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ABSTRACT

Mitigating the detrimental effects of noisy labels on the training process has be-
come increasingly critical, as obtaining entirely clean or human-annotated sam-
ples for large-scale pre-training tasks is often impractical. Nonetheless, exist-
ing noise mitigation methods often encounter limitations in practical applica-
tions due to their task-specific design, model dependency, and significant com-
putational overhead. In this work, we exploit the properties of high-dimensional
orthogonality to identify a robust and effective boundary in cone space for sep-
arating clean and noisy samples. Building on this, we propose One-step Anti-
Noise (OSA), a model-agnostic noisy label mitigation paradigm that employs
an estimator model and a scoring function to assess the noise level of input
pairs through just one-step inference, a cost-efficient process. We empirically
demonstrate the superiority of OSA, highlighting its enhanced training robust-
ness, improved task transferability, ease of deployment, and reduced computa-
tional costs across various benchmarks, models, and tasks. Our code is released at
https://anonymous.4open.science/r/CLIP_OSN-E86C.

1 INTRODUCTION

Noise mitigation aims to handle the detriment of noisy labels encountered during the training pro-
cess. The advancement of large-scale pre-training has significantly increased data scale to the tril-
lion level. Much of this data is sourced from the internet, inevitably introducing considerable noise,
which severely impedes the training process. This poses a substantial challenge for robust model
training in various tasks, such as cross-modal matching (Huang et al., 2021; Zhang et al., 2024),
image-classification (Sun et al., 2021; Yu et al., 2019), and image-retrieval (Liu et al., 2021).

Traditional noise mitigation approaches encounter several limitations that constrain their practical
applicability: 1) Task specificity: Existing methods (Huang et al., 2021; Sun et al., 2021; Ibrahimi
et al., 2022a) are tailored to specific tasks, limiting their applicability across different tasks. 2)
Model dependency: Most noise mitigation techniques (Liu et al., 2021; Yang et al., 2023a) are
tightly coupled with specific models, requiring extensive modifications for adaptation to different
models. 3) Computational cost: Numerous existing methods necessitate dual-model collabora-
tions (Huang et al., 2021; Yu et al., 2019) or multiple training passes (Huang et al., 2021), i.e.,
they require at least two backward passes per training step, effectively doubling the computational
expense and substantially increasing the training burden (see Figure. 1a).

To tackle these challenges, we use an external estimator to assess the noise level of each sample,
ensuring a model-agnostic approach. This estimator adjusts the training loss by reducing the in-
fluence of noisy samples, driving their weights toward zero. Furthermore, multimodal pre-trained
models have demonstrated remarkable task transferability due to their strong semantic capabilities.
For instance, CLIP (Radford et al., 2021) unifies the paradigms of image-text retrieval and image
classification through a shared embedding space (see Figure. 1b). It converts category labels into
sentences, maps them into the shared embedding space, and then calculates the cosine similarity with
the image representation to perform image classification. Inspired by this, we leverage multimodal
pre-trained models as estimators and apply the shared embedding space to enable task transfer. In
this case, only one additional inference process is required for each sample, significantly reducing
the computational overhead compared to performing an extra backward pass.

Nonetheless, this paradigm introduces a new challenge: how to accurately identify noise based
solely on cosine similarity scores generated by estimators. An ideal solution is to find a decision
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Figure 1: (a) The current anti-noise paradigm with multiple backward significantly enhances the
training overhead. (b) CLIP unifies the framework of image-text matching and image classification
through a shared space. (c-f) Cosine similarity distribution of noise and clean data with 50% noise.

boundary that separates clean samples from noise and accurately handles overlapping samples near
the boundary. Existing methods (Huang et al., 2021; Qin et al., 2022; Li et al., 2020; Zhang et al.,
2024) typically attempt to build this boundary within the loss space, an isotropic space with uniform
distribution, which creates only a narrow gap between noisy and clean samples. Moreover, the coarse
handling of overlaps by integrating multi-model predictions often results in an unstable decision
boundary. In contrast, the shared embedding space of pre-trained models is a high-dimensional,
anisotropic space with an imbalanced distribution. Thus, a consideration is whether the properties
of imbalanced anisotropic space can help to identify a more precise and robust decision boundary.

In this work, we delve into the decision boundary of pre-trained models employed as estimators
to accurately differentiate between clean and noisy samples. We first investigate the cosine simi-
larity distributions of clean and noisy samples, calculated using the multimodal pre-trained models
CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021), on two datasets with a 50% noise ratio:
MS-COCO (Lin et al., 2014) and SDM, as shown in Figure. 1c-1f. SDM is a dataset with the im-
ages generated by the Stable Diffusion Model (SDM) (Rombach et al., 2022) in some uncommon
styles (see illustrations in Figure. 4). It is designed to explore how well-pre-trained models can
distinguish unfamiliar domains that they rarely encounter during training. There are two interesting
observations in Figure. 1c-1f: (1) The clean and noisy distributions of the same model on different
datasets have a similar intersection point, suggesting the existence of a natural and stable boundary
in distinguishing between clean and noisy samples. (2) The overlaps between the clean distribution
and noisy distribution are minimal even in the unfamiliar domain dataset, indicating this boundary
has strong potential for distinguishing between clean and noisy samples.

Building upon these two observations, we conduct an in-depth investigation and make the following
contributions:

1. We figure out the origin of the intersection, attributing it to the shift in the orthogonal bound-
ary induced by the cone effect. Furthermore, we provide a theoretical framework that proves and
elaborates the stability and precision of this boundary in separating noisy and clean samples.

2. We provide a detailed explanation of the reliability of pre-trained models in general noise recog-
nition, even in unfamiliar domains, grounded in the analysis of the pre-training process.

3. Build on this, we introduce One-Step Anti-Noise (OSA), a general model-agnostic paradigm for
noise recognition that requires only one-step inference. Specifically, we utilize a pre-trained model
as the estimator to maintain a shared embedding space. A scoring function, designed based on the
properties of high-dimensional orthogonality, is then used to accurately handle overlaps by directly
assigning a learning weight to each sample’s loss according to its cosine similarity.

4. We conduct comprehensive experiments across a variety of challenging benchmarks, models, and
tasks, demonstrating the effectiveness, generalization capabilities, and efficiency of our method.
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2 BOUNDARY PRINCIPLE ANALYSIS

In Figure. 1c-1f, we observe a natural boundary emerging in the pre-trained model’s ability to dis-
tinguish between clean and noisy samples. In this section, we explain the principle of boundary
forming from high-dimensional perspectives, and how robust it is in general noise mitigation.

2.1 HYPOTHESIS: INTERACTION BOUNDARY IS SHIFTED FROM ORTHOGONAL BOUNDARY

We first elaborate on the gap extent between the positive and negative sides kept by the orthogonal
boundary. Then, we present the reasoning behind the hypothesis that the intersection boundary in
Figure. 1 is a shifted orthogonal boundary in the cone space.

The orthogonal boundary largely separates the positive and negative sides. High-dimensional
orthogonality is a general phenomenon caused by dimension disaster, where the angles between
randomly selected vectors typically approximate 90 degrees, suggesting the cosine similarity that
trends toward zero. For instance, in a 1024-dimensional space, the probability of two random vec-
tors having a cosine similarity within [−0.1, 0.1] is approximately 99.86% (details are provided in
Appendix. C.1). In this case, a natural boundary of cosine similarity zero forms, capably separating
the positive side and negative side with a huge gap.

Table 1: The mean and vari-
ance of cosine similarity be-
tween randomly generated pairs.

Model Mean Var

CLIP 0.215 0.024
ALIGN 0.087 6e-4

Cone effect may induce orthogonal boundary shift. Recent
literature (Liang et al., 2022a; Bogolin et al., 2022; Ethayarajh,
2019) has demonstrated that the cone effect is a general phe-
nomenon in deep neural networks, where the learned embedding
subspace forms a narrow cone and the orthogonal boundary en-
counters a positive shift. Based on this, a hypothesis is that the
interaction boundary in Figure. 1 is the shifted orthogonal bound-
ary. To prove this, we simulate the process of selecting random
vectors in high-dimensional space and randomly generate thou-
sands of pairs mapped into the shared embedding space. We find
that all similarity of these random vector pairs tends to a fixed
value, with the low-variance cosine similarity almost lying in the middle of clean and noise distribu-
tions (see Table. 1). An interesting phenomenon is that if we compare the mean with the intersection
points in Figure. 1c-1f, we find they are almost exactly the same. This suggests that the interaction
boundary is highly likely to be a shifted orthogonal boundary in cone space.

2.2 THEORETICAL VERIFICATION OF THE INTERACTION BOUNDARY ORIGIN

Here, we theoretically investigate whether the origin of the interaction boundary is a shifted orthog-
onal boundary. We first show that (i) contrastive learning separates clean and noisy samples on
opposite sides of the orthogonal boundary and (ii) The relative relationships of pairs’ cosine simi-
larity stays unchanged after transmitting into the narrow cone space. Based on (i) and (ii), we can
confirm that the intersection boundary at the center of the clean and noisy distributions is the shifted
orthogonal boundary.

Contrastive learning empowers the separation of clean and noisy samples. For an initialized
model intending to learn an embedding space, both clean and noisy samples are treated as orthogonal
random vectors since lacking semantic perception ability in the initial space. During contrastive
training process, given N sample pairs {(xi, yi)}Ni=1, the embedding space is optimized through the
cross-entropy loss (Eq. 1).

Lce =
1

N

N∑
i=1

log
exp(mii)∑N
j=1 exp(mij)

, (1)

where M ∈ RN×N represents the cosine similarity matrix of N sample pairs during training pro-
cess. Each element mij ∈ M denote the cosine similarity between xi and yj . The diagonal elements
mii denote the cosine similarities of positive pairs, while the non-diagonal elements mij represent
the cosine similarities of negative pairs.
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To minimize Lce during training, two subprocesses occur: the diagonal elements of the matrix
(i.e., clean pairs) are optimized to the positive side of the orthogonal boundary, while the non-
diagonal elements (equivalent to noise pairs) are optimized to the negative side. Consequently, the
distributions of these two types of samples are on opposite sides of the orthogonal boundary.

Relative relationship unchanged in transmitting process. We study how the boundary shifts
from the entire space to the narrow cone in the neural network. The following theorem shows that
the cosine similarity will be proportionally scaled to the target narrow cone, while still maintaining
a boundary with properties similar to the orthogonal boundary. In other words, vectors with cosine
similarity smaller than the orthogonal boundary in the original space remain smaller than the shifted
boundary in the narrow cone space, while those larger remain larger.
Theorem 1 (Proportional shift of boundary). Let Rdin be the original space before being trans-
mitted in a neural network. Suppose u, v ∈ Rdin are any two random vectors with cos(u, v) ≈ 0.
uc, vc ∈ R

din is a pair of clean vectors with cos(uc, vc) > 0, while un, vn ∈ R
din is a noisy

pair with cos(un, vn) < 0. Given a Neural Network F (x) = ft(ft−1(. . . f2(f1(x)))) ∈ R
dout

with t layers. fi(x) = σi(Wix + bi) denotes ith layer, where σ(·) indicates activation func-
tion. Wi ∈ Rdi

out×di
in is a random weight matrix where each element Wk,l

i ∼ N (0, 1/diout) for
k ∈

[
diout

]
, l ∈

[
diin

]
, and bi ∈ Rdi

out is a random bias vector such that bk
i ∼ N (0, 1/diout) for

k ∈
[
diout

]
. Then, there always be a boundary β, satisfying:

cos(F (un), F (vn)) < cos(F (u), F (v)) ≈ β < cos(F (uc), F (vc)). (2)

Theorem. 1 shows that the relative relationship of pairs in the original entire space, will not change
after transmitting to the narrow cone space of the trained model, and there is always a boundary β
concentrated on most random vectors. In Appendix. C.2, we provide a detailed statement and proof
of the Theorem.

2.3 QUALITATIVE ANALYSIS OF ROBUSTNESS AND APPLICABILITY

Next, we perform a qualitative analysis to explore (i) the robustness and generality of the boundary
in distinguishing between clean and noisy samples, and (ii) how the boundary’s properties can be
leveraged to achieve more reasonable and precise overlap handling.

How about the boundary robustness even in unfamiliar domains? Although the boundary’s
ability to distinguish clean and noisy samples is proven, its robustness and generality still require
further exploration. For practical pre-training, it must maintain accuracy and robustness even in
unfamiliar domain datasets. Since the capabilities of the pre-trained model are difficult to quantify,
we conduct a qualitative analysis from the perspective of pre-trained model inference. The models
pre-trained on millions of samples already possess somewhat semantic understanding capabilities.
Given a positive pair from an unseen domain, due to the contrastive learning process during pre-
training, it still has a strong likelihood of moving toward the positive side of the boundary, while
the negative pair tends toward the negative side. Although the cosine similarity difference might
be slight, as we have shown in Section. 2.1, the boundary constructs a significant gap from the
perspective of high-dimensional orthogonality.

How to handle the overlaps through imbalanced probability? Due to the properties of orthog-
onal boundary, as cosine similarity decreases and approaches zero from the positive side, the proba-
bility of positive samples sharply decreases. Therefore, we can design a scoring function to annotate
the cleanliness of samples. This function should satisfy two requirements: for samples with cosine
similarity less than or equal to zero, which are almost certainly noise, the function should assign
them a weight of zero. For samples with cosine similarity greater than zero, the function gradient
should increase rapidly as the cosine similarity moves further from zero.

3 METHOD

In this section, we present our One-Step Anti-Noise (OSA) paradigm with a workflow shown in
Figure. 2. We first define the pair-based noise mitigation tasks for image-text matching, image

4
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Figure 2: The workflow of OSA. In the anti-noise process, there are two phases: Scoring Phase and
Training Phase. In the Scoring Phase, a pair is mapped to a shared embedding space by estimators.
Then the cosine similarity is transformed to a weight w by a scoring function. In the Training Phase,
the weight w is directly multiplied with the loss to instruct the optimization.

classification, and image retrieval tasks in Sec. 3.1. Consequently, the detailed description of OSA
is clarified in Sec. 3.2.

3.1 TASK DEFINITION

Let D = {(xi, yi, ci)}Ni=1 denote a paired dataset, where (xi, yi) represents the i-th pair in the
dataset, and ci indicates a noise label for that pair. Specifically, when ci = 0, (xi, yi) forms a
correct (paired) match, while ci = 1 denotes an incorrect (unpaired) match. The objective of noise
mitigation in contrastive learning is to construct a shared embedding space that brings xi and yi
closer when ci = 1. In different tasks, xi and yi are distinct data types. For instance, in the image-
text retrieval task, xi and yi represent images and texts, respectively. In the image classification
task, xi and yi represent images and categories, respectively. In the image retrieval task, xi and
yi represent images and relevant images, respectively. The paired sample (x, y) could be encoded
into a shared embedding space by corresponding encoders ϕx(·) and ϕy(·). Afterward, the cosine
similarity s(x, y) is calculated through Eq. 3 as semantic relevance of (x, y) to guide the training.

s(x, y) =
ϕx(x)

∥ϕx(x)∥
· ϕy(y)

∥ϕy(y)∥
. (3)

3.2 ONE-STEP ANTI-NOISE

The workflow of our noise mitigation approach OSA is depicted in Figure. 2. Initially, we utilize
an estimator model to encode the input pair to a shared embedding space and continue to compute
the cosine similarity between the paired embedding. Afterward, the cosine similarity is converted
to a cleanliness score wi, (0 ≤ wi ≤ 1) through a scoring function designed based on orthogonal
properties (Section. 2.3). This score quantifies the clean degree of the sample, the smaller wi is, the
noisier the sample.

During the target model training phase, this cleanliness score is used as a weight, directly multiplied
by the loss of the corresponding sample to facilitate selective learning. This noise mitigation pro-
cess, being solely dependent on the estimator model, is readily adaptable to the training of various
target models by simply adding an extra coefficient to the loss function, ensuring the model-agnostic
property. Therefore, the key of our noise mitigation approach revolves around the estimator model
and noise score assessment.

3.2.1 ESTIMATOR MODEL

Estimator model selection. In our approach, the Estimator Model must satisfy two critical re-
quirements: 1) effectively mapping input pairs into a unified embedding space and 2) possessing
basic semantic understanding capabilities. To meet these requirements, we employ CLIP (Rad-
ford et al., 2021), a commonly used multimodal pre-trained models, as our estimator model. It is
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equipped with a text encoder ϕt(·) and an image encoder ϕv(·), enabling it to perform basic zero-
shot tasks efficiently.

Domain adaptation (Optional). While we have performed a qualitative analysis of the zero-shot
pre-trained model’s robustness on out-of-domain data in Section. 2.3, and shown strong robustness
for edge cases in Figure. 1, considering the domain diversity in real-world scenarios, we provide
an optional Domain Adaptation (DA) approach to enhance the estimator model’s adaptability when
encountering edge domains. Following NPC (Zhang et al., 2024), we first employ a Gaussian Mix-
ture Model (GMM) coupled with strict selection thresholds to ensure the absolute cleanliness of the
chosen samples. We afterward implement a warm-up phase with few steps, allowing the estimator
model to better understand the semantics of the target domain. Notably, this trick is only optional
for our methods. Through multiple experiments, we found that even without domain adaptation, the
zero-shot CLIP model performs exceptionally well across various scenarios.

3.2.2 NOISE SCORE ASSESSMENT

Spatial Debiasing. The cone effect phenomenon has been demonstrated as a general phenomenon
for deep neural networks, typically resulting in a narrow embedding space that causes a shift of
space center to a narrow cone center (Liang et al., 2022a). Specifically, when paired randomly
generated inputs are mapped into a shared embedding space through model encoders, the resultant
vectors exhibit an average cosine similarity that deviates from zero and tends to another fixed angle.
To counteract this shift and mitigate its impact on the estimator’s ability to accurately recognize
noises through high-dimensional orthogonality, a random sampling method is developed. We begin
by constructing K random sample pairs R = {(xj , yj) | j = 1, 2, . . . ,K} and processing them
through the estimator’s encoder to generate a set of vectors. Then the average cosine similarity
among these vectors will be calculated as the space shift β through:

β =

∑K
j=1 s(xj , yj)

K
. (4)

Scoring Function. After spatial debiasing, we employ a scoring function w(·) to evaluate the
cleanliness of the input pair (x, y). In section. 2.3, we have elaborate how to handle overlaps based
on the orthogonal boundary property. For an estimator model trained on millions of samples using
contrastive learning, clean pairs (diagonal elements) are optimized to positive side, while noise pairs
(non-diagonal elements) are optimized to negative side. Given unfamiliar pairs, the model also
tends to map clean pairs towards positive and noisy pairs towards negative. Despite the potentially
slight similarity difference between clean and noisy pairs, high-dimensional orthogonality ensures
a substantial gap between them. In this case, a negative cosine similarity s(x, y) computed by
the estimator, indicating the pair is almost certainly noise, should be assigned a score of zero. For
samples with s(x, y) greater than zero, the probability of the sample being positive sharply decreases
as the cosine similarity approaches zero from the positive side. Therefore, the function gradient
should increase rapidly as the cosine similarity moves further from zero. To systematically score the
noise, we design the scoring function as:

w(x, y, β) =

{
0 ,s(x, y)− β ≤ 0

− (s(x, y)− β)2(s(x, y)− β − 1) ,otherwise
(5)

Re-weight Training. After scoring, the target model can selectively learn from the samples by re-
weighting the loss. Noise samples with smaller weights will have a reduced impact on model updates
and will be effectively mitigated. For a sample (x, y), let Lx,y denote its loss, the re-computed loss
Lre is defined as:

Lre = w(x, y, β)× Lx,y . (6)

4 EXPERIMENTS

In this section, we present experiments on multiple datasets with label noise, demonstrating the
effectiveness of our methods. Firstly, we describe the datasets, metrics, and implementation details.
Then, we report our results on several downstream tasks. Lastly, we conduct ablation studies to
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show how each part of our method contributes and examine how these parts interact. The literature
involved in our experiments and richer related work are detailed in Appendix. B.

4.1 EVALUATION SETTING

In this section, we briefly introduce the datasets and evaluation metrics used in the experiments. For
more dataset and implementation details, please refer to Appendix. A.

Datasets. We evaluate our method on three downstream tasks with noisy labels, including one
multimodal task and two visual tasks. For the cross-modal matching task, we perform experi-
ments on the MSCOCO (Lin et al., 2014) and Flickr30K (Young et al., 2014) datasets. Following
NPC (Zhang et al., 2024), we further carry out evaluations on a real-world noisy dataset CC120K.
For image classification tasks, experiments are conducted under three subsets of WebFG-496 (Sun
et al., 2021)—Aircraft, Bird, and Car. For image retrieval tasks, we conduct experiments on the
CARS98N dataset under PRISM (Liu et al., 2021) setting.

Evaluation Metrics. For the image-text matching task, the recall value of the top-K retrieved
results (R@K) is used. For classification tasks, accuracy serves as the evaluation metric. For the
image retrieval task, we use Precision@1 and mAP@R for evaluation.

4.2 COMPARISONS WITH STATE OF THE ARTS

Table 2: Comparison on noisy MS-COCO.

Noise ratio Method
MS-COCO 1K MS-COCO 5K

i2t t2i i2t t2i
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

0%

VSE∞ 82.0 97.2 98.9 69.0 92.6 96.8 62.3 87.1 93.3 48.2 76.7 85.5
PCME++ 81.6 97.2 99.0 69.2 92.8 97.1 62.1 86.8 93.3 48.1 76.7 85.5
PAU 80.4 96.2 98.5 67.7 91.8 96.6 63.6 85.2 92.2 46.8 74.4 83.7
NPC 82.2 96.5 98.7 68.3 92.0 98.7 65.4 87.3 93.1 48.5 75.4 84.4
CLIP 80.1 95.7 98.2 67.1 91.4 96.6 62.9 84.9 91.6 46.5 73.8 82.9

+OSA 82.2 96.5 98.7 68.8 92.1 96.7 65.6 86.8 92.9 49.1 76.2 84.8
ALIGN 84.9 97.3 99.0 70.5 92.8 97.2 69.6 89.9 94.5 50.5 77.5 85.7

+OSA 85.3 97.4 99.0 71.4 93.1 97.3 69.8 89.9 94.8 51.4 78.2 86.3

20%

VSE∞ 78.4 94.3 97.0 65.5 89.3 94.1 58.6 83.4 89.9 45.0 72.9 81.7
PCME++ 78.4 95.9 98.4 64.9 90.8 96.1 57.7 83.9 91.0 43.2 72.3 82.4
PAU 78.2 95.2 98.1 64.5 90.0 95.4 59.3 82.9 90.4 44.2 71.3 81.3
NPC 79.9 95.9 98.4 66.3 90.8 98.4 61.6 85.4 91.6 46.0 73.4 82.9
CLIP 76.0 94.3 97.5 63.4 89.0 94.8 55.3 79.1 86.9 41.0 68.8 79.3

+OSA 81.6 96.2 98.5 68.9 92.0 96.6 65.8 86.4 92.5 48.7 76.1 84.5
ALIGN 79.4 95.7 98.2 66.2 90.8 96.1 60.9 84.5 91.0 46.3 73.6 82.3

+OSA 85.1 97.4 99.1 70.9 93.0 97.3 69.7 90.0 94.7 50.9 77.8 86.2

50%

VSE∞ 44.3 76.1 86.9 34.0 69.2 84.5 22.4 48.2 61.1 15.8 38.8 52.1
PCME++ 74.8 94.3 97.7 60.4 88.7 95.0 52.5 79.6 88.4 38.6 68.0 79.0
PAU 76.4 94.1 97.6 62.3 88.5 94.6 57.3 81.5 88.8 41.9 69.4 79.6
NPC 78.2 94.4 97.7 63.1 89.0 97.7 59.9 82.9 89.7 43.0 70.2 80.0
CLIP 73.9 93.0 97.2 60.1 87.3 94.0 54.1 78.5 86.6 39.7 67.2 77.5

+OSA 80.4 96.2 98.6 67.8 91.6 96.4 64.0 85.5 91.9 47.9 74.6 83.8
ALIGN 78.0 95.8 98.5 65.4 90.3 96.0 60.1 84.3 91.2 45.2 72.8 82.1

+OSA 84.3 97.0 98.9 70.0 92.5 97.0 68.5 89.2 94.2 50.0 77.0 85.4

Results on MSCOCO. To fairly demonstrate the effectiveness of our method, we compare OSA
with various robust learning image-text matching approaches using the same ViT-B/32 CLIP as
backbone, including VSE∞ (Chen et al., 2021), PCME++ (Chun, 2023), PAU (Li et al., 2023),
NPC (Zhang et al., 2024). Besides, we separately employ OSA on both CLIP (Radford et al., 2021)
and ALIGN (Jia et al., 2021). The results in Table. 2 show that OSA outperforms all previous
approaches on all metrics with a huge gap. In the more challenging MS-COCO 5K set with 50%
noise ratio, OSA surpasses the SOTA method NPC in the R@1 for both image-to-text (i2t) and
text-to-image (t2i) matching by 8.6% and 7.0%, respectively. Another phenomenon is that as the
noise ratio increases from 0% to 50%, all other methods encounter severe performance drop, with
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an averaging drop of 5.05% for NPC across four R@1 metrics. In contrast, OSA exhibits only a
slight decrease of 1.275%, showcasing the accuracy and robustness of OSA in anti-noise tasks.

Results on Flickr30K. To further demonstrate the generalization ability of OSA, we evaluate on
the Flickr30K dataset and compare with several anti-noise methods, including NCR (Huang et al.,
2021), DECL (Qin et al., 2022), BiCro (Yang et al., 2023a), and NPC (Zhang et al., 2024). The
results are presented in Table. 8 of Appendix. It is evident that OSA consistently outperforms all
models on the R@1 metric. Notably, compared with the baseline CLIP, training with OSA at a 60%
noise ratio achieves 20.9% R@1 improvement for i2t and a 22.3% R@1 improvement in t2i, further
indicating the effectiveness of OSA on noise mitigation. Additionally, OSA demonstrates similar
noise robustness on the Flickr30K dataset as observed on MSCOCO, with only 1.4% R@1 drop on
i2t and 1.2% R@1 drop on t2i ranging from 0% noise to 60% noise, while all of the other anti-noise
approaches hardly resist the detriment from high-ratio noise. All of these results demonstrate the
effectiveness and robustness of OSA on anti-noise tasks.

Results on CC120K. To further verify the reliability of OSA in real scenarios, we conduct eval-
uations on a large-scale real-world noisy dataset, CC120K, with 3%-20% noise ratio. The results
shown in Table. 3 indicate that OSA outperforms the current state-of-the-art method NPC, even in
larger-scale real-world domains. This demonstrates the feasibility and generality of OSA even in
practical training scenarios.

Table 3: Comparison on real-world noisy
dataset CC120K.

i2t t2i
Method R@1 R@5 R@10 R@1 R@5 R@10
NPC 71.1 92.0 96.2 73.0 90.5 94.8
CLIP 68.8 87.0 92.9 67.8 86.4 90.9
+OSA 73.1 92.2 95.7 73.9 91.2 94.7

Table 4: Results of other image-based tasks.

Method
Image Classification Image Retrieval
Aircraft Bird Car

Prec. mAP
Acc Acc Acc

Baseline 65.44 62.29 75.90 71.69 18.16
+OSA 73.18 70.50 80.19 78.45 24.99

Results on Other Downstream Tasks. To validate the transferability of OSA across different
tasks, we evaluate it on two additional tasks: image classification and image retrieval. The results are
presented in Table. 4. The baseline method for both tasks leverages contrastive learning. In the image
classification task, OSA outperforms the baseline by 7.74%, 8.21%, and 4.28% on the Aircraft, Bird,
and Car subsets, respectively. In the image retrieval task, OSA improves performance by 6.76% in
precision and 6.83% in mAP. These improvements demonstrate the strong task transferability and
generality of OSA.

4.3 TARGET MODEL-AGNOSTIC ANALYSIS

OSA is an architecture-agnostic paradigm that can be easily adapted to various models. To verify its
model-agnostic property, we evaluate it across models with different architectures. Subsequently, we
apply it to other anti-noise models to demonstrate its generalization capability in noise mitigation.

Architecture-agnostic Analysis. The effectiveness of OSA on Vision Transformer (ViT) has been
proven in Section. 4.2. We further explore the generality of OSA on target models with other archi-
tectures. Specifically, we deploy OSA above the VSE++ (Faghri et al., 2018) model with two differ-
ent architecture types: ResNet-152 (He et al., 2016) and VGG-19 (Simonyan & Zisserman, 2014).
These two architectures have revealed significant sensitivity and vulnerability to noise (Huang et al.,
2021). In this experiment, all estimator models employ zero-shot CLIP and we utilize the origi-
nal VSE++ as our baseline. The results in Table. 5 indicate a significant performance degradation
emerged for the baseline methods in noisy setting, while a stable performance is achieved after
employing OSA. The stable performance on these two noise-vulnerable architectures fully demon-
strates that OSA possesses the architecture-agnostic property.

Adaptability to Other Anti-Noise Models. Theoretically, OSA can be adapted to any target
model, providing noise resistance. However, can OSA further enhance the robustness of models
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Table 5: The results of the target model with different architectures on noisy MSCOCO.

Noise ratio Method Architecture
MS-COCO 1K MS-COCO 5K

i2t t2i i2t t2i
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

0%

Baseline ResNet-152 58.9 86.9 93.8 44.2 77.9 88.3 34.9 64.3 76.1 23.3 50.9 64.2
+OSA 58.9 86.2 93.7 44.3 77.9 87.9 35.0 64.1 76.0 23.5 50.8 63.9

Baseline VGG-19 49.6 79.4 89.1 38.0 72.9 84.7 26.9 54.2 66.8 18.7 43.8 56.8
+OSA 50.1 80.0 89.3 38.3 73.0 84.6 26.6 54.4 67.4 18.8 43.9 57.3

20%

Baseline ResNet-152 45.8 70.3 83.7 36.1 68.4 79.7 26.0 48.4 58.3 18.3 42.0 54.0
+OSA 58.1 86.1 93.2 43.4 76.8 87.2 33.7 62.6 74.5 22.5 49.7 62.8

Baseline VGG-19 33.2 67.1 81.5 25.9 58.0 71.4 13.7 35.0 49.2 10.7 29.9 41.9
+OSA 49.3 79.1 88.6 37.2 71.9 83.8 25.2 53.3 65.3 17.9 42.6 55.9

50%

Baseline ResNet-152 28.4 61.2 75.2 5.2 14.0 19.5 11.0 31.0 43.6 1.6 6.0 9.2
+OSA 55.0 84.0 92.0 40.7 74.7 85.6 30.8 60.2 72.3 20.9 46.6 60.0

Baseline VGG-19 2.5 9.8 16.2 0.1 0.5 1.0 0.5 2.5 4.4 0.0 0.1 0.2
+OSA 47.1 77.7 87.6 35.7 70.3 82.8 24.0 51.5 64.0 16.9 40.8 54.2

specifically designed for noise mitigation? To investigate this, we applied OSA to the current state-
of-the-art model, NPC (Zhang et al., 2024). As shown in Table. 9 of Appendix, even for noise-
mitigating models, OSA consistently improves training robustness. This finding further demon-
strates the broad adaptability of OSA across different model types.

4.4 ESTIMATOR MODEL ANALYSIS.

The estimator model is the basis of OSA’s anti-noise capability. In this section, we explore the impact
of different estimator models on noise mitigation, and examine the impact of domain adaptation in
noise mitigation. In Table. 10 of Appendix, we investigate four types of estimators: “None” refers
to training CLIP directly without using OSA. “CLIP (w/o DA)” and “ALIGN (w/o DA)” represent
using CLIP and ALIGN without domain adaptation as estimators, respectively, i.e., zero-shot CLIP
and ALIGN. “CLIP (w DA)” indicates the CLIP with domain adaptation. The target models are all
CLIP. We can observe that both of CLIP and ALIGN as estimators significantly enhance the target
model performance stability when learning with noise, indicating that the choice of estimator is very
flexible. Both CLIP and ALIGN demonstrate exceptional performance when served as estimators.
The other phenomenon is that the zero-shot CLIP model shows comparable performance to the
domain-adapted CLIP with a even better performance at lower noise ratios. This indicates that zero-
shot CLIP, as an estimator, already performs exceptionally well in noise mitigation. The domain
adaptation is unnecessary. This further enhances the deployment convenience of OSA.

4.5 NOISE ASSESSMENT ACCURACY

Noise Detection Accuracy Analysis. To figure out how accurate OSA is in recognizing noise,
we evaluate the accuracy and recall on CLIP without Domain-Adaptation (w/o DA) and CLIP with
Domain-Adaptation (w DA) on noisy MSCOCO. We utilize zero as the threshold to roughly divide
pairs into noise and clean sets, respectively. Concretely, we classify scores less than or equal to 0 as
noise, and scores greater than 0 as clean. The Accuracy means the proportion of the clean pairs cor-
rectly classified into the clean set, while the Recall indicates the noisy pairs correctly classified into
the noisy set. The results presented in Table. 6 indicates the powerful noise recognizing capability
of OSA. The remarkable performance on CLIP (w/o DA) fully demonstrates the generality of OSA.
Another notable phenomenon is that all recall scores converge towards 100, indicating that OSA
achieves greater accuracy in noise detection. This suggests that OSA can almost entirely eliminate
the impact of noise on training.

Noise Re-weighting Accuracy Comparison. Some anti-noise methods, like NPC, also employ
loss re-weighting for optimization. To assess whether our method assigns relatively smaller weights
to noise than these methods, we first analyze the weights generated by NPC and OSA. Due to
differences in weight scales across methods, a direct comparison is unfair. Therefore, to unify the
scale, we adopt a ranking-based approach, sorting weights in descending order and calculating the
Mean Noise Rank. This metric evaluates whether smaller weights are consistently assigned to noisy
samples relative to clean ones. Our experiments use 2,000 randomly selected samples from the
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MSCOCO dataset under two noise conditions: 20% noise (370 noisy samples) and 50% noise (953
noisy samples). The theoretical optimal Mean Noise Ranks, where all noisy weights are ranked
last, are 1815.5 and 1524.0, respectively. Results presented in Table. 11 of Appendix show that
OSA achieves a higher Mean Noise Rank compared to NPC, demonstrating greater accuracy in re-
weighting. Moreover, OSA’s rankings are nearly optimal (20% noise: 1809.1 for OSA versus 1815.5
optimal; 50% noise: 1520.7 for OSA versus 1524.0 optimal). This near-perfect alignment indicates
that OSA effectively places almost all noisy samples behind the clean ones.

Table 6: ACC and recall of noise detection.

Estimator Type Noise Ratio Acc Recall

CLIP (w/o DA) 0.2 93.88 97.49
CLIP (w DA) 0.2 97.68 97.18

CLIP (w/o DA) 0.5 93.91 99.35
CLIP (w DA) 0.5 98.14 99.24

Table 7: Overhead Comparison.

Model Time Extra Time

CLIP 97 min 0 min
NPC 323 min 226 min
OSA 118 min 21 min

4.6 COMPUTATIONAL COST ANALYSIS

Cost in Pre-training. To evaluate the practicality of OSA in a real-world pre-training scenario, we
estimate the additional computational cost for processing 1 billion data points. Using an NVIDIA
RTX 3090 with an inference batch size of 4096, utilizing approximately 24 GB of GPU memory,
processing the MS-COCO dataset consisting of 566,435 pairs takes approximately 153 seconds.
At this inference rate, processing 1 billion data points would require approximately 75 hours on a
single RTX 3090. This cost is negligible within the context of large-scale pre-training, especially
when leveraging multiple GPUs for parallel inference.

Time Cost Comparison. To further examine the computational efficiency of our method com-
pared to other anti-noise techniques, we evaluate training time against two representative ap-
proaches: CLIP and NPC. CLIP, which serves as the baseline, is trained directly without any ad-
ditional technique. NPC, the current state-of-the-art, also uses CLIP as its backbone but applies an
anti-noise technique by estimating the negative impact of each sample, necessitating double back-
ward passes. The training time comparison, presented in Table. 7, shows that our method introduces
only a minimal increase in training time compared to direct training, requiring just one-tenth of the
additional time needed by NPC. This highlights the efficiency of OSA, making it well-suited for
large-scale robust training tasks.

5 CONCLUSION

Broader Impacts. In this work, we investigated the possibility of anti-noise in practical large-scale
training. We introduced a novel model-agnostic anti-noise paradigm with advantages such as task
transferability, model adaptability, and low computational overhead. By leveraging the properties of
high-dimensional spaces, we found a robust and effective boundary for distinguishing between noisy
and clean samples. Through rigorous theoretical analysis and comprehensive experimentation, we
validated the efficacy and robustness of OSA for general noise mitigation. Although our primary ob-
jective is to adapt to practical large-scale training, OSA also achieves SOTA performance in standard
anti-noise settings. To the best of our knowledge, this is the first work to explore noise mitigation in
practical large-scale training scenarios, as well as the first to propose a general anti-noise approach.

Limitations and Future Works. Limited by the significant computational cost of pre-training,
it is difficult for us to evaluate in a real pre-training process. Instead, we simulate large-scale
pre-training processes to the greatest extent possible, such as evaluating on the real-world noisy
dataset CC120K, which shares similar domains with mainstream pre-training datasets like CC4M
and CC12M. Exploring the broad domain adaptability of OSA in real pre-training scenarios will be
a valuable direction for future work.
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label noise for image retrieval by selecting interactions. In WACV, pp. 468–477, 2022b. 15

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yun-Hsuan
Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
with noisy text supervision. In ICML, volume 139, pp. 4904–4916, 2021. 2, 7

Kuang-Huei Lee, Xi Chen, Gang Hua, Houdong Hu, and Xiaodong He. Stacked cross attention for
image-text matching. In ECCV, volume 11208, pp. 212–228, 2018. 14

Hao Li, Jingkuan Song, Lianli Gao, Pengpeng Zeng, Haonan Zhang, and Gongfu Li. A differentiable
semantic metric approximation in probabilistic embedding for cross-modal retrieval. In NeurIPS,
volume 35, pp. 11934–11946, 2022. 14

Hao Li, Jingkuan Song, Lianli Gao, Xiaosu Zhu, and Hengtao Shen. Prototype-based aleatoric
uncertainty quantification for cross-modal retrieval. In NeurIPS, 2023. 7

Junnan Li, Richard Socher, and Steven C. H. Hoi. Dividemix: Learning with noisy labels as semi-
supervised learning. In ICLR, 2020. 2, 15

Kunpeng Li, Yulun Zhang, Kai Li, Yuanyuan Li, and Yun Fu. Visual semantic reasoning for image-
text matching. In ICCV, pp. 4653–4661, 2019. 14

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Weixin Liang, Yuhui Zhang, Yongchan Kwon, Serena Yeung, and James Y. Zou. Mind the gap:
Understanding the modality gap in multi-modal contrastive representation learning. In NeurIPS,
2022a. 3, 6, 16

Xuefeng Liang, Longshan Yao, Xingyu Liu, and Ying Zhou. Tripartite: Tackle noisy labels by a
more precise partition. CoRR, 2022b. 15

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C. Lawrence Zitnick. Microsoft COCO: common objects in context. In ECCV, volume
8693, pp. 740–755, 2014. 2, 7

Chang Liu, Han Yu, Boyang Li, Zhiqi Shen, Zhanning Gao, Peiran Ren, Xuansong Xie, Lizhen Cui,
and Chunyan Miao. Noise-resistant deep metric learning with ranking-based instance selection.
In CVPR, pp. 6811–6820, 2021. 1, 7, 14, 15

Aditya Krishna Menon, Brendan van Rooyen, Cheng Soon Ong, and Bob Williamson. Learning
from corrupted binary labels via class-probability estimation. In ICML, volume 37, pp. 125–134,
2015. 15

Nagarajan Natarajan, Inderjit S. Dhillon, Pradeep Ravikumar, and Ambuj Tewari. Learning with
noisy labels. In NeurIPS, pp. 1196–1204, 2013. 15

Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen Qu. Making
deep neural networks robust to label noise: A loss correction approach. In CVPR, pp. 2233–2241,
2017. 15

Yang Qin, Dezhong Peng, Xi Peng, Xu Wang, and Peng Hu. Deep evidential learning with noisy
correspondence for cross-modal retrieval. In ACM MM, pp. 4948–4956, 2022. 2, 8, 15

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. In ICML,
volume 139, pp. 8748–8763, 2021. 1, 2, 5, 7

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, pp. 10674–10685, 2022. 2

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014. 8

Yale Song and Mohammad Soleymani. Polysemous visual-semantic embedding for cross-modal
retrieval. In CVPR, pp. 1979–1988, 2019. 14

Zeren Sun, Yazhou Yao, Xiu-Shen Wei, Yongshun Zhang, Fumin Shen, Jianxin Wu, Jian Zhang,
and Heng Tao Shen. Webly supervised fine-grained recognition: Benchmark datasets and an
approach. In ICCV, pp. 10582–10591. IEEE, 2021. 1, 7, 14

Zeren Sun, Fumin Shen, Dan Huang, Qiong Wang, Xiangbo Shu, Yazhou Yao, and Jinhui Tang.
PNP: robust learning from noisy labels by probabilistic noise prediction. In CVPR, pp. 5301–
5310, 2022. 15

Dong Wang and Xiaoyang Tan. Robust distance metric learning via bayesian inference. IEEE Trans.
Image Process., 27(3):1542–1553, 2018. 15

Xinshao Wang, Yang Hua, Elyor Kodirov, David A Clifton, and Neil M Robertson. Imae for noise-
robust learning: Mean absolute error does not treat examples equally and gradient magnitude’s
variance matters. arXiv preprint arXiv:1903.12141, 2019a. 15

Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jinfeng Yi, and James Bailey. Symmetric cross
entropy for robust learning with noisy labels. In ICCV, pp. 322–330, 2019b. 15

Xiaobo Xia, Tongliang Liu, Nannan Wang, Bo Han, Chen Gong, Gang Niu, and Masashi Sugiyama.
Are anchor points really indispensable in label-noise learning? In NeurIPS, pp. 6835–6846, 2019.
15

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yilun Xu, Peng Cao, Yuqing Kong, and Yizhou Wang. L dmi: A novel information-theoretic loss
function for training deep nets robust to label noise. In NeurIPS, pp. 6222–6233, 2019. 15

Shuo Yang, Zhaopan Xu, Kai Wang, Yang You, Hongxun Yao, Tongliang Liu, and Min Xu. Bi-
cro: Noisy correspondence rectification for multi-modality data via bi-directional cross-modal
similarity consistency. In CVPR, pp. 19883–19892, 2023a. 1, 8, 15

Xinlong Yang, Haixin Wang, Jinan Sun, Shikun Zhang, Chong Chen, Xian-Sheng Hua, and Xiao
Luo. Prototypical mixing and retrieval-based refinement for label noise-resistant image retrieval.
In ICCV, pp. 11205–11215, 2023b. 15

Yazhou Yao, Zeren Sun, Chuanyi Zhang, Fumin Shen, Qi Wu, Jian Zhang, and Zhenmin Tang.
Jo-src: A contrastive approach for combating noisy labels. In CVPR, pp. 5192–5201, 2021. 15

Kun Yi and Jianxin Wu. Probabilistic end-to-end noise correction for learning with noisy labels. In
CVPR, pp. 7017–7025, 2019. 15

Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descriptions to visual
denotations: New similarity metrics for semantic inference over event descriptions. Trans. Assoc.
Comput. Linguistics, 2:67–78, 2014. 7

Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor W. Tsang, and Masashi Sugiyama. How does
disagreement help generalization against label corruption? In ICML, pp. 7164–7173, 2019. 1

Xu Zhang, Hao Li, and Mang Ye. Negative pre-aware for noisy cross-modal matching. In AAAI, pp.
7341–7349, 2024. 1, 2, 6, 7, 8, 9, 14, 15

Zhilu Zhang and Mert R. Sabuncu. Generalized cross entropy loss for training deep neural networks
with noisy labels. In NeurIPS, pp. 8792–8802, 2018a. 15

Zhilu Zhang and Mert R. Sabuncu. Generalized cross entropy loss for training deep neural networks
with noisy labels. In NeurIPS, pp. 8792–8802, 2018b. 15

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

A DETAILS OF IMPLEMENTATION

Dataset Details. MSCOCO is widely used for noisy cross-modal matching, with each image ac-
companied by five descriptive captions. Following the setting of Huang et al. (2021), we utilize
113,287 images for training, 5,000 for validation, and 5,000 for testing. The Flickr30K dataset en-
compasses 31,783 image-text instances, each image paired with five textual annotations. Adhering
to the NCR (Huang et al., 2021), we use 29,783 images for training and 1,000 images each for
validation and testing. Regarding noise splits, following the NCR categorization, we conduct ex-
periments at noise ratios of 0%, 20%, 40%, and 60%. CC120K is a real-world multimodal noisy
dataset collected by Zhang et al. (2024) from the Internet, with about 3%-20% noise ratio. There are
118,851 image-text pairs for training, 1,000 for validation, and 1,000 for testing.

The Aircraft, Bird, and Car we used in the image classification task are three non-overlapping sub-
sets of the WebFG-496 (Sun et al., 2021) dataset. WebFG-496 consists of 53,339 images, totaling
496 subcategories. This dataset is annotated using a webly supervised approach, which leverages
resources from web search engines (e.g., Google Image Search Engine, Bing Image Search Engine)
to expand the annotated image dataset.

For the image retrieval task, we conduct experiments on the CARS98N dataset under PRISM’s
setting (Liu et al., 2021). We utilize 9,558 car-related images sourced from text-based searches on
Pinterest as the training set, and employ the remaining 98 categories from CARS, unsearched on
Pinterest, as a clean test set. The dataset’s noise is inherently real-world, with its creators estimating
a noise ratio of approximately 50%.

Implementation Details. To demonstrate the effectiveness of the OSA, we incorporate an estima-
tor, built around the core of CLIP, and re-weighting operations based on the Estimator’s outcomes
into numerous downstream tasks. In the principal task of cross-modal image-text retrieval, we em-
ploy CLIP with ViT-B/32 as the baseline and target model by default. All experiments are conducted
on a single RTX 3090 GPU using the AdamW optimizer. During both training phases, the model is
trained for five epochs with a batch size of 256 and 500 warmup steps.

For the image classification task on the WebFG dataset, we align with the field’s prevalent models
for a fair comparison by employing the ResNet-50 model enhanced by CLIP for feature extraction
and the CLIP image encoder as our estimator. Training and testing are executed on single RTX
3090 GPU, with an input image resolution of 448× 448. The batch size and initial learning rate are
specified as 64 and 1e-5, respectively. In the first phase, the estimator is trained with data modeled
by a Gaussian Mixture Model (GMM), which considers the classification and matching losses of all
training samples, with the GMM probability threshold of 0.95. The classification task leverages the
CLIP protocol, where a fixed prompt (“This is a picture of”) is prepended to category texts.

For the image retrieval task, we use CLIP ViT-B/32 as the baseline, with a batch size set to 128,
an initial learning rate of 5e-6, and the number of epochs set to 10. Following the setup of the
PRISM (Liu et al., 2021), we set the parameter for sampling positive examples by the random
sampler of the dataloader to 4, and adjust the number of positive examples sampled per epoch to
one-fourth of the original parameter according to the increase in batch size. In this task, we also
adopt a two-stage training approach. The strictly clean in-domain training data for the first stage is
obtained using a GMM model with a probability setting of 0.8.

B RELATED WORK

B.1 NOISE MITIGATION IN CROSS-MODAL MATCHING

The cross-modal matching task (Lee et al., 2018; Song & Soleymani, 2019; Li et al., 2019; 2022;
Diao et al., 2021) serves as a fundamental component in multimodal learning. However, the inher-
ent difference in information density between these modalities leads to high annotation costs and
inconsistent annotation quality, rendering cross-modal tasks particularly vulnerable to label noise.
Some approaches explicitly identify and correct noisy samples through cross-prediction between
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concurrently trained dual models (Huang et al., 2021; Yang et al., 2023a; Liang et al., 2022b), while
others (Zhang et al., 2024; Qin et al., 2022) implicitly estimate the probability of sample noise,
reducing its training impact by adjusting the loss function. NCR (Huang et al., 2021) employs
the memorization capacity of its counterpart model for simple clean samples to rectify the output
results. BiCro (Yang et al., 2023a) utilizes the consistency of similarity score distributions from
a Siamese model ensemble on noisy data, alongside anchors modeled on the loss distribution via
a Beta-Mixture-Model (BMM), to filter out noisy samples. NPC (Zhang et al., 2024), deviating
from the dual-model training schemes, introduces a two-stage single-model training approach that
reduces training overhead by replacing two backward passes with one forward and one backward
pass. Specifically, the first stage estimates the impact of potentially noisy samples on model per-
formance by constructing a high-quality clean sample bank; the second stage then utilizes these
estimates to reweight the loss function. However, current methods for distinguishing clean from
noisy samples rely on numerous hyperparameters that are closely linked to dataset size and model
capacity. This dependency not only limits their adaptability to various downstream tasks but also
makes them challenging to deploy in real-world applications.

B.2 NOISE MITIGATION IN IMAGE CLASSIFICATION

Image classification is vulnerable to training data noise, due to varied noise types and strong model
memorization. Noise in datasets manifests in two primary forms: synthetic alterations and those
arising from real-world scenarios. The former typically involves shuffling the labels of a subset
of the data or retaining the labels while introducing corresponding category images from external
datasets. The latter entails substituting images for a random selection of data points with those
sourced from image search engines. Existing approaches are categorized based on their operational
focus: loss correction (Yi & Wu, 2019; Zhang & Sabuncu, 2018a; Menon et al., 2015; Natarajan
et al., 2013; Patrini et al., 2017; Xia et al., 2019; Ghosh et al., 2017; Wang et al., 2019a;b; Xu et al.,
2019; Zhang & Sabuncu, 2018b) and sample selection (Sun et al., 2022; Albert et al., 2023; Yao
et al., 2021; Li et al., 2020; Albert et al., 2022). Loss correction methods typically incorporate a
regularization term into the loss function, implicitly reweighting clean and noisy samples within
the loss. Sample selection strategies, in contrast, explicitly differentiate between clean and noisy
samples, applying distinct processing to each category during loss computation. Representative for
the loss correction category, (Zhang & Sabuncu, 2018a) aims to generalize ordinary Cross-Entropy
loss and MAE loss by setting the loss threshold to iid and ood noisy samples. DivideMix (Li et al.,
2020) concurrently trains two networks, each utilizing the data partitioning from the other network to
distinguish between clean and noisy samples based on loss values, thereby mitigating the influence
of confirmation bias inherent within each network. PNP (Sun et al., 2022) framework employs a
unified predictive network to estimate the in-distribution (iid), out-of-distribution (ood), and clean
probabilities for a given sample. Co-training trained on a sample that has a lower loss, and with the
different predictions by its siamese network.

B.3 NOISE MITIGATION IN IMAGE RETRIEVAL.

Although image retrieval tasks focus on pairwise relationships, the noise predominantly originates
from image categorization errors. Analogous to image classification tasks, this can be bifurcated into
in-domain (Wang & Tan, 2018) and open-set noise (Liu et al., 2021). In terms of task configuration,
noise retrieval typically operates at the category level, treating images within the same category
as positive instances. PRISM (Liu et al., 2021) tries to find noisy image samples by finding the
outliers score in the whole similarity matrix from the same category. The generalization ability of
the image feature is ensured by a broader query bank restored multi-view of it. TITAN (Yang et al.,
2023b) utilizes prototypes to be representative of the anchor of the clean and noisy samples and
then generates synthetic samples by a combination of prototypes for substitution of noisy samples.
T-SINT (Ibrahimi et al., 2022b) utilizes more negative samples by the interaction between noisy
samples and negative samples that belong to another category.
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C PROOFS

C.1 PROOF OF HIGH-DIMENSIONAL ORTHOGONALITY

Suppose u, v ∈ Rd are any two random vectors. The cosine similarity cos(u, v) ∼ N (0, d−1). The
probability that cos(u, v) is within a specific range [−a, a] is denoted as:

P (−a ≤ cos(u, v) ≤ a) = Φ

(
a

ς

)
− Φ

(
−a

ς

)
, (7)

where Φ represents the CDF of the standard normal distribution, and ς = 1√
d

is the standard devia-
tion of the cosine similarity. When d = 1024 and a = 0.1, there are

ς =
1√
1024

=
1

32
, (8)

and

P (−0.1 ≤ cos(u, v) ≤ 0.1) = Φ

(
0.1

1/32

)
− Φ

(
−0.1

1/32

)
≈ 0.9986. (9)

C.2 PROOF OF THEOREM 1

In the Section. 2.2, we propose that Theorem 1 about the relative relationship of pairs in the original
entire space, will not change after transmitting to the narrow cone space of the trained model, and
there is always a boundary r concentrated on most random vectors.

To prove this Theorem, we first introduce a useful lemma of monotonicity of cosine similarity pro-
posed by Liang et al. (2022a), indicating that the cosine similarity between two vectors increases
with a high probability after one feedforward computation consisting of a linear transformation and
ReLU computation.
Lemma 1. Suppose u, v ∈ Rdin are any two fixed vectors such that ∥u∥ = r ∥v∥ for some r > 0,
W ∈ Rdout×din is a random weight matrix where each element Wk,l ∼ N (0, d−1

out) for k ∈ [dout],
l ∈ [din], and b ∈ R

dout is a random bias vector such that bk ∼ N (0, d−1
out) for k ∈ [dout]. If

cos(u, v) < ( 12 (r +
1
r ))

−1, then the following holds with probability at least 1−O(1/dout).

cos(σ(Wu+ b), σ(Wv + b)) > cos(u, v). (10)

Proof of Theorem. 1. Let Rdin be the original space before being transmitted in a neural network.
Suppose u, v ∈ Rdin are any two random vectors with cos(u, v) ≈ 0. uc, vc ∈ Rdin is a pair of
clean vectors with cos(uc, vc) > 0, while un, vn ∈ Rdin is a noisy pair with cos(un, vn) < 0. Given
a Neural Network F (x) = ft(ft−1(. . . f2(f1(x)))) ∈ Rdout with t layers. fi(x) = σi(Wix + bi)

denotes ith layer, where σ(·) indicates activation function. Wi ∈ R
di
out×di

in is a random weight
matrix where each element Wk,l

i ∼ N (0, 1/diout) for k ∈
[
diout

]
, l ∈

[
diin

]
, and bi ∈ Rdi

out is a
random bias vector such that bk

i ∼ N (0, 1/diout) for k ∈
[
diout

]
. We would like to prove that there

are always be a boundary β, satisfying:

cos(F (un), F (vn)) < cos(F (u), F (v)) ≈ β < cos(F (uc), F (vc)), (11)

which is equivalent to proving.

cos(fi(un), fi(vn)) < cos(fi(u), fi(v)) ≈ βi < cos(fi(uc), fi(vc)), (12)

where βi is the boundary of ith layer.

We first consider the cosine similarity between u and v as:

cos(u, v) =
u · v

∥u∥∥v∥
. (13)

After a linear transformation of ith layer, the cosine similarity of cos(Wiu+bi,Wiv+bi) denotes:

cos(Wiu+ bi,Wiv + bi) =
(Wiu+ bi) · (Wiv + bi)

∥Wiu+ bi∥∥Wiv + bi∥
. (14)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Since bi has a mean of zero and is independent from Wiu and Wiv, the expectation of bi and
(Wiu+ bi) ·Wiv + bi) can be signified as:

E [bi] = 0, (15)

E [(Wiu+ bi) · (Wiv + bi)] = E [(Wiu ·Wiv)] =

n∑
i=1

n∑
i=1

1

diout
ukvk =

1

diout
(u · v). (16)

Additionally, we have

∥Wiu+ bi∥2 = Wiu ·Wiu+ 2Wiu · bi + bi · bi. (17)

Due to bk ∼ N (0, 1/diout), as diout increases, the term of 2Wiu ·bi and bi ·bi become negligible,
which implies

∥Wiu+ bi∥2 ≈ Wiu ·Wiu =

n∑
i=1

(Wiu)
2. (18)

Therefore, the expectation of ∥Wiu+ bi∥2 is approximate to

E
[
∥Wiu∥2

]
=

n∑
k=1

u2
k

1

diout
=

∥u∥
diout

, (19)

and

cos(Wiu+ bi,Wiv + bi) ≈
E[Wiu ·Wiv]√

E[∥Wiu+ bi∥2]E[∥Wiv + bi∥2]

=

1
di
out

(u · v)√
1

di
out

∥u∥2 · 1
di
out

∥v∥2

= cos(u, v).

(20)

Based on Eq. 20, with cos(un, vn) < cos(u, v) ≈ 0 < cos(uc, vc), there are

cos(Wiun + bi,Wivnbi) < cos(Wiu+ bi,Wiv + bi) < cos(Wiuc + bi,Wivc + bi). (21)

Since the activation function σ is a monotonically increasing function, it follows

cos(fi(un), fi(vn)) < cos(fi(u), fi(v)) < cos(fi(uc), fi(vc)). (22)

Due to Lemma. 1, cos(fi(u), fi(v)) will be increase with the transmitting layers, and
cos(fi(u), fi(v)) will always be a βi > 0, to satisfy:

cos(fi(un), fi(vn)) < cos(fi(u), fi(v)) ≈ βi < cos(fi(uc), fi(vc)). (23)

After transmitting each layer, Eq. 23 are always satisfied. When transmitting a neural network with
t layers, we have

cos(F (un), F (vn)) < cos(F (u), F (v)) ≈ β < cos(F (uc), F (vc)). (24)

C.3 PROOF OF ORTHOGONALITY VALIDITY IN CONE SPACE

Although we have demonstrated in Appendix. C.1 that in the original high-dimensional space, the
cosine similarity between two randomly selected vectors—each dimension following a Gaussian
distribution—typically converges near the orthogonal boundary, this property may not necessarily
extend to the subspace of the shared embedding space maintained by the trained models. Specif-
ically, for real image-text pairs, the subspace may deviate from the orthogonal characteristics ob-
served in the original space. Thus, it is essential to investigate whether the orthogonality property
holds within the cone space for the image-text subdomain post-training.

To explore this, we first analyze the distribution of several dimensions of image and text features
from the CC120K dataset, as illustrated in Figure. 3. The results reveal that all vector dimensions,
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Figure 3: The illustrations of several distributions on CC120K. (a) The parameter distribution. (b-d)
The distribution of image features for the 128th, 256th, and 512th dimensions. (e-g) The distribution
of text features for the 128th, 256th, and 512th dimensions.

including trained parameters, exhibit a Gaussian distribution with near-zero means. If the dimen-
sions of the trained embedding space follow Gaussian distributions, the process of selecting random
vectors within this space would be analogous to that of the original space, thereby preserving the
orthogonality property. Here, we present the following theorem: The output features of large-scale
models tend to Gaussian distribution. The detailed theorem and proof are provided below.
Theorem 2 (Output features tends to Gaussian). Given a Neural Network F (x) =
{ft(ft−1(. . . f2(f1(x))))} ∈ Rdout with t layers. fl(x) = ϕl(Wlx + bl) denotes the lth layer,
where ϕ(·) indicates the activation function, and the final layer ft(x) = Wtx + bt is a fully-
connected layer without an activation function for common space projection. Let xk ∈ Rdk

in be
the sample feature that will be transmitted into the kth layer, where x1 denotes the original fea-
ture with an unknown distribution x1 ∼ (µx, σ

2
x). Wk ∈ Rdk

out×dk
in is a random weight matrix

where each element wk
ij ∼ N (0, σ2

w) for i ∈ [dkout], j ∈ [dkin], and bk ∈ Rdk
out is a bias vector

such that bki ∼ N (0, σ2
w) for i ∈ [dkout]. In such a neural network, linear layers lead features x

gradually to a Gaussian distribution from any initial distribution, and as |din| is sufficiently large,
F (x) ∼ N (0, σ2).

Proof of Theorem. 2. For the kth layer (k ∈ [t]), we first calculate the expectation and variance of

the linear combination
∑dk

in
j=1 w

k
ijx

k
j . For the expectation, since wk

ij and xk
j are independent and

wk
ij ∼ N (0, 1

dk
out

), we have:

E

 dk
in∑

j=1

wk
ijx

k
j

 =

dk
in∑

j=1

E[wk
ij ]E[xk

j ] =

dk
in∑

j=1

(0× E[xk
j ]) = 0. (25)

For variance, since wk
ij and xk

j are independent, we have:

Var

 dk
in∑

j=1

wk
ijx

k
j

 =

dk
in∑

j=1

Var(wk
ijx

k
j ) =

dk
in∑

j=1

E
[
(wk

ij)
2(xk

j )
2
]

=

dk
in∑

j=1

E
[
(wk

ij)
2
]
E
[
(xk

j )
2
]

=

dk
in∑

j=1

σ2
wk

(
Var(xk

j ) + (E[xk
j ])

2
)

=

dk
in∑

j=1

σ2
wk

(
σ2
xk + µ2

xk

)
= dkinσ

2
wk

(
σ2
xk + µ2

xk

)
.

(26)
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Since wk
ij are independently distributed Gaussian random variables, and xk

j has a known mean and
variance, the sum of wk

ijx
k
j can apply to a generalized Central Limit Theorem. We have

∑dk
in

j=1 w
k
ijx

k
j − E

[∑dk
in

j=1 w
k
ijx

k
j

]
√

Var
(∑dk

in
j=1 w

k
ijx

k
j

) d−→ N (0, 1), (27)

which is equivalent to

∑dk
in

j=1 w
k
ijx

k
j − 0√

dkinσ
2
wk(σ

2
xk + µ2

xk)

d−→ N (0, 1). (28)

Therefore,

dk
in∑

j=1

wk
ijx

k
j

d−→ N (0, dkinσ
2
wk(σ

2
xk + µ2

xk)). (29)

Due to bk ∼ N (0, σ2
b ), we finally get

dk
in∑

j=1

wk
ijx

k
j + bki

d−→ N
(
0, dkinσ

2
wk(σ

2
xk + µ2

xk) + σ2
b

)
. (30)

Although activation functions truncate the Gaussian distribution after each linear layer, the sam-
ples still gradually approach a Gaussian distribution from the initial unknown distribution as they
pass through the layers. Furthermore, because there is a fully connected layer ( layer) without an
activation function before mapping to the final common space, the final feature distribution will
approximate a Gaussian distribution, as follows:

F (x) ∼ N (0, dtinσ
2
wt(σ2

xt + µ2
xt) + σ2

b ). (31)

D SDM VISUALIZATION

We visualize some representative samples from our synthetic domain originating from COCO by
using SDM. The results are shown in Figure. 4. We generate two styles of image based on the
MSCOCO caption, and then use pre-trained multimodal models to calculate cosine similarity with
the SDM-generated image and original caption.
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A kitchen counter with dirty 
dishes near sink.

A couple of young men playing a 
game of frisbee. 

A wooden kitchen table with 
three wooden chairs.

A woman in a young girl 
inside of the cabin.

Skier standing for picture on a 
gentle slope.

Miscellaneous kitchen 
utensils on a wooden shelf.

Cartoon Style

Sketch Style

Figure 4: Examples of generated SDM dataset. The first row is in sketch style, while the second row
is in cartoon style.

E ADDITIONAL EXPERIMENTAL RESULTS

Table 8: Comparison on noisy Flickr30K.

Method Noise ratio i2t t2i Noise ratio i2t t2i
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

NCR

0%

77.3 94.0 97.5 59.6 84.4 89.9

20%

73.5 93.2 96.6 56.9 82.4 88.5
DECL 79.8 94.9 97.4 59.5 83.9 89.5 77.5 93.8 97.0 56.1 81.8 88.5
BiCro 81.7 95.3 98.4 61.6 85.6 90.8 78.1 94.4 97.5 60.4 84.4 89.9
NPC 87.9 98.1 99.4 75.0 93.7 97.2 87.3 97.5 98.8 72.9 92.1 95.8
CLIP 86.2 97.6 99.2 72.9 92.3 96.0 82.3 95.5 98.3 66.0 88.5 93.5
+OSA 88.6 97.7 99.3 75.6 93.6 96.8 88.9 97.7 99.1 75.6 93.3 96.9
NCR

40%

68.1 89.6 94.8 51.4 78.4 84.8

60%

13.9 37.7 50.5 11.0 30.1 41.4
DECL 72.7 92.3 95.4 53.4 79.4 86.4 65.2 88.4 94.0 46.8 74.0 82.2
BiCro 74.6 92.7 96.2 55.5 81.1 87.4 67.6 90.8 94.4 51.2 77.6 84.7
NPC 85.6 97.5 98.4 71.3 91.3 95.3 83.0 95.9 98.6 68.1 89.6 94.2
CLIP 76.2 93.3 96.5 59.4 85.0 90.9 66.3 87.3 93.0 52.1 78.8 87.4
+OSA 87.3 97.6 99.3 74.2 93.1 96.7 87.2 98.1 99.6 74.4 92.9 96.4
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Table 9: The results of other methods employing OSA on MSCOCO 1K.

i2t t2i
Noise Ratio Method R@1 R@5 R@10 R@1 R@5 R@10

0%
NPC 82.2 96.5 98.7 68.3 92.0 98.7

+OSA 82.4 96.4 98.6 68.5 91.8 98.7

20%
NPC 79.9 95.9 98.4 66.3 90.5 98.4

+OSA 81.2 96.0 98.6 66.9 91.2 98.6

50%
NPC 78.2 94.4 97.7 63.1 89.0 97.7

+OSA 79.3 95.6 98.2 66.8 90.8 98.2

Table 10: Ablation study of estimator type on noisy MS-COCO.

Noise ratio Estimator
MS-COCO 1K MS-COCO 5K

i2t t2i i2t t2i
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

0%

None 80.1 95.7 98.2 67.1 91.4 96.6 62.9 84.9 91.6 46.5 73.8 82.9
CLIP (w/o DA) 82.6 96.7 98.7 68.5 92.1 96.7 66.2 87.0 93.3 48.6 75.7 84.8
ALIGN (w/o DA) 81.9 96.7 98.7 68.9 92.2 96.9 64.8 86.6 92.7 49.0 75.9 84.7
CLIP (w DA) 82.2 96.5 98.7 68.8 92.1 96.7 65.6 86.8 92.9 49.1 76.2 84.8

20%

None 76.0 94.3 97.5 63.4 89.0 94.8 55.3 79.1 86.9 41.0 68.8 79.3
CLIP (w/o DA) 81.8 96.1 98.7 68.2 91.9 96.5 64.8 86.6 92.3 48.3 75.4 84.1
ALIGN (w/o DA) 81.2 96.0 98.6 67.7 91.5 96.4 64.8 86.2 92.3 47.8 74.9 83.9
CLIP (w DA) 81.6 96.2 98.5 68.9 92.0 96.6 65.8 86.4 92.5 48.7 76.1 84.5

50%

None 73.9 93.0 97.2 60.1 87.3 94.0 54.1 78.5 86.6 39.7 67.2 77.5
CLIP (w/o DA) 79.6 95.6 98.4 65.9 90.8 95.9 62.4 84.8 90.8 45.7 73.1 82.5
ALIGN (w/o DA) 80.4 95.6 98.3 66.0 90.5 95.8 62.0 84.9 91.8 45.7 73.2 82.5
CLIP (w DA) 80.4 96.2 98.6 67.8 91.6 96.4 64.0 85.5 91.9 47.9 74.6 83.8

Table 11: Mean Noise Rank Comparison between OSA and NPC.

Noise Ratio Method Mean Noise Rank↑ Optimal Rank Noise Number Sample Number

20%
NPC 1641.3 1815.5 370 2,000
OSA 1809.1 1815.5 370 2,000

50%
NPC 1456.2 1524.0 953 2,000
OSA 1520.7 1524.0 953 2,000
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