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Abstract

Provenance-based intrusion detection is an increasingly popular application of
graphical machine learning in cybersecurity. where system activities are modeled
as provenance graphs to capture causality and correlations among potentially
malicious actions. Graph Neural Networks (GNNs) have demonstrated strong
performance in this setting. However, traditional statically-provisioned GNN
inference architectures fall short in meeting two crucial demands of intrusion
detection: (1) maintaining consistently low detection latency, and (2) handling
highly irregular and bursty workloads. To holistically address these challenges,
we present GraphFaaS, a serverless architecture tailored for GNN-based intrusion
detection. GraphFaaS leverages the elasticity and agility of serverless computing
to dynamically scale the GNN inference pipeline. We parallelize and adapt GNN
workflows to a serverless environment, ensuring that the system can respond
in real time to fluctuating workloads. By decoupling compute resources from
static provisioning, GraphFaaS delivers stable inference latency, which is critical
for dependable intrusion detection and timely incident response in cybersecurity
operations. Preliminary evaluation shows GraphFaaS reduces average detection
latency by 85% and coefficient of variation (CV) by 64% compared to the baseline.

1 Introduction

Graph-based intrusion detection has emerged as a critical ap-
plication of graph analysis in cybersecurity. In this paradigm,

system behaviors recorded in audit logs are transformed into :q:g 104 4

provenance graphs, where nodes represent system entities ¢

(e.g., processes, files, network nodes), and edges represent %

system-level events (e.g., file read/write, process creation). &

These graphs provide a natural way to model the causal and 5 19’1

temporal relationships underlying cyberattacks and anoma- §

lous behavior. Recently, Graph Neural Networks (GNNs) PP P P S S
have demonstrated strong promise in this domain by learning ¥ o @ o o g
complex patterns that enable context-aware intrusion detec- Time

tion. However, existing GNN inference architectures struggle
to scale in this arena due to two unique requirements: (1) workload over time in the DARPA
the demand for stable and low detection latency, and (2) in-
. . I . TC dataset [9]
herently irregular and bursty workloads. First, in intrusion
detection systems, it is particularly crucial for GNN inference to maintain stability and low latency.
If the inference time is too long, there is a high risk of missing the window to mitigate real attacks,
potentially leading to irreversible consequences. Therefore, ensuring fast and consistent inference

Figure 1: Fluctuations in detection
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performance is essential for effective threat response. Second, such systems often face unstable and
bursty workloads (Figure[I]), while malicious activities account for only a small fraction of overall
network behavior, leading to highly unpredictable and sporadic patterns in the analysis workload.

Serverless design offers advantages in handling bursty workload and maintaining consistent low
detection latency. A serverless system is a cloud model where code runs on-demand without managing
servers. It provides a cost-efficient pay-per-use model with no charges for idle resources, while
scaling instantly and seamlessly to handle traffic spikes. Additionally, it enables faster development
through an event-driven model and ensures finer-grained resource utilization, making it especially
well-suited for workloads that are intermittent, unpredictable, or highly event-driven.

Contributions. This paper introduces GraphFaaS, a serverless architecture for low-latency, scal-
able GNN-based intrusion detection. Our contributions include: () A provenance-aware graph
construction pipeline that avoids redundant computation by leveraging temporal locality in system
Is and applying two-stage filtering, based on structural proximity and frequency, to isolate relevant
subgraphs. (i7) A serverless node embedding layer, which parallelizes node-level feature transfor-
mations across dynamic workloads with a feature-length-aware execution strategy to ensure each unit
completes within a fixed latency bound while minimizing overhead. (ii¢) A scalable GNN inference
mechanism, adapted for serverless execution, which partitions large provenance graphs into balanced
subgraphs using a greedy best-fit algorithm and a vertical-scaling fallback to handle extreme cases
where graph fragments exceed preset limits, (¢v) An end-to-end implementation of GraphFaaS
on the OpenFaa$S platform, evaluated on the DARPA TC dataset [9]. Our system achieves a 6.7x
reduction in average detection latency and a 64% reduction in coefficient of variation (CV) compared
to a state-of-the-art baseline, while maintaining equivalent detection accuracy.

2 Related Work and Background

Provenance-based Intrusion Detection. Intrusion detection is the process of monitoring and
analyzing computer systems or networks to identify unauthorized access, malicious activity, or policy
violations. In provenance-based intrusion detection systems (PIDS), system behaviors are modeled as
directed acyclic graphs (provenance graphs), where nodes represent system entities (e.g., processes,
files, sockets, pipes, memory objects) and edges capture interactions between these entities (e.g.,
reading a file or connecting to a remote host). The provenance graphs evolve dynamically as the
system operates, forming a temporal record that encodes the causal relationships among system
entities, which is then used to correlate the suspicious traces in the cyberattacks. In recent years, graph
machine learning methods, particularly GNNs, have become a prominent approach for detecting
advanced persistent threats (APTs) from provenance graphs [1 2,110} 3} 8]]. Typically, continuous log
streams are transformed into fixed-duration graphs, which are then processed by GNN models. Most
PIDSs are trained to learn the benign graph patterns. During inference, the GNN model takes a graph
snippet as input. The resulting node and graph embeddings are then analyzed to detect deviations
from benign graph patterns.

Serverless for GNN. Recent efforts have tackled the challenges of efficient GNN execution from both
hardware and system perspectives. GNNAdvisor [13]] optimizes GPU utilization by tailoring runtime
behaviors based on GNN model and workload characteristics, but focuses mainly on training/inference
under static resources. A Grapher [[7] enables efficient GNN serving by exploiting request-level
graph locality and fine-grained resource control. Dorylus [[L1] leverages serverless threads with CPU
servers for scalable GNN training, achieving cost-efficiency via computation separation, yet it does
not address serving workloads. Fograph [14] targets low-latency GNN inference for IoT by using
fog nodes close to data sources, mitigating cloud communication overhead. However, it relies on
specialized edge deployments rather than general-purpose serverless infrastructures. While some
works explore migrating graph processing to FaaS platforms, they often suffer from poor scalability
due to high communication overhead and coarse-grained execution. Unlike prior systems that focus
on static provisioning, training performance, or specialized edge deployments, GraphFaaS uniquely
enables low-latency, scalable GNN inference for intrusion detection by combining fine-grained graph
filtering, adaptive partitioning, and dynamic resource scaling within a serverless framework.

3 Typical Detection Workflow of GNN-based PIDS

Log processing and graph construction. The source of intrusion detection is the log stream,i.e.,
system log data arranged in chronological order. Graph construction extracts system entities and
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Figure 2: Overview of GraphFaaS Framework with three components: (i) graph construction, (ii)
serverless node-level embedding, and (iii) serverless GNN inference.

events from the log stream, representing them as nodes and edges in the provenance graph, and stores
them in a graph database.

Node-level embedding. The second step is node-level embedding, also known as featurization [2],
which transforms the static attributes of each node into numerical vectors. These vectors act as
the initial node representations for the GNN. In provenance graphs, node attributes are typically
represented as textual data, for example, process names and command lines for process nodes, file
paths for file nodes, and IP addresses and ports for network nodes. To embed these textual features
into a vector space, common techniques such as word2vec and doc2vec are often employed.

GNN. The node-level embeddings provide the initial representations for GNN. During message
passing, the GNN propagates and aggregates node features across its neighbors. The scope of this
propagation, i.e., the receptive field, is determined by the number of GNN layers. After propagation,
each node is assigned an updated vector representation. To train the GNN parameters, typical
optimization objectives include node classification, edge type prediction, or graph reconstruction.

Result Aggregation. GNN generates an embedding for each node. For an intrusion detection system,
these embeddings are further analyzed to determine whether an intrusion has occurred. Common
approaches in existing work include applying clustering methods, fixed thresholds, or outlier detection
techniques to identify anomalous nodes.

4 Serverless GNN-based Intrusion Detection Architecture

As shown in Figure[2] the GraphFaa$S framework is composed of three main components: (i) graph
construction, (ii) serverless node-level embedding, and (iii) serverless GNN inference.

Graph Construction. We start by constructing the provenance graph from the log stream. Although
the provenance graph can be very large, we find that most of its structure stays the same between
two detection intervals. To take advantage of this, we use log filtering: instead of reprocessing the
entire graph, we focus only on the parts that have changed. Specifically, we keep nodes that are
within a 2K-hop distance of the active nodes (where the GNN has K layers), which avoids redundant
computation. We can also apply frequency-based filtering [4} 5]: we keep only the edges, nodes,
and their 2K-hop neighborhoods that occur infrequently in the training data, since rare patterns are
usually more important for detection. Finally, the filtered subgraphs are split into subtasks and run in
parallel, allowing us to fully leverage serverless auto-scaling.

Serverless Node-level Embedding. Our goal is to ensure consistent and low inference latency under
bursty workloads. The core idea is to divide the workload into small, parallel execution units, each
requiring only a short processing time below a predefined threshold. As the workload changes, the
number of execution units adjusts accordingly. Leveraging the automatic scaling capability of the
serverless architecture, computing resources are allocated adaptively to match demand. This design
guarantees that all execution units complete within the time threshold, regardless of their number.
For instance, when a large workload arrives, it is split into more execution units, and the serverless
platform automatically scales up by launching additional instances to handle them. Conversely, when
the workload is low, the platform scales down to release resources and avoid waste. GNN inference
typically consists of two stages: node-level embedding and message passing with aggregation. We
present how each of these stages can be adapted to a serverless architecture.

As introduced in node-level embedding transforms node attributes into vectors that serve as the
initial representations for GNNs. Because static node attributes are independent of one another, the
embedding process is naturally parallelizable across nodes. We implement a serverless function that
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Figure 3: Detection latency over time. GraphFaaS: mean = 2.10, STD (standard deviation) = 1.09,
CV (coefficient of variation) = 0.52; Baseline: mean = 14.16, STD =4498.92, CV = 1.46.

takes a node attribute as input and returns its vector embedding. Since node attributes are typically
represented as textual strings, and execution time for most embedding methods depends on string
length, we partition execution units according to feature length. Shorter strings are grouped into a
single execution unit, while longer strings are processed separately. This strategy ensures that each
execution unit completes within the designated time threshold while also reducing the overhead of
excessive parallelization, such as network transmission and packet processing costs.

GNN Inference. We implement a serverless function that takes the initial node embeddings and
edges as input and outputs the updated node vectors. Similar to the embedding stage, the workload is
divided into execution units so that the serverless platform can scale automatically to handle bursty
workloads. Since the model remains fixed during detection, inference latency is primarily determined
by the graph size. To efficiently process large graphs, we partition them into subgraphs whose sizes
are close to a predefined threshold. This partitioning strategy needs to address the key challenge
of workload balancing, specifically, how to partition or pack the graph such that each subgraph
stays within the desired size limit while minimizing the total number of subgraphs, thereby avoiding
excessive waste of computational resources. We design a greedy best-fit algorithm to partition the
graph (See AppendixA]for more details). Due to the dependency explosion problem in provenance
graphs, even the smallest subgraph (a central node and its k-hop neighbors) may exceed the preset
size limit. In such cases, vertical scaling is triggered, allocating more compute resources (e.g., CPU
cores, memory) to each serverless function instance, instead of spawning more instances.

5 Preliminary Results

We implemented GraphFaas in Python based on OpenFaaS, an open-source serverless platform.
We compared GraphFaas with Flash [[10], a state-of-the-art PIDS. To ensure a fair comparison, we
reimplemented Flash to adapt it to a server-client detection model, where data is sent from the
monitored machine to a detection server for analysis. The only difference is that we used a Docker
container to simulate a statically provisioned detection environment for Flash, whereas GraphFaas
was deployed using a serverless architecture based on OpenFaaS. All other experimental conditions
were kept identical between the two systems. We used a widely adopted dataset from DARPA TC
Engagement 3 [9], which contains 11 days of audit logs and includes four attack campaigns.

We verified that GraphFaaS achieves the same detection accuracy as Flash, which is expected since
the underlying detection models of Flash remain unchanged. Therefore, the detection results are
identical. However, GraphFaaS significantly outperforms Flash in detection latency. As shown in
Figure [3] on a 11-day dataset, it achieves an average latency of 2.1 seconds, compared to 14.16
seconds for the baseline. In addition, GraphFaaS is more resilient to bursty traffic. It maintains low
latency even during sudden surges in workload, as evidenced by its lower standard deviation and
coefficient of variation. While occasional latency spikes occur, the delay never exceeds 10 seconds.

6 Conclusion and Future Work

GraphFaaS leverages the elasticity and agility of a serverless design to ensure consistently low
intrusion detection latency. Several challenges remain for future work. First, provenance graphs
are particularly vulnerable to the dependency explosion problem [0, [12]], where certain super-nodes
dominate the graph. Even with workload parallelization, these super-nodes remain a major latency
bottleneck. Second, during cyberattacks, the scale of the provenance graph can fluctuate dramatically.
To effectively capture long-range dependencies while preserving low latency, it is necessary to
dynamically adjust the number of GNN layers and invoke the appropriate serverless functions on
demand. We believe GraphFaaS can serve as the basis to address these issues with serverless design.
Finally, we plan to evaluate GraphFaaS against a broader class of PIDs and across more datasets.
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A Algorithm for Subgraph Partition & Packing

The goal of subgraph partitioning & packing is to divide a large graph into several smaller subgraphs
such that the size of the K-hop neighborhood of each subgraph remains within a predefined threshold.
At the same time, we aim to avoid excessive fragmentation by merging K-hop neighborhoods that
share overlapping regions. In other words, we seek a partitioning of the original graph where each
subgraph’s K-hop neighborhood is bounded in size, while also minimizing the total number of
subgraphs. For each cluster k, we maintain its current node set Uy, = No(X},), represented as a bitset,
and its edge count fj, = |Eq[U]|. When a new vertex v is considered for insertion, we compute the
increase in edge count as:
Ay = |Ec;[Uk U BQ(’U)” — [

If Ay does not exceed the remaining capacity of cluster k, the vertex is inserted into that cluster.
Otherwise, a new cluster is created.

To minimize the total number of clusters used, we adopt the Best-Fit strategy, which attempts to pack
the vertex into the cluster where it fits most tightly. A simpler alternative is the First-Fit strategy.

Algorithm 1 BinPack_FFD (First-Fit Decreasing Bin Packing) for Graph Partitioning
Require: List of neighborhoods neighbors, capacity capacity, strict flag strict
Ensure: List of bins and remaining capacities

1: Sort neighbors by number of edges in descending order

2: Initialize bins as empty list
3: Initialize remain as empty list
4: Initialize subgraph as empty list of edge sets
5: for each (idx, neighborhood) in sorted items do
6: placed < False
7: edge_set_to_add ¢ set of edges in neighborhood
8: for b = 0 to |bins| — 1 do
9: margin < size of edge_set_to_add minus overlapping edges with subgraph [b]
10: if strict is True then
11: if margin < remain[b] then
12: Add idx to bins[b]
13: Update subgraph [b] and remain [b]
14: placed < True, break
15: end if
16: else
17: ifmargin < remain[b] then
18: Add idx to bins [b]
19: Update subgraph [b] and remain[b]
20: placed < True, break
21: end if
22: end if
23: end for
24: if placed is False then
25: Create new bin with idx
26: Add edge_set_to_add to subgraph
27: Append capacity - |edge_set_to_add| to remain
28: end if
29: end for

30: return bins, remain
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