scholarship under Grant 202006240040.

References

Albert, P. S. and L. M. McShane (1995). A generalized estimating equation approach for spatially
correlated binary data: applications to the analysis of neuroimaging data. Biometrics 51(2),
627-638.

Ashford, J. R. and R. R. Sowden (1970). Multi-variate probit analysis. Biometrics 26(3), 535-546.

Bai, Y., J. Kang, and P. Song (2014). Efficient pairwise composite likelihood estimation for spatial-
clustered data. Biometrics 70(3), 661-670.

Brown, P. E. (2015). Model-based geostatistics the easy way. Journal of Statistical Software 63(12),
1-24.

Carey, V., S. L. Zeger, and P. J. Diggle (1993). Modelling multivariate binary data with alternating
logistic regressions. Biometrika 80(3), 517-526.

Chaganty, N. R. and H. Joe (2006). Range of correlation matrices for dependent bernoulli random

variables. Biometrika 93(1), 197-206.



36

Chen, Z. and D. B. Dunson (2003). Random effects selection in linear mixed models. Biometrics 59(4),

762-769.

Choi, Y.-G., J. Lim, A. Roy, and J. Park (2019). Positive-definite modification of covariance matrix

estimators via linear shrinkage. Journal of Multivariate Analysis 124, 234-249.

Demidenko, E. (2013). Mized models: Theory and applications with R, 2nd ed. Wiley.

Diggle, P. J. and J. R. Paulo (2007). Model-based geostatistics. Springer New York.

Fan, J., H. Liu, Y. Ning, and H. Zou (2017). High dimensional semiparametric latent graphical model

for mixed data. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 79(2),

405-421.

Feng, X., J. Zhu, P. Lin, and M. Steen-Adams (2014, 12). Composite likelihood estimation for models

of spatial ordinal data and spatial proportional data with zero/one values. Environmetrics 25,

571-583.

Griffin, J. M., D. H. Williams, G. E. Kelly, T. A. Clegg, I. O’Boyle, J. D. Collins, and S. J. More

(2005). The impact of badger removal on the control of tuberculosis in cattle herds in ireland.

Preventive Veterinary Medicine 67(4), 237-266.

Heagerty, P. J. and S. R. Lele (1998). A composite likelihood approach to binary spatial data. Journal

of the American Statistical Association 93(443), 1099-1111.

Heagerty, P. J. and T. Lumley (2000). Window subsampling of estimating functions with application

to regression models. Journal of the American Statistical Association 95(449), 197-211.

Hin, L.-Y., V. J. Carey, and Y.-G. Wang (2007). Criteria for working-correlation-structure selection in

gee: assessment via simulation. The American Statistician 61(4), 360-364.



37

Huang, C., D. Farewell, and J. Pan (2017). A calibration method for non-positive definite covariance

matrix in multivariate data analysis. Journal of Multivariate Analysis 157, 45-52.

Kelly, G. E. (2013). Joint spatio-temporal modeling of mycobacterium bovis infections in badgers

and cattle - results from the irish four area project. Statistical Communications in Infectious

Diseases 5(1), 1-16.

Li, Q. and J. Pan (2022). Permutation variation and alternative hyper-sphere decomposition. Mathe-

matics 10(4), 562.

Liang, K.-Y. and S. L. Zeger (1986). Longitudinal data analysis using generalized linear models.

Biometrika 73(1), 13-22.

Liang, K.-Y., S. L. Zeger, and B. Qaqish (1992). Multivariate regression analyses for categorical data

(with discussion). Journal of the Royal Statistical Society: Series B (Methodological) 54 (1), 3—40.

Lin, P.-S. and M. K. Clayton (2005). Analysis of binary spatial data by quasi-likelihood estimating

equations. The Annals of Statistics 33(2), 542-555.

Nelsen, R. B. (2007). An introduction to copulas. Springer-Verlag.

Oliveira, V. D. (2020). Models for geostatistical binary data: properties and connections. The American

Statistician 74 (1), 72-79.

Oman, S. D., V. Landsman, Y. Carmel, and R. Kadmon (2007). Analyzing spatially distributed binary

data using independent-block estimating equations. Biometrics 63(3), 892-900.

Osborne, M. R. (1992). Fisher’s method of scoring. International Statistical Review / Revue Interna-

tionale de Statistique 60(1), 99-117.

Pan, W. (2001). Akaike’s information criteria in generalized estimating equations. Biometrics 57(1),



38

120-125.

Pourahmadi, M. (1999). Joint mean-covariance models with applications to longitudinal data: Uncon-

strained parameterisation. Biometrika 86(3), 677-690.

Rapisarda, F., D. Brigo, and F. Mercurio (2007). Parameterizing correlations: a geometric interpreta-

tion. IMA Journal of Management Mathematics 18(1), 55-73.

Rebonato, R. and P. Jaeckel (2000). The most general methodology for creating a valid correlation

matrix for risk management and option pricing purposes. Journal of Risk 2(2), 17-27.

Sabo, R. T. and N. R. Chaganty (2010). What can go wrong when ignoring correlation bounds in the

use of generalized estimating equations. Statistics in Medicine 29(24), 2501-2507.

Varin, C., N. Reid, and D. Firth (2011). An overview of composite likelihood methods. Statistica

Sinica 21(1), 5-42.

Wang, Y. G. and V. Carey (2003). Working correlation structure misspecification, estimation and co-

variate design: implications for generalised estimating equations performance. Biometrika 90(1),

29-41.

Ye, H. and J. Pan (2006). Modelling covariance structures in generalized estimating equations for

longitudinal data. Biometrika 93(4), 927-941.

Zhao, L. P. and R. L. Prentice (1990). Correlated binary regression using a quadratic exponential

model. Biometrika 77(3), 642-648.

Cheng Peng, Department of Mathematics, University of Manchester, Oxford Road, Manchester, UK.

E-mail: (cheng.peng-4@postgrad.manchester.ac.uk)



39

Renwen Luo, Division of Science and Technology, United International College (BNU-HKBU), 2000

Jintong Road, Zhuhai, Guangdong Province, China.

E-mail: (luorenwen@uic.edu.cn)

Yang Han, Department of Mathematics, University of Manchester, Oxford Road, Manchester, UK.

E-mail: (yang.han@manchester.ac.uk)

Jianxin Pan, Division of Science and Technology, United International College (BNU-HKBU), 2000

Jintong Road, Tangjiawan, Zhuhai, Guangdong Province, China.

E-mail: (jianxinpan@uic.edu.cn)



	Introduction
	Methodology and estimation procedure
	Latent Gaussian copula model for spatial binary data
	Alternative Hypersphere Decomposition
	Joint mean-angle model and GEE
	The main algorithm

	Asymptotic properties
	Simulation studies
	Data Analysis
	Discussion

