
GraphFaaS: Serverless GNN Inference for
Burst-Resilient, Real-Time Intrusion Detection

Lingzhi Wang
Northwestern University

Vinod Yegneswaran
SRI International

Xinyi Shi
Northwestern University

Ziyu Li
Northwestern University

Ashish Gehani
SRI International

Yan Chen
Northwestern University

Abstract

Provenance-based intrusion detection is an increasingly popular application of1

graphical machine learning in cybersecurity. where system activities are modeled2

as provenance graphs to capture causality and correlations among potentially3

malicious actions. Graph Neural Networks (GNNs) have demonstrated strong4

performance in this setting. However, traditional statically-provisioned GNN5

inference architectures fall short in meeting two crucial demands of intrusion6

detection: (1) maintaining consistently low detection latency, and (2) handling7

highly irregular and bursty workloads. To holistically address these challenges,8

we present GraphFaaS, a serverless architecture tailored for GNN-based intrusion9

detection. GraphFaaS leverages the elasticity and agility of serverless computing10

to dynamically scale the GNN inference pipeline. We parallelize and adapt GNN11

workflows to a serverless environment, ensuring that the system can respond12

in real time to fluctuating workloads. By decoupling compute resources from13

static provisioning, GraphFaaS delivers stable inference latency, which is critical14

for dependable intrusion detection and timely incident response in cybersecurity15

operations. Preliminary evaluation shows GraphFaaS reduces average detection16

latency by 85% and coefficient of variation (CV) by 64% compared to the baseline.17

1 Introduction18

18
:00

21
:00

00
:00

03
:00

06
:00

09
:00

12
:00

15
:00

18
:00

Time

103

104

Nu
m

be
r o

f S
ys

te
m

 E
nt

iti
es

Figure 1: Fluctuations in detection
workload over time in the DARPA
TC dataset [9]

Graph-based intrusion detection has emerged as a critical ap-19

plication of graph analysis in cybersecurity. In this paradigm,20

system behaviors recorded in audit logs are transformed into21

provenance graphs, where nodes represent system entities22

(e.g., processes, files, network nodes), and edges represent23

system-level events (e.g., file read/write, process creation).24

These graphs provide a natural way to model the causal and25

temporal relationships underlying cyberattacks and anoma-26

lous behavior. Recently, Graph Neural Networks (GNNs)27

have demonstrated strong promise in this domain by learning28

complex patterns that enable context-aware intrusion detec-29

tion. However, existing GNN inference architectures struggle30

to scale in this arena due to two unique requirements: (1)31

the demand for stable and low detection latency, and (2) in-32

herently irregular and bursty workloads. First, in intrusion33

detection systems, it is particularly crucial for GNN inference to maintain stability and low latency.34

If the inference time is too long, there is a high risk of missing the window to mitigate real attacks,35

potentially leading to irreversible consequences. Therefore, ensuring fast and consistent inference36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

performance is essential for effective threat response. Second, such systems often face unstable and37

bursty workloads (Figure 1), while malicious activities account for only a small fraction of overall38

network behavior, leading to highly unpredictable and sporadic patterns in the analysis workload.39

Serverless design offers advantages in handling bursty workload and maintaining consistent low40

detection latency. A serverless system is a cloud model where code runs on-demand without managing41

servers. It provides a cost-efficient pay-per-use model with no charges for idle resources, while42

scaling instantly and seamlessly to handle traffic spikes. Additionally, it enables faster development43

through an event-driven model and ensures finer-grained resource utilization, making it especially44

well-suited for workloads that are intermittent, unpredictable, or highly event-driven.45

Contributions. This paper introduces GraphFaaS, a serverless architecture for low-latency, scal-46

able GNN-based intrusion detection. Our contributions include: (i) A provenance-aware graph47

construction pipeline that avoids redundant computation by leveraging temporal locality in system48

ls and applying two-stage filtering, based on structural proximity and frequency, to isolate relevant49

subgraphs. (ii) A serverless node embedding layer, which parallelizes node-level feature transfor-50

mations across dynamic workloads with a feature-length-aware execution strategy to ensure each unit51

completes within a fixed latency bound while minimizing overhead. (iii) A scalable GNN inference52

mechanism, adapted for serverless execution, which partitions large provenance graphs into balanced53

subgraphs using a greedy best-fit algorithm and a vertical-scaling fallback to handle extreme cases54

where graph fragments exceed preset limits, (iv) An end-to-end implementation of GraphFaaS55

on the OpenFaaS platform, evaluated on the DARPA TC dataset [9]. Our system achieves a 6.7x56

reduction in average detection latency and a 64% reduction in coefficient of variation (CV) compared57

to a state-of-the-art baseline, while maintaining equivalent detection accuracy.58

2 Related Work and Background59

Provenance-based Intrusion Detection. Intrusion detection is the process of monitoring and60

analyzing computer systems or networks to identify unauthorized access, malicious activity, or policy61

violations. In provenance-based intrusion detection systems (PIDS), system behaviors are modeled as62

directed acyclic graphs (provenance graphs), where nodes represent system entities (e.g., processes,63

files, sockets, pipes, memory objects) and edges capture interactions between these entities (e.g.,64

reading a file or connecting to a remote host). The provenance graphs evolve dynamically as the65

system operates, forming a temporal record that encodes the causal relationships among system66

entities, which is then used to correlate the suspicious traces in the cyberattacks. In recent years, graph67

machine learning methods, particularly GNNs, have become a prominent approach for detecting68

advanced persistent threats (APTs) from provenance graphs [1, 2, 10, 3, 8]. Typically, continuous log69

streams are transformed into fixed-duration graphs, which are then processed by GNN models. Most70

PIDSs are trained to learn the benign graph patterns. During inference, the GNN model takes a graph71

snippet as input. The resulting node and graph embeddings are then analyzed to detect deviations72

from benign graph patterns.73

Serverless for GNN. Recent efforts have tackled the challenges of efficient GNN execution from both74

hardware and system perspectives. GNNAdvisor [13] optimizes GPU utilization by tailoring runtime75

behaviors based on GNN model and workload characteristics, but focuses mainly on training/inference76

under static resources. λ Grapher [7] enables efficient GNN serving by exploiting request-level77

graph locality and fine-grained resource control. Dorylus [11] leverages serverless threads with CPU78

servers for scalable GNN training, achieving cost-efficiency via computation separation, yet it does79

not address serving workloads. Fograph [14] targets low-latency GNN inference for IoT by using80

fog nodes close to data sources, mitigating cloud communication overhead. However, it relies on81

specialized edge deployments rather than general-purpose serverless infrastructures. While some82

works explore migrating graph processing to FaaS platforms, they often suffer from poor scalability83

due to high communication overhead and coarse-grained execution. Unlike prior systems that focus84

on static provisioning, training performance, or specialized edge deployments, GraphFaaS uniquely85

enables low-latency, scalable GNN inference for intrusion detection by combining fine-grained graph86

filtering, adaptive partitioning, and dynamic resource scaling within a serverless framework.87

3 Typical Detection Workflow of GNN-based PIDS88

Log processing and graph construction. The source of intrusion detection is the log stream,i.e.,89

system log data arranged in chronological order. Graph construction extracts system entities and90

2

Log Stream
Graph Construction and Workload Parallelization Graph Inference

Node-Level EmbeddingTextual Node Features

Word2Vec
Cache

Serverless
Word2Vec Func.

Inference
Results

Log
Filtering

Graph
Construction

Dynamic Subgraph
Parallelization

Provenance Graph

Dynamic
Batching

Word2vec Request #1

Word2vec Request #2

Word2vec Request #3

Word2vec Request #N

…

GNN Request #1

GNN Request #2

GNN Request #3

GNN Request #N

… Serverless
GNN Func.

Uncached
Words

Figure 2: Overview of GraphFaaS Framework with three components: (i) graph construction, (ii)
serverless node-level embedding, and (iii) serverless GNN inference.

events from the log stream, representing them as nodes and edges in the provenance graph, and stores91

them in a graph database.92

Node-level embedding. The second step is node-level embedding, also known as featurization [2],93

which transforms the static attributes of each node into numerical vectors. These vectors act as94

the initial node representations for the GNN. In provenance graphs, node attributes are typically95

represented as textual data, for example, process names and command lines for process nodes, file96

paths for file nodes, and IP addresses and ports for network nodes. To embed these textual features97

into a vector space, common techniques such as word2vec and doc2vec are often employed.98

GNN. The node-level embeddings provide the initial representations for GNN. During message99

passing, the GNN propagates and aggregates node features across its neighbors. The scope of this100

propagation, i.e., the receptive field, is determined by the number of GNN layers. After propagation,101

each node is assigned an updated vector representation. To train the GNN parameters, typical102

optimization objectives include node classification, edge type prediction, or graph reconstruction.103

Result Aggregation. GNN generates an embedding for each node. For an intrusion detection system,104

these embeddings are further analyzed to determine whether an intrusion has occurred. Common105

approaches in existing work include applying clustering methods, fixed thresholds, or outlier detection106

techniques to identify anomalous nodes.107

4 Serverless GNN-based Intrusion Detection Architecture108

As shown in Figure 2, the GraphFaaS framework is composed of three main components: (i) graph109

construction, (ii) serverless node-level embedding, and (iii) serverless GNN inference.110

Graph Construction. We start by constructing the provenance graph from the log stream. Although111

the provenance graph can be very large, we find that most of its structure stays the same between112

two detection intervals. To take advantage of this, we use log filtering: instead of reprocessing the113

entire graph, we focus only on the parts that have changed. Specifically, we keep nodes that are114

within a 2K-hop distance of the active nodes (where the GNN has K layers), which avoids redundant115

computation. We can also apply frequency-based filtering [4, 5]: we keep only the edges, nodes,116

and their 2K-hop neighborhoods that occur infrequently in the training data, since rare patterns are117

usually more important for detection. Finally, the filtered subgraphs are split into subtasks and run in118

parallel, allowing us to fully leverage serverless auto-scaling.119

Serverless Node-level Embedding. Our goal is to ensure consistent and low inference latency under120

bursty workloads. The core idea is to divide the workload into small, parallel execution units, each121

requiring only a short processing time below a predefined threshold. As the workload changes, the122

number of execution units adjusts accordingly. Leveraging the automatic scaling capability of the123

serverless architecture, computing resources are allocated adaptively to match demand. This design124

guarantees that all execution units complete within the time threshold, regardless of their number.125

For instance, when a large workload arrives, it is split into more execution units, and the serverless126

platform automatically scales up by launching additional instances to handle them. Conversely, when127

the workload is low, the platform scales down to release resources and avoid waste. GNN inference128

typically consists of two stages: node-level embedding and message passing with aggregation. We129

present how each of these stages can be adapted to a serverless architecture.130

As introduced in §3, node-level embedding transforms node attributes into vectors that serve as the131

initial representations for GNNs. Because static node attributes are independent of one another, the132

embedding process is naturally parallelizable across nodes. We implement a serverless function that133

3

2018-04-03 2018-04-05 2018-04-07 2018-04-09 2018-04-11 2018-04-13
Timestamp in Auditing Logs

0
20
40
60
80

100

De
te

ct
io

n
La

te
nc

y
(s

)

GraphFaaS
Baseline

Figure 3: Detection latency over time. GraphFaaS: mean = 2.10, STD (standard deviation) = 1.09,
CV (coefficient of variation) = 0.52; Baseline: mean = 14.16, STD = 4498.92, CV = 1.46.

takes a node attribute as input and returns its vector embedding. Since node attributes are typically134

represented as textual strings, and execution time for most embedding methods depends on string135

length, we partition execution units according to feature length. Shorter strings are grouped into a136

single execution unit, while longer strings are processed separately. This strategy ensures that each137

execution unit completes within the designated time threshold while also reducing the overhead of138

excessive parallelization, such as network transmission and packet processing costs.139

GNN Inference. We implement a serverless function that takes the initial node embeddings and140

edges as input and outputs the updated node vectors. Similar to the embedding stage, the workload is141

divided into execution units so that the serverless platform can scale automatically to handle bursty142

workloads. Since the model remains fixed during detection, inference latency is primarily determined143

by the graph size. To efficiently process large graphs, we partition them into subgraphs whose sizes144

are close to a predefined threshold. This partitioning strategy needs to address the key challenge145

of workload balancing, specifically, how to partition or pack the graph such that each subgraph146

stays within the desired size limit while minimizing the total number of subgraphs, thereby avoiding147

excessive waste of computational resources. We design a greedy best-fit algorithm to partition the148

graph (See AppendixA for more details). Due to the dependency explosion problem in provenance149

graphs, even the smallest subgraph (a central node and its k-hop neighbors) may exceed the preset150

size limit. In such cases, vertical scaling is triggered, allocating more compute resources (e.g., CPU151

cores, memory) to each serverless function instance, instead of spawning more instances.152

5 Preliminary Results153

We implemented GraphFaas in Python based on OpenFaaS, an open-source serverless platform.154

We compared GraphFaas with Flash [10], a state-of-the-art PIDS. To ensure a fair comparison, we155

reimplemented Flash to adapt it to a server-client detection model, where data is sent from the156

monitored machine to a detection server for analysis. The only difference is that we used a Docker157

container to simulate a statically provisioned detection environment for Flash, whereas GraphFaas158

was deployed using a serverless architecture based on OpenFaaS. All other experimental conditions159

were kept identical between the two systems. We used a widely adopted dataset from DARPA TC160

Engagement 3 [9], which contains 11 days of audit logs and includes four attack campaigns.161

We verified that GraphFaaS achieves the same detection accuracy as Flash, which is expected since162

the underlying detection models of Flash remain unchanged. Therefore, the detection results are163

identical. However, GraphFaaS significantly outperforms Flash in detection latency. As shown in164

Figure 3, on a 11-day dataset, it achieves an average latency of 2.1 seconds, compared to 14.16165

seconds for the baseline. In addition, GraphFaaS is more resilient to bursty traffic. It maintains low166

latency even during sudden surges in workload, as evidenced by its lower standard deviation and167

coefficient of variation. While occasional latency spikes occur, the delay never exceeds 10 seconds.168

6 Conclusion and Future Work169

GraphFaaS leverages the elasticity and agility of a serverless design to ensure consistently low170

intrusion detection latency. Several challenges remain for future work. First, provenance graphs171

are particularly vulnerable to the dependency explosion problem [6, 12], where certain super-nodes172

dominate the graph. Even with workload parallelization, these super-nodes remain a major latency173

bottleneck. Second, during cyberattacks, the scale of the provenance graph can fluctuate dramatically.174

To effectively capture long-range dependencies while preserving low latency, it is necessary to175

dynamically adjust the number of GNN layers and invoke the appropriate serverless functions on176

demand. We believe GraphFaaS can serve as the basis to address these issues with serverless design.177

Finally, we plan to evaluate GraphFaaS against a broader class of PIDs and across more datasets.178

4

References179

[1] Talha Abrar, Ahmad Shamail, Jaffer Iqbal, Amaan Ahmed, Muhammad Abdullah, Muhammad180

Shayan, Fareed Zaffar, Thomas Pasquier, David Eyers, and Ashish Gehani. On the Reproducibil-181

ity of Provenance-based Intrusion Detection that uses Deep Learning. 3rd ACM Conference on182

Reproducibility and Replicability (REP), 2025.183

[2] Tristan Bilot, Baoxiang Jiang, Zefeng Li, Nour El Madhoun, Khaldoun Al Agha, Anis Zouaoui,184

and Thomas Pasquier. Sometimes Simpler is Better: A Comprehensive Analysis of State-185

of-the-Art Provenance-Based Intrusion Detection Systems. In USENIX Security Symposium,186

2025.187

[3] Zijun Cheng, Qiujian Lv, Jinyuan Liang, Yan Wang, Degang Sun, Thomas Pasquier, and188

Xueyuan Han. Kairos: Practical intrusion detection and investigation using whole-system189

provenance. In 2024 IEEE Symposium on Security and Privacy (SP), pages 3533–3551. IEEE,190

2024.191

[4] Feng Dong, Liu Wang, Xu Nie, Fei Shao, Haoyu Wang, Ding Li, Xiapu Luo, and Xusheng Xiao.192

{DISTDET}: A {Cost-Effective} distributed cyber threat detection system. In 32nd USENIX193

Security Symposium (USENIX Security 23), pages 6575–6592, 2023.194

[5] Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang Chen, Kangkook Jee, Zhichun Li, and195

Adam Bates. Nodoze: Combatting threat alert fatigue with automated provenance triage. In196

network and distributed systems security symposium, 2019.197

[6] Md Nahid Hossain, Sanaz Sheikhi, and R Sekar. Combating dependence explosion in forensic198

analysis using alternative tag propagation semantics. In 2020 IEEE symposium on security and199

privacy (SP), pages 1139–1155. IEEE, 2020.200

[7] Haichuan Hu, Fangming Liu, Qiangyu Pei, Yongjie Yuan, Zichen Xu, and Lin Wang. λgrapher:201

A resource-efficient serverless system for gnn serving through graph sharing. In Proceedings of202

the ACM Web Conference 2024, pages 2826–2835, 2024.203

[8] Baoxiang Jiang, Tristan Bilot, Nour El Madhoun, Khaldoun Al Agha, Anis Zouaoui, Shahrear204

Iqbal, Xueyuan Han, and Thomas Pasquier. Orthrus: Achieving high quality of attribution205

in provenance-based intrusion detection systems. In Security Symposium (USENIX Sec’25).206

USENIX, 2025.207

[9] DARPA TC program. Transparent Computing Engagement 3 Data Release, 2020.208

[10] Mati Ur Rehman, Hadi Ahmadi, and Wajih Ul Hassan. Flash: A comprehensive approach to209

intrusion detection via provenance graph representation learning. In 2024 IEEE Symposium on210

Security and Privacy (SP), pages 3552–3570. IEEE, 2024.211

[11] John Thorpe, Yifan Qiao, Jonathan Eyolfson, Shen Teng, Guanzhou Hu, Zhihao Jia, Jinliang212

Wei, Keval Vora, Ravi Netravali, Miryung Kim, et al. Dorylus: Affordable, scalable, and213

accurate {GNN} training with distributed {CPU} servers and serverless threads. In 15th214

USENIX Symposium on Operating Systems Design and Implementation (OSDI 21), pages215

495–514, 2021.216

[12] Lingzhi Wang, Xiangmin Shen, Weijian Li, Zhenyuan Li, R Sekar, Han Liu, and Yan Chen.217

Incorporating gradients to rules: Towards lightweight, adaptive provenance-based intrusion218

detection. arXiv preprint arXiv:2404.14720, 2024.219

[13] Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, Yuan Xie, and Yufei Ding.220

{GNNAdvisor}: An adaptive and efficient runtime system for {GNN} acceleration on {GPUs}.221

In 15th USENIX symposium on operating systems design and implementation (OSDI 21), pages222

515–531, 2021.223

[14] Liekang Zeng, Peng Huang, Ke Luo, Xiaoxi Zhang, Zhi Zhou, and Xu Chen. Fograph: Enabling224

real-time deep graph inference with fog computing. In Proceedings of the ACM Web Conference225

2022, pages 1774–1784, 2022.226

5

A Algorithm for Subgraph Partition & Packing227

The goal of subgraph partitioning & packing is to divide a large graph into several smaller subgraphs228

such that the size of the K-hop neighborhood of each subgraph remains within a predefined threshold.229

At the same time, we aim to avoid excessive fragmentation by merging K-hop neighborhoods that230

share overlapping regions. In other words, we seek a partitioning of the original graph where each231

subgraph’s K-hop neighborhood is bounded in size, while also minimizing the total number of232

subgraphs. For each cluster k, we maintain its current node set Uk = N2(Xk), represented as a bitset,233

and its edge count fk = |EG[Uk]|. When a new vertex v is considered for insertion, we compute the234

increase in edge count as:235

∆k = |EG[Uk ∪B2(v)]| − fk.

If ∆k does not exceed the remaining capacity of cluster k, the vertex is inserted into that cluster.236

Otherwise, a new cluster is created.237

To minimize the total number of clusters used, we adopt the Best-Fit strategy, which attempts to pack238

the vertex into the cluster where it fits most tightly. A simpler alternative is the First-Fit strategy.239

Algorithm 1 BinPack_FFD (First-Fit Decreasing Bin Packing) for Graph Partitioning
Require: List of neighborhoods neighbors, capacity capacity, strict flag strict
Ensure: List of bins and remaining capacities

1: Sort neighbors by number of edges in descending order
2: Initialize bins as empty list
3: Initialize remain as empty list
4: Initialize subgraph as empty list of edge sets
5: for each (idx, neighborhood) in sorted items do
6: placed← False
7: edge_set_to_add← set of edges in neighborhood
8: for b = 0 to |bins| − 1 do
9: margin← size of edge_set_to_add minus overlapping edges with subgraph[b]

10: if strict is True then
11: if margin < remain[b] then
12: Add idx to bins[b]
13: Update subgraph[b] and remain[b]
14: placed← True, break
15: end if
16: else
17: if margin ≤ remain[b] then
18: Add idx to bins[b]
19: Update subgraph[b] and remain[b]
20: placed← True, break
21: end if
22: end if
23: end for
24: if placed is False then
25: Create new bin with idx
26: Add edge_set_to_add to subgraph
27: Append capacity - |edge_set_to_add| to remain
28: end if
29: end for
30: return bins, remain

6

	Introduction
	Related Work and Background
	Typical Detection Workflow of GNN-based PIDS
	Serverless GNN-based Intrusion Detection Architecture
	Preliminary Results
	Conclusion and Future Work
	Algorithm for Subgraph Partition & Packing

