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ABSTRACT

In the Hidden-Parameter MDP (HiP-MDP) framework, a family of reinforcement
learning tasks is generated by varying hidden parameters specifying the dynamics
and reward function for each individual task. The HiP-MDP is a natural model for
families of tasks in which meta- and lifelong-reinforcement learning approaches
can succeed. Given a learned context encoder that infers the hidden parameters
from previous experience, most existing algorithms fall into two categories: model
transfer and policy transfer, depending on which function the hidden parameters
are used to parameterize. We characterize the robustness of model and policy
transfer algorithms with respect to hidden parameter estimation error. We first
show that the value function of HiP-MDPs is Lipschitz continuous under certain
conditions. We then derive regret bounds for both settings through the lens of
Lipschitz continuity. Finally, we empirically corroborate our theoretical analysis by
varying the hyper-parameters governing the Lipschitz constants of two continuous
control problems; the resulting performance is consistent with our theoretical
results.

1 INTRODUCTION
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Figure 1: Difference between model
and policy transfer in HiP-MDPs.

Hidden-parameter Markov Decision Processes (HiP-MDPs)
(Doshi-Velez & Konidaris, 2016) describe a family of related
tasks by modeling task variations with a set of low-dimensional
hidden parameters. HiP-MDPs are widely used in recent meta-
Reinforcement Learning (RL) and lifelong RL works, in which
an agent needs to quickly adapt to new tasks by transferring
the knowledge from previous tasks. To solve HiP-MDPs,
most existing algorithms first infer the hidden parameters from
previous experience (e.g. by learning a context encoder that
maps trajectories to a hidden parameter estimate θ), then use
the estimated hidden parameters to solve new tasks with either
model (Killian et al., 2017; Lee et al., 2020; Fu et al., 2022)
or policy transfer (Yao et al., 2018; Rakelly et al., 2019)
algorithms. As shown in Figure 1, in model transfer, the
inferred hidden parameters are used to build a simulator of
the environment, which can then be used for planning. In
policy transfer, the inferred hidden parameters are used to
parameterize the policy of the new task directly. Previous
works have observed mixed empirical evidence for when each
approach performs better (Yao et al., 2018; Lee et al., 2020;
Fu et al., 2022). In this work, we take a step in the theoretical
direction by studying the regret bounds of model and policy transfer algorithms, respectively, which
helps characterize the robustness of these algorithms.

Two main factors affect the performance of HiP-MDP algorithms: (1) the estimation accuracy of the
hidden parameter used as an input to either the learned model or policy, and (2) the quality of the
learned model or policy (i.e., given an accurately estimated hidden parameter, whether the agent can
reach the optimal performance). In practice, the HiP-MDP tasks considered in most recent meta-RL
papers (e.g., changing the physical properties of MuJoCo-simulated robots) are relatively easy to
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solve when the hidden parameters are given. We therefore assume the learned model and policy are
optimal and theoretically analyze how hidden parameter estimation error affects the final performance
of model and policy transfer algorithms.

Our contributions are as follows. We first derive the conditions under which the value function of
HiP-MDPs is Lipschitz continuous. We then derive upper bounds for regret in model and policy
transfer algorithms, respectively, when the estimation error of the hidden parameters is bounded. We
also give an upper bound for multi-step prediction error in model transfer. We further prove that the
derived bounds are tight when the transition dynamics, reward function and policy are linear and
deterministic. As far as we are aware, these are the first theoretical results about policy and model
transfer performance bounds in HiP-MDPs. Given the same hidden parameter estimation error bound,
our results characterize when model or policy transfer can be more robust than the other: a slower
increase in the Lipschitz constant with respect to the hidden parameter implies more robustness.

In addition to theoretical analysis, we empirically study the performance of model and policy transfer
algorithms in two continuous control domains. For each domain, we control the Lipschitz constants
of the HiP-MDPs by altering the hyper-parameters of the environments. The results are consistent
with our theoretical understanding of how the regrets of model and policy transfer algorithms scale
with respect to the estimation error of the hidden parameters: a slower increase in Lipschitz constant
with respect to the hidden parameter implies a smaller performance decay.

2 BACKGROUND AND RELATED WORK

HiP-MDPs model the variations in the transition dynamics and reward functions by assigning each
task a hidden parameter θ, drawn from the distribution PΩ. The agent neither observes θ nor has
access to the the distribution PΩ that generates the task family. For a given task, parameterized
by θ ∈ Θ, the stochastic dynamics are given by T (s′|s, a; θ) and the deterministic reward function
by R(s, a; θ). We consider continuous state and action space in this work (s ∈ S, a ∈ A). Upon
encountering a new task, the agent estimates the new dynamics, T̂ , and the new reward function, R̂,
by inferring a distribution ω̂(θ) over the hidden parameter. If our estimation of θ is accurate, then
ω̂(θ) should be close to the true distribution ω(θ), i.e. peaking at the true θ for this specific task.
We assume the learned dependency of T̂ and R̂ on θ is accurate. Thus, if the estimation of θ is also
accurate, the agent can solve the task completely.

The HiP-MDP is an important setting widely used in recent meta/lifelong RL papers (see Appendix G).
A number of approaches have been proposed to infer the hidden parameter θ of HiP-MDPs in the
latent representation space, such as using Bayesian models to leverage prior knowledge (Killian et al.,
2017; Yao et al., 2018; Fu et al., 2022), or training a context encoder that maps trajectories to the
latent parameter (Rakelly et al., 2019; Zintgraf et al., 2020; Lee et al., 2020).

Given the inferred hidden parameters, various RL algorithms have been used to adapt to the new
tasks. The downstream RL algorithm given the inference of the hidden parameter includes training
an off-policy actor-critic that takes in the estimated parameter as an additional input (Rakelly et al.,
2019; Fakoor et al., 2020; Fu et al., 2021), or leveraging recurrent neural networks (Zintgraf et al.,
2020; Duan et al., 2016), or planning based on the learned transition model that also takes in the
inferred parameter (Lee et al., 2020; Mendonca et al., 2020). Yet, in practice, there is no clear winner
among these algorithms, leaving the question that what factors affect the performance of different
algorithms, and how. Nair & Doshi-Velez study a similar problem but in a different setting where the
hidden parameters are given (contextual MDP) and derive sample complexity bounds for model-based
learning. In this work, we quantify how errors and uncertainty in estimating θ affect the performance
of model and policy transfer methods through the lens of Lipschitz continuity.

Given a distance metric on the space M , dM , Lipschitz continuity quantifies the smoothness of a
function as follows.

Definition 2.1. A function f : M1 7→M2 is uniformly Lipschitz continuous if

KM1,M2

f := sup
x1,x2

dM2
(f(x1), f(x2))

dM1
(x1, x2)

. (1)
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We use KM1

f in some places for simplicity of notation. Throughout the work, we use the Euclidean
distance for d in the case of point vectors and the Wasserstein distance in the case of probability
distributions. The main goal of this work can now be stated as deriving the relation between
d(ω(θ), ω̂(θ)) ≤ ϵ, and the performance of model transfer and policy transfer methods.

The Wasserstein Metric can be linked to Lipschitz continuity using duality (Villani, 2008):

W (ω1, ω2) = sup
f :K

M1,M2
f ≤1

∫
(f(x)ω1(x)− f(x)ω2(x))dx. (2)

Given a distribution ω(θ) over the hidden parameters, we define the generalized transition, reward
and value functions in HiP-MDPs as:

Tg(s
′|s, a, ω) =

∫
θ

T (s′|s, a; θ)ω(θ)dθ, Rg(s, a, ω) =

∫
θ

R(s, a; θ)ω(θ)dθ,

Vg(s, ω) =

∫
θ

V (s, θ)ω(θ)dθ, Qg(s, a, ω) =

∫
θ

Q(s, a, θ)ω(θ)dθ.

These generalised functions are an expectation over the uncertainty in the hidden parameter. All the
Q and V functions we use below refer to the generalized function Qg and Vg .

We are now equipped to formally state all the smoothness assumptions we make about the HiP-MDPs:
Definition 2.2. A HiP-MDP is (KS

R,K
S
T ,K

A
R ,KA

T ,KΩ
R ,K

Ω
T )-Lipschitz if, for all ω ∈ Ω, and s ∈ S

and a ∈ A:
|Rg(s1, a, ω))−Rg(s2, a, ω))| ≤ KS

RdS(s1, s2),W (Tg(·|s1, a, ω)), Tg(·|s2, a, ω))) ≤ KS
T dS(s1, s2)

|Rg(s, a1, ω))−Rg(s, a2, ω))| ≤ KA
RdA(a1, a2),W (Tg(·|s, a1, ω)), Tg(·|s, a2, ω))) ≤ KA

T dA(a1, a2)

|Rg(s, a, ω1)−Rg(s, a, ω2)| ≤ KΩ
RdΩ(ω1, ω2), W (Tg(·|s, a, ω1), Tg(·|s, a, ω2)) ≤ KΩ

T dΩ(ω1, ω2)

To simplify notation, we will write that a HiP-MDP is Lipschitz continuous when all the constants
can be implied from the context.

In the following theoretical analysis, we assume the HiP-MDPs are Lipschitz. Intuitively, this implies
that when the hidden parameters of two MDPs are close, their transition dynamics and reward
functions are similar, and for a given task, transitions dynamics and rewards do not change much
given small changes in the states and actions. Similar assumptions have commonly been made in
previous works (Hinderer, 2005; Asadi et al., 2018; Gottesman et al., 2021; Gelada et al., 2019; Ren
et al., 2019; Luo et al., 2019). We extend the smoothness assumption to the hidden parameters for a
better understanding about the role of hidden parameter estimation error in the final performance.

In addition to the smoothness assumptions about the HiP-MDPs, we make the following assumptions
about the smoothness of policies.
Definition 2.3. A policy π(a|s, ω(θ)) is (KS

π ,K
Ω
π )-Lipschitz continuous if:

KS
π := sup

ω
sup
s1,s2

W (π(·|s1, ω(θ)), π(·|s2, ω(θ)))
dS(s1, s2)

,

KΩ
π := sup

s
sup
ω1,ω2

W (π(·|s, ω1(θ)), π(·|s, ω2(θ)))

W (ω1(θ), ω2(θ))

are finite.

We evaluate policies by calculating their expected discounted reward given a distribution of initial
states, µ(s):

Jµ
π :=

∫
s

V π
g (s, ω(θ))µ(s)ds. (3)

Lipschitz continuity in MDPs has been studied by many previous works (Hinderer, 2005; Rachelson
& Lagoudakis, 2010; Tang et al., 2020; Gottesman et al., 2021). Pirotta et al. (2015) propose to use
Lipschitz continuity property of MDPs to speed up policy gradient algorithms. Asadi et al. (2018)
show how the magnitude of the Lipschitz constant of the transition dynamics affects the performance
of model-based RL algorithm’s performance is influenced by the magnitude of the Lipschitz constant
of the model. Gelada et al. (2019) leverages Lipschitz continuity assumptions in regular MDPs to
learn state abstractions. However, none of them conduct theoretical analysis on HiP-MDPs.
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3 LIPSCHITZ VALUE FUNCTION OF HIP-MDPS

Our first main result is showing under which conditions the value functions are Lipschitz continuous
for HiP-MDPs. We show this through a combination of Theorem 3.1 and Theorem 4.3 & 5.2 in the
following sections. Theorem 3.1 mainly studies the Lipschitz continuity with respect to S and A
while the hidden parameter is fixed. This can be seen as a generalization of theorems derived in prior
papers (Rachelson & Lagoudakis, 2010; Pirotta et al., 2015; Asadi et al., 2018; Gelada et al., 2019)
that study Lipschitz value function for a regular MDP.
Theorem 3.1. For a (KS

R,K
S
T ,K

A
R ,KA

T ,KΩ
R ,K

Ω
T )-Lipschitz HiP-MDP with a (KS

π ,K
Ω
π )-Lipschitz

policy π, if γ(KS
T +KS

πK
A
T ) < 1,1 the value function is Lipschitz continuous with respect to S and

A with constants bounded by:

KA
Qπ := sup

ω
sup
s

sup
a1,a2

|Q(s, a1, ω)−Q(s, a2, ω)|
dA(a1, a2)

≤ KA
R − γ(KA

RKS
T −KS

RK
A
T )

1− γ(KS
T +KS

πK
A
T )

KS
Qπ := sup

ω
sup
a

sup
s1,s2

|Q(s1, a, ω)−Q(s2, a, ω)|
dS(s1, s2)

≤ KS
R − γKS

π (K
S
RK

A
T −KA

RKS
T )

1− γ(KS
T +KS

πK
A
T )

KS
V π := sup

ω
sup
a

sup
s1,s2

|V (s1, ω)− V (s2, ω)|
dS(s1, s2)

≤ KS
Qπ +KA

QπKS
π .

Proof. (sketch) We derive the value difference bound by decomposing it into the combination of
the Q-value difference with respect to S & A using our previous definitions and the Bellman update
rule (9). Then we get the bounds for KA

Qπ and KS
Qπ respectively by applying the dual form of the

Wasserstein Metric (Equation 2) and with the fixed-point iteration. See appendix E for all proofs.

The above theorem shows the conditions under which the value functions of HiP-MDPs are Lipschitz
continuous with respect to states and actions. We can get the following corollary when the policy is
optimal:
Corollary 3.2. If the policy π is optimal and γKS

T < 1, then:

KS
Q∗ ≤

KS
R

1− γKS
T

, KA
Q∗ ≤

KA
R + γKS

RK
A
T − γKS

TK
A
R

1− γKS
T

.

Note that in contrast to KS
Q∗ , KA

Q∗ is affected by the smoothness of the transition dynamics and
reward functions with respect to action space (KA

T and KA
R ).

Theorem 3.1 and Corollary 3.2 also directly apply to a (KS
R,K

S
T ,K

A
R ,KA

T )-Lipschitz regular MDP
with a KS

π -Lipschitz policy, as the Lipschitz continuity assumptions with respect to hidden parameters
are not used in both the final results and proofs. Specifically, the upper bound for KS

Q∗ in Corollary 3.2
recovers the results in Asadi et al. (2018); Gelada et al. (2019). If we assume the Lipschitz constants
for state and action are the same, we get Corollary E.1, which recovers the results in Rachelson &
Lagoudakis (2010); Pirotta et al. (2015). For regular MDPs, our results are more general compared
to prior work as (1) we do not assume that the Lipschitz constants for state and action are the same
because that is usually not the case in practice; (2) our theory applies to all Lipschitz policies rather
than only the optimal policy.

One of our major goals in this work is to derive the conditions for Lipschitz value functions of
HiP-MDPs. Theorem 3.1 shows that the value functions in HiP-MDPs are Lipschitz continuous with
respect to S and A under certain conditions. To complete the theorem for Lipschitz value function
in HiP-MDPs, we must also explore the conditions under which the value function is Lipschitz
continuous with respect to the remaining input of Q-function in HiP-MDPs, ω. As we shown in the
next two sections, exploring this actually results in different bounds for policy transfer and model
transfer. By leveraging the results of Lipschitz value functions, we then find how the estimation
error d(ω(θ), ω̂(θ)) ≤ ϵ of the hidden parameter at test time will affect the performance of model
and policy transfer algorithms respectively. We quantify the performance gap by deriving the upper
bound of the regret as a function of the error in estimating the hidden parameter. Note that throughout
the following analysis, we abstract out the discussion of how ω̂(θ) is estimated, and assume it is given
with an estimation error bounded by ϵ.

1We make this assumption in many of our following theorems. See appendix F for explanations.
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4 PERFORMANCE BOUNDS OF MODEL TRANSFER IN HIP-MDPS

We now focus on the regret of model transfer in HiP-MDPs induced by the hidden parameter
estimation error, d(ω(θ), ω̂(θ)) ≤ ϵ. We assume that the agent has learnt an accurate transition
function T̂g(s

′|s, a, ω(θ)) and reward function R̂g(s, a, ω(θ)). Upon encountering a new task, the
agent first estimates the hidden parameter and then feeds it into the learned transition function T̂g

and reward function R̂g . The agent will use them to generate samples and train a task-specific policy.
The algorithm framework can be found in Algorithm 2 and Figure 1. Note that a similar paradigm
has been widely used (Lee et al., 2020; Mendonca et al., 2020) in complex continuous control tasks.

We first derive a bound of the compounding error of dynamics prediction given the estimation error ϵ
in hidden parameter at test time, with the Lipschitz model class (Asadi et al., 2018) assumption (we
include a definition in appendix E):
Theorem 4.1. Assume the estimation error for hidden parameter θ is bounded by ϵ, that is,
W (ω(θ), ω̂(θ)) ≤ ϵ. Further assume an accurately learned T̂g induced by a Lipschitz model
class Fg with the Lipschitz constant KΩ

T̂
and KS

T̂
, a fixed sequence of actions a0, · · · , an−1, and an

initial state distribution µ(s). Then ∀n ≥ 1, the n-step prediction error ξ(n):

ξ(n) := W (T̂n
g (·|µ, ω), T̂n

g (·|µ, ω̂)) ≤ KΩ
T̂
ϵ

n−1∑
i=0

(KS
T̂
)i, (4)

where T̂n
g (·|µ, ω)) := T̂g(·|T̂g(·|...T̂g(·|µ, a0, ω)..., an−2, ω), an−1, ω) is a generalized n-step tran-

sition function, and T̂n
g (·|µ, ω̂)) is defined similarly.

The result shows how the multi-step prediction error ξ of a generalized transition function in HiP-
MDP scales with respect to the hidden parameter estimation error ϵ. Additionally, the smoothness of
the transition function also affects the multi-step prediction error. As we show in the experiments,
this multi-step prediction bound can have a huge impact on the planning performance for model
transfer.

Instead of directly planning, some methods choose to further learn the policy using the learned model.
We investigate the value estimation difference and regret of model transfer induced by the hidden
parameter estimation error. Note that the remaining theoretical results in this paper do not involve the
Lipschitz model class assumption.

Lemma 4.2. Given a HiP-MDP with learned (KΩ
R̂
,KΩ

T̂
)-Lipschitz transition model T̂ , reward

function R̂, in model transfer, the generalized value function is Lipschitz continuous with respect to
Ω with a constant bounded by:

KΩ
V π ≤ KΩ

R̂
+ γKΩ

Qπ + γKS
QπKΩ

T̂
.

We get the above bound for the Lipschitz value function when assuming the Lipschitz continuity
of transition and reward function with respect to only the hidden parameter. The lemma shows the
relationship between KΩ

V π and KΩ
Qπ in model transfer case. Then, by further assuming the Lipschitz

continuity of dynamics & policy in Lemma 9, we can get the following bound leveraging the dual
form of Wasserstein Metric (Equation 2), and computing the fixed point of recurrence.
Theorem 4.3. Given a HiP-MDP with learned (KS

R̂
,KS

T̂
,KA

R̂
,KA

T̂
,KΩ

R̂
,KΩ

T̂
)-Lipschitz transition

dynamics T̂ , reward function R̂, in model transfer, if γ(KS
T +KS

πK
A
T ) < 1, the generalized value

function corresponding to the KS
π -Lipschitz policy π(a|s) is Lipschitz continuous with respect to Ω

with a constant bounded by:

KΩ
V π ≤

KΩ
R + γKS

QπKΩ
T

1− γ
. (5)

Now if we further use the bounds derived in Theorem 3.1 to substitute KS
Qπ (for Theorem 5.2 we

substitute KA
Qπ ), we can get a bound of KΩ

V π that does not depend on KQπ .

Compared to Lemma 4.2, the bound derived in Theorem 4.3 does not depend on KΩ
Qπ by leveraging

Bellman equation (the details can be found in our proofs). In general, Theorem 4.3 characterizes
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how the value estimation difference in model transfer is affected by the reward/transition functions’
robustness to the hidden parameter. Theorem 4.3 and 3.1 together show that the value function of a
HiP-MDP for model transfer is Lipschitz continuous under certain conditions.

Then we can derive the regret of model transfer given hidden parameter estimation error ϵ. Here
we further assume the agent gets the optimal policy in the “simulated environment” created by the
learned transition and reward function. We first introduce the following lemma:
Lemma 4.4. Given a (KS

R,K
S
T ,K

Ω
R ,K

Ω
T )-Lipschitz HiP-MDP, for the optimal policy π∗,

|V π∗
(s, ω1(θ))− V π∗

(s, ω2(θ))| ≤ maxa∈A |Qπ∗
(s, a, ω1(θ))−Qπ∗

(s, a, ω2(θ))|.

Given the optimal policy, this lemma shows the relationship between value estimation difference and
Q-value estimation difference. Combining the results in Corollary 3.2, we have:

Lemma 4.5. Given a HiP-MDP with learned (KS
R̂
,KS

T̂
,KΩ

R̂
,KΩ

T̂
)-Lipschitz transition model T̂ ,

reward function R̂, the optimal policy π̂∗(a|s) for T̂ and R̂, starting from state distribution µ(s),if
γKS

T̂
< 1, the regret of model transfer given hidden parameter estimation error ϵ is bounded by:

|Jµ
π∗ − Jµ

π̂∗ | ≤
KΩ

R̂

1− γ
· ϵ+

γKS
R̂
KΩ

T̂

(1− γ)(1− γKS
T̂
)
· ϵ, (6)

Besides the reward and transition functions’ smoothness with respect to the hidden parameter θ, the
derived bound also shows that the distance between the expected return of the learned policy π̂∗

and the environment’s true optimal policy increases with KS
R̂

and KS
T̂

, given the hidden parameter
estimation error ϵ. In other words, the performance of model transfer algorithms decreases as the
sensitivity of the dynamics changes in states increases, which aligns with the intuition that the
model-based methods need to accurately predict state transitions and expected rewards given states.

Furthermore, for the theorems derived in this section, we show that (proofs included in the appendix):
Claim 4.6. Given a linear and deterministic transition function, the bound derived in Theorem 4.1 is
tight. Given a linear and deterministic transition function and reward function, Lemma 4.5 is tight.

5 PERFORMANCE BOUNDS OF POLICY TRANSFER IN HIP-MDPS

We now focus on the regret bound induced by policy transfer algorithms in HiP-MDPs. We assume
the error bound of the hidden parameters is the same (i.e., d(ω(θ), ω̂(θ)) ≤ ϵ), and that the agent has
learnt an accurate joint policy π(a|s, ω(θ)) during training. Upon encountering a new task, the agent
feeds the estimated hidden parameter into the learned policy instead of the model. The agent will then
directly use the joint policy to interact with the environment. The algorithm framework can be found
in Algorithm 1 and Figure 1. Similar policy transfer paradigm has also been widely used (Yao et al.,
2018; Rakelly et al., 2019). We investigate how the estimation error for the hidden parameter will
affect the performance of the joint policy on a new task and compare with the performance bounds
derived above for model transfer cases.
Lemma 5.1. Given a HiP-MDP with learned KΩ

π -Lipschitz joint policy π(a|s, ω(θ)), in policy
transfer, the generalized value function is Lipschitz continuous with respect to Ω with a constant
bounded by:

KΩ
V π ≤ KΩ

Qπ +KA
QπKΩ

π .

We obtain the above bound for the Lipschitz value function when assuming the Lipschitz continuity
of the learned policy with respect to only the hidden parameter. The lemma shows the relationship
between KΩ

V π and KΩ
Qπ in the policy transfer case. Then, similar to model transfer, if we further

assume the Lipschitz continuity of the dynamics and the policy and compute the fixed point of the
recurrence of the Bellman update, we can get the following bound:
Theorem 5.2. Given a (KA

R ,KA
T ,KS

R,K
S
T )-Lipschitz HiP-MDP, in policy transfer, the generalized

value function corresponding to the pretrained (KS
π ,K

Ω
π )-Lipschitz joint policy π(a|s, ω(θ)), if

γ(KS
T +KS

πK
A
T ) < 1, is Lipschitz continuous with respect to Ω with a constant bounded by

KΩ
V π ≤

KΩ
π K

A
Qπ

1− γ
. (7)
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Compared to Lemma 5.1, the bound derived in Theorem 5.2 does not depend on KΩ
Qπ by leveraging

Bellman equation. Theorem 5.2 characterizes how the value estimation difference in policy transfer
is affected by the policy’s robustness to the hidden parameter. Theorem 5.2 and 3.1 together show the
value function of a HiP-MDP for policy transfer is Lipschitz continuous under certain conditions.
Different from the bound in Theorem 4.3 for model transfer, for policy transfer methods this value
estimation error is also affected by the policy’s robustness with respect to the hidden parameters, as
well as the Q-value’s robustness to the actions (only with respect to states in Theorem 4.3), with no
dependence on the reward and transition functions’ smoothness with respect to the hidden parameters.

We can further derive the Lipschitz constant of the expected discounted reward (regret) starting from
the state distribution µ. Similar to what we did in model transfer case, if we also assume the learned
joint policy over ω(θ) is optimal, by leveraging the results in Corollary 3.2, we have:
Lemma 5.3. Given a (KA

R ,KA
T ,KS

R,K
S
T )-Lipschitz HiP-MDP, a pretrained KΩ

π -Lipschitz optimal
joint policy π(a|s, ω(θ)), starting from state distribution µ(s), if γKS

T ≤ 1, the regret of policy
transfer induced by hidden parameter estimation error ϵ is bounded by:

|Jµ
π∗ − Jµ

π | ≤
γKΩ

π (K
A
R + γKS

RK
A
T − γKS

TK
A
R )

(1− γ)(1− γKS
T )

· ϵ, (8)

Comparing the derived performance bound with the one in Lemma 4.5, we find that the distance
between the expected return of the learned joint policy π and the environment’s true optimal policy π∗

increases also with KA
T and KA

R , besides KS
T and KS

R. In other words, the performance of the policy
transfer decreases as the sensitivity of the dynamics changes in both states and actions increases,
while the model-based method is not quite sensitive to the dynamics change in actions. This result is
reasonable as policy-based method is influenced mostly by direct impact of actions. Regarding the
tightness of the derived bound, we get similar results as for model transfer:
Claim 5.4. Given a linear and deterministic transition function, reward function and policy, the
bounds derived in Lemma 5.3 are tight.

Summary Besides characterizing the robustness of model and policy transfer methods with respect
to hidden parameter estimation error separately, Lemma 4.5 and 5.3 also imply that, policy transfer
methods are expected to perform more robust when difference in effects of different actions is
small, whereas model transfer methods are expected to perform better when neighboring states have
relatively similar dynamics. Given these bounds, one direct implication to HiP-MDP algorithms in
practice is that we can infer the performance trend of policy transfer and model transfer algorithms
by either qualitatively or quantitatively estimating the dynamics and reward functions’ sensitivity to
states and actions. This can further help us determine which method is probably more advantageous
for a specific HiP-MDP problem. Note that Kθ

T̂
and KΩ

π in general can be dependent on the model
class (architecture) of the model (e.g. neural nets) used to parameterized the policy or model.

6 EMPIRICAL EVALUATION

We now corroborate our theoretical results in relatively large scenarios where neural networks are
needed to parameterize models and polices. We evaluate model and policy transfer methods on two
continuous scenarios, ball-goal and ball-wind, where we can quantitatively estimate the influence
of changing environment hyperparameters on different Lipschitz constants. Then by investigating
whether the empirical performance changing is consistent with what we expect from theoretical
results, we can corroborate whether our derived theorems match what happened in practice.

For both scenarios, the goal of the agent is to control a ball to quickly reach a target position. In
ball-goal, the angle of the goal direction is the hidden parameter. That is, the goal direction changes
across tasks, and the agent will obtain maximum cumulative reward if it figures out the right angle
for the current task and keeps moving in that direction until reaching the goal. In ball-wind, the goal
position is fixed across different tasks but there is wind across the plane with different directions. The
angle of the wind direction is the hidden parameter in this scenario. The reward function consists of
a dense reward proportional to how closer the ball moves towards the goal compared to last step, a
control cost, as well as a larger final reward for reaching the goal. Thus for ball-goal, only the reward
function is changing with respect to different hidden parameters, while in ball-wind, both reward and
transition functions are changing. More details about the environments can be found in Appendix B.

7



Published as a conference paper at ICLR 2023

For each HiP-MDP, we manually calculate the value of different Lipschitz constants approximately
given the actual reward and transition functions for both scenarios. We further calculate the bounds
derived in Lemma 4.5 and Lemma 5.3 using the results. The Lipschitz constants are given in Table 1.
We mainly investigate the effect of the step size v, goal distance g, and state accelerator m (ball-wind).
The results imply how different Lipschitz constants are changing as we change those environmental
hyper-parameters if our derived bounds are relatively tight and close to what happened in practice.

Env KS
T KA

T KΩ
T KS

R KA
R KΩ

R KΩ
π KJ (Model transfer) KJ (Policy transfer)

ball-goal 1 v 0 2 v 2g g 2g
1−γ

γ(1+γ)vg

(1−γ)2

ball-wind m 1 v m + 1 1 v
√

2v√
2v−m(g−1)+g

v+γ
(1−γ)(1−γm)

KΩ
π · γ(1+γ)

(1−γm)(1−γ)

Table 1: Lipschitz constants for ball-goal and ball-wind
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Figure 2: First row: Average return on test tasks v.s. environmental properties (v and g). Second row:
−KJ v.s. v and g: how −KJ is expected to change based on our our theoretical computing results in
Table 1. Each plot in the first row is associated with two plots below with corresponding color. The
performance of the algorithm is expected to decrease if −KJ decreases.

6.1 EMPIRICAL RESULTS CORRESPONDING TO LEMMA 4.5 AND LEMMA 5.3

As both Lemma 4.5 and Lemma 5.3 can be written in the form |Jπ̂ − Jπ∗ | < KJ · ϵ, we investigate
how KJ is changing as we change different environmental hyperparameters both theoretically:
manually computing the Lipschitz constants given the environment’s dynamics (appendix B) and the
two lemmas (results shown in Table 1), and empirically: investigating how the algorithm’s empirical
performance is changing as we alter the environment’s hyperparameters (KJ is expected to inversely
related to the expected return), and see whether the theoretical and empirical results are consistent.

For empirical training, we use state-of-the-art meta-RL algorithms PEARL (Rakelly et al., 2019)
as the policy transfer method to learn the joint policy, as well as CaDM (Lee et al., 2020) to learn
the dynamics model. The context encoder (probabilistic encoder) is updated together with loss from
Q-value prediction like in PEARL, as well as loss from dynamics model prediction like in CaDM.
Given a new task, we let the agent collect transitions by interacting with the environment for only
one episode with randomly initialized hidden-parameter distribution.2 Then the agent will use the
learned context encoder to infer a distribution over the hidden parameter of the current task. This
distribution over the hidden parameter is fixed afterwards for the current task, i.e. ϵ is fixed and the
same for both methods. Then, for policy transfer, we sample from the hidden parameter distribution
and directly feed that inferred latent parameter into the learned joint policy. We evaluate the average
return of this policy on the current task. For model transfer, we feed that inferred latent parameter
into the learned transition model and reward function. We use the models to generate samples and
run SAC (Haarnoja et al., 2018) to learn the task-specific policy for this “simulated environment”.

The empirical results are shown in Figure 2. We plot −KJ v.s. v/g using the results in Table 1.
Recall that KJ is expected to inversely related to the average return. i.e., increase in −KJ implies

2The hidden parameters here and the inferred hidden parameters mentioned below are all referring to the
mapping of the hidden parameter in the latent representation space through the context encoder. We assume the
true distribution over the hidden parameters is also implicitly mapped into the latent space.
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a decrease in the regret of the algorithm, thus the average return is expected to increase if our
theoretical results match what happened in practice. Almost all of the results show that the change
of the expected return is inversely related to the change of the approximated Lipschitz constant KJ .
The environment parameters directly affect KJ and the trend of the performance change in a way
that is highly consistent with our theoretical analysis. In general, we find that a slower increase in
Lipschitz constant with respect to the hidden parameter implies a smaller performance decay.
The empirical results implies that for real-world HiP-MDP tasks, if we can quantitatively estimate
the Lipschitz constant KJ for model and policy transfer methods given the environment parameters,
we can estimate which one is expected to have better final performance. For instance, in ball-wind, if
g is quite large, given the computed KJ , we will expect model transfer to have better performance as
it is less affected by the value of g compared to policy transfer method. Note that in our scenarios,
the performance drop is mainly induced by the estimation error of the hidden parameters, and the
learned dynamics and policies are near optimal. We show the empirical evidence in appendix C.

6.2 EMPIRICAL RESULTS CORRESPONDING TO THEOREM 4.1
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Figure 3: Average return on test tasks v.s. environ-
mental properties (m & v) that affect the Lipschitz
constants for MPC method on ball-wind.

We also show how the bound of the multi-step
prediction error derived in Theorem 4.1 is re-
lated to the performance of the other planning
method used in model transfer — Model Pre-
dictive Control (MPC) (Garcia et al., 1989).
MPC is widely used in recent deep model-based
RL works (Chua et al., 2018; Nagabandi et al.,
2019). Different from the previous approaches,
MPC does not need to explicitly estimate the
value function and its performance is directly
affected by the multi-step prediction error. With
the results in Table 1, we can get the multi-step
prediction upper bound for ball-wind using The-
orem 4.1: ξ(n) ≤ v

∑n−1
i=0 mi · ϵ. The bound

implies that if the theorem matches what happens in practice, the n-step prediction error will increase
as we increase v and m, and thus the performance is expected to drop as we increase v and m.
(The performance of MPC and the multi-step prediction error are inversely correlated.) Similar to
the previous subsection, we investigate whether the empirical performance of MPC matches our
predictions from theoretical results.

During empirical evaluation, we first let the agent infer the hidden parameter and feed that into the
learned transition function and reward function. Then at each time step, we let the agent randomly
sample a large number of actions, and use the learned model to predict N steps into the future for
each of them and choose the action with the highest predicted cumulative reward. We investigate how
v and m affect the algorithm’s final performance empirically. The results are shown in Figure 3, the
average return of the algorithm on test tasks decreases as we increase the value of v and m, which is
consistent with our theoretical result. We also find that the variance of the performance (the width of
error bar) is increasing as we use longer planning horizon for MPC.

7 CONCLUSION

Assuming the learned model/policy is optimal, we investgiated how the hidden parameter estimation
error affects the robustness of model and policy transfer algorithms from a theoretical perspective,
respectively. We show the conditions under which the value functions of HiP-MDPs are Lipschitz
continuous. We further derive regret bounds for model and policy transfer, which are proved to be
tight in linear and deterministic cases. Our empirical results are consistent with the theoretical results
and indicate that a faster increase in Lipschitz constant with respect to the hidden parameter implies a
larger performance decay. We note that in real-world HiP-MDP problems, especially when applying
deep RL algorithms, the suboptimality of the learned model/policy can still play an important role in
the potential performance drop on a new task, independently of the estimation error of the hidden
parameter. And in many cases, policy transfer performs better than model transfer simply because
the downstream model-free deep RL algorithms are consistently better in regular MDPs.
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A MODEL TRANSFER AND POLICY TRANSFER

Algorithm 1: Policy transfer
Input: Test tasks {τi}i=1:K with hidden parameters θi ∼ PΩ

for each task τi do
Roll out policy π(a|s, ω̃(θ)) with randomly generated Gaussian ω̃(θ) to collect data
c = {s1, a1, r1, · · · , sn, an, rn}
Infer the distribution ω̂(θ) over the hidden parameter of task τi with the learned encoder
q(ω(θ)|c)
Roll out policy π(a|s, ω̂(θ)) to interact with environment (evaluation)

end for

Algorithm 2: Model transfer
Input: Test tasks {τi}i=1:K with hidden parameters θi ∼ PΩ

for each task τi do
Roll out policy π(a|s, ω̃(θ)) with randomly generated Gaussian ω̃(θ) to collect data
c = {s1, a1, r1, · · · , sn, an, rn}
Infer the distribution ω̂(θ) over the hidden parameter of task τi with the learned encoder
q(ω(θ)|c)
Planning with learned transition function Tg(s

′|s, a, ω̂(θ)) and reward function Rg(s, a, , ω̂(θ))
(evaluation)

end for

Empirically, in typical deep meta-RL settings (Finn et al., 2017; Rakelly et al., 2019), the true value
of hidden parameters are not known to the agent both during training phase and evaluation phase.
We follow this setting in out experiments and train a context encoder like the previous approaches to
infer the hidden parameter in latent representation space. Then the true distribution over hidden
parameter is also assumed to be implicitly mapped into the latent representation space. Our empirical
experiments show that our theories can be extended to hidden parameter estimation in the latent
space, and the results show consistent patterns with the theoretical results.

B EXPERIMENT SETTINGS

Ball-goal: The state space consists of the ball’s x, y coordinates. The action space consists of the
ball’s x, y velocity. v controls the step size in the direction of x axis in the transition function.

Figure 4: The Ball environment
used in our experiments.

The reward is proportional to the how far the agent has moved
towards the goal’s position (g cosϕg, g sinϕg). We fix the value
of v, g and use ϕg as the hidden parameter to create HiP-MDPs.
Details are shown below:

• State space: {sx, sy}
• Action space: {ax, ay}
• Transition function:

s′x = sx + ax · v
s′y = sy + ax

• Reward function:

R =
√
(sx − g cosϕg)2 + (sy − g sinϕg)2 −

√
(s′x − g cosϕg)2 + (s′y − g sinϕg)2

Ball-wind:The state space consists of the ball’s x, y coordinates. The action (one dimension) describes
the direction of the agent’s next move. In the transition function, m is describes the value of state
accelerator, v controls the step size of the wind, θ describes the direction of the wind. The reward is
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proportional to the how far the agent has moved towards the goal’s position (g cosϕg, g sinϕg), plus
a goal reward when succeeds and a control penalty (−0.5). We fix the value of v, g,m, ϕg and use θ
as the hidden parameter to create HiP-MDPs. Details are shown below:

• State space: {sx, sy}
• Action space: {a}
• Transition function:

s′x = msx + cos a− v cos θ

s′y = msy + sin a− v sin θ

• Reward function:

R =
√
(sx − g cosϕg)2 + (sy − g sinϕg)2 −

√
(s′x − g cosϕg)2 + (s′y − g sinϕg)2

+ 1{
√
(s′x − g cosϕg)2 + (s′y − g sinϕg)2 ≤ 0.1} · 20− 0.5

When computing the Lipschitz constants for Ball-wind, we only consider the difference of distance
towards goal part in the reward function for ease of calculation.

C ADDITIONAL EXPERIMENTS WHEN THE HIDDEN PARAMETER IS BETTER
INFERRED
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Figure 5: Average return on test tasks v.s. environ-
mental properties (v & g) for different estimation
accuracy of the hidden parameter in ball-goal &
ball-wind.

We further show that in these two scenarios, the
performance drop as we change environment
parameters is mainly induced by the estimation
error of the hidden parameters, and the learned
transition/reward functions and policies are near
optimal. As shown in Figure 5, when we let the
agent interact with the environments for more
trajectories and keep using the collected data
to infer the hidden parameter, changing of the
environment’s Lipschitz constant does not affect
the performance as much as before when the
estimation of the hidden parameter is far less
accurate.

D COMPARISON OF THEOREM
3.1 WITH PREVIOUS RESULTS

Assumption 1. The policy is optimal.

Assumption 2. S and A share the same Lipschitz constant.

Theorems Value difference bound Assumption 1 Assumption 2

Theorem 3.1
KS

R+KA
RKS

π

1−γ(KS
T

+KA
T

KS
π )

% %

(Asadi et al., 2018; Gelada et al., 2019)
KS

R
1−γKS

T

✓ %

(Rachelson & Lagoudakis, 2010; Pirotta et al., 2015)
KS

R(1+KS
π )

1−γKS
T

(1+KS
π )

% ✓

Table 2: Comparison of Theorem 3.1 with previous results in regular MDPs

Theorem 3.1 and Corollary 3.2 also directly apply to a (KS
R,K

S
T ,K

A
R ,KA

T )-Lipschitz regular MDP
with a KS

π -Lipschitz policy, as the Lipschitz continuity assumptions with respect to hidden parameters
are not used in both the final results and proofs. In this sense, we show a comparison of Theorem 3.1
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with previous results in regular MDPs in Table 2. Note that in Theorem 3.1, we have:

KS
V π ≤ KS

Qπ +KA
QπKS

π ≤
KS

R +KA
RKS

π

1− γ(KS
T +KA

T KS
π )

Specifically, the upper bound for KS
Q∗ in Corollary 3.2 recovers the results in (Asadi et al., 2018;

Gelada et al., 2019). If we assume the Lipschitz constants for state and action are the same, we get
Corollary E.1, which recovers the results in (Rachelson & Lagoudakis, 2010; Pirotta et al., 2015).
For regular MDPs, our results are more general compared to prior works as (1) we do not assume
that the Lipschitz constants for state and action are the same because this is usually not the case in
practice; (2) our theory applies to all Lipschitz policies rather than only the optimal policy.

E PROOFS AND MORE THEORY RESULTS

Using the generalized functions defined in Section 2, we can easily extend Bellman update rule to
HiP-MDPs:

Qn+1(s, a, ω(θ))← Rg(s, a, ω(θ)) + γ

∫
T̂g(s

′|s, a, ω(θ))V π
n (s′, ω(θ))ds′, (9)

where Qn+1 converges to Q∗ as n→∞.

Theorem 3.1.For a (KS
R,K

S
T ,K

A
R ,KA

T ,KΩ
R ,K

Ω
T )-Lipschitz HiP-MDP with a (KS

π ,K
Ω
π )-Lipschitz

policy π, if γ(KS
T +KS

πK
A
T ) < 1, the value function is Lipschitz continuous with respect to S&A

with constants bounded by:

KA
Qπ := sup

ω
sup
s

sup
a1,a2

|Q(s, a1, ω)−Q(s, a2, ω)|
dA(a1, a2)

≤ KA
R − γ(KA

RKS
T −KS

RK
A
T )

1− γ(KS
T +KS

πK
A
T )

KS
Qπ := sup

ω
sup
a

sup
s1,s2

|Q(s1, a, ω)−Q(s2, a, ω)|
dS(s1, s2)

≤ KS
R − γKS

π (K
S
RK

A
T −KA

RKS
T )

1− γ(KS
T +KS

πK
A
T )

KS
V π := sup

ω
sup
a

sup
s1,s2

|V (s1, ω)− V (s2, ω)|
dS(s1, s2)

≤ KS
Qπ +KA

QπKS
π .

Proof. The proof is mainly based on the Bellman update rule (9), the dual form of Wasserstein Metric
(Equation 2), and fixed point iteration.

Recall that:

Qn+1(s, a, ω(θ))← Rg(s, a, ω(θ)) + γ

∫
T̂g(s

′|s, a, ω(θ))V π
n (s′, ω(θ))ds′

Now let:

KA
Qπ,n+1 := sup

ω
sup
s

sup
a1,a2

|Qn+1(s, a1, ω)−Qn+1(s, a2, ω)|
dA(a1, a2)

≤ sup
ω

sup
s

sup
a1,a2

|R(s, a1, ω)−R(s, a2, ω)|
dA(a1, a2)

+

γ sup
ω

sup
s

sup
a1,a2

∣∣∣ ∫s′(T (s′|s, a1, ω)− T (s′|s, a2, ω))V π(s′, ω)ds′
∣∣∣

dA(a1, a2)

= KA
R + γ sup

ω
sup
s

sup
a1,a2

KS
V π

∣∣∣ ∫s′(T (s′|s, a1, ω)− T (s′|s, a2, ω))V
π(s′,ω)

KS
V π

ds′
∣∣∣

dA(a1, a2)

≤ KA
R + γ sup

ω
sup

f :KS
f ≤1

sup
s

sup
a1,a2

KS
V π

∣∣∣ ∫s′(T (s′|s, a1, ω)− T (s′|s, a2, ω))f(s′, ω)ds′
∣∣∣

dA(a1, a2)

≤ KA
R + γKS

V π,nK
A
T

(10)
The last inequality holds according to Equation 2.
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Similarly, we can get:

KS
Qπ := sup

ω
sup
a

sup
s1,s2

|Qn+1(s1, a, ω)−Qn+1(s2, a, ω)|
dS(s1, s2)

≤ sup
ω

sup
a

sup
s1,s2

|R(s1, a, ω)−R(s2, a, ω)|
dA(a1, a2)

+

γ sup
ω

sup
a

sup
s1,s2

∣∣∣ ∫s′(T (s′|s1, a, ω)− T (s′|s2, a, ω))V π(s′, ω)ds′
∣∣∣

dS(s1, s2)

= KS
R + γ sup

ω
sup
a

sup
s1,s2

KS
V π

∣∣∣ ∫s′(T (s′|s1, a, ω)− T (s′|s2, a, ω))V
π(s′,ω)

KS
V π

ds′
∣∣∣

dS(s1, s2)

≤ KS
R + γ sup

ω
sup

f :KS
f ≤1

sup
a

sup
s1,s2

KS
V π

∣∣∣ ∫s′(T (s′|s1, a, ω)− T (s′|s2, a, ω))f(s′, ω)ds′
∣∣∣

dS(s1, s2)

≤ KS
R + γKV π,nK

S
T

(11)

We need to further derive the upper bound of KV :

KS
V π := sup

ω
sup
s1,s2

|V (s1, ω)− V (s2, ω)|
dS(s1, s2)

= sup
ω

sup
s1,s2

|Q(s1, π(s1), ω)−Q(s2, π(s2), ω)|
dS(s1, s2)

≤ sup
ω

sup
s1,s2

|Q(s1, π(s1), ω)−Q(s1, π(s2), ω)|
dS(s1, s2)

+ sup
ω

sup
s1,s2

|Q(s1, π(s2), ω)−Q(s2, π(s2), ω)|
dS(s1, s2)

≤ KA
QKS

π +KS
Q

(12)
Plugging Eqn 12 into Eqn 10& Eqn 11, we get:

KA
Q,n+1 ≤ KA

R + γKA
T (KS

Q,n +KA
Q,nK

S
π ) (13)

KS
Q,n+1 ≤ KS

R + γKS
T (K

S
Q,n +KA

Q,nK
S
π ) (14)

By computing the fixed point of the recurrence, we get:

KA
Qπ = lim

n→∞
KA

Q,n+1 ≤
KA

R − γ(KA
RKS

T −KS
RK

A
T )

1− γ(KS
T +KS

πK
A
T )

, (15)

KS
Qπ = lim

n→∞
KS

Q,n+1 ≤
KS

R − γKS
π (K

S
RK

A
T −KA

RKS
T )

1− γ(KS
T +KS

πK
A
T )

. (16)

Corollary E.1. If we assume the Lipschitz constants for state and action are the same ( KA
R = KS

R =

KS,A
R ,KA

T = KS
T = KS,A

R = KS,A
T ):

|Rg(s1, a1, ω)−Rg(s2, a2, ω)| ≤ KS,A
R dS,A((s1, a1), (s2, a2))

W (Tg(·|s1, a1, ω), Tg(·|s2, a2, ω)) ≤ KS,A
T ds,a,

then:

KS,A
Qπ = KS

Qπ = KA
Qπ ≤

KS,A
R

1− γKS,A
T (1 +KS

π )

Proof. Let KA
R = KS

R = KS,A
R ,KA

T = KS
T = KS,A

R = KS,A
T in the bounds of Theorem 3.1.

Corollary 3.2. If the policy π is optimal and γKS
T < 1 ,then:

KS
Q∗ ≤

KS
R

1− γKS
T

, KA
Q∗ ≤

KA
R + γKS

RK
A
T − γKS

TK
A
R

1− γKS
T

.
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Proof. When the policy is optimal, we have (Asadi et al., 2018; Gelada et al., 2019):

|V π∗
(s1, ω)− V π∗

(s2, ω)| = |max
a∈A

Qπ∗
(s1, a, ω)−max

a∈A
Qπ∗

(s2, a, ω)|

≤ max
a∈A
|Qπ∗

(s1, a, ω)−Qπ∗
(s2, a, ω)|

Thus,

KS
V ≤ KS

Q = sup
ω

sup
a

sup
s1,s2

|Q(s1, a, ω)−Q(s2, a, ω)|
dS(s1, s2)

(17)

Plugging Eqn 17 into Eqn 10 and Eqn 11, we get:

KA
Q,n+1 ≤ KA

R + γKS
Q,nK

A
T (18)

KS
Q,n+1 ≤ KS

R + γKS
Q,nK

S
T (19)

First compute the fixed point of the recurrence of Eqn 19, we get:

KS
Q∗ = lim

n→∞
KS

Q,n+1 ≤
KS

R

1− γKS
T

(20)

Now plugging Eqn 20 back into Eqn 18:

KA
Q∗ = lim

n→∞
KA

Q,n+1 ≤ KA
R + γ

KS
R

1− γKS
T

KA
T =

KA
R + γKS

RK
A
T − γKS

TK
A
R

1− γKS
T

(21)

Definition E.2. Given a metric state space (S, dS), an action space A, and a metric hidden-parameter
space (Θ, dΘ), we define Fg as a collection of functions: Fg = {f : S × Θ 7→ S} distributed
according to g(f |a) where a ∈ A. We say that (FS

g , FΘ
g ) is a Lipschitz model class in HiP-MDPs if

KS
T := sup

f∈FS
g

KS,S
f , (22)

and
KΘ

T := sup
f∈FΘ

g

KΘ,S
f (23)

are finite.

The transition function associated with a Lipschitz model class then can be defined by:

T (s′|s, a, θ) =
∑
f

1(f(s, θ) = s′)g(f |a), (24)

And the generalized transition function associated with a Lipschitz model class would be:

Tg(s
′|s, a, ω) =

∫
θ

∑
f

1(f(s, θ) = s′)g(f |a)ω(θ)dθ (25)

We introduce the following two lemmas regarding Lipschitz model class (Asadi et al., 2018)(We also
include a definition in appendix):
Lemma E.3. (Asadi et al., 2018) A generalized transition function Tg induced by a Lipschitz model
class Fg and fixed (θ, a) is Lipschitz with a constant:

Kµ
T = KA,Θ

W,W (Tg) := sup
θ∈Θ

sup
a∈A

sup
µ1,µ2

W (Tg(·|µ1, a, θ), Tg(·|µ2, a, θ))

W (µ1, µ2)
≤ KS

T (26)

Lemma E.4. A generalized transition function Tg induced by a Lipschitz model class Fg and fixed
(s, a) is Lipschitz with a constant:

KΩ
T = KA,S

W,W (Tg) := sup
s∈S

sup
a∈A

sup
ω1,ω2

W (Tg(·|s, a, ω1), Tg(·|s, a, ω2))

W (ω1, ω2)
≤ KΘ

T (27)
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Intuitively, the above Lemmas give a bound on the differences in distributions an agent transitions to,
as a function of how different the distributions of states it transitions from are, or how different the
distributions of the hidden parameters are. It is theoretically pleasing that these bounds are given as
the Lipschitz constants for the corresponding differences between point distributions of either states
or hidden parameters.

Proof for Lemma E.4

Proof.

W (Tg(·|s, a, ω1), Tg(·|s, a, ω2)) = sup
h:KdS,R(h)≤1

∫
s′
(Tg(s

′|s, a, ω1)− Tg(s
′|s, a, ω2))h(s

′)ds′

= sup
h:KdS,R(h)≤1

∫
s′

∫
θ

T (s′|s0, a, θ)(ω1(θ)− ω2(θ))h(s
′)ds′dθ

= sup
h:KdS,R(h)≤1

∫
s′

∫
θ

∑
t

g(t|a)1(t(s0, θ) = s′)(ω1(θ)− ω2(θ))h(s
′)ds′dθ

= sup
h:KdS,R(h)≤1

∑
t

g(t|a)
∫
θ

∫
s′
1(t(s0, θ) = s′)(ω1(θ)− ω2(θ))h(s

′)ds′dθ

= sup
h:KdS,R(h)≤1

∑
t

g(t|a)
∫
θ

(ω1(θ)− ω2(θ))h(t(so, θ))dθ

≤
∑
t

g(t|a) sup
h:KdS,R(h)≤1

∫
θ

(ω1(θ)− ω2(θ))h(t(so, θ))dθ

= KΘ
T

∑
t

g(t|a) sup
h:KdS,R(h)≤1

∫
θ

(ω1(θ)− ω2(θ))
h(t(so, θ))

KΘ
T

dθ

≤ KΘ
T

∑
t

g(t|a) sup
q:KdS,R(q)≤1

∫
θ

(ω1(θ)− ω2(θ))q(so, θ)dθ

= KΘ
T

∑
t

g(t|a)W (ω1, ω2) = KΘ
T W (ω1, ω2)

(28)

Using Lemma E.3, we can derive the bound of the compounding error of dynamics prediction given
the estimation error ϵ in hidden parameter at test time (Theorem 4.1).

Theorem 4.1. Assuming the estimation for hidden parameter θ is bounded by ϵ, that is,
W (ω(θ), ω̂(θ)) ≤ ϵ, an learned accurate T̂g induced by a Lipschitz model class Fg with the Lipschitz
constant KΩ

T̂
and KS

T̂
, a fixed sequence of actions a0, · · · , an−1, and a start state distribution µ. Then

∀n ≥ 1:

ξ(n) := W (T̂n
g (·|µ, ω), T̂n

g (·|µ, ω̂)) ≤ KΩ
T̂
ϵ

n−1∑
i=0

(KS
T̂
)i, (29)

where T̂n
g (·|µ, ω)) := T̂g(·|T̂g(·|...T̂g(·|µ, a0, ω)..., an−2, ω), an−1, ω), and T̂n

g (·|µ, ω̂)) is defined
similarly.

Proof. We first derive the bound for one-step prediction error given Lemma E.3.
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ξ(1) := W (T̂g(·|µ, ω), T̂g(·|µ, ω̂))

:= sup
f

∫ ∫
(T̂ (s′|s, a0, ω)− T̂ (s′|s, a0, ω̂))f(s′)µ(s)dsds′

≤
∫

sup
f

∫
(T̂ (s′|s, a0, ω)− T̂ (s′|s, a0, ω̂))f(s′)ds′µ(s)ds

=

∫
W (T̂ (·|s, a0, ω), T̂ (·|s, a0, ω̂))µ(s)ds

≤
∫

KΩ
T̂
ϵµ(s)ds = KΩ

T̂
ϵ

(30)

Then, we can prove the bound for ξ(n):

ξ(n) := W (T̂n
g (·|µ, ω), T̂n

g (·|µ, ω̂))

≤W (T̂n
g (·|µ, ω), T̂n

g (·|T̂n−1
g (·|µ, ω̂), ω)) +W (T̂n

g (·|T̂n−1
g (·|µ, ω̂), ω), T̂n

g (·|µ, ω̂))

= W (T̂n
g (·|T̂n−1

g (·|µ, ω), ω), T̂n
g (·|T̂n−1

g (·|µ, ω̂), ω)) +W (T̂n
g (·|T̂n−1

g (·|µ, ω̂), ω), T̂n
g (·|T̂n−1

g (·|µ, ω̂), ω̂))

≤ KS
T̂
W (T̂n−1

g (·|µ, ω), T̂n−1
g (·|µ, ω̂)) +KΩ

T̂
ϵ

= KS
T̂
ξ(n− 1) +KΩ

T̂
ϵ ≤ KΩ

T̂
ϵ

n−1∑
i=0

(KS
T̂
)i

(31)
We can get the same results if we replace T̂n

g (·|T̂n−1
g (·|µ, ω̂), ω) with T̂n

g (·|T̂n−1
g (·|µ, ω), ω̂) in the

triangle inequality.

Lemma 4.2.Given a HiP-MDP with learned (KΩ
R̂
,KΩ

T̂
)-Lipschitz transition model T̂ , R̂, in Model

Transfer, the generalized value function is Lipschitz continuous with respect to Ω with a constant
bounded by:

KΩ
V π ≤ KΩ

R̂
+ γKΩ

Qπ + γKS
QπKΩ

T̂
.

Proof. Recall that:

V π
g (s) = Rg(s, a, ω(θ)) + γ

∫
s′
T̂g(s

′|s, a, ω(θ))Qπ
g (s, π(s), ω(θ))ds

′

Then we have:

KΩ
V π = sup

s∈S
sup
ω1,ω2

|V π(s, ω1(θ))− V π(s, ω2(θ))|
dΩ(ω1, ω2)

≤ sup
s∈S

sup
ω1,ω2

|R̂g(s, π(s), ω1(θ))− R̂g(s, π(s), ω2(θ))|
dΩ(ω1, ω2)

+γ sup
s∈S

sup
ω1,ω2

|
∫
s′1
T̂g(s

′
1|s, π(s), ω1(θ))Q

π
g (s

′
1, π(s), ω1(θ))ds

′
1 −

∫
s′2
T̂g(s

′
2|s, π(s), ω2(θ))Q

π
g (s

′
2, π(s), ω2(θ))ds

′
2|

dΩ(ω1, ω2)

= KΩ
R̂
+ γ sup

s∈S
sup
ω1,ω2

|
∫
s′1
T̂g(s

′
1|s, π(s), ω1)Q

π
g (s

′
1, π(s), ω1)ds

′
1 −

∫
s′2
T̂g(s

′
2|s, π(s), ω2)Q

π
g (s

′
2, π(s), ω2)ds

′
2|

dΩ(ω1, ω2)
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Recall that we quantify the distance between ω1(θ) and ω2(θ) using Wasserstein Metric W (ω1, ω2),
then

KΩ
V π = KΩ

R̂
+ γ sup

s∈S
sup
ω1,ω2

|
∫
s′1
T̂g(s

′
1|s, π(s), ω1)Q

π
g (s

′
1, π(s), ω1)ds

′
1 −

∫
s′2
T̂g(s

′
2|s, π(s), ω2)Q

π
g (s

′
2, π(s), ω2)ds

′
2|

W (ω1, ω2)

≤ KΩ
R̂
+ γ sup

s∈S
sup
ω1,ω2

|
∫
s′1
[T̂g(s

′
1|s, π(s), ω1)Q

π
g (s

′
1, π(s), ω1)− T̂g(s

′
1|s, π(s), ω1)Q

π
g (s

′
1, π(s), ω2)]ds

′
1|

W (ω1, ω2)

+ γ sup
s∈S

sup
ω1,ω2

|
∫
s′1
T̂g(s

′
1|s, π(s), ω1)Q

π
g (s

′
1, π(s), ω2)ds

′
1 −

∫
s′2
T̂g(s

′
2|s, π(s), ω2)Q

π
g (s

′
2, π(s), ω2)ds

′
2|

W (ω1, ω2)

≤ KΩ
R̂
+ γ sup

s∈S
sup
ω1,ω2

|
∫
s′1
T̂g(s

′
1|s, π(s), ω1)[Q

π
g (s

′
1, π(s), ω1)−Qπ

g (s
′
1, π(s), ω2)]ds

′
1|

W (ω1, ω2)

+ γ sup
s∈S

sup
ω1,ω2

|
∫
s′1
T̂g(s

′
1|s, π(s), ω1)Q

π
g (s

′
1, π(s), ω2)ds

′
1 −

∫
s′2
T̂g(s

′
2|s, π(s), ω2)Q

π
g (s

′
2, π(s), ω2)ds

′
2|

W (ω1, ω2)

≤ KΩ
R̂
+ γ sup

s∈S
sup
ω1,ω2

|
∫
s′1
T̂g(s

′
1|s, π(s), ω1)K

Ω
QπW (ω1, ω2)ds

′
1|

W (ω1, ω2)

+ γ sup
s∈S

sup
ω1,ω2

|
∫
s′1
T̂g(s

′
1|s, π(s), ω1)Q

π
g (s

′
1, π(s), ω2)ds

′
1 −

∫
s′2
T̂g(s

′
2|s, π(s), ω2)Q

π
g (s

′
2, π(s), ω2)ds

′
2|

W (ω1, ω2)

= KΩ
R̂
+γKΩ

Qπ + γ sup
s∈S

sup
ω1,ω2

|
∫
s′1
T̂g(s

′
1|s, π(s), ω1)Q

π
g (s

′
1, π(s), ω2)ds

′
1 −

∫
s′2
T̂g(s

′
2|s, π(s), ω2)Q

π
g (s

′
2, π(s), ω2)ds

′
2|

W (ω1, ω2)

= KΩ
R̂
+ γKΩ

Qπ + γ sup
s∈S

sup
ω1,ω2

|Es′1∼T̂g(s′1|s,π(s),ω1)
Qπ

g (s
′
1, π(s), ω2)− Es′2∼T̂g(s′2|s,π(s),ω2)

Qπ
g (s

′
2, π(s), ω2)|

W (ω1, ω2)

≤ KΩ
R̂
+ γKΩ

Qπ + γ sup
s∈S

sup
ω1,ω2

KS
QπW (T̂g(·|s, π(s), ω1), T̂g(·|s, π(s), ω2))

W (ω1, ω2)

≤ KΩ
R̂
+ γKΩ

Qπ + γKS
QπKΩ

T̂

Theorem 4.3.Given a HiP-MDP with learned (KS
R̂
,KS

T̂
,KA

R̂
,KA

T̂
,KΩ

R̂
,KΩ

T̂
)-Lipschitz transition

model T̂ , R̂, in Model Transfer, if γ(KS
T +KS

πK
A
T ) < 1, the generalized value function corre-

sponding to the KS
π -Lipschitz policy π(a|s) is Lipschitz continuous with respect to Ω with a constant

bounded by:

KΩ
V π ≤

KΩ
R + γKS

QπKΩ
T

1− γ
. (32)

Proof. By further assuming the Lipschitz continuity of dynamics & policy in Lemma 4.2, we can get
the result bound leveraging the dual form of Wasserstein Metric (Equation 2), triangle inequality, and
computing the fixed point of recurrence.

Recall that:

Qn+1(s, a, ω(θ))← Rg(s, a, ω(θ)) + γ

∫
T̂g(s

′|s, a, ω(θ))V π
n (s′, ω(θ))ds′

V π
n (s′, ω(θ)) = Qπ

n(s
′, a, ω(θ)),where a ∼ π(s)
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It is well known that as n→∞, Qn+1 converges to Q∗, now let:

KQ,n+1 = sup
s∈S

sup
a∈A

sup
ω1,ω2

|Qn+1(s, a, ω1(θ))−Qn+1(s, a, ω2(θ))|
dω(ω1, ω2)

≤ sup
s∈S

sup
a∈A

sup
ω1,ω2

|R̂g(s, a, ω1(θ))− R̂g(s, a, ω2(θ))|
dω(ω1, ω2)

+γ sup
s∈S

sup
a∈A

sup
ω1,ω2

|
∫
s′1
T̂g(s

′
1|s, a, ω1(θ))Q

π
n(s

′
1, a, ω1(θ))ds

′
1 −

∫
s′2
T̂g(s

′
2|s, a, ω2(θ))Q

π
n(s

′
2, a, ω2(θ))ds

′
2|

dω(ω1, ω2)

= KΩ
R̂
+ γ sup

s∈S
sup
a∈A

sup
ω1,ω2

|
∫
s′1
T̂g(s

′
1|s, a, ω1)Q

π
n(s

′
1, a, ω1)ds

′
1 −

∫
s′2
T̂g(s

′
2|s, a, ω2)Q

π
n(s

′
2, a, ω2)ds

′
2|

dω(ω1, ω2)
(33)

Recall that we quantify the distance between ω1(θ) and ω2(θ) using Wasserstein Metric W (ω1, ω2),
then

KQ,n+1 = KΩ
R̂
+ γ sup

s∈S
sup
a∈A

sup
ω1,ω2

|
∫
s′1
T̂g(s

′
1|s, a, ω1)Q

π
n(s

′
1, a, ω1)ds

′
1 −

∫
s′2
T̂g(s

′
2|s, a, ω2)Q

π
n(s

′
2, a, ω2)ds

′
2|

W (ω1, ω2)

≤ KΩ
R̂
+ γ sup

s∈S
sup
a∈A

sup
ω1,ω2

|
∫
s′1
[T̂g(s

′
1|s, a, ω1)Q

π
n(s

′
1, a, ω1)− T̂g(s

′
1|s, a, ω1)Q

π
n(s

′
1, a, ω2)]ds

′
1|

W (ω1, ω2)

+ γ sup
s∈S

sup
a∈A

sup
ω1,ω2

|
∫
s′1
T̂g(s

′
1|s, a, ω1)Q

π
n(s

′
1, a, ω2)ds

′
1 −

∫
s′2
T̂g(s

′
2|s, a, ω2)Q

π
n(s

′
2, a, ω2)ds

′
2|

W (ω1, ω2)

≤ KΩ
R̂
+ γ sup

s∈S
sup
a∈A

sup
ω1,ω2

|
∫
s′1
T̂g(s

′
1|s, a, ω1)[Q

π
n(s

′
1, a, ω1)−Qπ

n(s
′
1, a, ω2)]ds

′
1|

W (ω1, ω2)

+ γ sup
s∈S

sup
a∈A

sup
ω1,ω2

|
∫
s′1
T̂g(s

′
1|s, a, ω1)Q

π
n(s

′
1, a, ω2)ds

′
1 −

∫
s′2
T̂g(s

′
2|s, a, ω2)Q

π
n(s

′
2, a, ω2)ds

′
2|

W (ω1, ω2)

≤ KΩ
R̂
+ γ sup

s∈S
sup
a∈A

sup
ω1,ω2

|
∫
s′1
T̂g(s

′
1|s, a, ω1)KQ,nW (ω1, ω2)ds

′
1|

W (ω1, ω2)

+ γ sup
s∈S

sup
a∈A

sup
ω1,ω2

|
∫
s′1
T̂g(s

′
1|s, a, ω1)Q

π
n(s

′
1, a, ω2)ds

′
1 −

∫
s′2
T̂g(s

′
2|s, a, ω2)Q

π
n(s

′
2, a, ω2)ds

′
2|

W (ω1, ω2)

= KΩ
R̂
+ γKQ,n + γ sup

s∈S
sup
a∈A

sup
ω1,ω2

|
∫
s′1
T̂g(s

′
1|s, a, ω1)Q

π
n(s

′
1, a, ω2)ds

′
1 −

∫
s′2
T̂g(s

′
2|s, a, ω2)Q

π
n(s

′
2, a, ω2)ds

′
2|

W (ω1, ω2)

= KΩ
R̂
+ γKQ,n + γ sup

s∈S
sup
a∈A

sup
ω1,ω2

|Es′1∼T̂g(s′1|s,a,ω1)
Qπ

n(s
′
1, a, ω2)− Es′2∼T̂g(s′2|s,a,ω2)

Qπ
n(s

′
2, a, ω2)|

W (ω1, ω2)

≤ KΩ
R̂
+ γKQ,n + γ sup

s∈S
sup
a∈A

sup
ω1,ω2

KS
QπW (T̂g(·|s, a, ω1), T̂g(·|s, a, ω2))

W (ω1, ω2)

≤ KΩ
R̂
+ γKQ,n + γKS

QπKΩ
T̂

(34)
Recall the bound for (KS

R̂
,KS

T̂
)-lipschitz MDP:

KS
Qπ := sup

ω
sup
a∈A

sup
s1,s2

|Q(s1, a, ω(θ))−Q(s2, a, ω(θ))|
ds(s1, s2)

≤
KS

R̂
− γ(KS

R̂
KA

T̂
−KA

R̂
KS

T̂
)

1− γ(KA
T̂
+KS

πK
S
T̂
)

.

Equivalently:

KQ,n+1 ≤
n∑

i=0

γiKΩ
R̂
+

n+1∑
i=1

γiKS
Qπ ·KΩ

T̂
+ γnKQ,0 (35)
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By computing the limit of both sides:

KΩ
Qπ = lim

n→∞
KQ,n+1 ≤ lim

n→∞

n∑
i=0

γiKΩ
R̂
+ lim

n→∞

n+1∑
i=1

γiKS
Qπ ·KΩ

T̂
+ lim

n→∞
γnKQ,0

=
KΩ

R̂

1− γ
+

γKS
Qπ ·KΩ

T̂

1− γ
+ 0

From Lemma 4.2 we have:
KΩ

V π ≤ KΩ
R̂
+ γKΩ

Qπ + γKS
QπKΩ

T̂

Thus,

KΩ
V π ≤

KΩ
R + γKS

QπKΩ
T

1− γ

Lemma 4.4. Given a (KS
R,K

S
T ,K

Ω
R ,K

Ω
T )-Lipschitz HiP-MDP, for the optimal policy π∗,

|V π∗
(s, ω1(θ))− V π∗

(s, ω2(θ))| ≤ maxa∈A |Qπ∗
(s, a, ω1(θ))−Qπ∗

(s, a, ω2(θ))|.

Proof.

|V π∗
(s, ω1(θ))− V π∗

(s, ω2(θ))| = |max
a∈A

Qπ∗
(s, a, ω1(θ))−max

a∈A
Qπ∗

(s, a, ω2(θ))|

≤ max
a∈A
|Qπ∗

(s, a, ω1(θ))−Qπ∗
(s, a, ω2(θ))|

Lemma 4.5.Given a HiP-MDP with learned (KS
R̂
,KS

T̂
,KΩ

R̂
,KΩ

T̂
)-Lipschitz transition model T̂ , R̂,

and the optimal policy π̂∗(a|s) for T̂ and R̂, starting from state distribution µ, the expected discounted
reward difference induced by hidden parameter estimation error ϵ is bounded by:

|Jµ
π∗ − Jµ

π̂∗ | ≤
KΩ

R̂

1− γ
· ϵ+

γKS
R̂
KΩ

T̂

(1− γ)(1− γKS
T̂
)
· ϵ, (36)

if γKS
T̂
< 1.

Proof. Recall that:

Jµ
π :=

∫
s

V π
g (s, ω(θ))µ(s)ds.

We have:

KΩ
J = sup

s
sup
ω1,ω2

∫
s
|V π∗

(s, ω1(θ))− V π∗
(s, ω2(θ))|µ(s)ds

d(ω1(θ), ω2(θ))

≤ sup
s

sup
a

sup
ω1,ω2

∫
s
|Qπ∗

(s, a, ω1(θ))−Qπ∗
(s, a, ω2(θ))|µ(s)ds

d(ω1(θ), ω2(θ))

≤ KΩ
Qπ∗ = lim

n→∞
KQ,n+1

≤ lim
n→∞

n∑
i=0

γiKΩ
R̂
+ lim

n→∞

n+1∑
i=1

γiKS
Q∗ ·KΩ

T̂
+ lim

n→∞
γnKQ,0

=
KΩ

R̂

1− γ
+

γKS
Q∗ ·KΩ

T̂

1− γ
+ 0

From Corollary 3.2, we have:

KS
Q∗ ≤

KS
R

1− γKS
T
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Thus,

KΩ
J ≤

KΩ
R̂
(1− γKS

T̂
) + γKS

R̂
KΩ

T̂

(1− γ)(1− γKS
T̂
)

Claim 4.6. Given a linear and deterministic transition function and reward function, the bound
derived in Theorem 4.1 & Lemma 4.5 are tight.

Proof. Assume a linear transition function T for a new task with hidden parameter θ defined as:

T (s, a) = As+Ba+ Cθ, (37)

And a reward function defined as:

R(s, a) = Ds+ Ea+ Fθ. (38)

Assume there’s an estimation error ϵ for θ, then the transition function and reward function becomes:

T̂ (s, a) = As+Ba+ C(θ + ϵ), (39)

R̂(s, a) = Ds+ Ea+ F (θ + ϵ), (40)

First observe that:
∀s, a |T (s, a)− T̂ (s, a)| = Cϵ, (41)

And that for n = 2:

∀s |T (T (s, a0), a1)− T̂ (T̂ (s, a0), a1)| = |A(C(ϵ+ θ)− Cθ) +Ba1 −Ba1 + C(ϵ+ θ)− Cθ|

= |ACϵ+ Cϵ| = Cϵ

1∑
i=0

Ai

(42)
More generally, for n step compounding error of dynamics prediction Tn and T̂n, given a fixed
sequence of actions a0, a1, · · · , an:

∀s |Tn(s, an)− T̂n(s, an)| = Cϵ

n∑
i=0

Ai (43)

Thus, the bound in Theorem 4.1 is tight.

Now consider the state s = 0 and the action space only consists of one action a = 0 (thus the policy
is optimal), we can calculate the value of s predicted with T̂ and R̂:

V̂ (s = 0) = R̂(0) + γ
(
R̂(0 + C(θ + ϵ)) + γ

(
R̂(AC(θ + ϵ) + C(θ + ϵ)) + · · ·

))
= F (θ + ϵ)

∞∑
j=0

γj +DC(θ + ϵ)

∞∑
n=1

γn
n−1∑
i=0

Ai

=
F (θ + ϵ)

1− γ
+

DCγ(θ + ϵ)

(1− γ)(1− γA)

=
(F (1− γA) +DCγ)(θ + ϵ)

(1− γ)(1− γA)

(44)

Thus:

|V (s = 0)− V̂ (s = 0)| = F (1− γA) +DCγ

(1− γ)(1− γA)
· ϵ (45)

The result matches the bound derived in Lemma 4.5. (In deterministic cases, we assume we directly
estimate the value of θ, so KΩ

T & KΩ
R becomes KΘ

T & KΘ
R in this case and the Wasserstein distance

becomes the L1 distance |θ̂ − θ|.)
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Lemma 5.1. Given a HiP-MDP with learned KΩ
π -Lipschitz joint policy π(a|s, ω(θ)), in Policy

Transfer, the generalized value function with respect to Ω with a constant bounded by:

KΩ
V π ≤ KΩ

Qπ +KA
QπKΩ

π .

Proof. Given a new test task, recall that:

V π(·|ω)
g (s, ϕ) = Qπ(·|ω)

g (s, π(s, ω), ϕ)

where we use ϕ to denote the true distribution ϕ(θ) over hidden parameter for the current task (which
should be a Dirac δ-function in practice) of the environment. Then we have:

KΩ
V π = sup

s
sup
ϕ

sup
ω1,ω2

|V π(·|ω1)
g (s, ϕ)− V

π(·|ω2)
g (s, ϕ)|

d(ω1, ω2)

≤ sup
s

sup
ϕ

sup
ω1,ω2

|Qπ(·|ω1)
g (s, π(s′, ω1), ϕ)−Q

π(·|ω2)
g (s, π(s′, ω2), ϕ)|

d(ω1, ω2)

≤ sup
s

sup
ϕ

sup
ω1,ω2

|Qπ(·|ω1)
g (s, π(s, ω1), ϕ(θ))−Q

π(·|ω2)
g (s, π(s, ω1), ϕ(θ))|

d(ω1, ω2)

+
|Qπ(·|ω2)

g (s, π(s, ω1), ϕ(θ))−Q
π(·|ω2)
g (s, π(s, ω2), ϕ(θ))|

d(ω1, ω2)

≤ sup
s

sup
ϕ

sup
ω1,ω2

KΩ
Qπd(ω1, ω2)

d(ω1, ω2)
+

KA
Qπd(π(ω1), π(ω2))ds

′

d(ω1, ω2)

≤ KΩ
Qπ +

KA
QπKΩ

π d(ω1, ω2)

d(ω1, ω2)

≤ KΩ
Qπ +KA

QπKΩ
π

Theorem 5.2. Given a (KA
R ,KA

T ,KS
R,K

S
T )-Lipschitz HiP-MDP, in Policy Transfer, the generalized

value function corresponding to the pretrained (KS
π ,K

Ω
π )-Lipschitz joint policy π(a|s, ω(θ)), if

γ(KS
T +KS

πK
A
T ) < 1, is Lipschitz continuous with respect to Ω with a constant bounded by

KΩ
V π ≤

KΩ
π K

A
Qπ

1− γ
. (46)

Proof. Similar to model transfer, if we further assume the Lipschitz continuity of dynamics &
policy in Lemma 5.1, we can get the result bound leveraging the dual form of Wasserstein Metric
(Equation 2), triangle inequality, and computing the fixed point of recurrence.

Recall that:

Q(s, π(s, ω), ϕ)← Rg(s, π(s, ω), ϕ) + γ

∫
T̂g(s

′|s, π(s, ω), ϕ)V π(s′, ϕ)ds′
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KΩ
Qπ = sup

s
sup
ϕ

sup
ω1,ω2

|Qπ(·|ω1)
n+1 (s, π(s, ω1), ϕ)−Q

π(·|ω2)
n+1 (s, π(s, ω2), ϕ)|

d(ω1, ω2)

≤ sup
s

sup
ϕ

sup
ω1,ω2

|Qπ(·|ω1)
n+1 (s, π(s, ω1), ϕ)−Q

π(·|ω1)
n+1 (s, π(s, ω2), ϕ)|

d(ω1, ω2)
+

sup
s

sup
ϕ

sup
ω1,ω2

|Qπ(·|ω1)
n+1 (s, π(s, ω2), ϕ)−Q

π(·|ω2)
n+1 (s, π(s, ω2), ϕ)|

d(ω1, ω2)

≤ sup
s

sup
ϕ

sup
ω1,ω2

|Qπ(·|ω1)
n+1 (s, π(s, ω1), ϕ)−Q

π(·|ω1)
n+1 (s, π(s, ω2), ϕ)|

d(π(·|ω1), π(·|ω2))
· d(π(·|ω1), π(·|ω2))

d(ω1, ω2)
+

sup
s

sup
ϕ

sup
ω1,ω2

|Qπ(·|ω1)
n+1 (s, π(s, ω2), ϕ)−Q

π(·|ω2)
n+1 (s, π(s, ω2), ϕ)|

d(ω1, ω2)

≤KA
QπKΩ

π + sup
s

sup
ϕ

sup
ω1,ω2

|Qπ(·|ω1)
n+1 (s, π(s, ω2), ϕ)−Q

π(·|ω2)
n+1 (s, π(s, ω2), ϕ)|

d(ω1, ω2)
(47)

Now let:

K∗
Qπ,n+1 = sup

s
sup
a

sup
ϕ

sup
ω1,ω2

|Qπ(·|ω1)
n+1 (s, a, ϕ)−Q

π(·|ω2)
n+1 (s, a, ϕ)|

d(ω1, ω2)

≤ 0 + γ · sup
s

sup
a

sup
ϕ

sup
ω1,ω2

∫
s′
Tg(s

′|s, a, ϕ(θ))|Qπ(·|ω1)
n (s′, π(s′, ω1), ϕ)−Q

π(·|ω2)
n (s′, π(s′, ω2), ϕ)|ds′

d(ω1, ω2)

≤ γ · sup
s

sup
a

sup
ϕ

sup
ω1,ω2

∫
s′
Tg(s

′|s, a, ϕ)|Qπ(·|ω1)
n (s′, π(s′, ω1), ϕ)−Q

π(·|ω2)
n (s′, π(s′, ω1), ϕ)|ds′

d(ω1, ω2)

+

∫
s′
Tg(s

′|s, a, ϕ)|Qπ(·|ω2)
n (s′, π(s′, ω1), ϕ)−Q

π(·|ω2)
n (s′, π(s′, ω2), ϕ)|ds′

d(ω1, ω2)

≤ γ · sup
s

sup
a

sup
ϕ

sup
ω1,ω2

∫
s′
Tg(s

′|s, a, ϕ)K∗
Qπ,nd(ω1, ω2)ds

′

d(ω1, ω2)

+

∫
s′
Tg(s

′|s, a, ϕ)KA
Qπd(π(ω1), π(ω2))ds

′

d(ω1, ω2)

≤ γ · sup
s

sup
a

sup
ϕ

sup
ω1,ω2

∫
s′
Tg(s

′|s, a, ϕ)K∗
Qπ,nd(ω1, ω2)ds

′

d(ω1, ω2)
+

∫
s′
Tg(s

′|s, a, ϕ)KA
QπKΩ

π d(ω1, ω2)ds
′

d(ω1, ω2)

≤ γ(K∗
Qπ,n +KA

QπKΩ
π )

Equivalently:

K∗
Qπ,n+1 ≤ γnK∗

Qπ,0 +

n+1∑
i=1

γiKA
QπKΩ

π

Computing the limit of both sides:

K∗
Qπ = lim

n→∞
K∗

Qπ,n+1 ≤ lim
n→∞

γnK∗
Qπ,0 + lim

n→∞

n+1∑
i=1

γiKA
QπKΩ

π

= 0 +
γKA

QπKΩ
π

1− γ

Plugging the results back in to Equation 47, we have:

KΩ
V π = KΩ

Qπ ≤
KA

QπKΩ
π

1− γ
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Lemma 5.3. Given a (KA
R ,KA

T ,KS
R,K

S
T )-Lipschitz HiP-MDP, a pretrained KΩ

π -Lipschitz optimal
joint policy π(a|s, ω(θ)), starting from state distribution µ, the expected discounted reward difference
induced by hidden parameter estimation error ϵ is bounded by:

|Jµ
π∗ − Jµ

π | ≤
γKΩ

π (K
A
R + γKS

RK
A
T − γKS

TK
A
R )

(1− γ)(1− γKS
T )

· ϵ, (48)

if γKS
T ≤ 1.

Proof. When the policy is optimal, we have:

KΩ
Qπ,n+1 = sup

s
sup
a

sup
ϕ

sup
ω1,ω2

|Qπ(·|ω1)
n+1 (s, a, ϕ)−Q

π(·|ω2)
n+1 (s, a, ϕ)|

d(ω1, ω2)

≤ 0 + γ · sup
s

sup
a

sup
ϕ

sup
ω1,ω2

∫
s′
Tg(s

′|s, a, ϕ(θ))|Qπ(·|ω1)
n (s′, π(s′, ω1), ϕ)−Q

π(·|ω2)
n (s′, π(s′, ω2), ϕ)|ds′

d(ω1, ω2)

≤ γ · sup
s

sup
a

sup
ϕ

sup
ω1,ω2

∫
s′
Tg(s

′|s, a, ϕ)|Qπ(·|ω1)
n (s′, π(s′, ω1), ϕ)−Q

π(·|ω2)
n (s′, π(s′, ω1), ϕ)|ds′

d(ω1, ω2)

+

∫
s′
Tg(s

′|s, a, ϕ)|Qπ(·|ω2)
n (s′, π(s′, ω1), ϕ)−Q

π(·|ω2)
n (s′, π(s′, ω2), ϕ)|ds′

d(ω1, ω2)

≤ γ · sup
s

sup
a

sup
ϕ

sup
ω1,ω2

∫
s′
Tg(s

′|s, a, ϕ)KQπ,nd(ω1, ω2)ds
′

d(ω1, ω2)

+

∫
s′
Tg(s

′|s, a, ϕ)KA
Qπd(π(ω1), π(ω2))ds

′

d(ω1, ω2)

≤ γ · sup
s

sup
a

sup
ϕ

sup
ω1,ω2

∫
s′
Tg(s

′|s, a, ϕ)KQπ,nd(ω1, ω2)ds
′

d(ω1, ω2)
+

∫
s′
Tg(s

′|s, a, ϕ)KA
QπKΩ

π d(ω1, ω2)ds
′

d(ω1, ω2)

≤ γ(KΩ
Qπ,n +KA

QπKΩ
π )

Equivalently:

KΩ
Qπ,n+1 ≤ γnKΩ

Qπ,0 +

n+1∑
i=1

γiKA
QπKΩ

π

Computing the limit of both sides:

KΩ
Qπ = lim

n→∞
KQπ,n+1 ≤ lim

n→∞
γnKΩ

Qπ,0 + lim
n→∞

n+1∑
i=1

γiKA
QπKΩ

π

= 0 +
γKA

QπKθ
π

1− γ

If the policy is optimal, we have:

|V π(ω1)(s, ϕ(θ))− V π(ω2)(s, ϕ(θ))| ≤|max
a

Qπ(ω1)(s, a, ϕ(θ))−max
a

Qπ(ω2)(s, a, ϕ(θ))|

≤max
a
|Qπ(ω1)(s, a, ϕ(θ))−Qπ(ω2)(s, a, ϕ(θ))|

Then for the Lipschitz constant of the expected return function, we have:

KΩ
J = sup

s
sup
ϕ

sup
ω1,ω2

∫
s
|V π(ω1)(s, ϕ(θ))− V π(ω2)(s, ϕ(θ))|µ(s)ds

d(ω1(θ), ω2(θ))

≤ sup
s

sup
a

sup
ϕ

sup
ω1,ω2

∫
s
|Qπ(ω1)(s, a, ϕ(θ))−Qπ(ω2)(s, a, ϕ(θ))|µ(s)ds

d(ω1(θ), ω2(θ))

= KΩ
Qπ
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Using the results from Corollary 3.2, we get:

KΩ
J ≤

γKΩ
π (K

A
R + γKS

RK
A
T − γKS

TK
A
R )

(1− γ)(1− γKS
T )

Claim 5.4. Given a linear and deterministic transition function, reward function and policy, the
bounds derived in Lemma 5.3 are tight.

Proof. Assume a linear transition function T for a new task defined as:

T (s, a) = As+Ba, (49)

a reward function defined as:
R(s, a) = Ds+ Ea, (50)

And the optimal policy corresponding to hidden parameter θ defined as:

π(·) = Hθ (51)

Assume there’s an estimation error ϵ for θ, then the policy becomes:

π(·) = H(θ + ϵ), (52)

Now consider the state s = 0, we can calculate the value of s predicted with T , R and π̂:

V̂ (s = 0) = R(0) + γ
(
DBH(θ + ϵ) + EH(θ + ϵ) + γ

(
DABH(θ + ϵ) +DBH(θ + ϵ) + EH(θ + ϵ) + · · ·

))
= EH(θ + ϵ)

∞∑
j=1

+DBH(θ + ϵ)

∞∑
n=1

γn
n−1∑
i=0

Ai +R(0)

=
(γEH

1− γ
+

DBHγ

(1− γ)(1− γA)

)
(θ + ϵ) +R(0)

(53)
Thus:

|V̂ (s = 0)− V (s = 0)| =
(γEH

1− γ
+

DBHγ

(1− γ)(1− γA)

)
ϵ

=
γH(E − γAE + γBD)

(1− γ)(1− γA)
· ϵ

(54)

The result matches the bound derived in Lemma 5.3. (In deterministic cases, we assume we directly
estimate the value of θ, so KΩ

π becomes KΘ
π in this case and the Wasserstein distance becomes the

L1 distance |θ̂ − θ|.)

F FURTHER CLAIM ABOUT THE ASSUMPTION γKY
X < 1

Similar assumptions have been made in most of previous papers discussing Lipschitz continuity in
RL (Rachelson & Lagoudakis, 2010; Pirotta et al., 2015; Asadi et al., 2018; Gelada et al., 2019).
Here, we make the following claim:
Claim F.1. When a HiP-MDP has a fixed horizon N , the assumption that γ(KS

T +KS
πK

A
T ) < 1 and

the assumption (when the policy is optimal) γKS
T < 1 are both unnecessary.

Proof.

KS
V = sup

ω
sup
s1,s2

|V (s1, ω)− V (s2, ω)|
dS(s1, s2)

= sup
ω

sup
s1,s2

|
∑N

i=0 γ
i(R1 −R2)|

dS(s1, s2)

Firstly, if the agent is at the last step N of one episode:

KS
V = sup

ω
sup
s1,s2

|
∑0

i=0 γ
i(R1 −R2)|

dS(s1, s2)
≤ KS

R
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If the agent is at step N − 1:

KS
V = sup

ω
sup
s1,s2

|
∑1

i=0 γ
i(R1 −R2)|

dS(s1, s2)

≤ sup
ω

sup
s1,s2

|R(s1, π(s1), ω)−R(s2, π(s2), ω)|+ γ|R(s′1, π(s
′
1), ω)−R(s′2, π(s

′
2), ω)|

dS(s1, s2)

≤ sup
ω

sup
s1,s2

|R(s1, π(s1), ω)−R(s2, π(s1), ω)|+ |R(s2, π(s1), ω)−R(s2, π(s2), ω)|
dS(s1, s2)

+γ sup
ω

sup
s1,s2

|R(s′1, π(s
′
1), ω)−R(s′2, π(s

′
2), ω)|

dS(s1, s2)

≤ KS
R +KA

RKS
π + γ sup

ω
sup
s1,s2

|R(s′1, π(s
′
1), ω)−R(s′2, π(s

′
2), ω)|

dS(s1, s2)

≤ KS
R +KA

RKS
π + γ sup

ω
sup
s1,s2

|R(s′1, π(s
′
1), ω)−R(s′2, π(s

′
1), ω)|+ |R(s′2, π(s

′
1), ω)−R(s′2, π(s

′
2), ω)|

dS(s1, s2)

≤ KS
R +KA

RKS
π + γ(KS

R +KA
RKS

π ) sup
ω

sup
s1,s2

|T (s1, π(s1), ω)− T (s2, π(s2), ω)|
dS(s1, s2)

≤ KS
R +KA

RKS
π + γ(KS

R +KA
RKS

π )(K
S
T +KA

T KS
π )

If the agent is at step N − 2, similarly, we have:

KS
V ≤ KS

R +KA
RKS

π + γ(KS
R +KA

RKS
π )(K

S
T +KA

T KS
π ) + γ2(KS

R +KA
RKS

π )(K
S
T +KA

T KS
π )

2

By induction, if the agent is at step N − n, we have:

KS
V ≤ (KS

R +KA
RKS

π ) ·
1− γn(KS

T +KA
T KS

π )
n

1− γ(KS
T +KA

T KS
π )

Thus, the assumption that γ(KS
T +KS

πK
A
T ) < 1 is unnecessary.

Similarly, when the policy is optimal, at step N − 1:

KS
V = sup

ω
sup
s1,s2

|
∑1

i=0 γ
i(R1 −R2)|

dS(s1, s2)

≤ sup
ω

sup
a

sup
s1,s2

|R(s1, a, ω)−R(s2, a, ω)|+ γ|R(s′1, a, ω)−R(s′2, a, ω)|
dS(s1, s2)

≤ KS
R + γ sup

ω
sup
a

sup
s1,s2

|R(s′1, a, ω)−R(s′2, a, ω)|
dS(s1, s2)

≤ KS
R + γKS

R sup
ω

sup
a

sup
s1,s2

|T (s1, a, ω)− T (s2, a, ω)|
dS(s1, s2)

≤ KS
R + γKS

RK
S
T

At step N − n, we have:

KS
V ≤ KS

R ·
1− γn(KS

T )
n

1− γKS
T

Thus, the assumption that γKS
T < 1 is unnecessary.

Intuitively, for tasks with infinite horizons, the assumption requires that the future states generated by
close states are not too divergent. The threshold of “divergent” depends on how farsighted the agent
is.

G APPLICATIONS OF HIP-MDPS

HiP-MDP is an important setting widely used in recent meta RL papers. It provides a natural
testbed for meta/lifelong RL algorithms as the difference between tasks can be controlled by a low-
dimensional latent vector. A commonly-used meta-RL benchmark (almost in every recent meta-RL
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papers) creates a set of tasks by changing the environmental parameters (e.g. mass, damping) (Lee
et al., 2020; Raileanu et al., 2020; Fu et al., 2022) or reward functions (e.g. target position, target
velocity) (Rakelly et al., 2019; Zintgraf et al., 2020) of mujoco-simulated robots. Moreover, in
real-world robotic applications, we want the robot to learn a policy that is robust to small dynamics
changes like unexpected perturbations. Then one of the solutions is to let the agent pretrain over a set
of HiP-MDPs considering the possible dynamics changes (Nagabandi et al., 2019).
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