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Abstract: The analysis of spatially correlated binary data has received substantial at-

tention in geo-statistical research but is very challenging due to the intricacy of the

distributional form. Two principal objectives include examining the dependence of bi-

nary response on covariates of interest and quantifying the covariances or correlations

between pairs of outcomes. While the literature has sufficiently addressed the modelling

issue of the mean structure of a binary response, the characterization of the covariances

between pairs of binary responses in terms of covariates is not clear. In this paper, we

propose methods to explain such characterizations by using a latent Gaussian copula

model with alternative hypersphere decomposition of the covariance matrix. Correctly

specifying the covariance matrix is crucial not only for the high efficiency of mean pa-

rameters but also for scientific interest. The key is to model the marginal mean and

pairwise covariance, simultaneously, for spatial binary data. Two generalized estimating

equations are proposed to estimate the parameters, and the asymptotic properties of the

resulting estimators are investigated. To evaluate the performance of the methods, we

conduct simulation studies and provide real data analysis for illustration.
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1. Introduction

Binary data widely arise in a range of scientific fields such as public health,

biomedicine, economics, and agriculture. The collection of binary data is of-

ten more straightforward and cost-effective than gathering accurate continuous

measurements since binary data only takes on two possible values. This paper

focuses on the analysis of spatially correlated binary data, where the spatial de-

pendence that cannot be ignored in making statistical inferences relies on the

distances between sampling locations. Our research was motivated by a geosta-

tistical study of Bovine Tuberculosis (bTB) infection of cattle herds and badger

setts in Ireland. In this study, the binary outcome is whether the cattle herd or

badger sett is infected with bTB or not. On the one hand, the primary objective

is to describe the binary outcome as a function of the available covariates. On

the other hand, since bTB is an infectious disease that can spread through the

air and adjacent animal herds may be spatially associated, modelling the spatial

correlation between animal herds is also of great importance.

In the literature, three main modelling frameworks have been proposed to

analyse spatial binary data: conditional models, multivariate probit models and

marginal models. Conditional models, also known as random effects models, as-
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sume that the binary responses are independent conditional on random effects.

For example, the generalized linear geostatistical models (GLGMs) proposed by

Diggle and Paulo (2007, Chap. 4) extend the generalized linear mixed model for

spatial data by using the realizations of a stationary Gaussian random field as

the random effects. Bayesian inference for parameter estimation can be imple-

mented using Markov chain Monte Carlo (Diggle and Paulo, 2007, Chap. 4) or

integrated nested Laplace approximation (Brown, 2015) to approximate the pos-

terior distribution. However, deriving closed-form expressions for the marginal

means and pairwise covariances of binary responses is generally not possible. As

pointed out by Oliveira (2020), the mean regression parameter in GLGM only has

a conditional interpretation that is of less interest than marginal interpretations

when there are no repeated measures in the data (e.g., spatial data).

The multivariate probit model is another popular approach for analyzing

binary data, which was first introduced by Ashford and Sowden (1970) and is

also known by different names such as latent Gaussian (copula) model (Fan et al.,

2017), clipped Gaussian random field (Oliveira, 2020), and GeoCopula model

(Bai et al., 2014). This modelling approach assumes that binary variables are

indicators of whether latent Gaussian random variables exceed certain thresholds.

Oliveira (2020) demonstrated that a generalized linear geostatistical model is

equivalent to a multivariate probit model when there is a non-zero nugget effect.

However, due to the integration and matrix inversion, estimating the parameters
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using the full likelihood can be computationally intensive, especially for large

data sets. To overcome these challenges, Heagerty and Lele (1998) proposed a

composite likelihood method that approximated the full log-likelihood by the sum

of log-likelihoods for adjacent pairs of binary observations.

The third approach, marginal models with generalized estimating equations

(GEEs, Liang and Zeger (1986)), is also a viable alternative that can circumvent

the complete specification of full likelihood and the computational intensity of

the estimation procedure. Oman et al. (2007) introduced estimating equations

for spatially correlated binary data whose sampling locations can be divided into

independent blocks and revealed that the GEE-type method may be more effi-

cient than the aforementioned composite likelihood (Heagerty and Lele, 1998).

However, the GEE-type method also has some theoretical drawbacks due to its

underlying model assumptions. First, the failure to correctly specify the work-

ing correlation structure may lead to a great loss of efficiency, as highlighted by

(Wang and Carey, 2003). Second, the lack of an objective function makes model

selection a challenging task. Third, for binary data, the elements of the working

correlation matrix in GEE may not satisfy the Fréchet-Hoeffding bounds (Nelsen,

2007, Chap. 2) imposed on the Pearson correlation coefficients, which is likely

to cause misleading conclusions (Sabo and Chaganty, 2010). For example, the

generalized and quasi-likelihood estimating equations proposed by Albert and

McShane (1995) and Lin and Clayton (2005) ignore this constraint when mod-
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elling spatially correlated binary data.

In the aforementioned modelling techniques for spatial binary data, covari-

ance modelling plays a crucial role, since a correctly specified covariance matrix

not only enhances the efficiency of mean parameters but also avoids the infeasi-

bility caused by violating some constraints such as Fréchet-Hoeffding bounds and

positive definiteness. Moreover, the covariance matrix itself is of scientific inter-

est. Common practice involves trying correlation structures such as Matérn fam-

ily and spherical family (Diggle and Paulo, 2007, Chap. 4) and selecting the opti-

mal structure using criteria like QIC (Pan, 2001). However, estimating correlation

structure parameters must take the aforementioned constraints into account, and

the structural assumption of the covariance matrix may be too restrictive since,

under most circumstances, the true covariance matrix lacks a specific structure.

For binary data, odds ratio (Carey et al., 1993) is an alternative measure of pair-

wise association as the bounds on odds ratio are less restrictive than the Fréchet

bounds on Pearson correlation coefficient (Chaganty and Joe, 2006). Correlation

coefficients can be explicitly expressed as a function of odds ratios, but odds ratios

lack a straightforward interpretation compared to the former, as they are only

defined in terms of odds rather than probabilities or marginal means. Another

way of specifying a covariance matrix is to transform the constrained elements

to unrestricted parameters and then model them with given covariates using lin-

ear regression. For example, Ye and Pan (2006) decomposed covariance matrix
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into a generalized autoregressive matrix and an innovation variance matrix via

the Modified Cholesky Decomposition method (MCD, Pourahmadi (1999)) and

proposed three generalized estimating equations for the marginal means, general-

ized autoregressive parameters and innovation variances. Similar decomposition

methods include Alternative Cholesky Decomposition (ACD, Chen and Dunson

(2003)) and Hypersphere Decomposition (HPC, Rebonato and Jaeckel (2000)).

However, Cholesky-type decomposition methods which are commonly used for

modelling the covariance matrices of temporally correlated data cannot be ap-

plied to spatial data, because they require a known order of observations that

is absent in spatial data. The Alternative Hypersphere Decomposition method

(AHPC) proposed by Li and Pan (2022) addressed the order issue in HPC by

redefining the angles modelled through linear regression and giving them new

geometric interpretations, but it cannot guarantee the positive definiteness of the

resulting covariance matrix.

In this paper, based on the latent Gaussian copula model (Fan et al., 2017)

and Alternative Hypersphere Decomposition method (Li and Pan, 2022), we pro-

pose a novel joint modelling approach for the marginal mean and covariance

matrix of spatial binary data. The latent Gaussian copula model assumes that

binary responses are produced by thresholding a latent Gaussian random vector

with the cutoff points, and so the correlation between binary responses can be

expressed as a nonlinear function of the correlation between the corresponding la-
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tent Gaussian random variables. Here the nonlinear function is termed the bridge

function, and we prove that the pairwise correlations of binary responses obtained

through this bridge function lie within the Fréchet-Hoeffding bounds. The cor-

relation matrix of the latent Gaussian random vector is modelled using AHPC

with covariates like the standard Euclidean distance between sampling locations.

Calibration approaches (Choi et al., 2019; Huang et al., 2017) can help find an

appropriate surrogate when the latent correlation matrix is not positive definite.

For example, Choi et al. (2019) minimizes the distance (e.g., spectral-norm and

scaled Frobenius-norm) between the resulting correlation matrix and surrogate

while keeping the minimum eigenvalue of the surrogate positive. Therefore, our

proposed model satisfies the Fréchet-Hoeffding bounds and finds the dependence

of the covariance matrix elements on given covariates. Although it does not

guarantee the positive definiteness of the correlation matrix, a surrogate can be

calculated and used for non-positive definite cases. We introduce two generalized

estimating equations to estimate the mean and latent correlation parameters, and

also prove that the parameter estimators are consistent and asymptotically nor-

mally distributed. Overall, the main contributions and novelties of our method

are the ability to jointly model the marginal mean and covariance matrix of spa-

tial binary data, the use of AHPC to model the latent correlation matrix with

covariates, and the derivation of consistent and asymptotically normal parameter

estimators.
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In Section 2, the latent Gaussian copula model and Alternative Hypersphere

Decomposition (AHPC) are briefly introduced, followed by a description of our

joint mean-angle model and its estimation procedure. Section 3 presents the

asymptotic properties of parameter estimators. To demonstrate the effectiveness

of the proposed method, numerical studies and practical real data analysis are

shown in Section 4 and Section 5, respectively. Finally, we summarize our findings

and provide some concluding remarks in Section 6. All technical proofs and

additional simulation results can be found in the supplementary materials.

2. Methodology and estimation procedure

Consider a binary response variable Yi observed at the i-th sampling location si,

where si is typically represented as a 2-dimensional vector of geographical coordi-

nates (e.g., latitude and longitude), and i ∈ {1, ..., n}. Let Y = (Y1, . . . , Yn)
⊤ be

the n×1 vector of binary responses, and let s = (s⊤1 , . . . , s
⊤
n )

⊤ be the n×2 matrix

of sampling locations. Suppose µi = E(Yi|Xi) and Σ = Var(Y |X, s) denote the

first two moments of binary responses, where Xi is a pβ-dimensional vector of

covariates and X = (X1, . . . , Xn)
⊤ is the n× pβ design matrix. Here, we assume

that the covariance matrix Σ is positive definite, without loss of generality.

To provide a clear exposition of the proposed joint mean-angle model, we

present the latent Gaussian copula model and Alternative Hypersphere Decom-

position in the following two subsections. These subsections serve as preliminary
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materials since the JMA model builds upon their concepts.

2.1 Latent Gaussian copula model for spatial binary data

For spatial binary data, the latent Gaussian copula model is defined as,

Definition 1. An n-dimensional binary random vector Y = (Y1, . . . , Yn)
⊤ follows

the latent Gaussian copula model LGCn(0,R, c), if its j-th component is denoted

by Yj = I(Zj > cj) for all j ∈ {1, . . . , n}, where I(·) is the indicator function.

The vector Z = (Z1, . . . , Zn)
⊤ is an n-dimensional Gaussian random vector and

is distributed as Nn(0,R), where R = (Rij)1≤i,j≤n is the latent covariance matrix

with diagonal elements set to 1’s (i.e., latent correlation matrix). c = (c1, . . . , cn)
⊤

is a vector of constant cutoff points.

The cumulative distribution function (cdf) of the standard univariate normal

distribution and the standard bivariate normal distribution with correlation τ are

denoted by Φ(·) and Φ2(·, ·; τ), respectively. Let σij represent the (i, j)-th entry

of the covariance matrix Σ. According to Definition 1, the values of σij, Rij, ci

and cj are required to satisfy the relationship,

σij = E(YiYj)− E(Yi)E(Yj) = Pr(Zi > ci, Zj > cj)− Pr(Zi > ci) Pr(Zj > cj)

= Pr(Zi ≤ ci, Zj ≤ cj)− Pr(Zi ≤ ci) Pr(Zj ≤ cj) = Φ2(ci, cj;Rij)− Φ(ci)Φ(cj).

(2.1)

The covariance elements |σij| ≤ 1 due to the probabilities in equation (2.1) vary-

ing between 0 and 1. Furthermore, for any i, j ∈ {1, . . . , n} such that i ̸= j, the
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correlation coefficient ϱij = σij/(σiiσjj)
1/2 between Yi and Yj can be shown to fall

within the Fréchet-Hoeffding bounds:

max
{
− [µiµj/{(1− µi)(1− µj)}]1/2 ,−{(1− µi)(1− µj)/(µiµj)}1/2

}
< ϱij

< min
{
[µi(1− µj)/{µj(1− µi)}]1/2 , [µj(1− µi)/{µi(1− µj)}]1/2

}
,

and the derivation is given in the supplementary materials. For any fixed (ci, cj),

equation (2.1) denotes a bridge function F (t; ci, cj) = Φ2(ci, cj; t)−Φ(ci)Φ(cj). In

particular, we have σij = F (Rij; ci, cj) so that F (t; ci, cj) links the correlation Rij

between the latent Gaussian variables Zi and Zj to the covariance σij between

the binary variables Yi and Yj. It has been demonstrated in Fan et al. (2017) that

F (t; ci, cj) is a strictly monotonic increasing function of t on the interval (−1, 1),

for any fixed ci and cj.

Note that the values of cutoff points ci and cj in the bridge function F (t; ci, cj)

are often unknown and need to be estimated. A common approach is to estimate

the cutoff points by ci = Φ−1(1− µi) and cj = Φ−1(1− µj). This is because the

marginal means µi and µj are the probabilities of observing Yi = 1 and Yj = 1,

respectively, which can be expressed as µi = E(Yi) = Pr(Yi = 1) = Pr(Zi > ci) =

1− Pr(Zi ≤ ci) = 1− Φ(ci), and similarly µj = 1− Φ(cj).

2.2 Alternative Hypersphere Decomposition

The original Hypersphere Decomposition was proposed by Rebonato and Jaeckel

(2000) with the aim of constructing a model for the correlation matrix. Rapisarda
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et al. (2007) subsequently improved this decomposition method and provided a

geometric interpretation for the angle parameters.

For a covariance matrix Σ∗, it can be initially decomposed as,

Σ∗ = D∗R∗D∗,

where R∗ = (R∗
ij)1≤i,j≤n is the correlation matrix and D∗ is a diagonal matrix

with diagonal elements being the standard deviations σii = {Var(Yi)}1/2 of Yi,

i ∈ {1, . . . , n}. To further investigate the correlation matrix R∗, the Hypersphere

Decomposition method is applied, which decomposes R∗ as,

R∗ = FF⊤,

where F is a lower triangular matrix containing elements defined by trigonometric

functions of hyperspherical angles (Rapisarda et al., 2007). Specifically, for 1 ≤

j ≤ i ≤ n, the (i, j)-th element of F is given by

fij =



1, if i = 1, j = 1,

cos(ω∗
ij), if 2 ≤ i ≤ n, j = 1

cos(ω∗
ij)

∏j−1
l=1 sin(ω

∗
il), if 2 ≤ j < i ≤ n∏j−1

l=1 sin(ω
∗
il), if 2 ≤ i ≤ n, j = i,

where cos(ω∗
ij) and sin(ω∗

ij) are trigonometric functions of hyperspherical angle

ω∗
ij ∈ [0, π). Let Ω∗ = (ω∗

ij)1≤i,j≤n be the hyperspherical angle matrix. Hy-

persphere Decomposition projects the unit row vectors of F into a hypersphere

coordinate so that the Pearson correlation coefficient R∗
ij can be expressed as a
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function of ω∗
ij,

R∗
ij = cos(ω∗

ij)

j−1∏
l=1

sin(ω∗
il)sin(ω

∗
jl) +

j−1∑
l=1

{
cos(ω∗

il)cos(ω
∗
jl)

l−1∏
t=1

sin(ω∗
it)sin(ω

∗
jt)

}
.

(2.2)

One of the primary drawbacks of the Hypersphere Decomposition (HPC)

method is its order dependence. This means that the order of observations affects

the values of elements ω∗
ij in the hyperspherical angle matrix Ω∗ (see supplemen-

tary materials for detailed proof). Consequently, if one constructs a regression

model for correlation R∗
ij using ω∗

ij and (2.2), the order-dependence of HPC im-

plies that the estimates of regression parameters are determined by the order

of observations. However, in the case of spatial binary data which do not have

a natural order, the regression model for σij should not be influenced by the

order of observations. To address this issue, we introduce the Alternative Hy-

persphere Decomposition (AHPC) proposed by Li and Pan (2022), in which the

hyperspherical angle matrix Ω∗ is redefined from that used in HPC as follows,

Ω∗ =



0 0 0 · · · 0 0

ω∗
21 0 0 · · · 0 0

ω∗
31 ω∗

32 0 · · · 0 0

...
...

... · · · . . .
...

ω∗
n1 ω∗

n2 ω∗
n3 · · · ω∗

nn−1 0


,

with the element ω∗
ij ∈ [0, π) being the angle between row vectors F⃗i and F⃗j of

matrix F in HPC. Specifically, it holds that ω∗
ij =< F⃗i, F⃗j >, 1 ≤ j < i ≤ n.
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Given the above definition, we can establish a relationship between the correlation

R∗
ij and the angle ω∗

ij,

cos(ω∗
ij) = cos < F⃗i, F⃗j >= F⃗⊤

i F⃗j = R∗
ij, (2.3)

As the cosine function is a strictly decreasing function on the interval [0, π),

equation (2.3) gives a one-to-one mapping between R∗
ij and ω∗

ij so that the value

of ω∗
ij is uniquely determined by the value of R∗

ij. Moreover, for all 1 ≤ j < i ≤ n,

the values of ω∗
ij remain invariant to any permutation of {Yi}ni=1, implying that

AHPC is order independent. Therefore, we consider using AHPC to model the

latent correlation matrix of spatial binary responses. In particular, the elements

ω∗
ij in angle matrix Ω∗ are modelled by

ω∗
ij = f(ζ⊤ijγ) = arctan(ζ⊤ijγ) + π/2,

where ζij is a vector of known covariates and γ is the associated parameter vec-

tor. The link function f(·) = arctan(·) + π/2 is used to ensure that the angle

ω∗
ij ∈ [0, π). In addition, when the dimension of the correlation matrix is either

greater than or equal to three, the geometric interpretation of AHPC induces the

constraint ω∗
kj ≤ ω∗

ij + ω∗
ki for all i < j < k.

Note that the AHPC method cannot guarantee the positive definiteness of

the estimated correlation matrix R̂∗. Therefore, if R̂∗ is not positive definite, we

suggest implementing the fixed support positive-definite (FSPD) modification

(Choi et al., 2019) to obtain an appropriate surrogate.
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2.3 Joint mean-angle model and GEE

Based on the AHPC method, we propose a joint mean-angle (JMA) model for

the marginal mean and latent correlation of binary responses,

g(µi) = X⊤
i β, Rij = cos(ωij) = cos

{
arctan(ζ⊤ijγ) + (π/2)

}
, (2.4)

where Xi and ζij are pβ×1 and pγ ×1 vectors of covariates, respectively. β and γ

are the associated parameters in the marginal mean and latent correlation model.

Let pβ and pγ denote the dimensions of β and γ, respectively. Rij represents

the (i, j)-th entry of correlation matrix R in the latent Gaussian copula model

LGCn(0,R, c) and ωij is the corresponding angle in AHPC method. The link

function g(·) is assumed to be known, monotone, and differentiable. In our study,

the covariates Xi and ζij may comprise baseline covariates, polynomials in spatial

distance, and their interactions. For example, if we utilize the polynomials in

spatial distance to model the angles, the covariate vector ζij can take the form:

ζij = (1, d(si, sj), . . . , d
pγ−1(si, sj))

⊤,

where d(si, sj) is the Euclidean distance between locations si and sj.

The joint model proposed for spatial binary data combines the latent Gaus-

sian copula model with the AHPC method. Compared with previous methods, it

not only makes the estimated correlation coefficients naturally satisfy the Fréchet-

Hoeffding bounds, but also account for the correlation coefficients through a re-

gression model with geographical covariates.
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Throughout this paper, we introduce the notation vech∗(A) to represent the

vectorization operator of the lower off-diagonal elements of a symmetric matrix

A ∈ Rn×n. When a scalar function h(·) acts on an m-dimensional square ma-

trix B = (Bij)1≤i,j≤m, we denote the resulting matrix as h(B) = (h(Bij))1≤i,j≤m.

Based on these notations, we propose two generalized estimating equations to es-

timate the mean regression parameter β and the latent angle regression parameter

γ in the JMA model (2.4),

S1(β) =
(
∂µ⊤/∂β

)
Σ−1{y − µ(Xβ)} = 0, (2.5)

S2(γ)|β=β̂ =
(
∂η⊤/∂γ

)
M−1(H− η) = 0, (2.6)

where

H = vech∗(Σ̂) = vech∗[{y − µ(Xβ̂)}{y − µ(Xβ̂)}⊤],

η = vech∗[F{R(γ); c(β̂)}];

the parameter estimator β̂ in S2(γ) is the solution of the generalized estimating

equation (2.5); ∂µ⊤/∂β is the pβ × n matrix with i-th column being ∂µi/∂β =

ġ−1(X⊤
i β)Xi and ġ−1(·) being the derivative of the inverse of logit link function

g(·); ∂η⊤/∂γ is the pγ × {n(n− 1)/2} matrix with k-th column being ∂ηk/∂γ =

Ḟ (Rij; ci, cj)(∂Rij/∂γ). Here ∂Rij/∂γ = − sin{arctan(ζ⊤ijγ) + (π/2)}ζij/{1 +

(ζ⊤ijγ)
2}, Ḟ (Rij; ci, cj) is the derivative of the bridge function F with respect

to Rij and k = i − j(j + 1)/2 + (j − 1)n, 1 ≤ j ≤ n, j + 1 ≤ i ≤ n. In addi-

tion, F{R(γ); c} = (F{Rij(γ); ci, cj})1≤i,j≤n and M = cov(H) is the covariance
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matrix of H. We simultaneously solve the generalized estimating equations (2.5)

and (2.6) to obtain the parameter estimators β̂ and γ̂, which also implies that our

approach assigns equal importance to the marginal mean and latent correlation

when modelling spatial binary data.

The requirement for S2(γ) to be conditional on β̂ is motivated by the fact that

the true value of β is typically unknown. If β were known, we could replace β̂ in

S2(γ) with the true value and then solve S2(γ) = 0 to estimate γ, as E(S2(γ)) = 0

in this case. However, since β is unknown, we use a consistent estimator, β̂,

instead. By plugging β̂ into S2(γ) and requiring it to be conditional on β̂, we

construct an estimating equation for γ. The equation (2.6) is essentially an

asymptotic generalized estimating equation since E(S2(γ)) ̸= 0 and E(S2(γ)) → 0

as n → ∞. Note that although S2(γ) is conditional on the parameter estimator β̂,

the resulting parameter estimator γ̂ is still consistent, which is shown in Section

3.

It is imperative to specify the covariance matrix M = cov(H) in S2(γ) before

solving the equation (2.6). While the expressions for diagonal elements in M are

clear, the off-diagonal elements are usually mathematically intractable. To over-

come this, we approximate the off-diagonal elements in M using a working struc-

ture. In line with Ye and Pan (2006), we approximate M by a sandwich working

covariance D1/2Γ(δ)D1/2. Here, D = diag{Var(r1r2),Var(r1r3), . . . ,Var(rn−1rn)}

(ri = yi − µi, 1 ≤ i ≤ n), Γ(δ) is a working correlation matrix used to approxi-

mate the correlation between Hi and Hj (i ̸= j) and δ is the working parameter.

Since yi can only be 0 or 1, y2i = yi and r2i = (yi − µi)
2 = (1− 2µi)yi + µ2

i . Then
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for all 1 ≤ i < j ≤ n, the diagonal elements of matrix D can be calculated by

Var(rirj) = E(r2i r
2
j )− {E(rirj)}2 = E[{(1− 2µi)yi + µ2

i }{(1− 2µj)yj + µ2
j}]− σ2

ij

= {(1− 2µi)(1− 2µj)E(yiyj)}+ (1− 2µi)µiµ
2
j + (1− 2µj)µjµ

2
i + µ2

iµ
2
j − σ2

ij

= (1− 2µi)(1− 2µj)(σij + µiµj) + (1− 2µi)µiµ
2
j + (1− 2µj)µjµ

2
i + µ2

iµ
2
j − σ2

ij .

In the context of spatial data, the working correlation matrix Γ(δ) often takes on

structures like independence structure and compound symmetry structure, among

others. As is the case with the conventional generalized estimating equation for

the marginal mean (Liang and Zeger, 1986), the choice of working parameter δ

has no impact on the consistency of the latent angle parameter estimator γ̂, but it

does affect the efficiency. In support of this claim, the simulation studies and real

data analysis presented in Section 4 and Section 5 provide compelling evidence.

2.4 The main algorithm

As outlined in Subsection 2.3, the estimators of parameters β and γ are the

solutions of the generalized estimating equations (2.5) and (2.6). The form of

S2(γ)|β=β̂ inspires us to update one parameter when holding the other fixed.

We use the quasi-Fisher scoring algorithm to obtain the numerical solutions for

parameters β and γ. In particular, given Σ, we update the estimator of the mean

parameter β by

β(k+1) = β(k)+
{(

∂µ⊤/∂β
)
Σ−1

(
∂µ⊤/∂β

)⊤}−1 [(
∂µ⊤/∂β

)
Σ−1 {y− µ(Xβ)}

] ∣∣∣∣∣
β=β(k)

.

(2.7)
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On the other hand, given β = β̂ and M, the value for the latent angle parameter

γ is calculated through

γ(k+1) = γ(k)+
{(

∂η⊤/∂γ
)
M−1

(
∂η⊤/∂γ

)⊤}−1 {(
∂η⊤/∂γ

)
M−1 (H− η)

} ∣∣∣∣∣
γ=γ(k),β=β̂

.

(2.8)

The equations (2.7) and (2.8) imply that the parameters can be estimated

iteratively by weighted generalized least squares. To sum up, we use the following

algorithm to obtain the parameter estimates in our model:

Step 1. Use GLM algorithm to obtain a starting value β(0) of mean parame-

ter β. Give the latent angle parameter γ a starting value γ(0) (e.g.,

γ(0) = (0, . . . , 0)⊤, which leads the latent correlation matrix R(0) to be

an identity matrix In = diag(1, . . . , 1)) and set k = 0.

Step 2. Compute the estimates of mean values µ̂(k) = g−1(Xβ(k)) and the esti-

mated covariance matrix Σ̂(k) = (y− µ̂(k))⊤(y− µ̂(k)).

Step 3. Calculate the latent correlation matrix R(k) =
(
R

(k)
jj′

)
1≤j,j′≤n

with

R
(k)
jj′ = cos{arctan(ζ⊤jj′γ(k)) + (π/2)},

and estimate the cutoff points c(k) = Φ−1(1− µ̂(k)). Next, use equation

(2.1) to obtain the covariance matrix Σ(k). Employ the quasi-Fisher

scoring algorithm and the weighted generalized least squares estimator

(2.8) to calculate γ(k+1). Replace γ(k) with γ(k+1), and update the latent

correlation matrix R(k) and covariance matrix Σ(k) accordingly.
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Step 4. Similarly, based on the covariance matrix Σ(k), obtain the parameter

estimate β(k+1) through (2.7). Then replace β(k) with β(k+1).

Step 5. Repeat Steps 2-4 until convergence is achieved for the parameter estima-

tors β̂ and γ̂.

Note that the Fisher scoring algorithm is a form of Newton’s method which

replaces the Hessian matrix with the expected Fisher information matrix, and the

quasi-Fisher scoring algorithm substitutes the score function in the Fisher scoring

algorithm with the quasi-score function obtained from quasi-likelihood. The rate

of convergence of the Fisher scoring method and advantages over Newton Raph-

son method have been discussed in the literature (Osborne, 1992; Demidenko,

2013). In subsection S2.3 of the supplementary materials, a series of simulation

studies are also conducted to study the convergence of our proposed algorithm.

For example, the effect of the convergence criterion and starting parameter value

on the number of iterations needed for the convergence and parameter estimates.

3. Asymptotic properties

To study the rates of convergence for parameter estimators β̂ and γ̂, we first give

a set of regularity conditions:

(A1) The dimensions of Xi and ζij, denoted by pβ and pγ, respectively, are fixed.

The first four moments of the binary responses exist, and the inverse link

function g−1(·) has a bounded second derivative.
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(A2) The parametric spaces Θ1 and Θ2 are compact subsets of Rpβ and Rpγ ,

respectively. The true parameter values β and γ lie in the interiors of their

corresponding parameter spaces.

(A3) All covariates Xi and ζij, as well as every element of the vector

(
exp(X⊤

1 β)/{1 + exp(X⊤
1 β)}2, . . . , exp(X⊤

n β)/{1 + exp(X⊤
n β)}2

)⊤
and the inverse matrix M−1 are bounded.

Under (A1), the existence of the first four moments of binary responses can

guarantee the consistent estimation of the parameters in our joint model. Condi-

tion (A2) is conventionally made in linear models, and condition (A3) is normally

satisfied. Let N = n(n− 1)/2. Then we have the following two theorems,

Theorem 1. Assume that the generalized estimating equations (2.5) and (2.6)

have only one root respectively. If the conditions (A1)–(A3) hold, the parameter

estimators β̂ and γ̂ are
√
n-consistent. That is, ∥β̂ − β∥2 = Op(n

−1/2) and ∥γ̂ −

γ∥2 = Op(n
−1/2).

Under Conditions (A1)–(A3), the following necessary conditions for asymp-

totic normality are valid.

(A4) n−1/2
(
∂µ⊤/∂β

)
Σ−1{y− µ(Xβ)} D−→ Npβ(0,Λβ), where the variance ma-

trix Λβ = n−1Var{S1(β)}.
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(A5) N−1/2
(
∂η⊤/∂γ

)
M−1vech∗{rr⊤ − E(rr⊤)} D−→ Npγ (0,Λγ), where r = y−

µ and the variance matrix Λγ = n−1Var{S2(γ)}.

Based on Conditions (A1)–(A3), we can easily derive (A4) and (A5) from the

central limit theorem. Note that the consistent estimations of variance matrices

Λβ and Λγ rely on the availability of independent replications of observations

(Albert and McShane, 1995; Heagerty and Lele, 1998; Heagerty and Lumley,

2000). However, the spatial binary data considered in the article only have one

single observation for each sampling location. Based on the idea of Feng et al.

(2014) and Varin et al. (2011), we can generate independent draws ỹ1, . . . , ỹK

from the fitted model and then estimateΛβ andΛγ by sample covariance matrices

of {S1(β̂; ỹk), k = 1, . . . , K} and {S2(γ̂; ỹk), k = 1, . . . , K}, respectively.

The following theorem presents the asymptotic normality of parameter es-

timators β̂ and γ̂ separately, with all notations explained in the supplementary

materials.

Theorem 2. Under conditions (A1)–(A3), the generalized estimating equation

estimators β̂ and γ̂ are asymptotically normal, respectively. That is,

n1/2(β̂ − β) → Npβ(0,V
−1
β ΛβV

−1
β ),

N1/2(γ̂ − γ)|β̂ → Npγ (V
−1
γ J∗,V−1

γ ΛγV
−1
γ ),
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in distribution as n,N → ∞, where

Vβ = lim
n→∞

n−1
(
∂µ⊤/∂β

)
Σ−1

(
∂µ⊤/∂β

)⊤
,

Vγ = lim
N→∞

N−1
(
∂η⊤/∂γ

)
M−1

(
∂η⊤/∂γ

)⊤
,

J∗ = lim
N→∞

N−1/2
(
∂η⊤/∂γ

)
M−1

{
∂vech∗(rr⊤)⊤/∂β + ∂η⊤/∂β

}⊤
(β̂ − β).

It should be noted that V−1
γ J∗ represents the asymptotically conditional

mean, whose value is determined by ∥β̂ − β∥2. Since N−1/2V−1
γ J∗ = Op(n

−1/2),

the estimator γ̂ is asymptotically unbiased for the parameter γ.

4. Simulation studies

To evaluate the numerical performance of our proposed joint mean-angle model

and GEE estimation procedure, we conduct simulation studies using 10 × 10

regular lattice data. The regular lattice design involves n = 100 observations

distributed uniformly on a grid square within the range of [0, 1] × [0, 1]. Let

si = (locxi, locyi) denote the spatial location of i-th observation, where locxi and

locyi are the x- and y-coordinates, respectively. To generate the binary responses,

we consider the joint mean-angle model that determines the marginal means and

latent correlation matrix,

g(µi) = x1iβ1 + x2iβ2 + x3iβ3 + x4iβ4,

ωij = arctan(ζ1ijγ1 + ζ2ijγ2 + ζ3ijγ3) + π/2,
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where 1 ≤ i, j ≤ n, g(·) is the logit link function, mean parameter β = (β1, β2, β3, β4)
⊤ =

(1,−0.5, 0.3,−0.7)⊤ and latent angle parameter γ = (γ1, γ2, γ3)
⊤ = (−0.2, 0.4,−0.2)⊤;

(x1i, x2i, x3i)
⊤ is sampled from a three-dimensional Gaussian distribution N3(0, 0.5

2R̃),

where R̃ is of the AR(1) correlation structure with a parameter value 0.2; x4i is

independent of xki, k = 1, 2, 3, and follows a uniform distribution U(−1/2, 1/2);

ζ1ij = 1, ζ2ij = ||si − sj||2 = {(locxi − locxj)
2 + (locyi − locyj)

2}1/2 and ζ3ij =

||si − sj||22. The simulation setup for angles {ωij, 1 ≤ i, j ≤ n} is verified to sat-

isfy the constraints of angles in AHPC. Latent random variables {zi, i = 1, . . . , n}

are generated from a Gaussian distribution Nn(0,R), where R = (Rij)1≤i,j≤n =

(cos(ωij))1≤i,j≤n. Finally, the simulated binary response of i-th observation is

obtained by yi = I(zi > ci), where I(·) is an indicator function and the cutoff

point ci = Φ−1(1− µi). Note that both the latent correlation matrix R and true

covariance matrix Σ0 are positive definite.

In this paper, we use four different approaches to model and analyze the sim-

ulated spatial binary data: (1) the joint mean-angle model (JMA) fitted by two

generalized estimating equations (GEEs); (2) the generalized linear geostatisti-

cal model (GLGM) fitted by integrated nested Laplace approximation (INLA);

(3) the independence generalized linear model (GLM) fitted by maximum likeli-

hood (ML); (4) conventional generalized estimating equation (GEE) for marginal

mean. In our proposed GEE method, the entries of estimated covariance matrix

Σ̂ = r̂r̂⊤ are taken as the responses in the generalized estimating equation (2.6).
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The sandwich working covariance D1/2Γ(δ)D1/2 is used with exchangeable corre-

lation structure (i.e., compound symmetry) for Γ(δ). The effect of misspecifica-

tion of Γ(δ) on estimating β and γ is studied by setting the working correlation

parameter δ ∈ {0, 0.2, 0.4, 0.6, 0.8} in our simulations. For the estimations of

variance matrices Λβ and Λγ, we generate K = 10 independent draws of the

response y from the fitted model. The R package “geostatsp” (Brown, 2015)

can be utilized to fit the generalized linear geostatistical model (GLGM) with

Bayesian INLA, and the Matérn correlation with shape parameter κ = 1 (one

default value in the package) is chosen as the correlation structure for the un-

derlying spatial process. As for the conventional GEE (Liang and Zeger, 1986),

the working correlation structure assumed for spatially correlated binary data

is exchangeable and the R package “gee” is applied to the estimation of mean

structure parameters. The alternative methods presented in the simulation study

section are applied to each outcome separately.

The simulation results reported in Table 1 and Table 2 are averaged over

500 independent replications. Table 1 displays the estimation outcomes of all the

parameters in four distinct modelling approaches. It is clear that our proposed

method can provide precise estimates for the parameters β and γ in the joint

mean-angel model. In addition, the resulting estimators of parameters β and γ

are robust against misspecification of working correlation matrix Γ(δ). Table 2

presents the sample deviation (SD) of 500 estimates, the average (SE) of 500
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estimated standard errors, and the coverage probability (CoPr) of the confidence

interval for each parameter. It is evident that the gaps between the SDs and SEs

are small, which indicates that the standard error formulas shown in Section 3

can be used to estimate the variability of the parameter estimators. From these

two tables, we note that our proposed method performs slightly better than the

other three modelling approaches, in terms of the efficiency of mean parameter

estimator β̂. Furthermore, the angle parameter estimator γ̂ can substitute for the

parameter γ in our joint mean-angle model to calculate the estimates of latent

correlation matrix R and covariance matrix Σ, whereas the generalized linear

geostatistical model (GLGM) cannot provide a closed-form expression for the

covariance matrix Σ of binary responses Y .

We also conduct simulation experiments to compare all the methods un-

der varying correlation strengths (e.g., weak, moderate, and strong). It can be

observed that when the latent correlation strength is moderate or strong, the pro-

posed joint modelling method is an improvement over the existing marginal model

methodologies, in terms of the standard deviations (SDs) of mean parameter es-

timator β̂. Besides, the improvements are more obvious than that of the weak as-

sociation case. Meanwhile, we augment the sample size (e.g., n ∈ {144, 225, 400})

and then find that the biases and standard deviations of parameter estimators

in our proposed method decline as the sample size increases. Due to the length

limit, all the details are deferred to the supplementary materials.
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Table 1. Simulation results on spatial binary data over 500 replications. Average

of biases of 500 estimates for each parameter.

True JMA(δ = 0) JMA(δ = 0.2) JMA(δ = 0.4) JMA(δ = 0.6) JMA(δ = 0.8) GLGM GEE ML

β1 1 0.0527 0.0721 0.0740 0.0739 0.0756 0.1040 0.0580 0.0551

β2 −0.5 −0.0471 −0.0562 −0.0528 −0.0508 −0.0490 −0.0599 −0.0485 −0.0534

β3 0.3 0.0028 0.0109 0.0112 0.0108 0.0087 0.0085 0.0063 0.0093

β4 −0.7 −0.0793 −0.0966 −0.1007 −0.1007 −0.0968 −0.0915 −0.0751 −0.0662

γ1 −0.2 −0.0117 −0.0478 −0.0484 −0.0450 −0.0475

γ2 0.4 0.0327 0.0323 0.0420 0.0349 0.0403

γ3 −0.2 −0.0160 −0.0191 −0.0272 −0.0228 −0.0264

5. Data Analysis

We now turn to the example of bovine tuberculosis (bTB) infection (Kelly, 2013;

Griffin et al., 2005) and apply the foregoing techniques to the analysis of data.

The data we analyze here were collected from the Four Area Project (FAP)

which was designed to study badger removal in four counties in Ireland. The

study comprises 417 cattle herds and 251 badger setts, whose spatial locations

were recorded using GIS coordinates. The binary outcome variable indicates

whether at least one individual in a cattle herd or badger sett tested positive

for bTB or not. Figure 1 shows the data on bTB infection, with black and

white circles representing the bTB positive and negative cases, respectively. The

covariates for cattle herds consist of the logarithm of herd size (logsize) and a

binary variable indicating prior infection (ph). For badger setts, the size of sett
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Table 2. The standard deviations (SD), averages (SE) of estimated standard

errors, and the coverage probabilities (CoPr) of the confidence intervals for pa-

rameter estimators β̂ and γ̂. The confidence level is 0.95.

Parameter JMA(δ = 0) JMA(δ = 0.2) JMA(δ = 0.4) JMA(δ = 0.6) JMA(δ = 0.8) GLGM GEE ML

β1 SD 0.4790 0.4964 0.4962 0.4986 0.4981 0.4962 0.4898 0.4920

SE 0.4736 0.4848 0.4845 0.4848 0.4851 0.4848 0.4721 0.4713

CoPr 0.9440 0.9420 0.9420 0.9400 0.9400 0.9500 0.9440 0.9440

β2 SD 0.4661 0.4848 0.4839 0.4842 0.4839 0.4810 0.4758 0.4797

SE 0.4586 0.4594 0.4597 0.4596 0.4593 0.4733 0.4615 0.4613

CoPr 0.9440 0.9380 0.9400 0.9400 0.9400 0.9440 0.9460 0.9480

β3 SD 0.4517 0.4828 0.4813 0.4805 0.4771 0.4824 0.4500 0.4526

SE 0.4457 0.4474 0.4470 0.4473 0.4470 0.4626 0.4490 0.4499

CoPr 0.9460 0.9400 0.9380 0.9380 0.9400 0.9480 0.9400 0.9460

β4 SD 0.8132 0.8213 0.8196 0.8227 0.8181 0.8098 0.8176 0.8188

SE 0.7546 0.7558 0.7563 0.7569 0.7568 0.7811 0.7577 0.7588

CoPr 0.9540 0.9480 0.9500 0.9480 0.9520 0.9500 0.9520 0.9520

γ1 SD 0.2280 0.3752 0.3775 0.3773 0.3804

SE 0.2333 0.4493 0.4659 0.4616 0.4755

CoPr 0.9540 0.9500 0.9520 0.9520 0.9520

γ2 SD 0.6780 0.7372 0.7418 0.7405 0.7432

SE 0.6674 0.8063 0.8186 0.8310 0.8279

CoPr 0.9540 0.9440 0.9440 0.9440 0.9460

γ3 SD 0.5194 0.5652 0.5672 0.5663 0.5680

SE 0.5110 0.6122 0.6238 0.6341 0.6280

CoPr 0.9480 0.9460 0.9480 0.9500 0.9480

(size) is the only covariate. Our scientific interest is two-fold: first, to estimate

the association between bTB infection and measured covariates; and second, to

account for the spatial correlations by a regression model with some covariates
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Figure 1. The bTB infection plots for cattle herds and badger setts, where locx

and locy are the GIS x- and y-coordinates.

like standard Euclidean distances between sampling locations.

In accordance with the joint mean-angle model introduced in Section 2, we

adopt a logistic function of measured covariates to model the marginal mean of

the infection status yi of i-th cattle herd or badger sett,

• Cattle herds: logit(µi) = ln {µi/(1− µi)} = β1 + β2phi + β3logsizei,

• Badger setts: logit(µi) = ln {µi/(1− µi)} = β1 + β2sizei,

where µi = E(yi), and using the following two angle models to specify the latent

correlation matrix R = (Rij)1≤i,j≤n, for 1 ≤ i, j ≤ n,

(i) Rij = cos(ωij) = cos {arctan(ζ1ijγ1 + ζ2ijγ2) + (π/2)},

(ii) Rij = cos(ωij) = cos {arctan(ζ1ijγ1 + ζ2ijγ2 + ζ3ijγ3) + (π/2)},
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where the covariates ζ1ij = 1, ζ2ij = ||si−sj||2 = {(locxi − locxj)
2 + (locyi − locyj)

2}1/2,

and ζ3ij = ||si − sj||22. We also compare our proposed method with three other

modelling approaches. Table 3 and Table 4 summarize the estimates of mean

parameter β and angle parameter γ, and their corresponding standard errors for

the bTB infection of cattle herds and badger setts, respectively. Note that we

generate K = 10 independent draws of the response y from the fitted model to

calculate the standard errors of parameter estimators. The results in Table 3

imply that the infection status of a cattle herd is positively related to its size and

previous infection. Similarly, it can be observed from Table 4 that a badger sett

of larger size is associated with a higher likelihood of bTB infection.

In Table 3 and Table 4, we also observe that the estimates of the mean

parameter β and angle parameter γ, along with their corresponding standard

errors, are relatively stable across different values of the working parameter δ

when using our proposed method. Although the difference between our proposed

method and the other three modelling approaches is minor in terms of the mean

parameter estimates and their standard errors, the other three approaches fail to

provide an appropriate specification of the marginal pairwise correlation between

each pair of binary responses.

The QIC and RJ presented in Table 3 and Table 4 are quasi-likelihood un-

der the independence model criterion for the mean parameter estimator β̂ and

Rotnitzky-Jewell criterion for the estimated covariance matrix Σ̂. Both criteria
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are used to select the optimal angle model and the optimal value of the work-

ing correlation parameter δ. The QIC proposed by Pan (2001) for the mean

parameter estimator β̂ is defined as

QIC = −2
n∑

i=1

[yiln {µ̂i/(1− µ̂i)}+ ln(1− µ̂i)] + 2trace(Υ−1V̂Σ),

where µ̂i = µi(β̂) is an estimate of µi; Υ and V̂Σ are the covariance matrices of

mean parameter estimator β̂ obtained by using diag(µ1(1− µ1), . . . , µn(1− µn))

and F (R, c) = (F (Rij, ci, cj))1≤i,j≤n as the covariance matrix Σ in the general-

ized estimating equation (2.5), respectively. According to Hin et al. (2007), the

Rotnitzky-Jewell criterion (RJ) has the following form,

RJ =
[
{1− trace(Q)/pQ}2 +

{
1− trace(Q2)/pQ

}2
]1/2

,

where

Q =
{(

∂µ⊤/∂β
)
Σ−1

(
∂µ⊤/∂β

)⊤}−1 {(
∂µ⊤/∂β

)
Σ−1(y− µ)(y− µ)⊤Σ−1

(
∂µ⊤/∂β

)⊤}

is a pQ-dimensional square matrix. If the estimate of Σ approximates the true

covariance matrix Σ0, Q will be close to an identity matrix and RJ will also

tend to zero. That is, a smaller value of RJ indicates a better fit for the corre-

lation structure. For the cattle herd infection data, both QIC and RJ suggest

that the JMA1 angle model with a working independence structure (i.e., δ = 0)

is the optimal choice. It implies that the covariance between two data points

decreases as their spatial distance increases since the slope γ2 is estimated to be

positive. In the case of badger sett infection, we observe that the QIC and RJ
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Table 3. The estimates of mean and angle parameters for bTB cattle herd data.

Standard errors are in parenthesis. The joint mean-angle models which use the

angle models (i) and (ii) to characterize the latent correlation matrix R are

referred to as JMA1 and JMA2, respectively.

Method β̂1 β̂2 β̂3 γ̂1 γ̂2 γ̂3 QIC RJ

ML -2.5490(0.2262) 0.8396(0.3238) 0.9378(0.2250)

GEE -2.5844(0.1142) 0.8462(0.3139) 0.9479(0.2132)

GLGM -2.5398(0.2263) 0.8273(0.3241) 0.9417(0.2248)

JMA1(δ=0) -2.5907(0.2012) 0.8425(0.3167) 0.9552(0.2224) -0.0328(0.0374) 0.0140(0.0135) 281.9777 0.3427

JMA1(δ=0.2) -2.6128(0.2060) 0.8439(0.3209) 0.9636(0.2266) -0.0384(0.0525) 0.0073(0.0066) 281.9309 0.3026

JMA1(δ=0.4) -2.6128(0.2060) 0.8439(0.3209) 0.9636(0.2266) -0.0384(0.0491) 0.0074(0.0072) 281.9309 0.3026

JMA1(δ=0.6) -2.6128(0.2060) 0.8439(0.3209) 0.9636(0.2266) -0.0384(0.0488) 0.0074(0.0075) 281.9309 0.3026

JMA1(δ=0.8) -2.6128(0.2060) 0.8439(0.3209) 0.9636(0.2266) -0.0384(0.0335) 0.0074(0.0075) 281.9309 0.3026

JMA2(δ=0) -2.6459(0.2162) 0.8260(0.3288) 0.9871(0.2366) -0.1504(0.4576) 0.0308(0.0970) -0.0012(0.0039) 282.1111 0.3799

JMA2(δ=0.2) -2.6692(0.2228) 0.8238(0.3337) 0.9958(0.2416) -0.1584(0.5556) 0.0314(0.1040) -0.0012(0.0037) 282.2403 0.4124

JMA2(δ=0.4) -2.6692(0.2228) 0.8238(0.3337) 0.9958(0.2416) -0.1584(0.5491) 0.0314(0.1041) -0.0012(0.0038) 282.2403 0.4124

JMA2(δ=0.6) -2.6692(0.2228) 0.8238(0.3337) 0.9958(0.2416) -0.1584(0.5419) 0.0314(0.1076) -0.0012(0.0043) 282.2403 0.4124

JMA2(δ=0.8) -2.6692(0.2228) 0.8238(0.3337) 0.9958(0.2416) -0.1584(0.5482) 0.0314(0.0995) -0.0012(0.0037) 282.2403 0.4124

values are similar across all scenarios, which makes it difficult to determine the

optimal model. However, our analysis shows that the off-diagonal elements of

the estimated covariance matrix Σ for both two angle models are almost zero,

indicating negligible spatial correlation between each pair of badger setts. This

result implies that modelling the correlation between badger setts may not be

necessary for this particular data set, and a simpler model can be sufficient for

inference.
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Table 4. The estimates of mean and angle parameters for bTB badger sett data.

Standard errors are in parenthesis. The joint mean-angle models which use the

angle models (i) and (ii) to characterize the latent correlation matrix R are

referred to as JMA1 and JMA2, respectively.

Method β̂1 β̂2 γ̂1 γ̂2 γ̂3 QIC RJ

ML -1.2231(0.2559) 0.4636(0.1015)

GEE -1.2271(0.2234) 0.4635(0.1015)

GLGM -1.2231(0.2561) 0.4635(0.1015)

JMA1(δ=0) -1.2091(0.2355) 0.4630(0.1017) 0.0042(0.0110) 0.0025(0.0024) 326.0247 2.5204

JMA1(δ=0.2) -1.2194(0.2352) 0.4634(0.1016) 0.0317(0.0437) 0.0013(0.0019) 326.0813 2.5685

JMA1(δ=0.4) -1.2194(0.2352) 0.4634(0.1016) 0.0319(0.0670) 0.0013(0.0018) 326.0813 2.5686

JMA1(δ=0.6) -1.2195(0.2352) 0.4634(0.1016) 0.0319(0.0382) 0.0013(0.0020) 326.0814 2.5686

JMA1(δ=0.8) -1.2195(0.2352) 0.4634(0.1016) 0.0319(0.0621) 0.0013(0.0022) 326.0814 2.5686

JMA2(δ=0) -1.3023(0.2547) 0.4707(0.1014) -0.1060(0.2294) 0.0266(0.0556) -0.0013(0.0026) 326.0537 2.4510

JMA2(δ=0.2) -1.2712(0.2396) 0.4672(0.1016) -0.0870(0.2192) 0.0260(0.0560) -0.0012(0.0025) 325.9661 2.4597

JMA2(δ=0.4) -1.2710(0.2395) 0.4672(0.1016) -0.0869(0.2384) 0.0260(0.0556) -0.0012(0.0025) 325.9661 2.4597

JMA2(δ=0.6) -1.2711(0.2395) 0.4672(0.1016) -0.0869(0.2216) 0.0260(0.0519) -0.0012(0.0024) 325.9661 2.4597

JMA2(δ=0.8) -1.2711(0.2395) 0.4672(0.1016) -0.0869(0.2648) 0.0260(0.0538) -0.0012(0.0025) 325.9661 2.4597

6. Discussion

This paper introduces a novel joint mean-angle model for analyzing spatially

correlated binary data, with the goal of quantifying the dependence of binary

responses on covariates and characterizing the spatial covariances between pairs of

responses. The formulation of the pairwise covariance model builds on the latent

Gaussian coupla model and Alternative Hypersphere Decomposition (AHPC).
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The former assumes that the binary responses are generated by dichotomizing

a latent Gaussian random vector with a set of cutoff points and ensures that

the estimated correlation coefficients fall within the Fréchet-Hoeffding bounds.

The latter enables the transformed correlation coefficients (i.e., the angles) to

be related to measured covariates through a regression model. However, the

resulting covariance matrix for spatial binary data may not always be positive

definite. In this case, the FSPD estimator suggested by Choi et al. (2019) is

a simple positive definite surrogate with some theoretical advantages. Together

with a logistic regression model for the marginal means, our proposed method

provides a flexible modelling framework for spatially correlated binary data.

In this paper, considering the consistency of mean parameter estimator β̂

and the computational cost involved in the estimation procedure, we use two

separate estimating equations rather than the joint form of GEE2 (Zhao and

Prentice, 1990; Liang et al., 1992) to estimate the mean structure parameter β

and the latent angle parameter γ. We adopt compound symmetry as the working

correlation structure in our second-order generalized estimating equation (2.6)

due to its closed-form inverse. The theoretical properties such as the consistency

and asymptotic normality of the parameter estimators β̂ and γ̂ are established.

We assess the performance of the proposed method through numerical simulations

and data analysis. The results imply that our proposed method performs better

than the aforementioned marginal models in terms of the efficiency of the mean
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parameter estimator if the correlation strength is moderate or strong. Even

though the method may perform similarly to the marginal models when the

correlations between binary responses are weak, it can still be used to estimate

the correlation matrix of binary responses and interpret how the correlation varies

as the distance between sampling locations changes, which cannot be achieved

by using the other aforementioned methods.

We also identify some directions which may need more work. First, extend-

ing the joint model to other types of spatial categorical data, such as binomial

and count data, may require the development of a new bridge function that links

the latent correlations to the covariances of categorical responses. Second, since

the AHPC method allows us to model the correlation coefficients with covariates

through a parametric regression model, additional flexibility can be introduced

to the proposed method by modelling both the marginal means and pairwise

correlations in a non-parametric or semi-parametric manner. Finally, the AHPC

method cannot guarantee the positive semi-definiteness of the estimated covari-

ance matrix. Therefore, further research is required to investigate a covariance

modelling method that can ensure the positive definiteness of the estimated co-

variance matrix while also having geometric interpretations and addressing the

order dependence issue like the AHPC method.
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Supplementary Material

The supplementary material contains the R-code used in our research and a PDF

file that includes technical proofs and some further simulation studies.

Acknowledgments

The authors gratefully acknowledge the financial support of the China Scholarship

Council scholarship under Grant 202006240040.

References

Albert, P. S. and L. M. McShane (1995). A generalized estimating equation approach for spatially

correlated binary data: applications to the analysis of neuroimaging data. Biometrics 51 (2),

627–638.

Ashford, J. R. and R. R. Sowden (1970). Multi-variate probit analysis. Biometrics 26 (3), 535–546.

Bai, Y., J. Kang, and P. Song (2014). Efficient pairwise composite likelihood estimation for spatial-

clustered data. Biometrics 70 (3), 661–670.

Brown, P. E. (2015). Model-based geostatistics the easy way. Journal of Statistical Software 63 (12),

1–24.

Carey, V., S. L. Zeger, and P. J. Diggle (1993). Modelling multivariate binary data with alternating

logistic regressions. Biometrika 80 (3), 517–526.

Chaganty, N. R. and H. Joe (2006). Range of correlation matrices for dependent bernoulli random

variables. Biometrika 93 (1), 197–206.



36

Chen, Z. and D. B. Dunson (2003). Random effects selection in linear mixed models. Biometrics 59 (4),

762–769.

Choi, Y.-G., J. Lim, A. Roy, and J. Park (2019). Positive-definite modification of covariance matrix

estimators via linear shrinkage. Journal of Multivariate Analysis 124, 234–249.

Demidenko, E. (2013). Mixed models: Theory and applications with R, 2nd ed. Wiley.

Diggle, P. J. and J. R. Paulo (2007). Model-based geostatistics. Springer New York.

Fan, J., H. Liu, Y. Ning, and H. Zou (2017). High dimensional semiparametric latent graphical model

for mixed data. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 79 (2),

405–421.

Feng, X., J. Zhu, P. Lin, and M. Steen-Adams (2014, 12). Composite likelihood estimation for models

of spatial ordinal data and spatial proportional data with zero/one values. Environmetrics 25,

571–583.

Griffin, J. M., D. H. Williams, G. E. Kelly, T. A. Clegg, I. O’Boyle, J. D. Collins, and S. J. More

(2005). The impact of badger removal on the control of tuberculosis in cattle herds in ireland.

Preventive Veterinary Medicine 67 (4), 237–266.

Heagerty, P. J. and S. R. Lele (1998). A composite likelihood approach to binary spatial data. Journal

of the American Statistical Association 93 (443), 1099–1111.

Heagerty, P. J. and T. Lumley (2000). Window subsampling of estimating functions with application

to regression models. Journal of the American Statistical Association 95 (449), 197–211.

Hin, L.-Y., V. J. Carey, and Y.-G. Wang (2007). Criteria for working-correlation-structure selection in

gee: assessment via simulation. The American Statistician 61 (4), 360–364.



37

Huang, C., D. Farewell, and J. Pan (2017). A calibration method for non-positive definite covariance

matrix in multivariate data analysis. Journal of Multivariate Analysis 157, 45–52.

Kelly, G. E. (2013). Joint spatio-temporal modeling of mycobacterium bovis infections in badgers

and cattle - results from the irish four area project. Statistical Communications in Infectious

Diseases 5 (1), 1–16.

Li, Q. and J. Pan (2022). Permutation variation and alternative hyper-sphere decomposition. Mathe-

matics 10 (4), 562.

Liang, K.-Y. and S. L. Zeger (1986). Longitudinal data analysis using generalized linear models.

Biometrika 73 (1), 13–22.

Liang, K.-Y., S. L. Zeger, and B. Qaqish (1992). Multivariate regression analyses for categorical data

(with discussion). Journal of the Royal Statistical Society: Series B (Methodological) 54 (1), 3–40.

Lin, P.-S. and M. K. Clayton (2005). Analysis of binary spatial data by quasi-likelihood estimating

equations. The Annals of Statistics 33 (2), 542–555.

Nelsen, R. B. (2007). An introduction to copulas. Springer-Verlag.

Oliveira, V. D. (2020). Models for geostatistical binary data: properties and connections. The American

Statistician 74 (1), 72–79.

Oman, S. D., V. Landsman, Y. Carmel, and R. Kadmon (2007). Analyzing spatially distributed binary

data using independent-block estimating equations. Biometrics 63 (3), 892–900.

Osborne, M. R. (1992). Fisher’s method of scoring. International Statistical Review / Revue Interna-

tionale de Statistique 60 (1), 99–117.

Pan, W. (2001). Akaike’s information criteria in generalized estimating equations. Biometrics 57 (1),



38

120–125.

Pourahmadi, M. (1999). Joint mean-covariance models with applications to longitudinal data: Uncon-

strained parameterisation. Biometrika 86 (3), 677–690.

Rapisarda, F., D. Brigo, and F. Mercurio (2007). Parameterizing correlations: a geometric interpreta-

tion. IMA Journal of Management Mathematics 18 (1), 55–73.

Rebonato, R. and P. Jaeckel (2000). The most general methodology for creating a valid correlation

matrix for risk management and option pricing purposes. Journal of Risk 2 (2), 17–27.

Sabo, R. T. and N. R. Chaganty (2010). What can go wrong when ignoring correlation bounds in the

use of generalized estimating equations. Statistics in Medicine 29 (24), 2501–2507.

Varin, C., N. Reid, and D. Firth (2011). An overview of composite likelihood methods. Statistica

Sinica 21 (1), 5–42.

Wang, Y. G. and V. Carey (2003). Working correlation structure misspecification, estimation and co-

variate design: implications for generalised estimating equations performance. Biometrika 90 (1),

29–41.

Ye, H. and J. Pan (2006). Modelling covariance structures in generalized estimating equations for

longitudinal data. Biometrika 93 (4), 927–941.

Zhao, L. P. and R. L. Prentice (1990). Correlated binary regression using a quadratic exponential

model. Biometrika 77 (3), 642–648.

Cheng Peng, Department of Mathematics, University of Manchester, Oxford Road, Manchester, UK.

E-mail: (cheng.peng-4@postgrad.manchester.ac.uk)



39

Renwen Luo, Division of Science and Technology, United International College (BNU-HKBU), 2000

Jintong Road, Zhuhai, Guangdong Province, China.

E-mail: (luorenwen@uic.edu.cn)

Yang Han, Department of Mathematics, University of Manchester, Oxford Road, Manchester, UK.

E-mail: (yang.han@manchester.ac.uk)

Jianxin Pan, Division of Science and Technology, United International College (BNU-HKBU), 2000

Jintong Road, Tangjiawan, Zhuhai, Guangdong Province, China.

E-mail: (jianxinpan@uic.edu.cn)


	Introduction
	Methodology and estimation procedure
	Latent Gaussian copula model for spatial binary data
	Alternative Hypersphere Decomposition
	Joint mean-angle model and GEE
	The main algorithm

	Asymptotic properties
	Simulation studies
	Data Analysis
	Discussion

