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ABSTRACT

We propose a unified framework for learning generalized Hamiltonian dynamics
from noisy, sparse phase-space observations via variational Bayesian inference.
Modeling conservative, dissipative, and port-Hamiltonian regimes with a single
architecture is challenging because each induces distinct phase-space behavior
from similar initial energies. To address this, we extend sparse symplectic Gaus-
sian processes with random Fourier features to build a probabilistic surrogate of
the Hamiltonian landscape. Our approach supports all three regimes through a
generalized formulation of Hamiltonian dynamics. To ensure physical correct-
ness and stability, we softly enforce conservation and Lyapunov-style constraints.
With this relaxation, we recast the original constrained optimization problem as a
hyperparameter-balanced multi-term loss trained end-to-end. Experiments on stan-
dard Hamiltonian benchmarks show improved long-horizon forecasting, stronger
short-term prediction accuracy, and higher physics conformity compared with
state-of-the-art methods.

1 INTRODUCTION

Learning dynamical systems from data is a fundamental problem in physics-informed machlne
learning, with w1despread apphcatlons in physics, engineering, and robotics (

, ). The aim in these works and our work
is to learn operators which map from initial condition to trajectories. This has been considered for
deterministic systems, and also stochastic systems ( , ; s ). We focus
on various forms of generalized Hamiltonian dynamics, conservative (

s ; s ), dissipative ( , ;

, ), and port-Hamiltonian ( ; , ) The

different classes of dynamics present different phase spaces which must be learned While there can

be complex phase spaces even for conservative systems, adding dissipation and/or external forcing

introduces additional complexity, such as the overlapping of trajectories. We present slightly different

methodologies for the different classes of dynamics, but with a commonality of learning the phase
space by stochastic process-based training with enforcement of stability.

) 5

Simple sparse variational regression techniques in Euclidean space often fail to accurately capture
the dynamics with low uncertainty in prediction as a result of the lack of utilizing the Hamiltonian
manifold and missing the underlying physical constitutive and conservation laws in space. The
method of choice is to learn dynamics through optimization on Hamiltonian manifolds, (in this case
Riemannian) and in a principled way that achieves stability throughout the dynamics learning process.
In this work, we utilize the differential properties of the Hamiltonian manifold, its symplectic form,
while preserving the conservation laws and stability properties as implicit soft regularizers, allowing
us to learn dynamics in a manner consistent with inherent physical principles, thereby going beyond
what standard Euclidean regression can achieve.

We focus on differentially learning stochastic Hamiltonian systems, which describe the stochastic
evolution of states in phase space, comprising generalized positions q(¢) € R and generalized
conjugate momenta p(t) € R% while exploiting both the symplectic energy conservation form and
the dissipative forms, caused by motion in dissipative environments. These dynamics are governed by
a generalized Hamiltonian function H(x(t)), where x(t) = [q(t); p(t)] € R?“ represents the state of
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Figure 1: A visualization of our framework for generalized Hamiltonian learning. The Hamiltonian
network queries data, which is used to evaluate the quality of the model through the multi-term loss
function. The gradients of the loss are update the Hamiltonian dynamics parameters and the process
is repeated.

the system. The principled learning of stochastic Hamiltonians are estimated by path-wise spectrally
kernelized (random Fourier feature) stochastic Gaussian processes. We show the advantages of
differential dynamical modeling with generalized Hamiltonian systems and Hamiltonian gradients.

Our contributions include:

* We develop a probabilistic framework for learning Hamiltonian dynamics that is robust to
real-world scenarios with noisy and incomplete data.

* We extend the optimization problem by incorporating Lyapunov stability and conservation
law constraints, enabling the learned dynamics to adhere closely to physical principles. By
relaxing constraints and balancing multiple losses, we turn the original intractable problem
into a computationally feasible training method.

* Our experiments on standard and generalized Hamiltonian systems demonstrate the im-
proved performance both in terms of accuracy and physical validity compared to prior
state-of-the-art methods.

2 RELATED WORKS

Generalized Hamiltonian Dynamics Hamiltonian dynamics describe the evolution of position
q and conjugate momentum p via a Hamiltonian function H(q, p) that defines the system’s en-
ergy landscape. In standard Hamiltonian dynamics, generalized coordinates (q, p) evolve along
constant-energy trajectories determined by H. To account for many physical phenomena, several
generalizations incorporate dissipation and external forcing terms ( , ):

¢ Conservative Hamiltonian dynamics: (¢, p) = JVH(q, p).
* Dissipative Hamiltonian dynamics: (q, p) = (J + D)VH(q, p)-
¢ Port-Hamiltonian dynamics: (q,p) = (J + D)VH(q,p) + F(¢).

2.1 GENERALIZED HAMILTONIAN DYNAMICS LEARNING

Several works have attempted to learn or recover underlying Hamiltonian dynamics from datasets
of trajectories of the generalized coordinates (q, p) and their time derivatives (q, p). In particular,
the Hamiltonian Neural Network (HNN) ( , ) learns conservative Hamiltonian
dynamics by parameterizing H with a deterministic neural network and minimizing an MSE loss on
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time-derivative data. While HNN applies to conservative systems, extensions such as dissipative HNN
(D-HNN) ( , ) target dissipative systems by learning a second network
to represent the dissipative component of the dynamics. Port-HNN (P-HNN) ( , )
parameterizes neural networks for the Hamiltonian, the dissipation matrix, and the external forcing
function to learn dynamics within the Port-Hamiltonian framework ( ,

), which is the most general of these settings. Nonetheless, these methods often require not
only (q, p) trajectories but also (g, p) trajectories. More importantly, the parameterized networks
are deterministic and therefore struggle with probabilistic data

2.2 PROBABILISTIC LEARNING OF GENERALIZED HAMILTONIAN DYNAMICS

Gaussian Processes (GPs) have been widely used for modeling dynamical systems with uncertainty,
particularly under sparse or noisy observations ( , ). GPs have been applied to
learning general ODE dynamics ( , ) and to Hamiltonian systems (

R ; s ). To address computational limitations, Random Fourier Features
(RFF) ( , ) provide efficient GP approximations, with further refinements such
as Sparse Spectrum GPs ( , ) and Spherical Structured Features (Lyu,

). However, generic GP approximations often fail to capture the crucial symplectic structure
of Hamiltonian systems. Methods such as Symplectic Gaussian Process Regression (SymGPR)
( , ), Symplectic Spectrum Gaussian Processes (SSGP) ( s ), and
Hamiltonian Gaussian Processes (HGP) ( , ) address this by incorporating
symplecticity into GP-based models of noisy dynamics. SymGPR uses GP regression directly,
while SSGP and HGP are trained to maximize the evidence lower bound (ELBO) on trajectory data.
Gaussian Process Port-Hamiltonian Systems (GPPHS) ( s ) extend this approach to
learning Port-Hamiltonian dynamics with dissipation and external forcing.

However, enforcing symplecticity alone is insufficient. In this work, we explicitly incorporate
physical laws, including stability and conservation principles, into learning across different classes
of Hamiltonian dynamics. While Hamiltonian systems admit symmetries and invariants such as
energy and phase-space volume ( , ), these hold strictly in the conservative case; for
dissipative dynamics, energy and volume decay over time, and for Port-Hamiltonian systems, their
evolution depends on external power injection. Accordingly, we adopt different, physics-informed
training treatments for each case, ensuring that the learned dynamics respect the appropriate physical
constraints in conservative, dissipative, and Port-Hamiltonian settings.

3 METHODS

3.1 PROBLEM STATEMENT

We are given a dynamics dataset D with [ trajectories of phase—space observations. The i-th trajectory
provides data {(y;;, tij)}jizl, where y;; € R?? are noisy measurements of the latent phase—space
coordinates x;; = (qsj, pi;) at time ¢;;. Our aim is to learn the underlying dynamics and in particular
the Hamiltonian #(q, p). Let 6 denote all parameters of the Hamiltonian dynamics model. The naive

unconstrained estimator would maximize the marginal log-likelihood log p(D | 9).

However, beyond likelihood fit, we consider a more challenging problem of requiring the learned
vector field to respect core physical invariants including energy conservation, phase-space volume,
and dynamical stability. In particular, for conservative Hamiltonian systems, two canonical invariants
are energy conservation and phase—space volume conservation (Liouville’s theorem) ( , ).

Energy conservation. The total energy is constant along trajectories:

H(a(t),p(t)) = #(a(0), p(0)). ¢))
Volume conservation (Liouville). For any measurable set A in phase space and flow map py,
/ 1dqdp:/ 1dqdp. @
pt(A) A

Lyapunov stability. For an ODE 2’ = f(z), Lyapunov stability asserts the existence of V' with
V(z*) =0, V(z) > 0forz # z*, and LV (z(t)) < 0; asymptotic stability strengthens this to
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< 0, while a—exponential stability requires 4V (2(t)) < —aV (z(t)) together with ¢ [|[z—z*|| <
V(z) < calJr—2*||. In Hamiltonian settings, we may take V' = H, and set & = 0.

Physics—aware objective. Incorporating these physical laws yields a constrained optimization
problem:

max p(D | 6)

s.t. (qi, pi) = (J + D)VH(qi, pi) + F(t),
(H ° Pt) (dio, Pio) = H(dio, Pio);

/ 1dqdp:/ 1dqdp, (3)
pe(A) A

L (qij, pij) < —aH(dij, Pij),
H(qij, pij) > 0,
Vi= 11, j = 0:J;.

Problem (3) is generally intractable due to latent trajectories, nonlinear ODE constraints, and hard
physical constraints. In this section, we introduce a novel physics-informed relaxation probabilistic
method that makes the problem both computationally solvable and robust to noisy data. We proceed
in two steps:

1. Probabilistic Hamiltonian Surrogate Model: Model 7 as a stochastic process and replace
the intractable marginal likelihood with a tractable evidence lower bound (ELBO).

2. Physics-constrained learning: Derive relaxation versions for hard constraints in (3) cast
the unconstrained optimization problem through Lagrangian multipliers into regularized
training loss function.

3.2 PROBABILISTIC HAMILTONIAN SURROGATE MODEL

To learn a conservative, dissipative, and Port-Hamiltonian dynamics in a systematic scheme, we
propose to decouple energy conservation term JV#H, dissipative term DV #H, and external forces F'(t),
when applicable. Our scheme treats each module individually and enforces additional constraints
to ensure that each term captures desired physical property from noisy observations. We start by
stating our choice of stochastic Hamiltonian surrogate, which is a random Fourier feature (RFF)
approximation of a Gaussian process (GP).

Our stochastic Hamiltonian follows a GP prior:
#H(a,p) ~ GP(0,K((a,p),(d’,p"))),

VH(q,p) ~ GP(0,K), K =V’K. ¥
The specific GP prior we choose is the spectral kernel with random Fourier features (RFF) (
, ' M cos(w,! x)
H(a,p) = mz_:l W m (A P); Gm(x) = Lin( wi”x)] : 5)

The weights w,, are approximated by normal distribution with prior p(w,,) = N(0,0315) and
posterior p(w,,|D) = N (b, C') with parameters o2, b and v/C, where v/C is used instead to enforce
positive semi-definiteness of C. The frequencies are sampled w,, ~ AN(0,A~!) where A is a
diagonal matrix as an additional parameter. The RFF basis representation approximates a GP prior
with Gaussian kernel function. To obtain the Hamiltonian gradient V H, one can differentiate the
RFF basis analytically:

M
VH(q,p) = > w,,Vém(a,p),
m=1 ©)

_ [=sin(w) x)w,]
Vom(x) = [ cos(w, x)w,, ]

4
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PARAMETERIZATIONS FOR DIFFERENT DYNAMICS

Based on this RFF representation of Hamiltonian energy function, we demonstrate how to parameter-
ize three different classes of Hamiltonian dynamics:

Conservative Hamiltonian Systems For the conservative case, the set of learnable parameters 6 is
composed of those for the GP-RFF surrogate and for data uncertainty. The surrogate is defined by the
RFF prior variance o2, posterior parameters b and /C, and length-scale matrix A. The uncertainty
is modeled by the standard deviation of the initial condition, a, and the observation noise, . The
complete parameter set is therefore: § = (00, b,v/C, A, a,0).

Dissipative Hamiltonian Systems For the case of dissipative Hamiltonian dynamics, additional
parameters are needed for the dissipation term, specifically the matrix D. The dissipation matrix
is not directly parameterized since it has a certain structure. We assume the structure of a diagonal
matrix with the first half of the diagonal (affecting q) being zero and the second half of the diagonal
(affecting p) being non-positive. Thus, the form is D = diag(0,--- ,0, D1, -, Dg), D; < 0. To
enforce non-positivity of D;, we use a parameter € R? and set D; = —n?2. Thus, the full parameter
array for learning dissipative Hamiltonian dynamics is: 8 = (o9, b, VC, A, a,o, n).

Port-Hamiltonian Systems For port Hamiltonian dynamics the external forcing term F'(¢) must be
parameterized. We assume forcing directly effects the momentum only and thus F(t) = [0 Fy(¢)]%,
where the parameterized forcing function (for p) is Fy(t) with parameters ¢. We set Fy to be
an MLP neural network. The full parameter array for learning port-Hamiltonian dynamics is:

0= (007 ba \/67Aa a,a,1, 19)

GENERATIVE MODEL AND VARIATIONAL INFERENCE
For each trajectory ¢ we draw an initial phase space state xéi) ~ p(x0) = N(0,a?I), integrate

the parameterized vector field to obtain dynamical state x;; = Pg(t;5; x((f)), and obtain noisy
observations y;; ~ N (x;;, o?I), j=1,...,J;. Let W denote the collection of RFF weights. With
the usual conditional independence assumptions the joint distribution factorizes as

P(D. X, W) (Hp vis | %)) ( 4 p(x{"))p(W),

where X stacks all phase space states along all trajectories. We choose the mean—field varia-
tional family q(W Xo) = q(W)TI, q(x0 ) with (W) = [[,,, N (W, | by, Cyy,) and q(x(()z)) =
N (p;, diag o?). Standard manipulations of maximization of joint distribution log likelihood yield
the evidence lower bound (ELBO) loss

I J;

LrLBo = ZZEq log Myij | xij,0°1)]
i=1j=1 7
— KL(g(W)||[p(W ZKL (a(x)llp(x0)).

In practice, the expectation in the ELBO is estimated via Monte Carlo: we sample w ~ ¢(w) and
w ~ ¢(w), draw each initial state x;o ~ ¢(x;0), propagate it deterministically through ®4 using a
differentiable ODE solver ( , ), and average the resulting log-likelihoods of {y;; }.

3.3 PHYSICS-CONSTRAINED LEARNING

Having defined the surrogate model with the ELBO function Lg1po replacing the usual log-
likelihood, we now proceed to introduce the relaxation constraints to make (3) computationally
solvable.

Energy conservation: The energy conservation law can be softly enforced with the following
additional loss term:

EEnergy = IEq,p,t [H(pt (q7 p)) - H(q7 p)]2 . (8)
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This constraint term can be estimated by evaluating on the trajectories which were used to compute
the ELBO loss in the previous section.

Volume conservation: The law of conservation of volume can be discretized and evaluated through
the following loss term:

N

2
‘CVOI = % lZ(lA(qnypn)1A(pf(Qn,pn)))‘| 5 (9)

n=1

where 1 4 refers the characteristic function of a sampled “volume” A. In implementation we sample
a rectangular domain A in each epoch and the loss is computed under different sampled time stamps.

Lyapunov stability: For this physical constraint, we use the following Lyapunov loss function based
on prior works ( 8 ; s ) as a relaxation term:

T T
Liyap = / Ar1ReLU <th(x(t))) dt +/ A1 2ReLU(—H (z(t)))dt. (10)
0 0

3.4 OPTIMIZATION AND TRAINING

By replacing maximum-likelihood with ELBO minimization and relaxing hard physics constraints,
we convert the original intractable program (3) into a tractable soft objective via a Lagrangian
formulation with multipliers A:

£(9, A) = ‘CELBO (9) + )\1 LLyap(e) + )\2 [/Energy(e) + )\3 ‘cVol(e)- (1 1)

The vector A is adapted during training using the gradient descent / ascent (GDA) scheme described
in the next paragraph. When all \;; = 0, the method reduces to pure variational inference. When Ay
are large, the optimization approaches a hard-constrained formulation.

BALANCING THE MULTI-TERM LOSS

The loss consists of various terms, which must be carefully balanced in order to prevent under- or over-
constrained optimization: Hyperparameters A can be balanced by solving a max-min optimization
problem for both the parameters and hyperparameters:

min m}z\%xﬁ(&,)\). (12)

Both can be updated using gradient-based optimization methods (SGD, Adam, etc.), but for the
hyperparameters we use ascent rather than descent since it is a maximization problem. This is a
variant of the Gradient Descent-Ascent (GDA) ( , ; , ):

oL oL
Or+1 =0k — 01 (89) , Akt1 = A+ 92 <8)\> (13)

where g1, g depend on the optimizer used. Note that the gradient of the loss with respect to the
hyperparameters can be directly computed since the loss is linear with respect to the hyperparameters.
In our experiments, we compare the use of no balancing (all lambdas equal to one) with GDA-based
balancing. We test two variants of GDA. The first uses Adam ( s ) for the parameter
update and gradient ascent for the hyperparameters. The second uses Adam for both updates.

Alternative optimization methods. We consider MTAdam ( , ) as an alternative
way of balancing multiple loss terms. Rather than solving a min-max problem with updates to A,
MTAdam groups the parameters and within each group normalizes the gradients of the individual loss
terms. Jacobian descent ( s ) is another method, which computes the Jacobian of
the loss vector with respect to the parameter vector, and then applies one of several aggregators to the
Jacobian. Aggregators such as UPGrad are meant to construct the update such that each individual
loss is improved, rather than one loss being improved at the expense of another. See the appendix for
additional results on various balancing methods.
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TRAINING ALGORITHM

The complete training loop is summarized in Algorithm 1. We learn the model parameters by
obtaining batches of noisy trajectory data and updating the parameters based on the gradient of the
total balanced loss function.

Algorithm 1: Learning Generalized Hamiltonian Dynamics

Require: Dataset D, epochs K, batch size B, horizon T', learning rate «
1: Initialize parameters 6

> Sections 3.2

2: for k =1to K do
3: Sample {ygb) = (ng), pgb)) bB:’:it:l from D
4: forb=1to B do
5: Initialize x(()b) = (qéb),péb)).
6: Sample RFF weights w ~ N (b, V/C).
7: Sample RFF frequencies w ~ N (0, A1),
8: Construct Hamiltonian H, its gradient V7, and vector field f. > Sections 3.2
9: Integration step: {xgb)}tll — odeint(x(()b), ,TH).
10: end for
11: Compute total loss £(0y, Ag). > Section 3.4
12: Compute loss gradient VoL (0x, Ax).
13: Parameter update: 01 + Adam(6y, VoL, @)
14: Hyperparameter update: g1 < A + aVaL > Section 3.4
15: end for
16: return Optimized parameters 6 g
Class System (D,P)HNN SSGP Ours (Equal) Ours (GDA)
Cons. | Single Pendulum | 0.5922 + 1.4887 | 1.0186 + 0.8825 | 0.1404 + 0.2166 | 0.2834 + 0.3872
Diss. Damped Spring 0.0347 £ 0.0640 | 0.0275 £ 0.0135 | 0.0269 + 0.0127 | 0.0273 + 0.0130
Diss. | Damped Pendulum | 0.3312 4+ 0.4097 | 0.1377 +0.1917 | 0.0902 £ 0.1270 | 0.0929 + 0.1021
Diss. | Unforced Duffing | 0.1790 & 0.5278 | 0.0904 £ 0.3435 | 0.0879 £ 0.2996 | 0.0876 + 0.2914
Port Forced Spring 0.0923 £ 0.1362 | 0.0293 + 0.0102 | 0.0311 £ 0.0126 | 0.0319 + 0.0129
Port Forced Duffing 0.4127 £0.7770 | 0.4920 £+ 1.0299 | 0.2742 + 0.2930 | 0.2763 + 0.2602

Table 1: Evaluation on testing datasets of 6 systems of 3 Hamiltonian classes. We compare HNN
variants, SSGP, and our methods. We use HNN ( s ), DHNN (

, ), or PHNN ( , ) depending on the associated class of system. For
our method, we compare equally weighted loss terms to GDA-balanced terms. We compare using the
metric of the MSE loss of the ¢, p testing trajectories. In each system besides forced spring, the MSE
loss is lower for our method, with the equal weighting typically performing better.

Class System (D,P)HNN SSGP Ours (Equal) Ours (GDA)

Cons. | Conservative Spring 0.3335 +0.3539 0.1930 £0.3596 | 0.1142 + 0.2208 | 0.1359 +0.2508
Cons. Single Pendulum 2.2017 +2.8207 1.5811 + 1.9176 | 1.5851 £1.8575 | 1.5844 +1.8625
Diss. | Damped Pendulum 0.5563 +0.6734 0.1309 £0.1885 | 0.1046 + 0.1599 | 0.1803 +0.2445
Diss. Damped Spring 0.1335 +0.1191 0.0047 £0.0028 | 0.0033 + 0.0019 | 0.0039 +0.0021
Diss. Unforced Duffing 0.0346 +0.2420 0.0296 +£0.2765 | 0.0088 + 0.0057 | 0.0092 +0.0058
Port Forced Duffing 91.8247 £321.6358 | 1.5024 +1.6520 | 0.9603 +0.6543 | 0.8232 + 0.5024
Port Forced Spring 6.0665 +0.3321 6.2233 +0.2051 | 6.0434 +0.0781 | 6.0348 + 0.0803
Port Windy Pendulum 1.1722 +1.2881 0.4936 +0.2704 | 0.3712 +0.1890 | 0.3208 + 0.1789

Table 2: Evaluation of long-term forecasting on various methods. The metric is MSE =+ standard
deviation of (g, p) trajectories. For long-term forecasting, the trajectories are 5 times the horizon of
the trajectories in the training datasets ([0, 50] instead of [0, 10]).
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Volume Preservation in Learned Hamiltonian Dynamics
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Figure 2: Volume preservation comparison between unregularized and volume-regularized models.
Starting from initial condition (qo, pg) = (2.0, —2.0) with a circular region of radius r = 0.2, we
integrate the boundary forward in time using the learned dynamics with dissipation set to zero (n = 0).
The unregularized model (red) exhibits significant volume contraction, while the volume-regularized
model (green) maintains better preservation of phase space volume, demonstrating the effectiveness
of the volume preservation regularizer L, in learning divergence-free dynamics. The dashed line
indicates perfect volume preservation, and the shaded region represents +5% deviation.

4 EXPERIMENTS

4.1 EXPERIMENT SETUPS

Tasks and Datasets. We use standard tasks for Hamlltoman dynamics learning (

; , ). These tasks cover all
3 classes of Hamiltonian systems standard conservatlve systems, d1ss1pat1ve systems, and port-
Hamiltonian system. The dataset for each task consists of 100 training noisy trajectories and 100
testing trajectories, where each trajectory contains 100 datapoints with timestamps within [0, 10].
The specific systems are summarized in Section A, with dataset configurations in Table 4.

Baselines. We evaluate our methods against state-of-the-art approaches: HNN ( ,
), DHNN ( , ), P-HNN ( , ), and SSGP ( ,
). We also consider different variants of our approach using regularized loss with conservation
and stability corrections. Additionally, we compare different versions of our method of balancing
individual loss terms. In particular, we consider an equally weighted loss function versus using GDA
for updating \ weights.

Hyperparameter choices. The batch size is set to 100, and the learning rate is 10~2. For all models
including baselines and our models’ variants, we use 5000 epochs. Each epoch uses the full dataset.

The SSGP ( , ) model uses 100 RFF basis functions. The HNN models use one
hidden layer with 200 hidden nodes, with the HNN ( s ) having 1 network H, the
DHNN ( , ) having 2 networks H, D, and the PHNN ( , )

having 2 networks #, F' and a dissipation matrix D. For port-Hamiltonian systems, the SSGP model
is supplemented by an external forcing function F'(¢), which is a neural network with one hidden
layer of 100 hidden nodes. The configurations of the datasets are given in Table 4. The configurations
for the unforced and forced Duffing systems are based on ( ).

Compute. Experiments were performed on NVIDIA Grace CPU with 116 GB RAM and NVIDIA
H200 GPU with 96 GB VRAM, using Linux operating system and PyTorch ( , )
machine learning library. We use torchdiffeq ( , ) library for the numerical integration
function odeint in Algorithm 1.

4.2 RESULTS

The results are listed in Table 1, as well as visualized in Figure 4. In Figure 5 we show additional
comparisons of learned phase space maps for port-Hamiltonian systems. From Table 1, and Figure
4, it can be seen that our method can achieve improved performance across systems in each of the
various classes of generalized Hamiltonian dynamics.
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Long-Range Forecasting To demonstrate the benefit of conservative and stability regularization
on generalization, we evaluate our method against prior methods on long-range forecasts. Here the
models are evaluated on trajectories in the time domain [0, 50], while they were trained on [0, 10].
The results can be seen in Table 2, and show improved generalization to long time horizons for our
methods.

Validation of Conservative Property To demonstrate the effect of the conservation constraint
regularizers, we display a volume calculation along time steps in Figure 2. The unregularized SSGP
model (red curve) does not preserve volume and V - JVH term deviates starting from unseen
integration times (f > 10), a clear indication that the learned vector field acquires a spurious non zero
divergence. This behavior demonstrates that the regularizer effectively enforces a divergence-free
flow, preventing artificial volume loss and yielding a faithful symplectic approximation even without
explicit dissipative terms.

4.3 ABLATION STUDIES

Ablation study experiment results are available in the supplamentary material. In Table 8, we compare
the use of different loss terms for single, damped, and windy pendulum systems. We compare the
unregularized ELBO against applying each regularizer individually and combined. We compare both
equal and GDA-balanced weighting of loss terms. In Tables 5, 6, 7 and Figure 6, we compare on
datasets of various noise levels, ranging from noiseless to highly noisy data. We compare for each of
the three classes of Hamiltonian dynamics.

5 CONCLUSION

We present a unified framework for learning generalized Hamiltonian dynamics from noisy data
by combining a probabilistic Hamiltonian surrogate with physics-aware constraints and balanced
optimization. For conservative, dissipative, and port-Hamiltonian systems, the method produces
accurate trajectories with strong physical fidelity. In the future, we plan to extend this framework to a
control setting in order to support uncertainty decision making and make the framework applicable to
a wider range of domains.

REPRODUCIBILITY STATEMENT

Additional details of the methodology are in the supplementary material in Section C. Details
of the configurations of the datasets are in Section A. The code and data is available at https:
//anonymous.4open.science/r/HamiltonianLearning-8CCA and in the supplemen-
tary material.
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USE OF LARGE LANGUAGE MODELS (LLMS)

All content of the paper was written by the authors. LLMs were used for the aid of code implementa-
tion, formatting LaTeX tables/figures, and spelling/grammar checking.

A  HAMILTONIAN SYSTEMS

We list out 9 Hamiltonian systems in Table 3. They are grouped based on the three classes described
in the previous section. The phase space dynamics of these systems are visualized in Figure 3. The
parameters we use in the generation of the datasets for these systems are given in Table 4.

System Name Hamiltonian | Euler-Lagrangian Equation | (q,p)-Dynamics (type)
Single Pendulum P lg+gsing=0 JVH
Simple Spring S mg+kq=0 JVH
Henon-Heiles HH {ih 20142 =0 JVH
e e te-(@-a)=0 |
Damped Pendulum DP [+ v¢+gsing=0 (J+D)VH
Damped Spring DS m§+y4+kqg=0 (J+ D)VH
Unforced Duffing Equation UD j+vi+aqg+pd=0 (J+D)VH
""" Windy Pendulum | WP | IlG+yj+gsing=F@k) | (J+D)VH+F@E)
Forced Spring FS m{ + ¢ + kg = F(t) (J+ D)VH + F(t)
Duffing Equation DE G+vi+aq+ B =F(t) | (J+D)VH+F(t)

Table 3: Different (generalized) Hamiltonian systems with their corresponding Euler-Lagrangian
equations are grouped into conservative, dissipative, and port-Hamiltonian classes, each having a
form of (¢, p) dynamics.

The Hamiltonian energy functions are given below. Note that for the different types of pendulum,
spring, and Duffing systems, they share same physical model, and therefore their Hamiltonians are

identical, but the dynamics are different depending on dissipation/forcing.

2

H(q,p) = o mgl cos q (P/DP/WP)
Hap) = ~h? + . (S/DS/FS)
0.p) =5 7 o
1 1 1
H(a1, g2 p1,p2) = 5 (0 +p2) 5001+ 43) + aiee — 503 (HH)
2
p Bq*
— 4=+ UD/DE
H(g,p) = 2m+ 2 + 1 ( )
The Lagrangian of each problem is:
L(q,q) = =mi*¢* + mglcos q (P/DP/WP)
£(g.4) = ymd® — kg (S/DS/FS)
. 1., . 1 1
L(g1, 42,61, 62) = 5 (a7 +3) — 5 (a7 +43) — g1 + 34 (HH)
2 4
. o ag  fq
_ L2 P UD/DE
L(g,4) = 5md 5 1 ( )
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Windy Pendulum

Forced Spring

Forced Duffing

Figure 3: Phase map diagrams with sampled trajectories for various conservative (top row), dissipative
(middle row), and port-Hamiltonian (bottom row) systems. In these examples, the heat map denotes
the Hamiltonian energy, and the dynamics of systems are plotted for various initial conditions.
Column 1 shows pendulum systems, column 2 shows spring systems, and column 3 shows the
Henon-Heiles system for the conservative case and Duffing systems for the dissipative and port cases.

The corresponding phase space dynamics are given accordingly, with time-dependent forces being

defined:

4] B "o
o] -1
4] - "o
p] -1
_q_ - o
p] -1
_q_ - o
] -1
4] - o
p] [
4] o
o] -1
g1 )
G2 _ |0
P1 =1
i |

gl o
p_ - _—1
gl _Jo
p_ - _—1

1| [mglsing
0| | p/mi?
1] [mglsing
=] | p/mi?
1| [mglsing n 0
| | p/mi® vt
1| | kq
0| |p/m
1] [ kq
=] [p/m
) [ka] | 0
=] [p/m Fy sin(wt) sin(2wt)
[ a1+ 2q1g2
Il g2 +af — &5
0 b1
L P2
1] [ag + B¢®
-] [ p/m
1] [aa+Bg°] ] 0
_7_ p/m Fewt
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Dataset Type | Trajs. | Steps | Noise | Damping Forcing Other Params
Single Pendulum | Cons. 100 100 0.1 N/A N/A m=1,g=981,0=1
Damped Pendulum | Diss. 100 100 0.1 0.1 N/A m=1,¢g=981,/=1
Windy Pendulum Port 100 100 0.01 0.1 0.1t m=1,¢g=981,0=1
Mass-Spring Cons. 100 100 0.1 N/A N/A m=1k=1
Damped Spring Diss. 100 100 0.1 0.1 N/A m=1k=1
Forced Spring Port 100 100 0.1 0.1 0.1sin(t) sin(2t) m=1k=1
Henon-Heiles Cons. 100 100 0.1 N/A N/A m=1lLa=1
Unforced Duffing | Diss. 100 100 0.1 0.3 N/A a=-1,=1
Forced Duffing Port 100 100 0.1 0.1 0.39 a=-1,=1

Table 4: Parameters for the setup of the various Hamiltonian dynamics trajectory datasets.

B ADDITIONAL RESULTS

In Figures 4 and 5 we compare the errors in the phase maps of the learned Hamiltonian energy
contours. In Tables 5, 6, 7 and Figure 6, we evaluate our methods with various loss term balancing
methods against prior works. These evaluations are done on various noise levels ranging from
noiseless to Gaussian noise with 0.2 standard deviation. While methods such as HNN (

, ) may perform better for cases with little to no noise, our methods perform better in high
noise scenarios. Note also that HNN,and varients require derivative information, that is ¢, p data,
while SSGP ( , ) and our methods do not. This is especially relevant when data is
noisy and/or sparse, since finite difference approximations will be much less reliable in those cases.
In Table 8, we show an ablation study of our method using the addition of only one regularizer or all
regularizers, for both equal and GDA loss term balancing.

Method Noise level o

0 0.01 0.05 0.1 0.2
Prior works
SSGP 0.0028+0.0017 0.0039+£0.0019 0.0108+0.0063  0.0242+0.0126 0.09334+0.0524
HNN 0.0031£0.0028 0.0032+0.0027 0.0131+0.0579 0.06784+0.1300 0.3253+0.1300
Ours
Equal 0.004140.0015 0.0044+0.0023  0.0083+0.0046  0.0307+0.0161  0.0918+0.0591
GDA 0.004440.0016  0.0046+0.0024 0.0087+0.0048 0.0311+0.0164 0.08934+0.0534
MTAdam 0.21164+0.2044 0.2011£0.1669  0.2880+0.3215 0.2470+0.2517 0.273640.2337
JD 0.0041£0.0015 0.0044+0.0023 0.0083+0.0047 0.0307+0.0161 0.091740.0590
JD2 0.00364+0.0019  0.0035+0.0020 0.0077+0.0052 0.02714+0.0160 0.0889+0.0489

Noise Prior  0.0148+0.0110 0.00724+0.0054 0.0191+0.0126  0.0292+0.0183  0.0859+0.0495

Table 5: Comparison of various noise levels evaluated on the testing dataset for the conservative
spring system. We test with uncorrupted data and datasets with Gaussian noise of standard deviation
0.01,0.05,0.1, and 0.2. We compare the base SSGP model ( , ) to our method
with various ways of weighting the multi-term loss function, which are equal summation, gradient
descent-ascent (GDA), multi-term Adam (MTAdam) ( , ), Jacobian descent with
a UPGrad aggregator ( , ) with the combined ELBO (JD) and separated ELBO
(JD2), and GDA with prior knowledge of noise. The metric is the MSE loss on the g, p testing
trajectories. Here our method performs the best in the majority of cases, but the type of loss balancing
that is optimal varies depending on the noise level.

C ADDITIONAL METHODOLOGY DETAILS

C.1 NUMERICAL RECIPE OF REGULARIZED LOSS TERM

Conservation of Energy To compute the ELBO loss, we already generate trajectories for different
initial conditions. We can evaluate to Hamiltonian along these trajectories and check the difference
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Method Noise level o

0 0.01 0.05 0.1 0.2
Prior works
SSGP 0.0477£0.0717  0.0405£0.0531 0.0664+0.0815 0.089740.1240 0.1521+0.1844
DHNN 0.0048+0.0052  0.0047+£0.0057 0.0406+0.0578 0.38444+0.5541 0.8012+0.8763
Ours
Equal 0.0365£0.0536  0.0470£0.0606 0.0927+0.1102 0.109740.1511  0.1284-+0.1267
GDA 0.03164+0.0447 0.03634+0.0491 0.0456+0.0636 0.11194+0.1540 0.137640.1354
MTAdam 0.4440+£0.4672 0.4377+£0.4635 0.4440+0.4672 0.458440.4642 0.5071£0.4716
JD 0.0377£0.0510  0.0458+0.0593 0.0957+0.1140 0.073440.1015 0.1286+0.1268
Noise Prior 0.0876+0.1157 0.0273+0.0332  0.03124+0.0465 0.0559+0.0693 0.1633+0.2005

Table 6: Comparison of various noise levels evaluated on the testing dataset for the damped pendulum
system. We test with uncorrupted data and datasets with Gaussian noise of standard deviation
0.01,0.05,0.1, and 0.2. We compare the base SSGP model ( , ) to our method
with various ways of weighting the multi-term loss function, which are equal summation, gradient
descent-ascent (GDA), multi-term Adam (MTAdam) ( , ), Jacobian descent (JD)
with a UPGrad aggregator ( , ), and GDA with prior knowledge of noise. The
metric is the MSE loss on the g, p testing trajectories. Here, by applying additional regularization
with proper balancing to enforce physical constraints and stability, we achieve superior performance
in each case of noise level. In addition, in most cases having a prior knowledge of the noise level

further improves the performance.

Method Noise level o

0 0.01 0.05 0.1 0.2
Prior works
SSGP 0.2419+0.2798 0.2377+0.2776  0.2600+£0.3145 0.25304+0.2869  0.2924+0.2902
PHNN 0.014540.0278  0.0247+0.0636 0.1643+0.2686 0.3484+0.5941 0.7203+3.1528
Ours
Equal 0.2438+0.2732  0.2869+0.4264 0.2816+£0.3729 0.25594+0.2743  0.2739+0.1703
GDA 0.24714+0.2814  0.2470+0.2908 0.2565+0.2940 0.23444+0.2256 0.2738+0.1708
MTAdam 0.253240.1351 0.2419+0.1236  0.2524+0.1215 0.25024+0.1280 0.2921+0.1371
D 0.26294+0.3136  0.2972+0.4204 0.3127£0.4624 0.25614+0.2898 0.2863+0.2640
D2 0.29004+0.4033 0.2865+0.4033  0.2577+0.3058 0.24454+0.2661 0.2951+0.3025
Noise Prior 0.2847+0.3471 0.3241+0.6112  0.2603£0.3035 0.2958+0.5060 0.2976+0.2760
Noise Prior 2 0.06284+0.1531 0.0474+0.1132 0.1054+0.1824 0.1857+0.2483 0.2906+0.3187

Table 7: Comparison of various noise levels evaluated on the testing dataset for the chaotic duffing
system. We test with uncorrupted data and datasets with Gaussian noise of standard deviation
0.01,0.05,0.1, and 0.2. We compare the base SSGP model ( , ) to our method
with various ways of weighting the multi-term loss function, which are equal summation, gradient
descent-ascent (GDA), multi-term Adam (MTAdam) ( , ), Jacobian descent with
a UPGrad aggregator ( , ) with the combined ELBO (JD) and separated ELBO
(JD2), and GDA with prior knowledge of noise (Noise Prior) and its modification learning only
the mean path (Noise Prior 2). The metric is the MSE loss on the g, p testing trajectories. Here
the method using our multi-term loss function with the a prior noise level, typically performs the
best, most likely because it accurately separates noise from the true dynamics while accounting for
physical constraints.
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Ground truth

Ours (equal) Ours (GDA)

Ground truth DHNN Ours (GDA)

Ground truth DHNN SSGP Ours (equal) Ours (GDA)

Figure 4: The 1st column is the true phase maps with Hamiltonian energy contours three different
dissipative Hamiltonian systems: damped spring (top row), damped pendulum (middle row), and
unforced Duffing (bottom row). Columns 2 through 5 shows the error between the true Hamiltonian
energy and learned Hamiltonian energy for both prior work and our methods. The prior work is
shown in column 2 with DHNN (Sosanya & Greydanus, 2022) and column 3 with SSGP (Tanaka
et al., 2022). Our method is shown in column 4, using equally weighted loss terms, and column 5,
using GDA-balanced loss terms.

Ground truth

=

SSGP Ours (equal) Ours (GDA)

Ground truth DHNN SSGP Ours (equal) Ours (GDA)

Figure 5: The 1st column is the true phase maps with Hamiltonian energy contours three different
port-Hamiltonian systems: forced spring (top row), windy pendulum (middle row), and forced
Duffing (bottom row). Columns 2 through 5 shows the error between the true Hamiltonian energy
and learned Hamiltonian energy for both prior work and our methods. The prior work is shown in
column 2 with PHNN (Desai et al., 2021) and column 3 with SSGP (Tanaka et al., 2022). Our method
is shown in column 4, using equally weighted loss terms, and column 5, using GDA-balanced loss
terms.
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Dataset equal equal E equalL equal 'V gda gda E gdalL gdaV noreg

Single Pendulum 0.1111  0.0941 0.0941 0.1315 0.1634 0.5146 0.2812 0.1315 1.0222
Damped Pendulum 0.0714  0.1622  0.1629 0.0671  0.0613 0.1004 0.1347 0.0671 0.1733
Windy Pendulum 0.0670  0.3019  0.1113 0.4420  0.2972  0.0303 0.0829 0.4420 0.0493

Table 8: Mean squared error (MSE) over test sets for single (top row), damped (middle row), and
windy (bottom row) pendulum systems. We compare the use of each loss term individually and the
combination of all terms, using either equal and GDA-balanced weighting, against unregularized
ELBO. Bold indicates the lowest MSE in each row. E denotes only the energy regularizer is used,
while V and L denote the volume and Lyapunov regularizers respectively.

(a) True b o=0 (©)c=001 (do=005 (¢)o=0.1 (Ho=0.2

Figure 6: Phase map comparison for the damped pendulum system with various noise levels. Subfig-
ure (a) shows the ground truth Hamiltonian. Subfigure (b) show the error in learned Hamiltonian
from an uncorrupted dataset. Subfigures (c-f) show the error in the learned Hamiltonian from datasets
corrupted by Gaussian noise with the specific standard deviation. All of these Hamiltonians were
learned using our GDA-balanced method.

from initial time. Thus, the term may be estimated as follows:

I J Neoo 2
Lgnergy ~ Z Z Z TN (’}-[9 (xg)) —H° (x§§>)) . (14)

i=1 j=1 k=1

Here N, refers number of GP process realization of 7?. Note that these conservation law constraint
terms can be estimated by evaluating on the trajectories which were generated to compute the ELBO
loss in the previous section.

Conservation of Volume The loss term is

N 2
‘CVOI - % lz(1A(qn7pn)_1A(pt(qnapn))>‘| 5 (15)

n=1

where 1 4 refers the characteristic function of a sampled “volume” A. In implementation we sample
a rectangular domain A in each epoch and the loss is computed under different sampled time stamps.

Lyapunov Stability In order to estimate this, the loss can be computed along the same trajectories
as were generated for the computation of the ELBO loss and also used for the conservation of energy
and volume. This estimation is the following:

k) ) _ (k)
H (X%J’H)At # (x5) + M RerU (=7 (x(1))) ]
(16)

In practice, since the first term is already satisfied by enforcing conservation of energy we omit it in
the code implementation.

J N

»CLyap ~ Z Z

|:>\1’1R6LU
i=1 j=1k=1

DEPENDENCE OF LOSS TERMS ON PARAMETER GROUPS

We have several groups of parameters as well as a multi-term loss function. The parameters required
in the computation of each loss function are as follows:

« ELBO: 0¢,b,V/C, A, a,0,n,9 (all)

17
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— KL-divergence (initial condition): a
— KL-divergence (RFF weights): b, VC, o
- Negative log-liklihood: b,v/C, o, A, 1, ¥
» Conservation of Energy: b,v/C, A
« Conservation of Volume: b, v/C, A
* Lyapunov Stability: b,/C, A, n,

From this we can construct the block-matrix Jacobian.

0 0 0 0 ko o 0
Oa
OLkiw  OLkiw OLKIw
0 0
9o ab NG o 0

0 OLNLL OLNLL OLntn,  OLniL 0 OLnir  OLniL

J ob OV C oA Jo on 09

- aJCEnelrgy 8‘cEnergy aL:Energy
0 9% 8\/5 A 0 0 0 0
OLvol OLvol OLvol

0 BT 8\/6 oA 0 0 0 0
0 8£Lyap a'CLyap 9 ELyap 0 0 8£Lyap a‘CLyap

i b NG oA an 20

C.2 COMPARISON TO ONSAGER-MACHLUP FUNCTIONAL

The Onsager-Machlup function OM ( ; , ) is an analog of the
Lagranglan for SDEs. It has the property that a minimizer z of the Onsager-Machlup functional,
fo OM/(z, 2)dt, is the most probable path for the associated SDE. The Onsager-Machlup function
for an SDE of the form:

dx; = f(x)dt + dW, (17)
is 1 1
OM(z.%) = 5 |l — £(2) | + 5(V - £(2)) as)

For a Hamiltonian system with dissipation and noise of the form:
dx; = [(J + D)VH(x) + F(t)]dt + dW,

the Onsager-Machlup function is:

OM(z,7) = L |~ [( + D)VH(z) + FO)I* + 3(V-[(J + D)VH(z) + F(@))  (19)

= % Iz — (J + D)VH(z) — F(t)]” + %(v - DVH(z)) (20)

with the antisymmetric matrix term disappearing. Thus, if there is no dissipation, then the Onsager-
Machlup function reduces to an L? error. Other work has used the Onsager-Machlup functional in
machine learning. In ( ), it is used to derive a Hamiltonian system for the most probable
path between the initial and terminal conditions. In ( ) it is used to evaluate the
entropy of trajectories. Note that the first term is simply the L? loss of the predicted trajectories. The
second term (the entropy term) is the divergence of the vector field. This is equivalent to conservation
of volume based on Liouville’s theorem, which states that volume-conserving vector fields are
divergence-free ( , ).

C.3 CHANGES IN CONSERVATION LAWS FOR DISSIPATIVE AND PORT-HAMILTONIAN
SYSTEMS

The ELBO loss described for the conservative case remains the same for the dissipative and port-
Hamiltonian cases, as does the Lyapunov stability loss. However, the conservation law loss must be

18
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Class Physical Properties Form of Laws | Model Parameterization (6)
Conservative Conservation of Energy/Volume Eq. 1,Eq. 2 00,b,VC, A\, a,0
Dissipative Dissipation of Energy/Volume Eq. 22, Eq. 25 00, b, \/57 Aa,o.m
Port-Hamiltonian | Dissipation/External Input of Energy/Volume | Eq. 23, Eq. 25 00, b, Vv, A a,o,n,0

Table 9: Breakdown of the physical constraints, their numerical forms, and the model parameterization
for three classes: conservative, dissipative, and port-Hamiltonian dynamics

modified since in dissipative systems energy and volume are not longer constant in time. Since the
model separates the conservative, dissipative, and forcing terms of the dynamics, the conservative
laws can be enforced by integrating the conservative part only, which is what our implementation
does. Below we examine how energy and volume are affected by dissipative and external forcing
terms.

For energy, consider the time derivative of the Hamiltonian:

%H(q(t),p(t)) =VHT(J + D)VH
:M H+VHIDVH

- _Z (map)

Then the dissipation of energy can be written as

d
an <7 aH) =0. (22)
=1

2n

)i o,
For port-Hamiltonian systems, the energy evolution can be written as
d 2
dH OH T
— i— | —VH F(t)=0. 23
dt+;(n8pi) (®) (23)
For volume, we consider the divergence of the vector field:

V. £f=V. ((J+D)VH)
:m+v-pv7¢

= _an apl

(24)

Then the dissipation of volume can be written as:
d

82
v- f+zn38 7 = 0. (25)

The port-Hamiltonian version of this is the same since the external forcing term F(t) is only time-
dependent and thus its divergence is zero.

C.4 ELBO DERIVATION

Here we derive the ELBO, which follows that given in ( ). All random variables
are clearly identified, and the deterministic nature of the ODE flow is handled correctly, yielding an
evidence lower bound (ELBO) containing only those terms that truly require approximation.

Let D = {y;;}i=1.1, j=1.J, be the noisy observations sampled at times {¢;; }. The model is specified
by

1. Latent RFF weights: W ~ A(0, 021);
2. Latent initial states: x;o ~ N(0,a*I) (i=1,...,I);

19
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Figure 7: The breakdown of our loss function into the ELBO, energy and volume conservation, and
Lyapunov stability terms. See Sections 3.4 and C.1 for details.

3. Deterministic trajectory evolution:
X;; = Po(tij; Xio, W),
where ®g is the flow generated by integrating the parameterized vector field;
4. Noisy observations: y;; | xi; ~ N (x5, 0°1).
Because every state after ¢ = 0 is a deterministic function of (W, x;¢), the joint density factorizes as

p(D,Xo, W) = [Hp(}’ij | Xm‘)} [HP(X@‘O)} p(W), (26)

with no separate probability measure required for the intermediate states x;;.

We adopt a mean-field Gaussian family for the latent variables:

I
9(W, Xo) = ¢(W) [ a(xi0), 27)
=1
with
M
Q(W) = H N(Wm ‘ bma Cm)a q(XiO) = N(l"'i’ diag 0'12) (28)
m=1

No variational factor is needed for the deterministic states {x;; }j>1.

Applying Jensen’s inequality to log p(D) and using the above factorizations gives

I T
LeLBo = Z ZEq(W)q(xm) {IOgN(Yij | ®o(tis; xio, W), 021)}
i=1 j=1
I
— KL(q(W) | N(0,03T)) — > KL(q(xi0) || N'(0,a°T)). (29)

=1

Only three terms appear: a data-fit term and two KL regularizers — one for the RFF weights and one
for the initial conditions. No KL term for the intermediate states occurs, as they are deterministic.
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